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ABSTRACT

Data practitioners often sample their datasets to produce repre-
sentative subsets for their downstream tasks. When entities in a
dataset can be partitioned into multiple groups, stratified sampling
is commonly used to produce subsets that match a target group
distribution, e.g., to select a balanced subset for training a machine
learning model. However, real-world data frequently contains du-
plicates — multiple representations of the same real-world entity —
that can bias sampling, necessitating deduplication.

We define deduplicated sampling as the task of producing a clean
sample of a dirty dataset according to a target group distribution.
The naïve approach to deduplicated sampling would first dedu-
plicate the entire dataset upfront, then perform sampling ex post.
However, that approach might be prohibitively expensive for large
datasets and time/resource constraints. Deduplicated sampling on-
demand with RadlER is a novel approach to produce a clean sample
by focusing the cleaning effort only on entities required to appear
in that sample. Our experimental evaluation, performed on multiple
datasets from different domains, demonstrates that RadlER consis-
tently outperforms baseline approaches, providing data scientists
with an efficient solution to quickly produce a clean sample of a
dirty dataset according to a target group distribution.
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1 SAMPLING DATAWITH DUPLICATES

Data practitioners often need to select representative data subsets
to support their tasks, for instance to focus on exemplary instances
when performing data visualization and exploration on a large
dataset [36, 50], or to prepare a balanced subset that adheres to a
desired distribution for training a machine learning model [7] (e.g.,
balanced class labels for a classifier). This subset selection task is
commonly known as sampling [76], a statistical process that aims
to produce a representative subset of a given population.
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_id organization address year source amount

r1 Big Apple Seeds 527 East 12th Street 2012 youth 4000.00

r2 Man Up! 821 Van Siclen Avenue 2011 local 69000.00

r3 Per Scholas, Inc. 804 East 138th Street 2013 local 30000.00

r4 Man Up Inc. 821B Van Scilen Avenue 2012 local 50000.00

r5 Man Up!, Inc. 821b Van Siclen Av. 2012 local 20000.00

r6 St. Francis College 180 Remsen Street 2011 aging 9000.00

Figure 1: Excerpt inspired by the NYC funding dataset.

When a population can be considered as the combination of
multiple distinct subpopulations (i.e., groups), defined on the basis
of one or more features presented by its individuals (e.g., gender
and ethnic group for people, brand for commercial products, etc.),
stratified sampling, which performs sampling independently for
each group, is widely used to guarantee that the produced sample
follows a target distribution of individuals from the different groups.
Typical target distributions are based on the proportions of each
group in a reference population, as in the case of demographic parity
or statistical parity [14, 22], or on fixed proportions [84], as in the
case of equal representation [25], where each group is represented
in the sample by the same number of individuals.

Being able to control the distribution of the various groups plays
a key role in many real-world use cases. For instance, a proper
representation of the different groups in the data is fundamental to
prevent the insurgence of bias [49, 66] in analytics or in machine
learning models trained on it, which might discriminate sensitive
groups [59]. Balance or representativeness might also be enforced
by external factors, such as laws or regulations [18, 45, 77].

Example 1.1. Ellen, a data scientist, is doing a follow-up study
on how organizations allocate discretionary New York City Council
funding across different types of initiatives. She has a time constraint
to prepare a report and the funding information can be found as open
data in the NYC funding dataset, where initiatives are categorized by a
source attribute (an excerpt is shown in Figure 1). The analysis of every
initiative requires acquiring financial reports from organizations and
significant work to prepare the data, hence she cannot use the entire
dataset. She opts therefore for limiting the analysis to 100 initiatives
from distinct organizations, selected with stratified sampling on the
source (e.g., 15% youth, 5% aging, 20% local, etc.).

Unfortunately, real data often presents quality issues [26], one
of the most common being the presence of duplicates, i.e., multi-
ple representations of the same real-world entity [54]. Duplicates
frequently emerge when a dataset is generated by combining data
acquired from multiple sources. Further, different representations
of an entity can be inconsistent, presenting missing or conflicting
values for their features. The presence of duplicates, especially if
inconsistent, can impact the outcome of downstream tasks signifi-
cantly. For instance, it can alter the correctness of data analytics,
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potentially leading to poor data-driven business decisions that may
cause additional undesired costs [33].

In the case of sampling, the negative effect of duplicates is
twofold. Firstly, the produced sample inherits quality issues present
in the original dataset. Secondly, duplicates distort the sampling
process itself by introducing a bias in favor of entities described
by multiple records, whose probability of appearing in the sample
becomes consistently higher [27]. The presence of duplicates in
the sample reduces its diversity and at the same time it can even
amplify quality issues present in the original data, as the bias favors
entities described by potentially inconsistent records.

Example 1.2. The NYC funding dataset, introduced in Example 1.1
and described in detail in Section 4, contains duplicates: most organi-
zations are represented by multiple records (e.g., records 𝑟2, 𝑟4, and
𝑟5 in Figure 1). For instance, some organizations are described by up
to 18 records each, while others have no duplicates at all. If Ellen
performs stratified sampling over the dirty dataset, entities with more
duplicates will likely be over-represented, as they appear up to 18
times more frequently than others, i.e., their chance to be picked is
higher thanks to their duplicates.

The detection of duplicates and their subsequent reconciliation
represent the goal of deduplication [12]. Also known under the
names of record linkage, entity resolution, and duplicate detection,
this task is recognized as one of the longstanding challenges in data
integration [21] and cleaning [35]. Given a dirty dataset — a dataset
containing duplicates — as input, deduplication aims to produce
the corresponding clean dataset, where each entity is described by
a single consolidated record [19], obtained through the fusion of all
duplicates describing that entity in the dirty dataset.

To prevent the issues caused by the presence of duplicates, a
practitioner is required to produce a clean sample, i.e., a sample
composed of consolidated records. We define the task of producing
a clean sample of a dirty dataset according to a target distribution
as deduplicated sampling. The naïve approach to deduplicated sam-
pling — we denote it as batch [72] — requires to run deduplication
on the entire dirty dataset upfront, then to perform sampling on
the obtained clean dataset.

Yet, performing accurate detection of duplicates is often not
trivial. State-of-the-art solutions rely on complex deep learning
models [6] — including large language models [61] — to compare
many records, and they may require the additional contribution
of a domain expert to validate the results [41]. Thus, deduplica-
tion can be an expensive process in terms of time, computational
resources, and therefore money, e.g., for using cloud resources or
performing calls through the API of some large language model.
Often, practitioners operate under time constraints and/or with
limited resources [72], which makes the batch approach prohibitive,
especially when dealing with large datasets.

For instance, in real-time fraud detection, swift analysis of user
activity logs is essential. Cleaning entire logs increases response
time, while duplicates may trigger false positives or mask anomalies.
Thus, quickly extracting a clean sample allows timely and reliable
detection. Similarly, in financial markets, immediate insights, news,
and reports are crucial. Duplicates can obscure key trends, but a
fast clean sampling enables prompt and accurate decisions. Also,
in emergency response systems, rapidly extracting a clean sample
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Figure 2: Deduplicated sampling on-demand with RadlER.

from noisy sensor data can be helpful for accurate real-time sit-
uational awareness. Further, even when affordable, cleaning the
entire dataset to only use a (small) subset is extremely inefficient. A
different approach, which limits the cleaning effort to the entities
actually appearing in the sample, would allow to prevent addi-
tional costs and reduce the environmental impact of the exploited
technologies [74].

Example 1.3. Ellen cannot just sample 100 initiatives from the
dirty dataset, as she would introduce bias (see Example 1.2). Thus, she
needs to run deduplication. First, she exploits a blocking framework
to detect candidate pairs of duplicate organizations. From the 16.3k
records of the dataset, she ends up with 500k candidates to check —
without blocking, she would need to check more than 144M candidates.
Then, she exploits a popular large language model API to process the
candidates: she instructs the prompt with some external knowledge
about the organizations involved and asks to detect whether a candi-
date is an actual duplicate or not. Yet, with the pay-per-token model,
processing each candidate costs approximately $0.001, which leads
to an overall cost of $500 for deduplicating the entire dataset — even
though Ellen just wants to sample 100 initiatives out of it.

Contributions. For the first time in literature, we define the prob-
lem of deduplicated sampling, and we propose a novel on-demand
approach to it, which enables practitioners to produce clean sam-
ples without cleaning the entire dirty data upfront. We implement
deduplicated sampling on-demand through RadlER1 (Figure 2), a
dedicated solution that produces the clean sample incrementally
by focusing the cleaning process on a single entity at a time.

For each of the specified groups, RadlER tracks all records that
might describe an entity belonging to that group. Each record is
assigned an updatableweight, computed as the tradeoff between the
cost of obtaining the corresponding consolidated record — propor-
tional to the number of comparisons with other records required
to detect all of its duplicates — and its benefit, i.e., the probability
that the described entity actually belongs to that group, based on
the features of the record itself and its potential duplicates.

As the cleaning process focuses on a single entity at a time,
RadlER performs deduplication in an iterative fashion. At the be-
ginning of each iteration, it detects the group to which the next
entity should belong to satisfy the target distribution required for
the clean sample. Then, it picks a record among the ones tracked
for that group through a weighted random selection and performs
deduplication to produce the corresponding consolidated record.
The use of weights makes the generation of the clean sample signifi-
cantly cheaper, favoring the selection of records that require a small
number of comparisons — hence correcting the bias introduced by
1Radler is a beverage obtained as a mix of beer and lemonade in variable proportions.
Similarly, RadlER (with ER standing for entity resolution) produces samples by mixing
different groups of entities according to the distribution required by the user.
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the presence of duplicates — and whose entity is more likely to
belong to the desired group.

Example 1.4. Ellen has designed the blocking strategy, which iden-
tifies 500k candidate pairs of duplicate organizations, and the match-
ing function, based on a large language model (see Example 1.3). Now,
instead of deduplicating the entire dataset, she employs RadlER to
sample 100 clean entities on-demand, as depicted in Figure 2. RadlER
requires only 5k comparisons to produce the clean sample. Thus, the
total cost is just about $5 with RadlER, two orders of magnitude less
than the clean-then-sample (batch) strategy from Example 1.3.

We evaluate RadlER on multiple datasets with heterogeneous
features covering different domains. The results of our experiments
confirm that RadlER requires far fewer comparisons to produce
clean samples from a dirty dataset than the batch approach (which
requires deduplicating the entire data upfront), saving a significant
amount of time and resources.

Outline. The remaining sections of the paper are structured as fol-
lows. In Section 2, we recall some key notions about deduplication
and introduce the problem of deduplicated sampling, from which
we consequently move to define deduplicated sampling on-demand.
Then, we extensively describe RadlER in Section 3 and report the
results of its experimental evaluation in Section 4. After discussing
related literature in Section 5, we present future directions for our
research and conclude the paper with Section 6.

2 DEDUPLICATED SAMPLING ON-DEMAND

In this section, we first recall some key notions about deduplication
in Section 2.1. Then, we provide the reader with a formal definition
of deduplicated sampling in Section 2.2, from which we move to
define deduplicated sampling on-demand in Section 2.3.

2.1 Deduplication

Deduplication [54] considers as input a dirty dataset D with schema
AD = {𝐴1, ..., 𝐴𝑚} composed of |D| records. Each record 𝑟 ∈ D
can be represented as a tuple 𝑟 = (id, 𝑟 [𝐴1], ..., 𝑟 [𝐴𝑚]), where id is
a unique record identifier and 𝑟 [𝐴𝑖 ] is the (potentially null) value
that record 𝑟 assumes for attribute 𝐴𝑖 . Deduplication aims to detect
the disjoint clusters of matching records (or simply matches) in D,
each describing a distinct real-world entity. Then, it produces from
every cluster of matchesM𝜀 a single representative record for the
described entity 𝜀 = (id, 𝜀 [𝐴1], ..., 𝜀 [𝐴𝑚]), denoted as consolidated
record [19] or, through a metonymy, directly as (cleaned) entity. We
say therefore that each record 𝑟 ∈ M𝜀 describes the entity 𝜀 or refers
to 𝜀. The produced set of consolidated recordsD𝑐 is a clean version
of the dirty dataset D and constitutes the output of deduplication.
In this paper, we consider the traditional deduplication process for
big data [13], which is composed of three major stages: blocking,
entity matching, and data fusion.

To detect all duplicates, in principle every pair of records in D
must be compared to determine whether they refer to the same real-
world entity (i.e., whether they match). As comparing all pairs of
records is often infeasible due to its inherently quadratic complexity,
blocking [57] is used to make deduplication scalable. Blocking deter-
mines a setB of blocks, i.e., possibly overlapping sets of records, and
is performed through a cheap blocking function (or simply blocker)

𝛽 : D → P(B), based on some similarity criterion (e.g., sharing a
token). Comparisons are then limited to the pairs of records that
appear together in at least one block in B. These pairs are denoted
as candidate matches (or simply candidates) and compose a candi-
date set C of size |C| ≪ |D × D|. Post-processing techniques can
be used to further reduce the number of candidates included in C,
acting at the block level, such as block filtering and purging, or at
the comparison level, such as meta-blocking [56]. By discarding
obvious non-matches, blocking significantly reduces the number of
comparisons while maintaining high recall. Approaches presented
in the literature range from naïve rule-based and overlap-based
techniques [37] to state-of-the-art solutions built on TF/IDF [60],
deep learning [9, 75], and meta-blocking [24, 29].

The entity matching stage [12] operates through a binary match-
ing function (or simply matcher) 𝜇 : D × D → {True, False}. For a
pair of records in C, the matcher determines whether they match or
not. Thus, entity matching detects the clusters of matching records
in D. Many different approaches to entity matching have been
presented in the literature, such as rule-based matchers [73], solu-
tions based on active learning [48] relying for instance on a human
acting as an oracle [28] or on crowdsourcing [16, 32], and machine
learning [37] or deep learning binary classifiers [23, 51], includ-
ing state-of-the-art methods based on pre-trained language models
such as BERT [43, 55] or large language models [52, 61, 63].

Finally, the generation of the consolidated record for the de-
scribed entity 𝜀 from a cluster of matchesM𝜀 is achieved through
data fusion [8]. Data fusion relies on a conflict resolution function Φ,
which associates to each attribute𝐴𝑖 ∈ AD an aggregation function
𝜙𝐴𝑖

that takes as input a list of values [𝑟 [𝐴𝑖 ],∀𝑟 ∈ M𝜀 ] and returns
a single value 𝜀 [𝐴𝑖 ]. In other words, the aggregation function 𝜙𝐴𝑖

specifies how to resolve the possible inconsistencies of matching
records for the attribute𝐴𝑖 . For instance, popular strategies involve
majority voting (i.e., selecting the most frequent value), the choice
of the maximum/minimum/average value, or a selection based on
the record provenance, e.g., preferring values acquired from sources
considered to be more reliable or updated.

2.2 Deduplicated Sampling

Sampling [76] is a statistical process that aims to produce a represen-
tative subset of a given population. A basic example of a sampling
technique is simple random sampling, which produces a sample of
size 𝑛 from a population by randomly picking 𝑛 individuals out of it.
In many cases, a population can be considered as the combination of
multiple distinct subpopulations (i.e., groups), defined on the basis
of one or more features presented by its individuals. In this scenario,
stratified sampling is widely used to guarantee that all groups are
properly represented in the produced sample according to a target
distribution (e.g., demographic parity). This technique first requires
to partition the individuals into multiple disjoint groups (i.e., strata)
in a process known as stratification, then sampling is performed
independently for each stratum.

In the presence of duplicates, stratified sampling needs to con-
sider: (i) a set of disjoint groups Γ , which partitions the entities de-
scribed by the dirty datasetD based on a set of categorical sampling
attributes AΓ ⊆ AD (e.g., Γ = {{gender: "female", status: "single"},
. . . , {gender: "male", status: "married"}} for AΓ = {gender, status});
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(ii) a target distribution 𝑑 = [𝑝 (𝛾),∀𝛾 ∈ Γ], with ∑︁
𝑝 (𝛾 ) ∈𝑑 𝑝 (𝛾) = 1,

which defines as a probability 𝑝 (𝛾) the number of entities from each
group 𝛾 ∈ Γ required to appear in the produced sample S. If no
group is specified (i.e., Γ = ∅), a single wildcard group comprising
all possible entities is considered, hence performing simple random
sampling on the entire dataset.

We can now introduce the concepts of clean sample and undis-
torted sample, then build on them to define deduplicated sampling.

Definition 2.1 (Clean Sample). Given a dirty dataset D, a sam-
ple S generated by deduplicating a set of records DS ⊆ D is a
clean sample of D if it is only composed of consolidated records.
Namely, (i) every record 𝑟 ∈ S describes a unique entity, i.e.,
𝜇 (𝑟, 𝑟 ′) → False,∀𝑟, 𝑟 ′ ∈ S | 𝑟 ≠ 𝑟 ′, and (ii) every record 𝑟 ∈ S is
obtained through the fusion of all records describing that entity
in D, i.e., 𝜇 (𝑟, 𝜌) → False,∀𝑟 ∈ S,∀𝜌 ∈ D \ DS .

Definition 2.2 (Undistorted Sample). Given a target distribution 𝑑
defined for a set of disjoint groups Γ , a sample S is undistorted
with respect to 𝑑 if the distribution 𝑑S of its records over Γ has the
minimum divergence from 𝑑 among all samples of size |S|, where
divergence(𝑑, 𝑑′) = ∑︁ |Γ |

𝑖=1 |𝑑𝑖 − 𝑑
′
𝑖
|.

Definition 2.3 (Deduplicated Sampling). Given a dirty dataset D
and a target distribution 𝑑 defined for a set of disjoint groups Γ ,
deduplicated sampling is the task of deduplicating D to produce a
clean sample S of D that is undistorted with respect to 𝑑 .

Deduplicated sampling is agnostic towards all deduplication func-
tions defined in Section 2.1, i.e., the blocking function 𝛽 , the match-
ing function 𝜇, and the conflict resolution function Φ, as it can
operate with any function selected or defined by the user [72].

The naïve solution to deduplicated sampling, which we call batch,
first performs deduplication on the entire dirty dataset D to obtain
its clean version D𝑐 , then samples the consolidated records in D𝑐

according to the target distribution 𝑑 to produce an undistorted
clean sample S. The number of performed comparisons represents
the cost 𝜅 of deduplicated sampling.

2.3 Deduplicated Sampling On-Demand

We can now define deduplicated sampling on-demand, our novel
approach to run deduplicated sampling without cleaning the entire
dirty data upfront, focusing instead the cleaning effort on the enti-
ties appearing in the clean sample S, while retaining all properties
of the sample as if it were taken from the clean dataset.

Definition 2.4 (Deduplicated Sampling On-Demand). Given a dirty
dataset D and a target distribution 𝑑 defined for a set of disjoint
groups Γ , deduplicated sampling on-demand performs deduplicated
sampling onD so to: (i) produce a clean sample S ofD undistorted
with respect to 𝑑 , incrementally; (ii) cost 𝜅on-demand ≪ 𝜅batch.

Deduplicated sampling on-demand focuses the cleaning effort
on a single entity at a time to build the clean sample S incremen-
tally. Thus, it performs deduplication according to the on-demand
paradigm [72]. Note the difference to traditional progressive dedupli-
cation algorithms [58, 71, 81], which aim instead at prioritizing the
evaluation of candidates that are most likely to match, regardless
of the entities to which the records refer.

As the produced clean sample S is required to be undistorted
at any time 𝑡 of the process, deduplicated sampling on-demand
inherently supports early stopping and stop-and-resume execution.
If not stopped early, the process would generate the largest possible
clean sample S undistorted with respect to the target distribution 𝑑 ,
terminating when no more entities can be cleaned while maintain-
ing the sample distribution 𝑑S undistorted. However, deduplicated
sampling on-demand can be stopped arbitrarily at any moment
by the user, who can even define a stopping criterion expressed a
priori with respect to a budget 𝜃 . In particular, depending on time
constraints or available resources, users might require the process
to stop as soon as it reaches the maximum cost 𝜅max (i.e., the max-
imum number of performed comparisons) that they are willing
to spend to produce the clean sample S. Further, additional early
stopping techniques may require to terminate the process as soon
as a defined number of cleaned entities |S|max is inserted into S or
its running time exceeds a timeout 𝑡max.

For each matching function employed, it is possible to store (e.g.,
in a database) the detected matching and non-matching records
for every record 𝑟 ∈ D. This avoids re-comparing candidates if
multiple sampling operations are executed onD. Alternatively, it is
possible to directly store the produced consolidated records, which
can replace their clusters of matches in D when using the same
deduplication functions, hence cleaning D incrementally [80].

3 RADLER

In this section, we describe how RadlER performs deduplicated
sampling on-demand. In particular, we provide a complete overview
of the algorithm in Section 3.1, while Section 3.2 presents the
adopted weighting scheme. Then, Sections 3.3–3.5 delve into the
details of three specific steps of the presented algorithm.

3.1 Algorithm Overview

To produce an undistorted clean sample S, RadlER (Algorithm 1)
receives as input: (i) a dirty dataset D; (ii) a hash tableN , associat-
ing each record to the set of its neighbors, i.e., its candidate matches
previously obtained through a blocking function 𝛽 (towards which
the algorithm is agnostic); (iii) a set of disjoint groups Γ , partition-
ing entities based on the values of the sampling attributesAΓ ; (iv) a
target distribution 𝑑 for the groups in Γ ; (v) optionally, a budget 𝜃
and/or a maximum sample size |S|max , to perform early stopping
as soon as 𝜃 comparisons have been performed or |S|max cleaned
entities have been inserted into S, respectively. Note that the hash
table N can be made available in a key-value store, such as Redis
or RocksDB, to efficiently address memory constraints. Figure 3
depicts RadlER operating on an example dataset about people.
An excerpt from the dataset D and the hash table N is shown
in Figure 3a. Here, gender and status are considered as sampling
attributes, while equal representation is the target distribution.

3.1.1 Setup. At the beginning of the algorithm, the clean sample S
is initialized as an empty set and the consumed budget 𝜃 ′ (i.e., the
number of performed comparisons) is set to 0 (Line 1). In accordance
with Definition 2.4, RadlER focuses the cleaning effort on a single
entity at a time to populate S incrementally. Thus, deduplicated
sampling on-demand can be seen as an iterative process, which
cleans at each iteration 𝜏 a randomly selected entity 𝜀𝜏 belonging
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Algorithm 1: RadlER algorithm
Input: Dataset D, neighbors N, groups Γ , target distribution 𝑑 ,

budget 𝜃 (default∞), max sample size |S |max (default∞)
Output: Undistorted clean sample S

1 S ← ∅, 𝜃 ′ ← 0 // clean sample and consumed budget

2 R, G ← setup(D,N, Γ ) // record sketches and group records

3 while |S | < |S |max do

4 𝛾𝜏 ← selectTargetGroup(S, G, 𝑑, Γ ) // target group

5 if 𝛾𝜏 = None then
6 break // prevent distortion

7 𝑝𝜏 .id← weightedRandom(G[𝛾𝜏 ] ) // pivot record ID

8 𝑠𝑝𝜏 ← R[𝑝𝜏 .id] // pivot record sketch

// Clean the entity described by the pivot record

9 K ← ∅, M̃ ← ∅ // comparisons and non-matches

10 if not 𝑠𝑝𝜏 .clean then

11 𝑠𝑝𝜏 .M,K, 𝜃 ′ ← match(𝑝𝜏 .id, 𝑠𝑝𝜏 .M,K,D,N, 𝜃, 𝜃 ′ )
12 if 𝜃 ′ > 𝜃 then

13 break // budget exceeded

14 M̃ ← getRecordIds(K) \ 𝑠𝑝𝜏 .M
15 𝑠𝑝𝜏 .clean← True // entity matching done

16 R, G, 𝑠𝑝𝜏 ← update(R, G, 𝑠𝑝𝜏 , M̃,D,N, 𝛾𝜏 , Γ )
17 if 𝑠𝑝𝜏 .𝛾 = 𝛾𝜏 then

18 S ← S ∪ {𝑠𝑝𝜏 .𝜀 } // insert into the clean sample

19 return S

to a group 𝛾 ∈ Γ that allows to maintain the sample undistorted
with respect to the target distribution 𝑑 . This group is therefore
denoted as the target group 𝛾𝜏 for iteration 𝜏 .

The selection of the entity 𝜀𝜏 to clean at iteration 𝜏 has to be
performed on the original records inD. Thus, to focus the cleaning
effort on an entity that actually belongs to 𝛾𝜏 , we need to know for
each record 𝑟 ∈ D to which groups the described entity 𝜀𝑟 might
belong. Further, we would like to favor the selection of cheaper
entities (i.e., requiring fewer comparisons) over more expensive
ones, to mitigate the bias caused by duplicates, which would favor
the selection of entities represented by more records.

To this end, we maintain a hash table G to track for each group
𝛾 ∈ Γ all records that might describe an entity belonging to 𝛾 ,
whose identifiers are stored in an inner hash table G[𝛾]. Within
G[𝛾], each record 𝑟 is associated to an updatable weight 𝜔𝑟

𝛾 , used to
perform the weighted random selection of the entity to clean. The
weight𝜔𝑟

𝛾 represents the tradeoff between the estimated probability
that 𝜀𝑟 belongs to𝛾 (i.e., the benefit of cleaning 𝜀𝑟 ) and the estimated
number of comparisons required for cleaning it (i.e., its cost). The
weight𝜔𝑟

𝛾 can assume a value in [0, 1]. If𝜔𝑟
𝛾 = 0, it is impossible that

𝜀𝑟 belongs to𝛾 , hence 𝑟 is not represented in G[𝛾]. If𝜔𝑟
𝛾 = 1, then 𝜀𝑟

certainly belongs to 𝛾 and does not require further comparisons to
detect the matches, hence 𝑟 is associated to the maximum weight as
the cheapest possible selection. We describe the weighting scheme
in detail in Section 3.2. In the example, record 𝑟2 has 𝑟1 and 𝑟3 as
neighbors, as shown in Figure 3a. As two records belong to group 0
(married females) and one to group 1 (single females), entity 𝜀𝑟2
might belong to either of those groups, hence 𝑟2 appears in both
G[0] (with greater weight) and G[1] in Figure 3b. Record 𝑟4, which
has no neighbors, is inserted only into G[0] with weight 1.

In addition to G, a hash tableR is used to associate to each record
𝑟 ∈ D a sketch 𝑠𝑟 , i.e., an object that stores relevant information
about 𝑟 , namely: (i) the represented cluster of matching records
M𝑟 (initialized with 𝑟 .id itself and updated when running entity
matching)2; (ii) a flag (clean) to determine whether all matches
of 𝑟 have already been identified or entity matching is needed;
(iii) a hash table Ω𝑟 , which stores the weight 𝜔𝑟

𝛾 associated to 𝑟

for each group 𝛾 ∈ Γ ; (iv) the cleaned entity 𝜀𝑟 and its group 𝛾𝑟 ,
both initialized to None and updated when running data fusion. For
instance, the sketch for record 𝑟2 is shown in Figure 3c. R and G
are initialized at the beginning of the algorithm (Line 2) through
the setup() function (Function 1), described in Section 3.3.

3.1.2 Iteration. After initializing data structures, RadlER starts
its iterations to populate the clean sample S incrementally, until
the maximum sample size |S|max is reached (Line 3). If no value
is specified for the size (hence |S|max = ∞), RadlER produces the
largest possible clean sample S that is undistorted with respect
to the target distribution 𝑑 . The selection of the target group 𝛾𝜏
for iteration 𝜏 (Line 4) is performed in two steps. First, we detect
the groups that allow to maintain S undistorted with respect to 𝑑 .
If 𝑑𝜏−1 is the current distribution of the entities in S and 𝑑𝛾𝜏 the
one obtained by adding to S an entity from group 𝛾 , we select the
subset Γ̃ = {𝛾̃ ∈ Γ | divergence(𝑑𝛾̃𝜏 , 𝑑) ≤ divergence(𝑑𝛾𝜏 , 𝑑),∀𝛾 ∈ Γ}.
Then, we filter out the groups for which G[𝛾] is empty (i.e., no
more entities to clean). Thus, we obtain Γ̊ = {𝛾 ∈ Γ̃ | |G[𝛾] | > 0}.
If Γ̊ contains multiple groups, different tie-breaking strategies can
be used to pick 𝛾𝜏 out of Γ̊ , e.g., selecting a random group or the
one with the maximum average weight in G[𝛾]. If Γ̊ = ∅, it is not
possible to add further entities while maintaining S undistorted,
hence 𝛾𝜏 is set to None and the iterations terminate (Lines 5-6).

The entity to be cleaned is determined by picking a record
through a weighted random selection out of G[𝛾𝜏 ]. For instance,
in Figure 3b the target group 𝛾𝜏 is group 0, hence a weighted ran-
dom selection is performed on G[0], picking 𝑟2. As this record
guides the cleaning process for iteration 𝜏 , it is denoted as the pivot
record 𝑝𝜏 (Line 7). Its sketch 𝑠𝑝𝜏 is then retrieved from R (Line 8).
Two cases are possible for 𝑝𝜏 : (i) it presents candidate matches in
N (i.e., |N [𝑝𝜏 .id] | > 0) to verify through entity matching; (ii) the
cluster of matches to which it belongs has already been discov-
ered completely (i.e., |N [𝑝𝜏 .id] | = 0), hence entity matching is not
needed. The sketch flag clean, which is set to True if entity matching
is not needed, discriminates between the two cases (Line 10).

If the pivot record 𝑝𝜏 requires entity matching, its matches are
detected among its neighbors through the match() function (Func-
tion 2), described in detail in Section 3.4, and their identifiers are
added toM𝑝𝜏 (Line 11), which was previously populated by 𝑝𝜏 .id
only. In Figure 3d, 𝑟3 is a match of 𝑟2, hence 𝑟3 is added toM𝑝𝜏 .
The performed comparisons are stored into the set K , previously
initialized as empty (Line 9), to avoid presenting the same pair of
records to the matcher multiple times. Further, K is then used to
retrieve the identifiers of those records that were compared to 𝑝𝜏
but turned out to describe a different entity, i.e., the non-matches
of 𝑝𝜏 . Non-matches are stored in a dedicated set M̃ (Line 14), which

2Note that in the object attribute notation (as for instance in Algorithm 1) we consider
the subscript implicit to avoid redundancy, e.g.,M𝑟 is equivalent to 𝑠𝑟 .M.
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(a) Dirty dataset D with neighbors from hash table N
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(b) Inner hash tables in G
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(c) Sketch 𝑠𝑝𝜏
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(d) Entity matching and data fusion
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(e) Updated inner hash tables in G

Figure 3: RadlER in action on an example dataset about people, with gender and status as sampling attributes and equal

representation as the target distribution.

was also previously initialized as empty (Line 9). If the number of
performed comparisons exceeds the budget 𝜃 , entity matching is
stopped immediately (see Function 2 for more details) and the iter-
ations terminate (Lines 12-13). After performing entity matching,
the sketch flag clean is set to True (Line 15).

At this point, the sketch 𝑠𝑝𝜏 and the hash tables R and G are
updated (Line 16) through the dedicated update() function (Func-
tion 3). First, for each non-match in M̃, its neighbors are updated
by removing 𝑝𝜏 and its matches, hence its weights are recomputed
and its representations in R and G are updated accordingly. The
consolidated record for the entity 𝜀𝑝𝜏 is produced from the matches
inM𝑝𝜏 through data fusion, and the group 𝛾𝑝𝜏 to which it actually
belongs is finally detected. If 𝜀𝑝𝜏 does not belong to any of the
groups in Γ , 𝛾𝑝𝜏 is set to None. Then, 𝜀𝑝𝜏 and 𝛾𝑝𝜏 are stored into the
dedicated attributes of the sketch 𝑠𝑝𝜏 . Further, the matches inM𝑝𝜏

are removed from R and G, as they should not be considered as in-
dependent records anymore. If 𝛾𝑝𝜏 corresponds to the target group
𝛾𝜏 , then 𝜀𝑝𝜏 is inserted into S (Lines 17-18); otherwise, the updated
sketch 𝑠𝑝𝜏 is reinserted into R and its identifier into G[𝛾𝑝𝜏 ] with a
weight equal to 1, where it is available to be selected in one of the
following iterations. In Figure 3, as 𝜀𝑝𝜏 (produced from 𝑟2 and 𝑟3)
belongs to𝛾𝜏 , it is inserted intoS (Figure 3d). 𝑟2 and 𝑟3 are therefore
removed from G, while 𝑟1 — whose set of neighbors is now empty,
as shown in Figure 3d — is maintained only in G[1] with weight
1 (Figure 3e). All details about the update operations are provided
in Section 3.5. Finally, when its generation is completed, RadlER
returns the undistorted clean sample S (Line 19).

Considering the memory overhead introduced by data struc-
tures, the hash table R is initially composed of |D| sketches, each
dominated by the hash table Ω𝑟 of size |Γ |, for a space complex-
ity of O(|D| · |Γ |). Updates toM𝑟 and 𝜀𝑟 can increase the sketch
size. However, consolidated records can be easily maintained in a
database and accessed through an identifier, avoiding their direct
storage in 𝜀𝑟 . Further, whenM𝑟 increases, some other sketches are
set to None. Thus, the memory occupation of R decreases through-
out the process. Regarding the hash table G, if every record initially
appears in each of the |Γ | inner hash tables, its space complexity

is O(|D| · |Γ |). Note that in our experiments (Section 4) a record
appears on average in only about 1/3 of the inner hash tables.

3.2 Weighting Scheme

The weight 𝜔𝑟
𝛾 , associated to the record 𝑟 for the group 𝛾 ∈ Γ , is

computed by taking into account all records that might contribute
to determine the values assumed by the entity 𝜀𝑟 , hence the records
whose identifier appears in the set N ′𝑟 = {𝑟 .id} ∪ N [𝑟 .id], i.e., 𝑟
itself and its potential duplicates.

The cost of cleaning 𝜀𝑟 is directly proportional to the size of N ′𝑟 .
As weights aim to favor records that determine fewer comparisons,
mitigating the bias introduced by duplicates, the cost contributes
to 𝜔𝑟

𝛾 with a factor 1/|N ′𝑟 |, whose value is equal to 1 when N ′𝑟
only contains the identifier of 𝑟 (i.e., no comparisons needed). The
benefit of cleaning 𝜀𝑟 is aimed to reflect the probability that 𝜀𝑟
belongs to 𝛾 , which is equal to 1 when all records inN ′𝑟 assume the
values that determine membership in 𝛾 for the sampling attributes
AΓ . In particular, we can evaluate this probability independently
for each attribute 𝛼 ∈ AΓ . We denote as 𝜎𝛼 (N ′𝑟 ) the subset of
records in N ′𝑟 that satisfy the condition required on the attribute 𝛼
to belong to 𝛾 . We can estimate this probability for the attribute
𝛼 as |𝜎𝛼 (N ′𝑟 ) |/|N ′𝑟 |. Note that records for which 𝛼 is null can be
ignored when computing |N ′𝑟 |. Considering the contribution of the
cost and the probability for every attribute 𝛼 ∈ AΓ , the weight 𝜔𝑟

𝛾

can be therefore computed as follows:

𝜔𝑟
𝛾 =

1
|N ′𝑟 |

·
∏︂

𝛼∈AΓ

|𝜎𝛼 (N ′𝑟 ) |
|N ′𝑟 |

(1)

For instance, record 𝑟2 in Figure 3 has two neighbors: 𝑟1 and 𝑟3.
Thus, its cost is 1/3 = 0.33. As 𝑟2 and 𝑟3 belong to group 0 and 𝑟1
to group 1 based on the status attribute, the benefit is 1 · 2/3 = 0.67
for group 0, for a weight of 0.33 · 0.67 = 0.22, and 1 · 1/3 = 0.33 for
group 1, for a weight of 0.33 · 0.33 = 0.11.

Note that Equation 1 assumes all records in N ′𝑟 to be equally
relevant to 𝑟 . Nevertheless, in some cases it is possible to determine
a relevance score 𝜆𝜌 with respect to 𝑟 for each record 𝜌 ∈ N ′𝑟 ,
such as the matching probability returned by meta-blocking for
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Function 1: setup() function
Input: Dataset D, neighbors N, groups Γ
Output: Record sketches R, group records G

1 R ← ∅, G ← ∅ // empty data structures

2 forall 𝑟 in D do

// Generate the record sketch 𝑠𝑟

3 𝑠𝑟 .id← 𝑟 .id, 𝑠𝑟 .M ← {𝑟 .id} // ID and cluster of matches

4 𝑠𝑟 .clean← len(N[𝑟 .id] ) = 0 // no further matches

5 𝑠𝑟 .𝜀 ← None, 𝑠𝑟 .𝛾 ← None // clean entity and its group

6 𝑠𝑟 .Ω ← computeWeights(N[𝑟 .id] ∪ {𝑟 .id},D, Γ )
7 R[𝑟 .id] ← 𝑠𝑟 // store record sketch

// Insert the record ID into the relevant hash tables in G
8 forall 𝛾 in Γ do

9 if 𝑠𝑟 .Ω[𝛾 ] > 0 then

10 G[𝛾 ] [𝑟 .id] ← 𝑠𝑟 .Ω[𝛾 ]

11 return R, G

the candidate (𝑟, 𝜌). In this case, each record contributes to the
probability depending on its relevance score, hence the numerator
of the latter term is computed as

∑︁
𝜌∈𝜎𝛼 (N′𝑟 ) 𝜆𝜌 .

3.3 Initializing Data Structures

The setup() function (Function 1) illustrates the initialization and
the population of the hash tables R and G. The function receives as
input the dirty dataset D, the hash table N , which associates each
record to the set of its neighbors, and the set of disjoint groups Γ ,
while it produces as output R and G. As pointed out in Section 3.1,
R contains a sketch 𝑠𝑟 for every record 𝑟 ∈ D, while G tracks for
each group 𝛾 ∈ Γ all records that might describe an entity that
belongs to 𝛾 , whose identifiers are stored in an inner hash table
G[𝛾]. R and G are initialized as empty hash tables (Line 1).

For every record 𝑟 ∈ D, Function 1 produces a sketch 𝑠𝑟 , which
stores the information about 𝑟 used throughout Algorithm 1. First,
𝑠𝑟 stores the identifier of 𝑟 and the represented cluster of matches
M𝑟 , initialized with 𝑟 .id itself (Line 3). If the set of its neighbors
N[𝑟 .id] is empty, only 𝑟 itself describes the entity 𝜀𝑟 . Thus, entity
matching is not needed and the flag clean is set to True (Line 4).
The attributes 𝜀𝑟 and 𝛾𝑟 , respectively used to store the consolidated
record for the described entity and its actual group, are both initial-
ized to None (Line 5). Finally, the weight 𝜔𝑟

𝛾 associated to 𝑟 for each
group 𝛾 ∈ Γ is computed as described in Section 3.2 and stored into
the hash table Ω𝑟 (Line 6). Once created, the sketch 𝑠𝑟 is stored into
R, where it can be accessed through its identifier (Line 7). Further,
its identifier is inserted into the hash table G[𝛾] (associated to its
weight Ω𝑟 [𝛾]) for every group 𝛾 ∈ Γ to which the entity 𝜀𝑟 might
belong, i.e., for which Ω𝑟 [𝛾] > 0 (Lines 8-10). Finally, Function 1
returns the populated hash tables R and G (Line 11).

3.4 Performing Entity Matching

Thematch() function (Function 2) shows how RadlER performs
entity matching. Given a record 𝑟 , the function aims to detect its
matches by comparing 𝑟 to its neighbors. Pairs of records are com-
pared through the matcher 𝜇, towards which RadlER is agnostic.
The function receives as input the identifier of the consider record
𝑟 .id, the setsM and K , respectively tracking the detected matches

Function 2: match() function
Input: Record identifier 𝑟 .id, matchesM, comparison tracker K ,

dataset D, neighbors N, budget 𝜃 , consumed budget 𝜃 ′
Output: Updated versions ofM, K , 𝜃 ′

1 forall 𝑛.id in N[𝑟 .id] do
2 if 𝑛.id inM then

3 continue // neighbor already identified as a match

4 if (𝑟 .id, 𝑛.id) in K or (𝑛.id, 𝑟 .id) in K then

5 continue // comparison already performed

6 𝜃 ′ ← 𝜃 ′ + 1 // increment consumed budget

7 if 𝜃 ′ > 𝜃 then

8 break // budget exceeded

// Perform the comparison

9 K ← K ∪ { (𝑟 .id, 𝑛.id) } // update comparison tracker

10 if 𝜇 (𝑟 .id, 𝑛.id,D) then
11 M ← M ∪ {𝑛.id} // update matches

12 M,K, 𝜃 ′ ← match(𝑛.id,M,K,D,N, 𝜃, 𝜃 ′ )

13 returnM,K, 𝜃 ′

and the performed comparisons, the dirty dataset D (used by the
matcher to access the attribute values), the hash table N associat-
ing each record to its neighbors, the budget 𝜃 , and the consumed
budget 𝜃 ′, incremented every time a comparison is performed and
returned as output together with the updated setsM and K .

Function 2 iterates on the identifiers of the neighbors (Line 1).
For each neighbor 𝑛, we first check whether it is actually needed to
compare it to 𝑟 . A comparison can be skipped if: (i) 𝑛 was already
identified as a match of 𝑟 (Lines 2-3); (ii) 𝑟 and 𝑛 were already com-
pared and turned out not to match (Lines 4-5). Further, if performing
the comparison would exceed the budget 𝜃 , the iterations termi-
nate (Lines 6-8) and Algorithm 1 consequently stops the cleaning
process, as described in Section 3.1.

When a comparison has to be performed, the pair of identifiers
(𝑟 .id, 𝑛.id) is added toK (Line 9) and the matcher 𝜇 is used to deter-
mine if 𝑟 and 𝑛 describe or not the same real-world entity (Line 10).
If they are considered to match (i.e., the matcher returns True as the
result of their comparison), the identifier of 𝑛 is inserted into the
set of matchesM (Line 11), while the match() function is called
recursively for 𝑛 to detect further matches among its neighbors
(Line 12). This is required to ensure the discovery of all matches
of 𝑟 , as — depending on the blocking function 𝛽 — some neighbors
of 𝑛 might not appear among the ones of 𝑟 . Finally, the updated
setsM and K are returned together with the consumed budget 𝜃 ′,
incremented to track all performed comparisons (Line 13).

3.5 Updating Data Structures

The update() function (Function 3) shows how the hash tables R
and G and the pivot record sketch 𝑠𝑝𝜏 are updated at the end of
each iteration of Algorithm 1. Beyond R, G, and 𝑠𝑝𝜏 , which are then
returned as output in their updated versions, the function receives
as input the set of non-matches M̃, the dirty dataset D, the hash
table N associating each record to its neighbors, the target group
𝛾𝜏 , and the set of disjoint groups Γ .

First, for every non-match 𝑚̃ ∈ M̃ (Line 1), its neighbors are
updated by removing records appearing inM𝑝𝜏 , as they certainly
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Function 3: update() function
Input: Sketches R, group records G, sketch 𝑠𝑝𝜏 , non-matches M̃,

dataset D, neighbors N, target group 𝛾𝜏 , groups Γ
Output: Updated versions of R, G, 𝑠𝑝𝜏
// Update neighbors and weights for non-matching records

1 forall 𝑚̃.id in M̃ do

2 N𝑚̃ ← N[𝑚̃.id] \ 𝑠𝑝𝜏 .M, N[𝑚̃.id] ← N𝑚̃
3 R[𝑚̃.id] .Ω ← computeWeights(N𝑚̃ ∪ {𝑚̃.id},D, Γ )
4 G ← setWeights(G, 𝑚̃.id, R[𝑚̃.id] .Ω)
// Produce the clean entity and replace matching records

5 if 𝑠𝑝𝜏 .𝜀 = None then
6 𝑠𝑝𝜏 .𝜀 ← Φ(𝑠𝑝𝜏 .M,D) // clean entity (data fusion)

7 𝑠𝑝𝜏 .𝛾 ← checkGroup(𝑠𝑝𝜏 .𝜀 ) // entity group

8 𝑠𝑝𝜏 .Ω ← updateWeights(𝑠𝑝𝜏 .𝛾, Γ ) // weights

9 forall𝑚.id in 𝑠𝑝𝜏 .M do

10 N[𝑚.id] ← ∅
11 R[𝑚.id] ← None, G ← dropWeights(G,𝑚.id)
12 if 𝑠𝑝𝜏 .𝛾 ≠ 𝛾𝜏 then

13 R[𝑠𝑝𝜏 .id] ← 𝑠𝑝𝜏 , G ← setWeights(G, 𝑠𝑝𝜏 .id, 𝑠𝑝𝜏 .Ω)

14 else

15 if 𝑠𝑝𝜏 .𝛾 = 𝛾𝜏 then

16 R[𝑠𝑝𝜏 .id] ← None, G ← dropWeights(G, 𝑠𝑝𝜏 .id)

17 return R, G, 𝑠𝑝𝜏

do not describe the same entity 𝜀𝑚̃ (Line 2). Weights are therefore
recomputed and stored into the corresponding sketch (Line 3). Fur-
ther, in every hash table G[𝛾] where 𝑚̃ is present, the associated
weight is updated accordingly — if the new weight 𝜔𝑚̃

𝛾 = 0, then 𝑚̃
is dropped from G[𝛾] (Line 4).

If the consolidated record for the entity described by the pivot
record 𝑝𝜏 has not been generated yet3 (Line 5), 𝜀𝑝𝜏 is obtained
from the matches inM𝑝𝜏 through the defined conflict resolution
function Φ, towards which RadlER is agnostic (Line 6). Thus, it is
finally possible to detect the group𝛾𝑝𝜏 to which 𝜀𝑝𝜏 actually belongs
(Line 7), then set a weight in Ω𝑝𝜏 equal to 1 for the group 𝛾𝑝𝜏 — if
not None — and to 0 for all other groups in Γ (Line 8). The matches
inM𝑝𝜏 are considered from now on as a single entity, represented
through the updated pivot record 𝑝𝜏 . Thus, their sets of neighbors
are emptied and they are removed from R and G (Lines 9-11).

If the entity 𝜀𝑝𝜏 does not belong to the target group 𝛾𝜏 , the
updated sketch 𝑠𝑝𝜏 is reinserted into R and its identifier is added
to G[𝛾𝑝𝜏 ] — if 𝛾𝑝𝜏 is not None — to allow its selection in one of
the next iterations (Lines 12-13). Otherwise, it is added to the clean
sample S by Algorithm 1 as soon as Function 3 terminates, and 𝑝𝜏
is removed from R and G if it is present there (Lines 15-16). Finally,
the updated versions of the sketch 𝑠𝑝𝜏 and the hash tables R and G
are returned as output by Function 3 (Line 17).

4 EXPERIMENTAL EVALUATION

In this section, we perform an extensive experimental evaluation
to answer the following research questions:
Q1. Why does sampling need deduplication? (Section 4.2)
3The condition is always True, unless 𝑝𝜏 was selected as the pivot record in a previous
iteration but not inserted into the clean sample S as it did not match the target group.

Table 1: Features of the selected datasets.

Dataset |D | |D𝑐 | (Avg Size) |AD | AS
alaska_cameras 29.8k 9.0k (3.3) 10 {brand}
nc_voters 14.2k 6.7k (2.1) 14 {sex, race}
nyc_funding 16.3k 3.1k (5.2) 9 {source}
nc_voters_10M 10M 6.6M (1.5) 5 {suburb}

Q2. How efficient is RadlER to perform deduplicated sampling com-
pared to the traditional batch approach? (Section 4.3)

Q3. What are the benefits of RadlER in terms of runtime and costs
compared to the traditional batch approach? (Section 4.4)

Q4. What is the impact of the weighting scheme? (Section 4.5)

4.1 Experimental Setup

4.1.1 Datasets. We consider three real-world datasets and a syn-
thetic one with heterogeneous features, whose main characteristics
are highlighted in Table 1. In particular, the table reports the num-
ber of records |D|, the number of described entities |D𝑐 | with the
average number of records describing each of them, the number
of attributes |AD |, and the default sampling attributes AS . All
datasets are available in the RadlER GitHub repository.

As part of the Alaska benchmark [15], alaska_cameras is a
dataset of 29.8𝑘 records generated from advertisement about cam-
eras published on e-commerce websites. Since the ground truth
is incomplete, we consider the output of a finalist solution [82]
of the SIGMOD 2020 Programming Contest [17] as the gold stan-
dard. Cameras are partitioned into groups based on their brand.
nc_voters4 contains demographic information about 14.2𝑘 regis-
tered voters from North Carolina [38], which are grouped based on
the sex and race attributes. nyc_funding5 contains 16.3𝑘 records
about financing requests addressed to the NYC Council Discre-
tionary Funding. We perform deduplication on the organizations
presenting the requests [19] and create groups based on the source
attribute, denoting the type of initiatives. Finally, nc_voters_10M6

contains 10𝑀 records generated synthetically from nc_voters [68].
As we are interested in scalability rather than blocking/matching
challenges, we consider duplicate records in their original form.

The candidate sets were generated using SparkER [29] meta-
blocking techniques for alaska_cameras and nyc_funding, similar-
ity joins [5] for nc_voters, and Soundex [78] for nc_voters_10M.
The produced candidate sets are composed of 780𝑘 record pairs
(with a recall of 0.89) for alaska_cameras, 198𝑘 (0.99) for nc_voters,
231𝑘 (0.95) for nyc_funding, 27𝑀 (1) for nc_voters_10M, respec-
tively. Unless otherwise specified, we use the ground truth — acting
as an oracle [28] — as our default matching function.

4.1.2 Sampling. Considering the default sampling attributes spec-
ified in Table 1, for each dataset we initialized the set of disjoint
groups Γ automatically with the most represented groups in the
clean version of the dataset, obtained through its ground truth.
Further, we set the maximum number of groups to 10 and defined

4https://hpi.de/naumann/projects/repeatability/datasets/ncvoters-dataset.html
5https://raw.githubusercontent.com/qcri/data_civilizer_system/master/grecord_
service/gr/data/address/address.csv
6https://dbs.uni-leipzig.de/research/projects/benchmark-datasets-for-entity-
resolution
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Figure 4: Averagemeasures computed on a random sample of

size x produced from alaska_cameras without deduplication.

a minimum support of 0.01 (i.e., filtering out groups covering less
than 1% of the cleaned entities). As the target distribution 𝑑 , we
used equal representation, i.e., 𝑑 = [1/|Γ |,∀ 𝛾 ∈ Γ]. The maximum
sample size for an undistorted clean sample is equal to about 1100
entities for alaska_cameras, 500 for nc_voters, 400 for nyc_funding,
and 912𝑘 for nc_voters_10M. Note that we also ran the experiments
using demographic parity as the target distribution, reflecting the
distribution of the groups in the clean dataset, without spotting
significant differences in the number of comparisons and runtime.

4.1.3 Baselines. We compare RadlER against two baselines de-
signed to perform deduplicated sampling. The first baseline, de-
noted as batch, represents the traditional approach requiring to
clean the entire data upfront (i.e., to compare all candidates through
the matcher), then to sample the produced clean dataset. The second
baseline, denoted instead as random, represents a naïve solution
that we designed to perform deduplicated sampling on-demand.
Similarly to RadlER, it maintains a set of records for each group
and proceeds iteratively by picking a record to clean from the set
of the target group. Nevertheless, the selection is performed ran-
domly, without any weighting scheme. Finally, to assess the impact
of the weighting scheme illustrated in Section 3.2, we also take
into account two variants of RadlER, each considering only the
cost or only the benefit component of the weighting scheme, hence
denoted as cost and benefit, respectively.

4.1.4 Configuration. RadlER has been implemented in Python 3.7.
Our experiments were performed on a server equipped with 4 Intel
Xeon E5-2697@ 2.40 GHz (72 cores) processors and 216 GB of RAM,
running Ubuntu 18.04.

4.2 Sampling Data with Duplicates

To assess the negative impact of undetected duplicates on sampling,
hence the need for deduplication, we provide an intuitive example
by performing simple random sampling on alaska_cameras (results
are similar for nc_voters and nyc_funding). The measures shown
in Figure 4 are computed (averaging over 10 runs) on samples of 10
different sizes ranging from 100 to 1000 records — reported on the
x-axis normalized by the maximum sample size.

Figure 4a shows the number of distinct entities described by
the records in the sample (normalized by the sample size). This
quantity is close to 1 for a sample of 100 records, i.e., there are
almost no duplicates among them, but it quickly decreases inversely
to the sample size, e.g., a sample of 1000 records represents only
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Figure 5: Average number of comparisons performed to pro-

duce a clean sample of size x.

∼700 different real-world entities. Figure 4b shows the number of
distinct entities that present further duplicates outside the sample
(normalized by the number of distinct entities). This quantity is
very high (∼70%) across all sample sizes. Entities generated from
partial clusters of matches can present missing or incorrect values.
Further, the presence of duplicates introduces a bias in favor of
entities described by more records, whose probability of being
represented in the sample is substantially higher. Figure 4c shows
the average number of records describing in the original dataset the
entities represented in the sample. While this value is on average
∼3 considering all dataset entities (as reported in Table 1), it rises
up to ∼33 for the ones represented in the sample.

A naïve method to obtain a clean sample of size |S| might be to
sample a larger quantity of records (e.g., 2 × |S|), then directly run
deduplication on them. However, this approach presents multiple
shortcomings. First, as the sampling process was biased (Figure 4c),
the distribution of the cleaned entities in the sample would be sig-
nificantly distorted, over-representing groups whose entities are
described by more records in the original data — hence requiring
many more comparisons to produce the clean sample. RadlER in-
troduces a weighting scheme precisely to mitigate this bias and
enhance efficiency. Further, considering the trend depicted in Fig-
ure 4a, it is not even guaranteed that the sample contains enough
distinct entities (e.g., a sample of 10𝑘 records only describes ∼4𝑘
distinct entities). Finally, for records in the sample, as most clusters
of matches are incomplete (Figure 4b), deduplication should also
consider all of their neighbors from the original dataset.

4.3 Performance Evaluation

Figure 5 illustrates the performance of RadlER in terms of required
comparisons, i.e., the cost of deduplicated sampling. The lines show
the number of comparisons (averaged over 10 runs) required to
produce a sample of a given size, considering increasing sizes up to
the maximum for an undistorted sample with equal representation
(Section 4.1.2) — by which values on the x-axis are normalized.

RadlER significantly outperforms the batch approach to dedupli-
cated sampling, which requires performing all comparisons upfront,
clearly highlighting the effectiveness of the proposed on-demand
approach. For the maximum sample size, the required comparisons
are reduced of about 10 times on alaska_cameras (Figure 5a), 3
on nc_voters (Figure 5b), and 5 on nyc_funding (Figure 5c) — the
reduction is even greater for smaller sample sizes. Further, RadlER
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Table 2: Average runtime and monetary costs to produce a clean sample from alaska_cameras and nc_voters_10M.

alaska_cameras nc_voters_10M
Size RadlER Random Batch Size RadlER Random Batch

Setup overhead - 1.18 s 1.18 s - - 4.1 m 4.1 m -

Iteration overhead
108 (0.1)
540 (0.5)
1080 (1)

0.93 s
4.01 s
6.67 s

4.44 s
9.54 s
11.84 s

-
911 (0.001)
9.1𝑘 (0.01)
91.2𝑘 (0.1)

26.68 s
4.6 m
1 h

47.51 s
7.3 m
1.2 h

-

Matching runtime
with Ditto

108 (0.1)
540 (0.5)
1080 (1)

2.1 m
9.1 m
14.4 m

18.8 m
39.4 m
45.3 m

2.3 h
911 (0.001)
9.1𝑘 (0.01)
91.2𝑘 (0.1)

11.08 s
1.9 m
20.3 m

5.6 m
48.6 m
3.6 h

38.2 h

Matching runtime
with GPT-4o

108 (0.1)
540 (0.5)
1080 (1)

1.7 h
7.3 h
11.6 h

15 h
31.6 h
36.3 h

110 h
911 (0.001)
9.1𝑘 (0.01)
91.2𝑘 (0.1)

18.5 m
3.2 h
33.7 h

9.4 h
81 h
15 d

159 d

Total cost
with GPT-4o

108 (0.1)
540 (0.5)
1080 (1)

$2.89
$12.37
$19.60

$25.49
$53.56
$61.53

$187.25
911 (0.001)
9.1𝑘 (0.01)
91.2𝑘 (0.1)

$0.18
$1.89
$20.25

$5.62
$48.60
$217.57

$2293.07
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Figure 6: Average progressive recall per comparisons to pro-

duce a clean sample of size x.

significantly outperforms even the random baseline, a naïve ap-
proach to deduplicated sampling on-demand, reducing the number
of performed comparisons by more than half. This result highlights
the benefits of the weighting scheme described in Section 3.2. Note
that both the cost and the benefit baselines perform better than the
random one, but are consistently outperformed by RadlER. Thus,
even if the two components of the weighting scheme already lead
to some advantages taken individually, their combination produces
a much more effective reduction in the number of comparisons.

Figure 6 compares RadlER to the random baseline in terms of
progressive recall [28, 46, 72]. For a deduplicated sampling process
that generates a clean sample of size |S|, progressive recall at a time
𝑡 of the process is computed as |S𝑡 |/|S|, where |S𝑡 | is the number of
cleaned entities inserted into S by the time 𝑡 . For each sample size
from Figure 5, we produce a line plot with the number of performed
comparisons on the 𝑥-axis (up to the maximum between RadlER
and the random baseline for that sample size) and the progressive
recall achieved after 𝑥 comparisons on the 𝑦-axis. We compute the
(normalized) area under the curve from that plot for both solutions,
then represent it through the corresponding column in Figure 6.
RadlER requires a much smaller number of comparison to achieve
a value𝑦 of progressive recall, constantly maintaining an area under
the curve at least double that of the random baseline.

Finally, for our largest real-world dataset (alaska_cameras) and
its maximum sample size, Figure 7 compares RadlER to the random
baseline in terms of progressive recall on 25 synthetic candidate sets,
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Figure 7: Average progressive recall to produce a clean sample

of the maximum size from alaska_cameras with different

blocking recall (1, 0.95, 0.9, 0.85, 0.8) and candidate set size.

to analyze the impact of blocking. Candidate sets present different
recall (1, 0.95, 0.9, 0.85, 0.8), met by randomly picking a subset of
the ground truth, and cardinality (1, 2, 4, 8, and 16 times the ground
truth size, i.e., 541𝑘 record pairs), obtained by randomly merging
clusters of matches to add false positives. Introducing false positives
reduces the number of disjoint neighborhoods and increases their
average size, hence the number of comparisons. Nevertheless, while
progressive recall decreases for both methods over larger candidate
sets, RadlER always significantly outperforms the random baseline.
Further, as highlighted by the first 5 columns, the weighting scheme
adopted by RadlER mitigates the bias introduced by false positives
that favors records with larger neighborhoods, hence recording
more stable performance.

4.4 Runtime and Monetary Cost Analysis

In Table 2, we analyze the impact of RadlER on runtime and mone-
tary costs, comparing it to the batch and random baselines. For this
comparison, we use two datasets: alaska_cameras, our largest real-
world dataset and the one with the highest number of tokens per
record on average, and nc_voters_10M, to study how RadlER scales
over its 10𝑀 records and 27𝑀 candidates. For every dataset, we con-
sider increasing sample sizes over the maximum for an undistorted
sample with equal representation (Section 4.1.2). In particular, in
addition to the maximum sample size, we consider 0.1 and 0.5 ra-
tios for alaska_cameras, producing samples ranging between 108
and 1080 entities. For nc_voters_10M, the same ratios would range
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Figure 8: Average number of entities (normalized by the sam-

ple size) cleaned to produce a clean sample of size x.

between 91.2𝑘 and 912𝑘 entities, making results hard to compare
and ignoring sample sizes more suitable to the described use cases.
Thus, we also cover 0.01 (9.1𝑘 entities) and 0.001 (911) ratios, re-
porting the three smallest sample sizes in Table 2 and discussing
the cases for 0.5 and 1 ratios in the following.

The first two rows of Table 2 quantify the overhead required by
on-demand methods (i.e., RadlER and the naïve random baseline)
to manage data structures and — for RadlER — weights throughout
the setup phase and the subsequent iterations. Then, we report
the actual entity matching runtime, estimated for two different
matchers: (i) Ditto [43], a solution based on pre-trained language
models (e.g., BERT [20]) that represented the state-of-the-art before
large language models (LLMs) [52], and (ii) GPT-4o7, the most
advanced GPT model by OpenAI. Despite their accuracy, LLMs are
significantly slower due to their large size and generative nature. In
line with our explorative experiments, Peeters et al. [63] report an
average runtime per comparison of 0.51 s for GPT-4o in the zero-
shot scenario on a product dataset similar to alaska_cameras [62].
For Ditto, we computed instead about 10.6 ms on alaska_cameras
and 5.1 ms on nc_voters_10M using an NVIDIA Tesla T4 GPU.

On alaska_cameras, the overhead introduced by on-demand
solutions is negligible compared to the entity matching runtime.
While RadlER introduces slightly more overhead per iteration
than the random baseline, due to weighted random selection and
weight updates, it requires far fewer iterations, hence its iteration
overhead is lower overall. Even with Ditto, the cheapest of the two
matchers, RadlER clearly outperforms the batch baseline (which
requires comparing all candidates), being more than 9 times faster,
but also its naïve counterpart, showing at least a x3 improvement.
Moving to GPT-4o, RadlER would save almost 25 and 100 hours
compared to the random and batch baselines, respectively.

On nc_voters_10M, the overhead increases significantly, due to
the very large amount of records to manage. In the case of Ditto,
the iteration overhead contributes more than entity matching to the
overall runtime. This trend becomes even more relevant for larger
sample sizes, as RadlER records an iteration overhead of 10.1 h and
33.6 h (against an entity matching runtime of 1.7 h and 5.2 h) for
0.5 and 1 ratios (456𝑘 and 912𝑘 entities), respectively. In the latter
case, on-demand solutions exceed the runtime required by the batch
baseline. Enhancing the scalability of RadlER on very large sample
7https://platform.openai.com/docs/models
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Figure 9: Average number of records describing each entity

appearing in a clean sample of size x.

sizes might represent an interesting challenge for future work.
However, for sample sizes reported in Table 2, RadlER consistently
outperforms both baselines, reducing the overall runtime by up to
30 and 485 times, respectively.

Regarding the monetary costs introduced by the use of LLMs,
using the most updated API pricing by OpenAI8 and the tiktoken
library9 to compute the average number of tokens per records,
we can estimate a cost of 0.024 ¢ (almost 100 tokens per prompt)
and 0.0085 ¢ (about 33) per comparison for alaska_cameras and
nc_voters_10M with GPT-4o in the zero-shot scenario, respectively.
RadlER always leads to a relevant cost reduction, being up to 60
(12𝑘) and 8 (30) times cheaper than the batch baseline and its naïve
counterpart on alaska_cameras (nc_voters_10M). Note that we
consider zero-shot since it is the cheapest scenario. Best performing
approaches require additional tokens for their prompts [63], hence
monetary costs would increase accordingly.

4.5 Impact of the Weighting Scheme

As highlighted in Sections 4.3 and 4.4, RadlER clearly outperforms
the random baseline thanks to its weighting scheme, integrating a
cost and a benefit component (Section 3.2). Further, RadlER per-
forms consistently better than the cost and benefit baselines, which
consider each component independently (Figure 5). To provide
deeper insights into these results, we analyze how the two compo-
nents contribute to the achieved improvements.

Figures 8 and 9 report the number of cleaned entities and their
average cluster size, respectively — considering the sample sizes
introduced in Figure 5. RadlER clearly stands out as the overall best
performer, consistently with the results shown in Figure 5. Since
the benefit component aims to focus the cleaning effort on entities
that are likely to belong to the target group, the benefit baseline
cleans fewer entities than the cost and random ones (Figure 8).
Nevertheless, as it does not account for neighborhood sizes, it
heavily suffers from the bias introduced by duplicates, picking on
average the entities with the largest cluster size (Figure 9). This
determines many additional comparisons and makes the selection
of entities whose actual group is uncertain more frequent. Thus,
RadlER shows a further reduction in the number of cleaned entities
(up to 5 times compared to the random baseline), with the only
8https://openai.com/api/pricing/
9https://github.com/openai/tiktoken
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exception of alaska_cameras (Figure 8a), where sampling attribute
values within neighborhoods are generally less heterogeneous.

Since the cost component aims to favor entities that require fewer
comparisons, the cost baseline consistently reduces the impact of
bias (Figure 9). However, its average cluster size is comparable to
RadlER, as not accounting for their probability of belonging to
the target group results in cleaning many more entities (Figure 8).
Finally, the distance of RadlER from the ideal scenario where no
entities in excess are cleaned (the line 𝑦 = 1 in Figure 8) leaves
room for further optimizations to the current weighting scheme.

5 RELATEDWORK

Sampling Data with Duplicates. To the best of our knowledge, very
few works study the interaction between deduplication and sam-
pling. SampleClean [79] is an approximate method to apply data
cleaning to a small subset of the data, exploiting the outcome to
reduce the impact of dirty data on aggregate query answers, e.g.,
by deduplicating the set of records that impact the most on the
average calculation for a certain attribute. Both SampleClean and
its extension ActiveClean [39] are approximate methods, and
they are not suitable to perform stratified sampling, as they cannot
support a user-specified distribution as input.

Finally, Heidari et al. [34] propose an approximate method with
error-bound guarantees to sample uniformly at random from the
set of entities in the presence of duplicates. That approach relies
on locality sensitive hashing [40] to estimate the frequencies of
all entities, hence it is not blocking-agnostic. RadlER is an exact
method, and it is blocking-agnostic. Thus, it can be seamlessly
integrated into existing deduplication pipelines.

Data Cleaning On-Demand. Multiple solutions have been proposed
in the existing literature to address the shortcomings of the tradi-
tional approach to deduplication, including for instance progres-
sive [30, 46, 58, 71, 81] and query-driven [1–3] approaches.

In particular, BrewER [72, 83] recently proposed an on-demand
approach to deduplication, aiming to produce clean data needed by
the user incrementally, focusing the cleaning effort on one entity
at a time. Nevertheless, the underlying paradigm is substantially
different from RadlER. The cleaning process in BrewER is driven
by a query issued by the user, consolidating the entities that are
likely to appear in the result incrementally, according to a priority
defined through the ORDER BY clause. BrewER only supports SP
queries, which are not sufficient to perform sampling. On the other
hand, RadlER allows defining groups and a target distribution to
drive the incremental building of an undistorted clean sample.

Beyond deduplication, on-demand methods for data imputation
can be integrated into query execution [10, 44, 65], allowing practi-
tioners to handle missing values dynamically, reducing the query
latency and the execution cost. Finally, Giannakopoulou et al. [31]
proposed a probabilistic on-demand repair of denial constraint
violations [64], driven by SPJ and aggregate queries.

Deduplication & Fairness. In the wake of extensive studies per-
formed in related contexts [11, 67], bias and fairness recently started
to be tackled even from a data-centric perspective. For instance,
Shahbazi et al. [70] analyzed the problem of representation bias

in datasets, while solutions were proposed to define diversity con-
straints in queries [42] or to efficiently generate representative
datasets by integrating multiple sources [53].

Nevertheless, only few contributions in the literature focus on
deduplication. In particular, Shahbazi et al. [69] extensively stud-
ied the fairness of existing matchers. This work is orthogonal to
RadlER, which is indeed agnostic towards the choice of thematcher,
but it can support the user in the selection of a proper matching
function for the task and the data at hand.

FairER [25] introduced the problem of fairness-aware dedupli-
cation and suggested an instantiation of that problem for equal
representation as the target distribution. FairER partitions the
records in a binary fashion through the definition of a protected
group and acts on the priority of the candidate matches (based by
default on the matching probability) to guarantee that protected
and non-protected records are equally represented in the result.
TREATS [4] extended FairER to a streaming setting, comparing a
protected group to multiple other groups, in small batches. Unlike
RadlER, FairER and TREATS assume that all candidate matches are
compared to compute matching probabilities, similarly to the batch
baseline presented here. Finally, RadlER can take into account any
type of target distribution, whereas the algorithms presented in
FairER and TREATS are specifically targeting equal representation
in a record linkage setting (i.e., matching two tables, each of which
does not contain duplicates), without a data fusion step.

6 CONCLUSION AND FUTUREWORK

This paper provides the first definition of deduplicated sampling as
the task of producing a clean sample of a dirty dataset according
to a target distribution of entities for some specified groups. We
introduced RadlER, a novel on-demand approach to this problem
that aims to produce a clean sample without cleaning the entire data
upfront, focusing instead only on the entities required to appear
in that sample. Our experimental evaluation demonstrated that
RadlER consistently outperforms the traditional (batch) approach
to deduplicated sampling.

In the future, we aim to develop our work in multiple direc-
tions. First, we want to study how to further improve the adopted
weighting scheme and enhance scalability for very large datasets.
Moreover, in addition to bias, we plan to investigate methods that
address different data quality dimensions and incorporate them
into RadlER. For instance, we plan to investigate whether data
fusion for sensitive features may require dedicated functions, as
entities belonging to protected groups are more likely to present
missing values [47]. Beyond missing value imputation, data quality
issues that may need special treatment in terms of data fusion in-
clude formatting, noise, and outlier detection, as well as identifying
data inconsistencies. We plan to investigate whether variations and
extensions of the weighting scheme and the target group selection
process can address such additional data quality issues.

ACKNOWLEDGEMENTS

This work was partially supported by Cineca within the ISCRA-C
program (code HP10CSFAPN), by MUR within the PRIN “Discount
Quality” project (code 202248FWFS), and by the EU Horizon Europe
program within the “Ceasefire” project (GA no. 101073876).

2493



REFERENCES

[1] Giorgos Alexiou, George Papastefanatos, Vassilis Stamatopoulos, Georgia
Koutrika, and Nectarios Koziris. 2025. QueryER: A Framework for Fast Analysis-
Aware Deduplication over Dirty Data. In Proceedings of the International Con-
ference on Extending Database Technology (EDBT). 119–131. https://doi.org/10.
48786/edbt.2025.10

[2] Hotham Altwaijry, Dmitri V. Kalashnikov, and Sharad Mehrotra. 2013. Query-
Driven Approach to Entity Resolution. Proceedings of the VLDB Endowment
(PVLDB) 6, 14 (2013), 1846–1857. https://doi.org/10.14778/2556549.2556567

[3] Hotham Altwaijry, Sharad Mehrotra, and Dmitri V. Kalashnikov. 2015. QuERy: A
Framework for Integrating Entity Resolution with Query Processing. Proceedings
of the VLDB Endowment (PVLDB) 9, 3 (2015), 120–131. https://doi.org/10.14778/
2850583.2850587

[4] Tiago Brasileiro Araújo, Vasilis Efthymiou, Vassilis Christophides, Evaggelia
Pitoura, and Kostas Stefanidis. 2025. TREATS: Fairness-aware entity resolution
over streaming data. Information Systems 129, Article 102506 (2025), 16 pages.
https://doi.org/10.1016/j.is.2024.102506

[5] Nikolaus Augsten and Michael H. Böhlen. 2013. Similarity Joins in Relational
Database Systems. Springer. https://doi.org/10.1007/978-3-031-01851-0

[6] Nils Barlaug and Jon Atle Gulla. 2021. Neural Networks for Entity Matching:
A Survey. ACM Transactions on Knowledge Discovery from Data (TKDD) 15, 3,
Article 52 (2021), 37 pages. https://doi.org/10.1145/3442200

[7] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer.
https://link.springer.com/book/9780387310732

[8] Jens Bleiholder and Felix Naumann. 2008. Data Fusion. ACM Computing Surveys
(CSUR) 41, 1, Article 1 (2008), 41 pages. https://doi.org/10.1145/1456650.1456651

[9] Alexander Brinkmann, Roee Shraga, and Christian Bizer. 2024. SC-Block:
Supervised Contrastive Blocking Within Entity Resolution Pipelines. In Pro-
ceedings of the European Semantic Web Conference (ESWC), Part 1. 121–142.
https://doi.org/10.1007/978-3-031-60626-7_7

[10] José Cambronero, John K. Feser, Micah J. Smith, and Samuel Madden. 2017. Query
Optimization for Dynamic Imputation. Proceedings of the VLDB Endowment
(PVLDB) 10, 11 (2017), 1310–1321. https://doi.org/10.14778/3137628.3137641

[11] Simon Caton and Christian Haas. 2024. Fairness in Machine Learning: A Survey.
ACM Computing Surveys (CSUR) 56, 7, Article 166 (2024), 38 pages. https:
//doi.org/10.1145/3616865

[12] Peter Christen. 2012. Data Matching: Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer. https://doi.org/10.1007/978-
3-642-31164-2

[13] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis,
and Kostas Stefanidis. 2020. An Overview of End-to-End Entity Resolution for
Big Data. ACM Computing Surveys (CSUR) 53, 6, Article 127 (2020), 42 pages.
https://doi.org/10.1145/3418896

[14] Sam Corbett-Davies, Johann D. Gaebler, Hamed Nilforoshan, Ravi Shroff, and
Sharad Goel. 2023. The Measure and Mismeasure of Fairness. Journal of Machine
Learning Research (JMLR) 24, Article 312 (2023), 117 pages. http://jmlr.org/
papers/v24/22-1511.html

[15] Valter Crescenzi, Andrea De Angelis, Donatella Firmani, Maurizio Mazzei, Paolo
Merialdo, Federico Piai, and Divesh Srivastava. 2021. Alaska: A Flexible Bench-
mark for Data Integration Tasks. arXiv:2101.11259

[16] Sanjib Das, Paul Suganthan G. C., AnHai Doan, Jeffrey F. Naughton, Ganesh
Krishnan, Rohit Deep, Esteban Arcaute, Vijay Raghavendra, and Youngchoon
Park. 2017. Falcon: Scaling Up Hands-Off Crowdsourced Entity Matching to
Build Cloud Services. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD). 1431–1446. https://doi.org/10.1145/3035918.
3035960

[17] Andrea De Angelis, Maurizio Mazzei, Federico Piai, Paolo Merialdo, Giovanni
Simonini, Luca Zecchini, Sonia Bergamaschi, Donatella Firmani, Xu Chu, Peng
Li, and Renzhi Wu. 2023. Experiences and Lessons Learned from the SIGMOD
Entity Resolution Programming Contests. ACM SIGMOD Record 52, 2 (2023),
43–47. https://doi.org/10.1145/3615952.3615965

[18] Luca Deck, Jan-Laurin Müller, Conradin Braun, Domenique Zipperling, and
Niklas Kühl. 2024. Implications of the AI Act for Non-Discrimination Law and
Algorithmic Fairness. arXiv:2403.20089

[19] Dong Deng, Wenbo Tao, Ziawasch Abedjan, Ahmed Elmagarmid, Ihab F. Ilyas,
Guoliang Li, Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and Nan
Tang. 2019. Unsupervised String Transformation Learning for Entity Consoli-
dation. In Proceedings of the IEEE International Conference on Data Engineering
(ICDE). 196–207. https://doi.org/10.1109/ICDE.2019.00026

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the Annual Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), Volume 1 (Long and Short
Papers). 4171–4186. https://doi.org/10.18653/v1/n19-1423

[21] Xin Luna Dong and Divesh Srivastava. 2015. Big Data Integration. Springer.
https://doi.org/10.1007/978-3-031-01853-4

[22] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. 2012. Fairness Through Awareness. In Proceedings of the ACM Conference
on Innovations in Theoretical Computer Science (ITCS). 214–226. https://doi.org/
10.1145/2090236.2090255

[23] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad
Ouzzani, and Nan Tang. 2018. Distributed Representations of Tuples for Entity
Resolution. Proceedings of the VLDB Endowment (PVLDB) 11, 11 (2018), 1454–1467.
https://doi.org/10.14778/3236187.3236198

[24] Vasilis Efthymiou, Ekaterini Ioannou, Manos Karvounis, Manolis Koubarakis,
Jakub Maciejewski, Konstantinos Nikoletos, George Papadakis, Dimitris Skoutas,
Yannis Velegrakis, and Alexandros Zeakis. 2023. Self-configured Entity Reso-
lution with pyJedAI. In Proceedings of the IEEE International Conference on Big
Data (BigData). 339–343. https://doi.org/10.1109/BigData59044.2023.10386556

[25] Vasilis Efthymiou, Kostas Stefanidis, Evaggelia Pitoura, and Vassilis
Christophides. 2021. FairER: Entity Resolution With Fairness Constraints. In
Proceedings of the ACM International Conference on Information and Knowledge
Management (CIKM). 3004–3008. https://doi.org/10.1145/3459637.3482105

[26] Wenfei Fan and Floris Geerts. 2012. Foundations of Data Quality Management.
Springer. https://doi.org/10.1007/978-3-031-01892-3

[27] Nikolaos Fanourakis, Vasilis Efthymiou, Vassilis Christophides, Dimitris Kotzinos,
Evaggelia Pitoura, and Kostas Stefanidis. 2023. Structural Bias in Knowledge
Graphs for the Entity Alignment Task. In Proceedings of the European Semantic
Web Conference (ESWC). 72–90. https://doi.org/10.1007/978-3-031-33455-9_5

[28] Donatella Firmani, Barna Saha, and Divesh Srivastava. 2016. Online Entity
Resolution Using an Oracle. Proceedings of the VLDB Endowment (PVLDB) 9, 5
(2016), 384–395. https://doi.org/10.14778/2876473.2876474

[29] Luca Gagliardelli, Giovanni Simonini, Domenico Beneventano, and Sonia Berga-
maschi. 2019. SparkER: Scaling Entity Resolution in Spark. In Proceedings of
the International Conference on Extending Database Technology (EDBT). 602–605.
https://doi.org/10.5441/002/edbt.2019.66

[30] Leonardo Gazzarri and Melanie Herschel. 2023. Progressive Entity Resolution
over Incremental Data. In Proceedings of the International Conference on Extending
Database Technology (EDBT). 80–91. https://doi.org/10.48786/edbt.2023.07

[31] Stella Giannakopoulou, Manos Karpathiotakis, and Anastasia Ailamaki. 2020.
Cleaning Denial Constraint Violations through Relaxation. In Proceedings of
the ACM International Conference on Management of Data (SIGMOD). 805–815.
https://doi.org/10.1145/3318464.3389775

[32] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F. Naughton, Narasimhan
Rampalli, Jude Shavlik, and Xiaojin Zhu. 2014. Corleone: Hands-Off Crowd-
sourcing for Entity Matching. In Proceedings of the ACM International Conference
on Management of Data (SIGMOD). 601–612. https://doi.org/10.1145/2588555.
2588576

[33] Anders Haug, Frederik Zachariassen, and Dennis Van Liempd. 2011. The costs
of poor data quality. Journal of Industrial Engineering and Management (JIEM) 4,
2 (2011), 168–193. https://doi.org/10.3926/jiem.2011.v4n2.p168-193

[34] Alireza Heidari, Shrinu Kushagra, and Ihab F. Ilyas. 2020. On sampling from
data with duplicate records. arXiv:2008.10549

[35] Ihab F. Ilyas and Xu Chu. 2019. Data Cleaning. ACM. https://doi.org/10.1145/
3310205

[36] Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey
Heer. 2012. Profiler: Integrated Statistical Analysis and Visualization for Data
Quality Assessment. In Proceedings of the International Working Conference on
Advanced Visual Interfaces (AVI). 547–554. https://doi.org/10.1145/2254556.
2254659

[37] Pradap Konda, Sanjib Das, Paul Suganthan G. C., AnHai Doan, Adel Ardalan,
Jeffrey R. Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, Shishir
Prasad, Ganesh Krishnan, Rohit Deep, and Vijay Raghavendra. 2016. Magellan:
Toward Building Entity Matching Management Systems. Proceedings of the VLDB
Endowment (PVLDB) 9, 12 (2016), 1197–1208. https://doi.org/10.14778/2994509.
2994535

[38] Ioannis Koumarelas, Thorsten Papenbrock, and Felix Naumann. 2020. MDedup:
Duplicate Detection with Matching Dependencies. Proceedings of the VLDB
Endowment (PVLDB) 13, 5 (2020), 712–725. https://doi.org/10.14778/3377369.
3377379

[39] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. Franklin, and Ken
Goldberg. 2016. ActiveClean: Interactive Data Cleaning For Statistical Mod-
eling. Proceedings of the VLDB Endowment (PVLDB) 9, 12 (2016), 948–959.
https://doi.org/10.14778/2994509.2994514

[40] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2020. Mining
of Massive Datasets. Cambridge University Press. https://doi.org/10.1017/
9781108684163

[41] Guoliang Li. 2017. Human-in-the-loop Data Integration. Proceedings of the VLDB
Endowment (PVLDB) 10, 12 (2017), 2006–2017. https://doi.org/10.14778/3137765.
3137833

[42] Jinyang Li, Yuval Moskovitch, Julia Stoyanovich, and H. V. Jagadish. 2023. Query
Refinement for Diversity Constraint Satisfaction. Proceedings of the VLDB Endow-
ment (PVLDB) 17, 2 (2023), 106–118. https://doi.org/10.14778/3626292.3626295

2494

https://doi.org/10.48786/edbt.2025.10
https://doi.org/10.48786/edbt.2025.10
https://doi.org/10.14778/2556549.2556567
https://doi.org/10.14778/2850583.2850587
https://doi.org/10.14778/2850583.2850587
https://doi.org/10.1016/j.is.2024.102506
https://doi.org/10.1007/978-3-031-01851-0
https://doi.org/10.1145/3442200
https://link.springer.com/book/9780387310732
https://doi.org/10.1145/1456650.1456651
https://doi.org/10.1007/978-3-031-60626-7_7
https://doi.org/10.14778/3137628.3137641
https://doi.org/10.1145/3616865
https://doi.org/10.1145/3616865
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1145/3418896
http://jmlr.org/papers/v24/22-1511.html
http://jmlr.org/papers/v24/22-1511.html
https://arxiv.org/abs/2101.11259
https://doi.org/10.1145/3035918.3035960
https://doi.org/10.1145/3035918.3035960
https://doi.org/10.1145/3615952.3615965
https://arxiv.org/abs/2403.20089
https://doi.org/10.1109/ICDE.2019.00026
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1007/978-3-031-01853-4
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.14778/3236187.3236198
https://doi.org/10.1109/BigData59044.2023.10386556
https://doi.org/10.1145/3459637.3482105
https://doi.org/10.1007/978-3-031-01892-3
https://doi.org/10.1007/978-3-031-33455-9_5
https://doi.org/10.14778/2876473.2876474
https://doi.org/10.5441/002/edbt.2019.66
https://doi.org/10.48786/edbt.2023.07
https://doi.org/10.1145/3318464.3389775
https://doi.org/10.1145/2588555.2588576
https://doi.org/10.1145/2588555.2588576
https://doi.org/10.3926/jiem.2011.v4n2.p168-193
https://arxiv.org/abs/2008.10549
https://doi.org/10.1145/3310205
https://doi.org/10.1145/3310205
https://doi.org/10.1145/2254556.2254659
https://doi.org/10.1145/2254556.2254659
https://doi.org/10.14778/2994509.2994535
https://doi.org/10.14778/2994509.2994535
https://doi.org/10.14778/3377369.3377379
https://doi.org/10.14778/3377369.3377379
https://doi.org/10.14778/2994509.2994514
https://doi.org/10.1017/9781108684163
https://doi.org/10.1017/9781108684163
https://doi.org/10.14778/3137765.3137833
https://doi.org/10.14778/3137765.3137833
https://doi.org/10.14778/3626292.3626295


[43] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. Proceedings
of the VLDB Endowment (PVLDB) 14, 1 (2020), 50–60. https://doi.org/10.14778/
3421424.3421431

[44] Yiming Lin and Sharad Mehrotra. 2023. ZIP: Lazy Imputation during Query
Processing. Proceedings of the VLDB Endowment (PVLDB) 17, 1 (2023), 28–40.
https://doi.org/10.14778/3617838.3617841

[45] Fabian Lütz. 2024. The AI Act, gender equality and non-discrimination: what role
for the AI office? ERA Forum 25 (2024), 79–95. https://doi.org/10.1007/s12027-
024-00785-w

[46] Jakub Maciejewski, Konstantinos Nikoletos, George Papadakis, and Yannis Vele-
grakis. 2025. Progressive Entity Matching: A Design Space Exploration. Pro-
ceedings of the ACM on Management of Data (PACMMOD) 3, 1, Article 65 (2025),
25 pages. https://doi.org/10.1145/3709715

[47] Fernando Martínez-Plumed, Cèsar Ferri, David Nieves, and José Hernández-
Orallo. 2021. Missing the missing values: The ugly duckling of fairness in
machine learning. International Journal of Intelligent Systems (IJIS) 36, 7 (2021),
3217–3258. https://doi.org/10.1002/int.22415

[48] Vamsi Meduri, Lucian Popa, Prithviraj Sen, and Mohamed Sarwat. 2020. A
Comprehensive Benchmark Framework for Active Learning Methods in Entity
Matching. In Proceedings of the ACM International Conference on Management of
Data (SIGMOD). 1133–1147. https://doi.org/10.1145/3318464.3380597

[49] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. 2021. A Survey on Bias and Fairness in Machine Learning. ACM
Computing Surveys (CSUR) 54, 6, Article 115 (2021), 35 pages. https://doi.org/10.
1145/3457607

[50] Sandy Moens and Bart Goethals. 2013. Randomly Sampling Maximal Itemsets. In
Proceedings of the Workshop on Interactive Data Exploration and Analytics (IDEA
@ KDD). 79–86. https://doi.org/10.1145/2501511.2501523

[51] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep Learning for Entity Matching: A Design Space Exploration. In Proceedings
of the ACM International Conference on Management of Data (SIGMOD). 19–34.
https://doi.org/10.1145/3183713.3196926

[52] Avanika Narayan, Ines Chami, Laurel Orr, and Christopher Ré. 2022. Can Foun-
dation Models Wrangle Your Data? Proceedings of the VLDB Endowment (PVLDB)
16, 4 (2022), 738–746. https://doi.org/10.14778/3574245.3574258

[53] Fatemeh Nargesian, Abolfazl Asudeh, and H. V. Jagadish. 2021. Tailoring Data
Source Distributions for Fairness-aware Data Integration. Proceedings of the
VLDB Endowment (PVLDB) 14, 11 (2021), 2519–2532. https://doi.org/10.14778/
3476249.3476299

[54] Felix Naumann andMelanieHerschel. 2010. An Introduction to Duplicate Detection.
Springer. https://doi.org/10.1007/978-3-031-01835-0

[55] Matteo Paganelli, Francesco Del Buono, Andrea Baraldi, and Francesco Guerra.
2022. Analyzing How BERT Performs Entity Matching. Proceedings of the VLDB
Endowment (PVLDB) 15, 8 (2022), 1726–1738. https://doi.org/10.14778/3529337.
3529356

[56] George Papadakis, Georgia Koutrika, Themis Palpanas, andWolfgang Nejdl. 2014.
Meta-Blocking: Taking Entity Resolution to the Next Level. IEEE Transactions
on Knowledge and Data Engineering (TKDE) 26, 8 (2014), 1946–1960. https:
//doi.org/10.1109/TKDE.2013.54

[57] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.
2020. Blocking and Filtering Techniques for Entity Resolution: A Survey. ACM
Computing Surveys (CSUR) 53, 2, Article 31 (2020), 42 pages. https://doi.org/10.
1145/3377455

[58] Thorsten Papenbrock, Arvid Heise, and Felix Naumann. 2015. Progressive
Duplicate Detection. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 27, 5 (2015), 1316–1329. https://doi.org/10.1109/TKDE.2014.2359666

[59] Eliana Pastor, Luca de Alfaro, and Elena Baralis. 2021. Looking for Trouble:
Analyzing Classifier Behavior via Pattern Divergence. In Proceedings of the
ACM International Conference on Management of Data (SIGMOD). 1400–1412.
https://doi.org/10.1145/3448016.3457284

[60] Derek Paulsen, Yash Govind, and AnHai Doan. 2023. Sparkly: A Simple yet
Surprisingly Strong TF/IDF Blocker for Entity Matching. Proceedings of the VLDB
Endowment (PVLDB) 16, 6 (2023), 1507–1519. https://doi.org/10.14778/3583140.
3583163

[61] Ralph Peeters and Christian Bizer. 2023. Using ChatGPT for Entity Matching. In
Proceedings of the European Conference on Advances in Databases and Information
Systems (ADBIS): Short Papers, Doctoral Consortium and Workshops. 221–230.
https://doi.org/10.1007/978-3-031-42941-5_20

[62] Ralph Peeters, Reng Chiz Der, and Christian Bizer. 2024. WDC Products: A Multi-
Dimensional Entity Matching Benchmark. In Proceedings of the International
Conference on Extending Database Technology (EDBT). 22–33. https://doi.org/10.
48786/edbt.2024.03

[63] Ralph Peeters, Aaron Steiner, and Christian Bizer. 2025. Entity Matching using
Large Language Models. In Proceedings of the International Conference on Extend-
ing Database Technology (EDBT). 529–541. https://doi.org/10.48786/edbt.2025.42

[64] Eduardo H. M. Pena, Eduardo C. de Almeida, and Felix Naumann. 2021. Fast
Detection of Denial Constraint Violations. Proceedings of the VLDB Endowment
(PVLDB) 15, 4 (2021), 859–871. https://doi.org/10.14778/3503585.3503595

[65] Massimo Perini and Milos Nikolic. 2024. In-Database Data Imputation. Pro-
ceedings of the ACM on Management of Data (PACMMOD) 2, 1, Article 70 (2024),
27 pages. https://doi.org/10.1145/3639326

[66] Dana Pessach and Erez Shmueli. 2022. A Review on Fairness inMachine Learning.
ACM Computing Surveys (CSUR) 55, 3, Article 51 (2022), 44 pages. https://doi.
org/10.1145/3494672

[67] Evaggelia Pitoura, Kostas Stefanidis, and Georgia Koutrika. 2022. Fairness in
rankings and recommendations: an overview. VLDB Journal 31, 3 (2022), 431–458.
https://doi.org/10.1007/s00778-021-00697-y

[68] Alieh Saeedi, Eric Peukert, and Erhard Rahm. 2017. Comparative Evaluation of
Distributed Clustering Schemes forMulti-source Entity Resolution. In Proceedings
of the European Conference on Advances in Databases and Information Systems
(ADBIS). 278–293. https://doi.org/10.1007/978-3-319-66917-5_19

[69] Nima Shahbazi, Nikola Danevski, Fatemeh Nargesian, Abolfazl Asudeh, and
Divesh Srivastava. 2023. Through the Fairness Lens: Experimental Analysis and
Evaluation of Entity Matching. Proceedings of the VLDB Endowment (PVLDB) 16,
11 (2023), 3279–3292. https://doi.org/10.14778/3611479.3611525

[70] Nima Shahbazi, Yin Lin, Abolfazl Asudeh, and H. V. Jagadish. 2023. Rep-
resentation Bias in Data: A Survey on Identification and Resolution Tech-
niques. ACM Computing Surveys (CSUR) 55, 13, Article 293 (2023), 39 pages.
https://doi.org/10.1145/3588433

[71] Giovanni Simonini, George Papadakis, Themis Palpanas, and Sonia Bergamaschi.
2018. Schema-agnostic Progressive Entity Resolution. In Proceedings of the IEEE
International Conference on Data Engineering (ICDE). 53–64. https://doi.org/10.
1109/ICDE.2018.00015

[72] Giovanni Simonini, Luca Zecchini, Sonia Bergamaschi, and Felix Naumann. 2022.
Entity Resolution On-Demand. Proceedings of the VLDB Endowment (PVLDB) 15,
7 (2022), 1506–1518. https://doi.org/10.14778/3523210.3523226

[73] Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed Elmagarmid, Samuel Mad-
den, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and Nan
Tang. 2017. Synthesizing Entity Matching Rules by Examples. Proceedings of
the VLDB Endowment (PVLDB) 11, 2 (2017), 189–202. https://doi.org/10.14778/
3149193.3149199

[74] Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy and
Policy Considerations for Deep Learning in NLP. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics (ACL). 3645–3650. https:
//doi.org/10.18653/v1/P19-1355

[75] Saravanan Thirumuruganathan, Han Li, Nan Tang, Mourad Ouzzani, Yash
Govind, Derek Paulsen, Glenn Fung, and AnHai Doan. 2021. Deep Learning for
Blocking in Entity Matching: A Design Space Exploration. Proceedings of the
VLDB Endowment (PVLDB) 14, 11 (2021), 2459–2472. https://doi.org/10.14778/
3476249.3476294

[76] Steven K. Thompson. 2012. Sampling. John Wiley & Sons. https://doi.org/10.
1002/9781118162934

[77] Tània Verge. 2010. Gendering Representation in Spain: Opportunities and Limits
of Gender Quotas. Journal of Women, Politics & Policy (JWPP) 31, 2 (2010),
166–190. https://doi.org/10.1080/15544771003697247

[78] Valery S. Vykhovanets, Jianming Du, and Sergey A. Sakulin. 2020. An Overview
of Phonetic Encoding Algorithms. Automation and Remote Control 81 (2020),
1896–1910. https://doi.org/10.1134/S0005117920100082

[79] Jiannan Wang, Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, Tim Kraska,
and Tova Milo. 2014. A Sample-and-Clean Framework for Fast and Accurate
Query Processing on Dirty Data. In Proceedings of the ACM International Con-
ference on Management of Data (SIGMOD). 469–480. https://doi.org/10.1145/
2588555.2610505

[80] Steven Euijong Whang and Hector Garcia-Molina. 2014. Incremental entity
resolution on rules and data. VLDB Journal 23, 1 (2014), 77–102. https://doi.org/
10.1007/s00778-013-0315-0

[81] Steven Euijong Whang, David Marmaros, and Hector Garcia-Molina. 2013. Pay-
As-You-Go Entity Resolution. IEEE Transactions on Knowledge and Data Engi-
neering (TKDE) 25, 5 (2013), 1111–1124. https://doi.org/10.1109/TKDE.2012.43

[82] Luca Zecchini, Giovanni Simonini, and Sonia Bergamaschi. 2020. Entity Res-
olution on Camera Records without Machine Learning. In Proceedings of the
International Workshop on Challenges and Experiences from Data Integration to
Knowledge Graphs (DI2KG @ VLDB). https://ceur-ws.org/Vol-2726/paper3.pdf

[83] Luca Zecchini, Giovanni Simonini, Sonia Bergamaschi, and Felix Naumann. 2023.
BrewER: Entity Resolution On-Demand. Proceedings of the VLDB Endowment
(PVLDB) 16, 12 (2023), 4026–4029. https://doi.org/10.14778/3611540.3611612

[84] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Mega-
hed, and Ricardo Baeza-Yates. 2017. FA*IR: A Fair Top-k Ranking Algorithm. In
Proceedings of the ACM International Conference on Information and Knowledge
Management (CIKM). 1569–1578. https://doi.org/10.1145/3132847.3132938

2495

https://doi.org/10.14778/3421424.3421431
https://doi.org/10.14778/3421424.3421431
https://doi.org/10.14778/3617838.3617841
https://doi.org/10.1007/s12027-024-00785-w
https://doi.org/10.1007/s12027-024-00785-w
https://doi.org/10.1145/3709715
https://doi.org/10.1002/int.22415
https://doi.org/10.1145/3318464.3380597
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1145/2501511.2501523
https://doi.org/10.1145/3183713.3196926
https://doi.org/10.14778/3574245.3574258
https://doi.org/10.14778/3476249.3476299
https://doi.org/10.14778/3476249.3476299
https://doi.org/10.1007/978-3-031-01835-0
https://doi.org/10.14778/3529337.3529356
https://doi.org/10.14778/3529337.3529356
https://doi.org/10.1109/TKDE.2013.54
https://doi.org/10.1109/TKDE.2013.54
https://doi.org/10.1145/3377455
https://doi.org/10.1145/3377455
https://doi.org/10.1109/TKDE.2014.2359666
https://doi.org/10.1145/3448016.3457284
https://doi.org/10.14778/3583140.3583163
https://doi.org/10.14778/3583140.3583163
https://doi.org/10.1007/978-3-031-42941-5_20
https://doi.org/10.48786/edbt.2024.03
https://doi.org/10.48786/edbt.2024.03
https://doi.org/10.48786/edbt.2025.42
https://doi.org/10.14778/3503585.3503595
https://doi.org/10.1145/3639326
https://doi.org/10.1145/3494672
https://doi.org/10.1145/3494672
https://doi.org/10.1007/s00778-021-00697-y
https://doi.org/10.1007/978-3-319-66917-5_19
https://doi.org/10.14778/3611479.3611525
https://doi.org/10.1145/3588433
https://doi.org/10.1109/ICDE.2018.00015
https://doi.org/10.1109/ICDE.2018.00015
https://doi.org/10.14778/3523210.3523226
https://doi.org/10.14778/3149193.3149199
https://doi.org/10.14778/3149193.3149199
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.14778/3476249.3476294
https://doi.org/10.14778/3476249.3476294
https://doi.org/10.1002/9781118162934
https://doi.org/10.1002/9781118162934
https://doi.org/10.1080/15544771003697247
https://doi.org/10.1134/S0005117920100082
https://doi.org/10.1145/2588555.2610505
https://doi.org/10.1145/2588555.2610505
https://doi.org/10.1007/s00778-013-0315-0
https://doi.org/10.1007/s00778-013-0315-0
https://doi.org/10.1109/TKDE.2012.43
https://ceur-ws.org/Vol-2726/paper3.pdf
https://doi.org/10.14778/3611540.3611612
https://doi.org/10.1145/3132847.3132938

	Abstract
	1 Sampling Data with Duplicates
	2 Deduplicated Sampling On-Demand
	2.1 Deduplication
	2.2 Deduplicated Sampling
	2.3 Deduplicated Sampling On-Demand

	3 RadlER
	3.1 Algorithm Overview
	3.2 Weighting Scheme
	3.3 Initializing Data Structures
	3.4 Performing Entity Matching
	3.5 Updating Data Structures

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Sampling Data with Duplicates
	4.3 Performance Evaluation
	4.4 Runtime and Monetary Cost Analysis
	4.5 Impact of the Weighting Scheme

	5 Related Work
	6 Conclusion and Future Work
	References

