
Unraveling the Impact of Window Semantics: Optimizing Join
Order for Efficient Stream Processing

Ariane Ziehn
TU Berlin, BIFOLD, Germany
ariane.ziehn@tu-berlin.de

Jan Szlang∗
Snowflake Computing, Germany

jan.szlang@snowflake.com

Steffen Zeuch
TU Berlin, BIFOLD, Germany
steffen.zeuch@tu-berlin.de

Volker Markl
TU Berlin, BIFOLD, Germany
volker.markl@tu-berlin.de

ABSTRACT
Window joins (WJs) are fundamental operators in stream process-
ing systems (SPSs), enabling continuous, time-aware joins over
unbounded data streams. Unlike time-agnostic relational joins, WJs
incorporate temporal semantics associated with different window
types (i.e., sliding, session, and interval windows), which introduce
uncertainty in algebraic properties such as commutativity and as-
sociativity. As a result, state-of-the-art SPSs exploit only a single,
fixed join order, which limits optimization opportunities and often
leads to suboptimal performance. In this work, we eliminate this
restriction by introducing three transformation rules that enable
WJ reordering while preserving query semantics for those window
types. Based on them, we propose WJR, an algorithm that system-
atically enumerates semantically equivalent join orders, expanding
the search space for finding efficient WJ execution plans. Our eval-
uation shows speedups of up to 10 for multi-way WJ queries under
various window configurations and rate ratios, highlighting the per-
formance benefits of flexible join reordering in streaming queries.

PVLDB Reference Format:
Ariane Ziehn, Jan Szlang, Steffen Zeuch, and Volker Markl. Unraveling the
Impact of Window Semantics: Optimizing Join Order for Efficient Stream
Processing. PVLDB, 18(8): 2468 - 2481, 2025.
doi:10.14778/3742728.3742741

PVLDB Artifact Availability:
The source code, data, and artifacts have been made available at (1) github.
com/arianeziehn/reorder_window_joins (Case Study and Evaluation in
Flink) and (2) github.com/szlangini/WindowJoinReordering (WJR).

1 INTRODUCTION
Stream processing systems (SPSs) enable continuous data analytics
over unbounded data streams by maintaining standing queries. As
the Internet of Things (IoT) expands, both the volume of data and the
number of streams processed by SPSs grow exponentially, leading to
increasingly complex analytical queries [20, 67, 68]. A major source
of complexity is the need to correlate multiple streams through

∗Work performed while at TU Berlin.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.
doi:10.14778/3742728.3742741

Figure 1: Multi-Way Relational Join versus Multi-Way WJ.

multi-way window joins (WJs), which are essential for applications
such as moving object tracking [29, 35], online auctions [58, 62],
smart manufacturing [53, 59], and property monitoring [60]. To
manage unbounded streams, SPSs utilize WJs, which perform time-
based joins over finite intervals defined by various window seman-
tics, e.g., overlapping sliding windows or non-overlapping tumbling
windows [14, 19, 37, 63]. For example, consider a city-wide traffic
management application [29, 35, 53] depicted in Figure 1, which
processes three streams: high-frequency traffic congestion data (A),
moderate-frequency air-quality metrics (B), e.g., temperature or
particulate matter, and low-frequency wind data (C).

Example 1. In this scenario, the system dynamically adjusts speed
limits based on congestion and environmental conditions, e.g., reduc-
ing speeds when temperatures drop below zero or wind speeds are high.
To this end, a query with an hourly sliding window starting every five
minutes joins these streams to derive speed recommendations. Joining
the high-frequency congestion data with the moderate-frequency air
quality data first yields a high-frequency intermediate result, leading
to computational overhead for the subsequent WJ with wind data.
A better plan would produce a smaller intermediate result by first
joining the high-frequency congestion data with the sparser wind
data, reducing processing overhead for the subsequent WJ.

This scenario highlights the critical impact of WJ ordering for
performance in SPSs [14, 19, 37, 43]. This is in line with findings in
relational databases, where multi-way joins are known to be com-
putationally intensive and order-sensitive [41, 47]. In databases, a
query optimizer typically explores a large search space of equivalent
join plans to find an efficient execution strategy. These equivalences
arise from algebraic properties such as commutativity and associa-
tivity, which make it possible to transform one query plan into
another without altering query semantics [11, 33]. By enumerating

2468

https://doi.org/10.14778/3742728.3742741
github.com/arianeziehn/reorder_window_joins
github.com/arianeziehn/reorder_window_joins
github.com/szlangini/WindowJoinReordering
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3742728.3742741
https://www.acm.org/publications/policies/artifact-review-and-badging-current

different plans and applying a cost function to estimate their exe-
cution efficiency, relational optimizers prune the search space and
select the best plan based on its costs [17, 42, 54]. As a result, join
reordering is a cornerstone for achieving high performance.

Although the underlying principles of relational optimizers carry
over conceptually to streaming queries, WJs introduce additional
complexity due to their time-based semantics. In particular, unlike
time-agnostic relational joins over finite data, WJs continuously
process infinite data as part of a standing query, necessitating time-
based semantics. Figure 1 illustrates this contrast: The relational
join ⊲⊳1 first processes the sets 𝐴 and 𝐵, producing an intermediate
result 𝐴𝐵, which is then joined with 𝐶 in a subsequent step before
the query completes. In contrast, eachWJ pairs a join and a window
operator, e.g., ⊲⊳1 with𝑊1.𝑊1 is responsible for discretizing the
streams 𝐴 and 𝐵 into a sequence of finite substreams (sets) 𝐴𝑖 and
𝐵𝑖 , which then ⊲⊳1 continuously composes. Therefore, windowing
is not just an auxiliary function for discretizing streams but directly
determines which tuples are eligible for each join operation, po-
tentially invalidating algebraic properties. For instance, reordering
two WJs, as proposed in Example 1, may change which tuples fall
in overlapping time intervals and thus lead to missing or incorrect
results. As a consequence, state-of-the-art SPSs lack the capability
to systematically reorder WJs, as the conditions under which com-
mutativity and associativity hold remain unclear across different
window types. In other words, the search space of execution plans
for multi-way WJs is practically limited to a single plan derived
from the input query. As a result, the SPS optimizer has no freedom
to pick a better plan even if it exists, thereby leaving significant
opportunities for performance gains on the table [5, 19, 31, 58].

In this paper, we address the fundamental question of whether
and how WJs can be reordered without changing query seman-
tics, thereby unlocking a larger search space of execution plans for
stream optimization. To this end, we first analyze algebraic prop-
erties of WJs across commonly used window types (i.e., sliding,
session, and interval windows) and time domains (i.e., processing
and event time). Second, we devise generic transformation rules
to enable these reorderings under well-defined conditions. Third,
we propose an enumeration algorithm, WJR, that systematically
constructs valid join orders for a given multi-wayWJ query. In sum,
by focusing on search-space expansion, we lay the groundwork for
future WJ optimization and make the following contributions:

• We provide a comprehensive commutativity and associativity
analysis of common WJ types in SPSs, revealing which
reorderings preserve semantics (Sections 3 and 4).

• We introduce three transformation rules that enable WJ
reordering, even in cases where commutativity and asso-
ciativity do not inherently hold (Section 5).

• We propose the WJR algorithm, which systematically enu-
merates semantically valid multi-way WJ plans, thereby
lifting the restriction of a single join order and expanding
the search space for future WJ optimization (Section 6).

• We evaluate our approach under diverse workloads and
window semantics, demonstrating that reordering yields
significant throughput and resource benefits (Section 7).

We discuss related work in Section 8 and conclude in Section 9.

2 PRELIMINARIES
In this section, we provide an overview of stream processing funda-
mentals in Section 2.1 and detailed concepts for WJs in Section 2.2.

2.1 Stream Processing Fundamentals
Streams and Tuples. A stream 𝑆 is a continuous list of tuples
generated by data sources such as sensors [2, 3, 27]. A tuple 𝑡

is a list of attributes t(𝑎1, ...𝑎𝑛), including a timestamp 𝑡𝑠 , which
holds the relevant time information for windowing [3, 27, 38]. In
particular, SPSs have two different notions of time: processing and
event time [2, 61]. Event time uses the creation time of the tuple
outside the SPS as the timestamp 𝑡𝑠 of a tuple 𝑡 , whereas processing
time uses the system clock when the tuple is processed in the SPS.
We write 𝑡 .𝑡𝑠 for the timestamp of 𝑡 and consider it an accessible
tuple value regardless of the time domain. All tuples 𝑡𝑖 ∈ 𝑆 share
the same list of attributes, i.e., a common schema 𝑆 (𝑎1, ..., 𝑎𝑛).

Queries and Operators. Users specify operations on streams in
queries. In SPSs, a query is represented as a directed acyclic graph
(DAG) comprising operators as nodes. Formally, a query is defined
as a tuple 𝑄 = (𝑂𝑃, 𝜆,𝑊 ,𝜔) over the set of operators 𝑂𝑃 , the set
of window operators𝑊 , the partial function 𝜆 : 𝑂𝑃 ↛ 𝑂𝑃𝑛, 𝑛 ∈
[1, 2] which assigns child nodes to an operator, and the function
𝜔 : 𝑂𝑃2 → 𝑊 which assigns a window operator𝑊𝑏 to a binary
operator𝑂𝑃2

𝑏
, 𝑏 ∈ N [4, 50]. A query plan 𝜌 derives the output tuples

of 𝑄 by executing its operators along the DAG to the sink [21, 39].
Streams act as sources, and each operator 𝑂𝑃𝑢 sends its output to
its parent 𝑂𝑃𝑝 , where the associated𝑊𝑝 discretizes the output of
𝑂𝑃𝑢 if 𝑂𝑃𝑝 ∈ 𝑂𝑃2. WJs are such binary operators 𝑂𝑃2 paired with
a window operator𝑊 , written as [𝐴 ⊲⊳𝜃 𝐵]𝑊 = 𝐴𝐵, where 𝐴 and
𝐵 are input streams and 𝐴𝐵 is the output stream of joined tuple
pairs (𝑎, 𝑏). Here,𝑊 discretizes each infinite input stream 𝑆 into
a sequence of finite substreams 𝑆𝑖 based on its semantics [2, 6]. A
query 𝑄 can be represented by multiple semantically equivalent
query plans 𝜌𝑘 , 𝑘 ∈ N+, each producing the same output despite
variations in execution order or structure. We adopt the definition
of Negri et al. [45], where two plans are semantically equivalent if,
for all input tuples, they produce the same output after execution
and duplicate elimination. The cost of a plan 𝑐𝜌𝑘 determines its
quality, e.g., in terms of resource usage or runtime.

2.2 Window Join Types and their Semantics
SPSs support different types of windows, each defining specific
semantics for WJs according to the selected window type. Table 1
summarizes the available WJ types in common SPSs, i.e., tumbling,
sliding, session, and interval. Time-based windows, i.e., tumbling
and sliding windows, are foundational in SPSs for managing the
temporal aspects of continuous data streams and are thus widely
adopted in SPSs and application scenarios [2, 6, 14, 53, 64]. Early
SPSs primarily operated on processing time (PT), handling tuples
in the order of their arrival. However, as data sources increasingly
originated outside the cloud, the necessity to tackle transmission
latency led to the widespread adoption of event time (ET) [3]. Since
then, event time has driven the development of more advanced
window types, such as content-based (or data-driven) session and
interval windows, to meet diverse application requirements. Today,
event time is the dominant paradigm for cloud-based SPSs [2, 7, 24].

2469

Table 1: Overview of WJ Types in common SPS.
WJ Type Parameters Categories SPSs

C
re
at
io
n

M
ea
su

re

T
im

e
D
om

ai
n

A
pa

ch
e
Fl
in
k
[2
3]

N
eb

ul
aS

tr
ea
m

[6
8]

A
pa

ch
e
Sp

ar
k
[6
6]

1

A
pa

ch
e
B
ea
m

[2
2]

A
pa

ch
e
St
or
m

[2
5]

A
zu

re
SA

[1
]

Tumbling Window Join length 𝑙 time time PT ✔ ✗ ✗ ✔ ✔ ✔

ET ✔ ✔ ✔ ✔ ✔ ✔

Sliding Window Join length 𝑙 , time time PT ✔ ✗ ✗ ✔ ✔ ✔

SWJ slide 𝑠 ET ✔ ✔ ✔ ✔ ✔ ✔

Session Window Join gap 𝑔 content time PT ✔ ✗ ✗ ✔ ✗ ✔

SessWJ ET ✔ ✗ ✗ ✔ ✗ ✔

Interval Join lower bound 𝑙𝐵 content time ET ✔ ✗ (✔) ✗ ✗ ✗

IVJ upper bound 𝑢𝐵
Legend: () = limited options, PT = processing time, ET = event time, SA Stream Analytics

Window Join Semantics. Each window operator has two se-
mantic aspects: (1) intra-window and (2) inter-window semantics.

(1) Intra-window semantics define which tuples are assigned to
each finite substream(s) 𝑆𝑖 . For all considered WJ types in Table 1,
window parameters are measured in time. Thus, each 𝑆𝑖 corre-
sponds to a time interval (i.e., a window) 𝑤𝑖 = [𝑡𝑠𝑏𝑖 , 𝑡𝑠𝑒𝑖), where
𝑡𝑠𝑏𝑖 denotes the beginning and 𝑡𝑠𝑒𝑖 the end of 𝑤𝑖 [1, 2, 28, 63]. A
tuple 𝑡 is assigned to 𝑆𝑖 if 𝑡 .𝑡𝑠 ∈ 𝑤𝑖 . Furthermore, intra-window
semantics incorporate the join operation, where each tuple 𝑎 ∈ 𝐴𝑖

is paired with a tuple 𝑏 ∈ 𝐵𝑖 to produce the pair (𝑎, 𝑏) if they satisfy
the join predicate 𝜃 [13, 19, 34, 57]. Formally,

[𝐴 ⊲⊳𝜃 𝐵]𝑤𝑖 = 𝐴𝑖 ⊲⊳𝜃 𝐵𝑖 = {(𝑎, 𝑏) |𝑎 ∈ 𝐴𝑖 ∧ 𝑏 ∈ 𝐵𝑖 ∧ 𝜃𝐴𝐵}

For simplicity, we assume that a join predicate 𝜃 exists and join
operations are independent, omitting further notation.

(2) Inter-window semantics define how subsequent windows are
created, i.e., how the stream is partitioned into substreams [64].
When multiple window operators𝑊𝑛 occur in a query𝑄 , we denote
the corresponding window as𝑤𝑛

𝑖
.

Window Join Types. We investigate in detail the semantic
differences among these WJ types:

(1) Tumbling and Sliding Window Joins (SWJs) compute join op-
erations over windows𝑤𝑖 with a fixed length 𝑙 = 𝑡𝑠𝑒𝑖 − 𝑡𝑠𝑏𝑖 that are
aligned with the logical clock, thereby ensuring consistent and pre-
dictable join operations [2, 14, 28, 61]. For instance, a tumbling WJ
with a 1-hour length submitted at 6:25 would align its first window
to the clock𝑤1 = [6:25,7:00), as shown in Figure 2. Subsequent win-
dows are derived based on type-specific inter-window semantics.
In event time, logical clock alignment is based on the timestamp of
the first tuple that occurs. As a result, the same window operation
is applied uniformly to both streams, leading to identical windows
𝑤𝑖 for both substreams 𝐴𝑖 and 𝐵𝑖 over all partitions [57].

Tumbling windows divide streams into non-overlapping sub-
streams, where each window𝑤𝑖 starts immediately after the end of
its predecessor𝑤𝑖−1, i.e.,𝑡𝑠𝑒𝑖−1 = 𝑡𝑠𝑏𝑖 . For instance, our example in
Figure 2 could be used for periodic correlations such as hourly sales
or energy consumption reporting [53] with 𝑤2 = [7:00,8:00). In
contrast, sliding windows (or hopping windows [1, 52]) employ an
additional fixed parameter, the so-called slide 𝑠 . Thus, SWJs create
a sequence of potentially overlapping substreams 𝑆𝑖+𝑛 = [𝑆]𝑡𝑠𝑒𝑖+𝑛𝑡𝑠𝑏𝑖+𝑛

,
where 𝑡𝑠𝑖+𝑛 = 𝑡𝑠𝑖 + 𝑛 · 𝑠 , respectively (𝑖, 𝑛, 𝑠 ∈ N) [14, 28]. This
overlap enables a more fine-grained analysis of fast-changing data,
for example, by analyzing a 5-minute window that slides every

Figure 2: Logical Clock Aligned Tumbling WJ in PT.

minute, as required in applications such as traffic management [35]
or fraud detection [52]. The overlapping nature of sliding windows
can generate duplicate output tuples and increase resource usage
compared to their non-overlapping counterparts [25, 37, 51]. Since
tumbling windows are a special case of sliding windows with 𝑠 = 𝑙 ,
we focus our analysis on SWJs, formally denoted as 𝑆𝑊 (𝑙, 𝑠).

(2) Session Window Joins (SessWJs) group tuples into non-over-
lapping windows (sessions) based on a gap 𝑔, which defines the
minimum period of inactivity required to separate sessions [22, 64].
In particular, a session𝑤𝑖 ends at 𝑡𝑁−1 .𝑡𝑠 , and the next window𝑤𝑖+1
starts at 𝑡𝑁 .𝑡𝑠 if 𝑡𝑁−1 .𝑡𝑠 − 𝑡𝑁 .𝑡𝑠 ≥ 𝑔, where 𝑡𝑁 is the last seen tuple
and session boundaries are inclusive. We note that the actual gap
between sessions can exceed 𝑔 and further denote a session window
as 𝑆𝑒𝑠𝑠𝑊 (𝑔) [61, 64]. Like SWJs, SessWJs apply the same session
𝑤𝑖 to both substreams 𝐴𝑖 and 𝐵𝑖 . However, SessWJs are not logical
clock aligned, and key-based partitions may have different session
boundaries [2, 22, 23]. For gap computation, SessWJs require tuples
across the stream partitions of 𝐴 and 𝐵 to be temporally ordered,
i.e., 𝑡𝑛 ∈ 𝐴 ∪ 𝐵 : 𝑡𝑛−1 .𝑡𝑠 ≥ 𝑡𝑛 .𝑡𝑠 . Its properties make SessWJs
particularly suited for handling irregular data arrivals, such as
dynamic user session analytics in domains like e-commerce and
media streaming [22, 52].

(3) Interval Joins (IVJs) pair an incoming tuple from the left
stream with all temporally relevant tuples from the right stream
using content-based windows𝑤𝑖 defined by a lower bound (lB) and
an upper bound (uB). For example, in the WJ [𝐴 ⊲⊳ 𝐵]𝑊 , each tuple
𝑎𝑖 ∈ 𝐴 is associated with a window 𝑤𝑖𝐵 = [𝑎𝑖 .𝑡𝑠 − 𝑙𝐵, 𝑎𝑖 .𝑡𝑠 + 𝑢𝐵]
applied to stream 𝐵. We denote an interval as 𝐼 (𝑙𝐵,𝑢𝐵). Although
less common, this mechanism is particularly valuable in applica-
tions that require precise temporal alignment and the avoidance
of costly overlaps, such as algorithmic trading [56] or aligning IoT
sensors [16, 53]. The boundaries of𝑤𝑖𝐵 can be in- or exclusive [23].
For simplicity, we consider inclusive boundaries for further analysis
while noting that our approach generalizes to exclusive boundaries.

Time Propagation in Multi-Way Window Joins. Stateful
window operations create new tuples that require a timestamp if
they contribute to a subsequent windowed operation. We consider
the time propagation as an additional window parameter, like length
or slide. Different strategies exist for propagating time between
window operators: In processing time, all output tuples 𝑡 𝑗 of one
window 𝑤𝑖 are assigned to its largest timestamp [1, 6]. Formally,
∀𝑡 𝑗 ∈ 𝑤𝑖 : 𝑡 𝑗 .𝑡𝑠 = 𝑡𝑠𝑒𝑖 − 𝛿 , where 𝛿 = 1 for exclusive, and 𝛿 = 0
for inclusive bounds. This strategy follows the processing time
assumption that a tuple is assigned to the time it first occurs in the
SPS. The tumbling WJ in Figure 2 is executed in processing time.

In event time, without user interaction, all output tuples are
assigned to the current system time, i.e., processing time [23]. To
prevent changing the time domain, the user can reassign the times-
tamp of the output stream after each WJ, i.e., either 𝑎.𝑡𝑠 or 𝑏.𝑡𝑠 as
the timestamp for tuple 𝑡 𝑗 of 𝐴𝐵. Formally, 𝑡 𝑗 .𝑡𝑠 = 𝑎.𝑡𝑠 ∨ 𝑏.𝑡𝑠 .

2470

3 COMMUTATIVITY
In this section, we examine the commutativity of WJ types, a key
requirement for join reordering, as it ensures that altering the join
order does not affect query results. We formulate Hypothesis 1,
drawing on relational join principles, and analyze it for SWJs in
Section 3.1, SessWJs in Section 3.2, and IVJs in Section 3.3.

Hypothesis 1. A WJ operator is commutative if, for every output
tuple (a,b) detected by the query 𝑄1 = [𝐴 ⊲⊳ 𝐵]𝑊 , a corresponding
output tuple is detected by 𝑄2 = [𝐵 ⊲⊳ 𝐴]𝑊 , and vice versa.

3.1 Sliding Window Joins
Case C1. For time-based SWJs, the tuple (𝑎, 𝑏) is a valid output
of 𝑄1 if 𝑎.𝑡𝑠, 𝑏.𝑡𝑠 ∈ 𝑤𝑖 = [𝑡𝑠𝑏𝑖 , 𝑡𝑠𝑒𝑖), and a valid output of 𝑄2 if
𝑎.𝑡𝑠, 𝑏.𝑡𝑠 ∈ 𝑤 𝑗 = [𝑡𝑠𝑏 𝑗

, 𝑡𝑠𝑒 𝑗).

Proof. The time intervals of 𝑤𝑖 and 𝑤 𝑗 are defined by the pa-
rameters of the window operator𝑊 and aligned to the logical clock.
Thus, 𝑤𝑖 and 𝑤 𝑗 are created irrespective of the tuple content in
the streams 𝐴 or 𝐵. It follows that for the same𝑊 , the sequence of
windows in both queries is equivalent, i.e.,𝑊 ∈ 𝑞1 =𝑊 ∈ 𝑞2 →
𝑤𝑖 = 𝑤 𝑗 . Thus, every tuple 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 is assigned to the
same time interval, and if 𝑎.𝑡𝑠, 𝑏.𝑡𝑠 ∈ 𝑤𝑖 → 𝑎.𝑡𝑠, 𝑏.𝑡𝑠 ∈ 𝑤 𝑗 . For this
reason, the join order is irrelevant, and every output tuple (𝑎, 𝑏) of
𝑄1 is also an output tuple of 𝑄2. □

Theorem 1. SWJs are commutative.

3.2 Session Window Joins
Case C2. For content-based SessWJs, the tuple (𝑎, 𝑏) is a valid
output of 𝑄1 if 𝑎.𝑡𝑠, 𝑏.𝑡𝑠 ∈ 𝑤𝑖 = [𝑡𝑠𝑏𝑖 , 𝑡𝑠𝑒𝑖], and a valid output of
𝑄2 if 𝑎.𝑡𝑠, 𝑏.𝑡𝑠 ∈ 𝑤 𝑗 = [𝑡𝑠𝑏 𝑗

, 𝑡𝑠𝑒 𝑗].

Proof. The time intervals of𝑤𝑖 and𝑤 𝑗 are defined by the tem-
poral order of tuples 𝑡𝑛 ∈ 𝐴 ∪ 𝐵 and the gap between each tuple
pair (𝑡𝑛−1, 𝑡𝑛). It follows that 𝑤𝑖 = 𝑤 𝑗 as the join order does not
affect 𝐴 ∪ 𝐵. Thus, every tuple 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 is assigned to the
same time interval, and if 𝑎.𝑡𝑠, 𝑏.𝑡𝑠 ∈ 𝑤𝑖 → 𝑎.𝑡𝑠, 𝑏.𝑡𝑠 ∈ 𝑤 𝑗 . For this
reason, the join order is irrelevant, and every output tuple (𝑎, 𝑏) of
𝑄1 is also an output tuple of 𝑄2. □

Theorem 2. SessWJs are commutative.

3.3 Interval Joins
Content-based IVJs create windows based on tuples from the left
join side and the window bounds, 𝑙𝐵 and 𝑢𝐵. Thus, the tuple (𝑎, 𝑏)
is a valid output of 𝑄1 if 𝑏.𝑡𝑠 ∈ 𝑤𝑖 = [𝑎.𝑡𝑠 − 𝑙𝐵, 𝑎.𝑡𝑠 + 𝑢𝐵], and a
valid output of 𝑄2 if 𝑎.𝑡𝑠 ∈ 𝑤 𝑗 = [𝑏.𝑡𝑠 − 𝑙𝐵, 𝑏.𝑡𝑠 + 𝑢𝐵]. We analyze
two cases, Case 𝐶3 with equal-sized bounds (𝑙𝐵 = 𝑢𝐵) and Case 𝐶4
with unequal-sized bounds (𝑙𝐵 ≠ 𝑢𝐵), depicted in Figure 3. In our
proof, we investigate 𝑄2, where tuples of 𝐵 define𝑤 𝑗 and examine
edge cases to verify if (𝑎, 𝑏) detected in 𝑄1 is also detected in 𝑄2:
Case C3. We analyze IVJs with equal-sized bounds (𝑙𝐵 = 𝑢𝐵).

Proof. (1) 𝑏.𝑡𝑠 = 𝑎.𝑡𝑠 − 𝑙𝐵 → 𝑤 𝑗 = [𝑎.𝑡𝑠 − 2 · 𝑙𝐵, 𝑎.𝑡𝑠 − 𝑙𝐵 +𝑢𝐵].
Thus, (𝑎, 𝑏) is detected in 𝑄2 as 𝑎.𝑡𝑠 = 𝑎.𝑡𝑠 − 𝑙𝐵 + 𝑢𝐵 → 𝑎.𝑡𝑠 ∈ 𝑤 𝑗 .

(2) 𝑏.𝑡𝑠 = 𝑎.𝑡𝑠 + 𝑢𝐵 → 𝑤 𝑗 = [𝑎.𝑡𝑠 + 𝑢𝐵 − 𝑙𝐵, 𝑎.𝑡𝑠 + 2 · 𝑢𝐵]. Thus,
(𝑎, 𝑏) is detected in 𝑄2 as 𝑎.𝑡𝑠 = 𝑎.𝑡𝑠 + 𝑢𝐵 − 𝑙𝐵 → 𝑎.𝑡𝑠 ∈ 𝑤 𝑗 . □

(a) IVJ Case C3 with lB = uB (b) IVJ Case C4 with lB < uB
Figure 3: Commutativity Analysis of IVJs.

Theorem 3. IVJs with equal-sized bounds are commutative.

Case C4. We analyze IVJs with unequal-sized bounds (𝑙𝐵 ≠ 𝑢𝐵).
We examine 𝑙𝐵 < 𝑢𝐵, though our proof also holds for 𝑙𝐵 > 𝑢𝐵.

Proof. (1) 𝑏.𝑡𝑠 = 𝑎.𝑡𝑠 − 𝑙𝐵 → 𝑤 𝑗 = [𝑎.𝑡𝑠 − 2 · 𝑙𝐵, 𝑎.𝑡𝑠 +𝑢𝐵 − 𝑙𝐵].
Thus, the tuple (𝑎, 𝑏) is detected in 𝑄2 because 𝑙𝐵 < 𝑢𝐵 → 𝑎.𝑡𝑠 ∈
𝑤 𝑗 , i.e., 𝑎.𝑡𝑠 < 𝑎.𝑡𝑠 + 𝑢𝐵 − 𝑙𝐵.

(2) 𝑏.𝑡𝑠 = 𝑎.𝑡𝑠 + 𝑢𝐵 → 𝑤 𝑗 = [𝑎.𝑡𝑠 + 𝑢𝐵 − 𝑙𝐵, 𝑎.𝑡𝑠 + 2 · 𝑢𝐵]. Thus,
the tuple (𝑎, 𝑏) is not detected in 𝑄2 because 𝑙𝐵 < 𝑢𝐵 → 𝑎.𝑡𝑠 ∉ 𝑤 𝑗 ,
i.e., 𝑎.𝑡𝑠 < 𝑎.𝑡𝑠 + 𝑢𝐵 − 𝑙𝐵. □

Theorem 4. IVJs with unequal-sized bounds are not commutative.

Figure 3 shows both cases with the output of 𝑄1 (yellow in-
tervals) on top and 𝑄2 (blue intervals) at the bottom. Figure 3a
supports the commutativity of Case C3 (equal-sized bounds), as
both queries yield identical outputs. In contrast, Figure 3b presents
a counterexample for Case C4, where differences in the outputs of
𝑄1 and 𝑄2 reveal that assuming commutativity leads to incorrect
reorderings that alter query semantics, resulting in missing or addi-
tional matches. To showcase this, consider the following adaptive
gate management scenario [15]:

Example 2. An airline uses flight arrival data (A) combined with
gate availability (B) to decide whether to extend gate openings for
delayed flights. While𝑄1 correctly identifies two cases where the plane
could wait, the reordered 𝑄2 misses a critical match (tuple (𝑎1, 𝑏6))
and erroneously produces an extra result (tuple (𝑎2, 𝑏6)).

4 ASSOCIATIVITY
We extend our WJ analysis to associativity, another key property
for join reordering. Associativity ensures that the grouping of join
operations can be modified without altering query results. To this
end, we examine a three-way WJ, where the first WJ, i.e., [𝐴 ⊲⊳

𝐵]𝑊1 = 𝐴𝐵, was analyzed in Section 3. The second WJ composes
a tuple (𝑎, 𝑏) ∈ 𝐴𝐵 with a tuple 𝑐 ∈ 𝐶 to the result tuple (𝑎, 𝑏, 𝑐) if
both fulfill the WJ constraints. We formulate Hypothesis 2, drawing
on relational join principles, and analyze it for SWJs in Section 4.1,
SessWJs in Section 4.2, and IVJs in Section 4.3.

Hypothesis 2. A WJ operator is associative if, for each output
tuple (𝑎, 𝑏, 𝑐) detected by𝑄1 = [[𝐴 ⊲⊳ 𝐵]𝑊1 ⊲⊳ 𝐶]𝑊2 , a corresponding
output tuple is detected by𝑄2 = [𝐴 ⊲⊳ [𝐵 ⊲⊳ 𝐶]𝑊2]𝑊1 , and vice versa.

4.1 Sliding Window Joins
The tuple (𝑎, 𝑏, 𝑐) is valid output of𝑄1 if𝑎.𝑡𝑠, 𝑏.𝑡𝑠 ∈ 𝑤1

𝑖
= [𝑡𝑠𝑏𝑖 , 𝑡𝑠𝑒𝑖),

and 𝑎𝑏.𝑡𝑠, 𝑐 .𝑡𝑠 ∈ 𝑤2
𝑗
= [𝑡𝑠𝑏 𝑗

, 𝑡𝑠𝑒 𝑗). In the remainder, we analyze four
cases defined by the combinations of window length 𝑙 and slide 𝑠 .
Case A1. We consider two equivalent overlapping sliding window
operators, i.e.,𝑊1 =𝑊2 and 𝑠 < 𝑙 .

2471

Processing Time. The time propagation between𝑊1 and𝑊2 is
defined as follows: ∀(𝑎, 𝑏) : (𝑎, 𝑏).𝑡𝑠 = 𝑡𝑠𝑒𝑖 − 1. Furthermore, (𝑎, 𝑏)
and 𝑐 must occur in the same window 𝑤2

𝑗
to create (𝑎, 𝑏, 𝑐) in 𝑄1.

Following the inter-window semantics of SWJs, there exist𝑚 = 𝑙
𝑠

windows𝑤2 that overlap with𝑤1
𝑖
. We visualize Case𝐴1 in Figure 4

and depict the two overlapping windows 𝑤 𝑗−1 and 𝑤 𝑗+1 on top.
We investigate two options for 𝑄2 to detect (𝑎, 𝑏, 𝑐):

Proof. Option (1): 𝑐 ∈ 𝐶 𝑗 → 𝑐.𝑡𝑠 ∈ 𝑤2
𝑗
. Due to logical clock

alignment,𝑤2
𝑗
= 𝑤1

𝑖
and all timestamps 𝑎.𝑡𝑠, 𝑏.𝑡𝑠, 𝑐 .𝑡𝑠 ∈ [𝑡𝑠𝑏𝑖 , 𝑡𝑠𝑒𝑖).

Thus, the tuple (𝑎, 𝑏, 𝑐) is detected, regardless of the join order.
Option (2): 𝑐 ∈ 𝐶 𝑗+(𝑚−1) → 𝑐.𝑡𝑠 ∈ 𝑤2

𝑗+(𝑚−1) = [𝑡𝑠𝑏 𝑗
+ 𝑛 · 𝑠 ·

(𝑚 − 1), 𝑡𝑠𝑒 𝑗 + 𝑛 · 𝑠 · (𝑚 − 1)), (𝑚 > 1). Thus, the tuple 𝑐 falls into
one (or more) subsequent overlapping windows 𝑤2

𝑗+(𝑚−1) of 𝑤
2
𝑗
.

These windows overlap by the time interval 𝑤+
𝑜𝑙

= [𝑡𝑠𝑏 𝑗
+ 𝑠 · 𝑛 ·

(𝑚 − 1), 𝑡𝑠𝑒 𝑗). We highlight 𝑤+
𝑜𝑙

in purple for the window 𝑤 𝑗 in
Figure 4. If 𝑐.𝑡𝑠 ∈ 𝑤2

𝑗+(𝑚−1) , 𝑄2 detects an output tuple (𝑏, 𝑐) in
[𝐵 ⊲⊳ 𝐶]𝑊2 only if 𝑏.𝑡𝑠 ∈ 𝑤2

𝑗+(𝑚−1) . If 𝑐.𝑡𝑠 > 𝑡𝑠𝑒 𝑗 , it follows that 𝑐
is assigned to the subsequent window 𝑤2

𝑗+(𝑚−1) , but not to 𝑤2
𝑗
.

Formally, 𝑐 ∈ 𝑤2
𝑗+(𝑚−1) and 𝑐 ∉ 𝑤2

𝑗
, because 𝑤+

𝑜𝑙
⊂ 𝑤2

𝑗
,𝑤2

𝑗+(𝑚−1) .
If 𝑏.𝑡𝑠 < 𝑡𝑠𝑏 𝑗+(𝑚−1) , and thus, 𝑏 ∈ 𝑤2

𝑗
and 𝑏 ∉ 𝑤2

𝑗+(𝑚−1) , the tuple
(𝑎, 𝑏, 𝑐) is only detected in 𝑄1. □

Figure 4 provides a counterexample that refutes Hypothesis 2 for
Case A1, demonstrating that the outputs of𝑄1 and𝑄2 are not equiv-
alent. To showcase the consequences of such an invalid rewriting,
consider the following window farm management scenario [53]:

Example 3. In this application, wind turbine activity (𝐶) is dy-
namically adjusted based on wind conditions (𝐴) and nearby wildlife
(𝐵). The data is processed in 10-minute windows starting every 5 min-
utes. While 𝑄1 correctly aligns wind conditions and the presence of
wildlife before adjusting turbine operations, the reordered 𝑄2 misses
critical context (tuple (𝑎2, 𝑏6, 𝑐9)), potentially leading to unnecessary
shutdowns or delayed wildlife protection.

Event Time. The user propagates either 𝑎.𝑡𝑠 or 𝑏.𝑡𝑠 as the times-
tamp of AB. This extends the analysis of Case A1 in event time by
Option (3) 𝑐 ∈ 𝐶 𝑗−(𝑚−1) , alongside Options (1) and (2). We examine
all three for each time propagation strategy:

Proof. Propagation of A.ts. If 𝑎.𝑡𝑠 is propagated as the times-
tamp of 𝐴𝐵, only 𝑎.𝑡𝑠 and 𝑐.𝑡𝑠 are considered to assign tuples of 𝐴𝐵
and 𝐶 to𝑤2

𝑗
for [𝐴𝐵 ⊲⊳ 𝐶]𝑊2 in 𝑄1.

Option (1): 𝑐 ∈ 𝐶 𝑗 → 𝑐.𝑡𝑠 ∈ 𝑤2
𝑗
= 𝑤1

𝑖
. Thus, all tuples fall into

the same time interval, and (𝑎, 𝑏, 𝑐) is detected in both queries.
Option (2): 𝑐 ∈ 𝐶 𝑗+(𝑚−1) → 𝑐.𝑡𝑠 ∈ 𝑤2

𝑗+(𝑚−1) , (𝑚 > 1). Equiva-
lent to Option (2) in processing time, there exists an overlap between
each𝐶 𝑗+(𝑚−1) and𝐶 𝑗 of the time interval𝑤+

𝑜𝑙
= [𝑡𝑠𝑏 𝑗

+𝑛 · 𝑠 · (𝑚 −
1), 𝑡𝑠𝑒 𝑗) (see Figure 4). We refer to Option (2) in processing time
for a detailed analysis and conclude that an output tuple (𝑎, 𝑏, 𝑐)
detected by 𝑄1 is not necessarily detected by 𝑄2.

Option (3): 𝑐 ∈ 𝐶 𝑗−(𝑚−1) → 𝑐.𝑡𝑠 ∈ 𝑤 𝑗−(𝑚−1) , (𝑚 > 1).
Option (3) investigates the overlap between ancestor substreams
𝐶 𝑗−(𝑚−1) and 𝐶 𝑗 . This overlap is defined as follows: 𝑤−

𝑜𝑙
= [𝑡𝑠𝑏 𝑗

,

Figure 4: Case A1 of the SWJ with 𝑄1 (left) and 𝑄2 (right) in
processing time and with slide 𝑠 = 0.5 · 𝑙 .
𝑡𝑠𝑒 𝑗 − 𝑛 · 𝑠 · (𝑚 − 1)). We apply the analysis of Option (2) respec-
tively. In particular, if 𝑐.𝑡𝑠 < 𝑡𝑠𝑏 𝑗

and 𝑏.𝑡𝑠 > 𝑡𝑠𝑒 𝑗−(𝑚−1) , it follows
that 𝑐 ∈ 𝑤2

𝑗−(𝑚−1) and 𝑐 ∉ 𝑤2
𝑗
, while 𝑏 ∉ 𝑤2

𝑗−(𝑚−1) and 𝑏 ∈ 𝑤
2
𝑗
.

Thus, 𝑄2 does not detect (𝑏, 𝑐) and misses the output tuple (𝑎, 𝑏, 𝑐).
Propagation of B.ts. In𝑄1, tuples 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 first join under
𝑊1, producing the intermediate results (𝑎, 𝑏) ∈ 𝐴𝐵. These tuples
(𝑎, 𝑏) then join with 𝑐 ∈ 𝐶 under𝑊2, using only 𝑏.𝑡𝑠 for alignment.
The output tuples (𝑎, 𝑏, 𝑐) ∈ 𝐴𝐵𝐶 satisfy both join and window
constraints within the respective windows𝑤1

𝑖
and𝑤2

𝑗
. Since SWJs

are logical clock aligned, the windows𝑤1
𝑖
and𝑤2

𝑗
are equivalent in

𝑄1 and 𝑄2, i.e.,𝑊1 =𝑊2 → 𝑤1
𝑖
= 𝑤2

𝑗
. Thus, 𝐵𝐶 joins with 𝐴 in 𝑄2

under the samewindow semantics as𝐴 joins 𝐵 in𝑄1, aligning 𝑎 ∈ 𝐴
and 𝑏 ∈ 𝐵 under𝑊1. By leveraging commutativity, as established
in Theorem 1, each tuple (𝑎, 𝑏, 𝑐) appears in both queries 𝑄1 and
𝑄2, independent of Options (1)-(3). □

We refer to the varying results in event time as conditional asso-
ciativity, determined by the user-defined time propagation strategy.

Theorem 5. SWJs of Case 𝐴1 are not associative in processing
time and conditional associative in event time.

Case A2. We consider two equivalent non-overlapping sliding
window operators, i.e.,𝑊1 =𝑊2 ∧ 𝑠 ≥ 𝑙 .

Proof (sketch). Non-overlapping windows assign each tuple
only to a single window. Thus, in contrast to Case𝐴1 and regardless
of the time domain, Case𝐴2 solely contains Option (1) 𝑐 ∈ 𝐶 𝑗 , where
𝑎.𝑡𝑠, 𝑏.𝑡𝑠, 𝑐 .𝑡𝑠 ∈ 𝑤1

𝑖
= 𝑤2

𝑗
. As shown in Option (1) of Case 𝐴1, all

output tuples in 𝑄1 are detected in 𝑄2.

Theorem 6. SWJs of Case 𝐴2 are associative.

Case A3.We consider two overlapping sliding window operators
𝑊1 and𝑊2 with different lengths, i.e.,𝑊1 .𝑙 ≠𝑊2 .𝑙 ∧ 𝑠 < 𝑙 .

Proof (sketch). Case 𝐴1 and 𝐴3 differ because the window
lengths𝑊1 .𝑙 and𝑊2 .𝑙 are not equivalent. However, this does not
affect the underlying proof structure of Case A1. Due to logical
clock alignment, the same three options arise: Option (1) 𝑐 ∈ 𝐶 𝑗 →
𝑐.𝑡𝑠 ∈ 𝑤2

𝑗
, Option (2) 𝑐 ∈ 𝐶 𝑗+(𝑚−1) , where𝑚 =

𝑊2 .𝑙
𝑠 , and additional

Option (3) 𝑐 ∈ 𝐶 𝑗−(𝑚−1) in event time. For processing time and
event time with time propagation of 𝑎.𝑡𝑠 , only Option (1) yields
equivalent outputs, requiring each window of the window operator
with the smaller length to be a subset of the larger one. If 𝑏.𝑡𝑠 is
propagated in event time, 𝑄1 and 𝑄2 produce identical outputs.

2472

We refer to the detailed proofs of Case A1 for a breakdown of the
individual subcases.

Theorem 7. SWJs of Case 𝐴3 are not associative in processing
time and conditional associativity in event time.

Case A4. We consider two non-overlapping sliding window opera-
tors with different lengths, i.e.,𝑊1 .𝑙 ≠𝑊2 .𝑙 ∧ 𝑠 ≥ 𝑙 . As windows are
non-overlapping, only Option (1) 𝑐 ∈ 𝐶 𝑗 is of concern. We examine
𝑊1 .𝑙 <𝑊2 .𝑙 , although our proof applies for𝑊1 .𝑙 >𝑊2 .𝑙 .

Processing Time. The time propagation between𝑊2 and𝑊1 in
𝑄2 is defined as follows: ∀(𝑏, 𝑐) : (𝑏, 𝑐) .𝑡𝑠 = 𝑡𝑠𝑒 𝑗 − 1:

Proof. Let us consider a window𝑤2
𝑗
= [𝑡𝑠𝑏 𝑗

, 𝑡𝑠𝑒 𝑗) aligned with
the logical clock. Then, it exists an𝑤1

𝑖
= [𝑡𝑠𝑏 𝑗

, 𝑡𝑠𝑒𝑖) with 𝑡𝑠𝑒𝑖 < 𝑡𝑠𝑒 𝑗

because𝑊1 .𝑙 <𝑊2 .𝑙 . It follows that in 𝑄1, all pairs (𝑎, 𝑏) of𝑤1
𝑖
are

assigned to𝑤2
𝑗
, while in𝑄2, no pair (𝑏, 𝑐) is assigned to𝑤1

𝑖
, because

𝑡𝑠𝑒 𝑗 − 1 > 𝑡𝑠𝑒𝑖 − 1. As a result, the tuple (𝑎, 𝑏, 𝑐) detected in 𝑄1 is
not detected in 𝑄2. □

Event Time. The user propagates either 𝑎.𝑡𝑠 or 𝑏.𝑡𝑠 as the times-
tamp of 𝐴𝐵. We investigate both time propagation strategies:

Proof. Propagation of A.ts.Due to logical clock alignment, the
first join [𝐵 ⊲⊳ 𝐶]𝑊2 in 𝑄2 creates windows 𝑤2

𝑗
, joining all tuples

𝑏 and 𝑐 within𝑤2
𝑗
, where𝑤1

𝑖
⊂ 𝑤2

𝑗
. As a result, the constraints on

𝑏.𝑡𝑠 are relaxed, making the tuples (𝑏, 𝑐) in 𝑄1 a subset of those
in 𝑄2. Regardless of whether 𝑏.𝑡𝑠 or 𝑐.𝑡𝑠 is propagated, applying
the smaller window operator afterward does not filter out these
additional tuples, leading to additional output tuples (𝑎, 𝑏, 𝑐) in 𝑄2.
Propagation of B.ts. The stream 𝐵 contributes to the first join in
both queries, and its timestamps are propagated to the subsequent
WJ operation. Thus, the time constraints for tuples 𝑏 ∈ 𝐵 are equiv-
alent for both queries. We refer to Case 𝐴1 for more details and
conclude that all output tuples of 𝑄1 are also detected in 𝑄2. □

Theorem 8. SWJs of Case 𝐴4 are not associative in processing
time and conditional associativity in event time.

4.2 Session Window Joins
SessWJs create non-overlapping windows based on periods of tuple
arrivals terminated by the gap parameter 𝑔. Thus, only Option (1)
𝑐.𝑡𝑠 ∈ 𝐶 𝑗 is relevant for SessWJs, where a tuple (𝑎, 𝑏, 𝑐) is valid in
𝑄1 if 𝑎.𝑡𝑠, 𝑏.𝑡𝑠 ∈ 𝑤1

𝑖
, and 𝑎𝑏.𝑡𝑠, 𝑐 .𝑡𝑠 ∈ 𝑤2

𝑗
. Both streams contribute

to a session, which may contain only a single tuple.
Case A5.We consider two equivalent session window operators,
i.e.,𝑊1 =𝑊2.

Processing Time. The time propagation between𝑊1 and𝑊2 is
defined as follows: ∀(𝑎, 𝑏) : (𝑎, 𝑏) .𝑡𝑠 = 𝑡𝑠𝑒 .

Proof. Since all tuples (𝑎, 𝑏) ∈ 𝑤1
𝑖
share a single timestamp, the

sequence of 𝑐 tuples primarily determines𝑤2
𝑗
in𝑄1. In contrast,𝑤2

𝑗

in𝑄2 is defined by 𝐵∪𝐶 , i.e., the composition of unprocessed 𝑏 and
𝑐 tuples. Consequently,𝑤2

𝑗
∈ 𝑄1 ≠ 𝑤2

𝑗
∈ 𝑄2, leading to potentially

different window lengths and, ultimately, divergent outputs. □

Event Time.Weexamine the propagation strategies𝑎.𝑡𝑠 and𝑏.𝑡𝑠 :

Proof. Propagation of A.ts. 𝐴 ∪𝐶 defines𝑤2
𝑗
in 𝑄1, whereas

𝐵 ∪𝐶 defines𝑤2
𝑗
in𝑄2. Consequently,𝑤2

𝑗
∈ 𝑄1 ≠ 𝑤2

𝑗
∈ 𝑄2, leading

to discrepancies in the outputs of 𝑄1 and 𝑄2.
Propagation of B.ts. In 𝑄1 and 𝑄2, 𝐵 ∪𝐶 defines the window𝑤2

𝑗
.

However, 𝑏.𝑡𝑠 in𝑄1 is only propagated if 𝑏 contributes to an output
tuple (𝑎, 𝑏). In contrast, the raw input of 𝐵 is considered for the
sessions in 𝑄2. For this reason, if a sequence of 𝑏 tuples creates a
session that contains no tuple 𝑎 ∈ 𝐴, none of their timestamps are
propagated for 𝑤2

𝑗
∈ 𝑄1. Consequently, 𝑤2

𝑗
∈ 𝑄1 ≠ 𝑤2

𝑗
∈ 𝑄2 and

not all output tuples of 𝑄1 are also detected in 𝑄2. □

Theorem 9. SessWJs are not associative.

Consider the following support chat analytics scenario, which
illustrates how the join order affects session boundaries and refutes
Hypothesis 2 for SessWJs:

Example 4. An online platform tracks customer interactions across
multiple channels. To analyze complete conversations, session win-
dows group events with a 5-minute inactivity gap. In query 𝑄1, cus-
tomer messages (𝐴) are first joined with agent responses (𝐵), forming
session 𝑠11 = (3, 7) that captures two customer messages (𝑎3, 𝑎7) and
one agent response (𝑏3). The results of session 𝑠11 are then joined with
escalation tickets (C), creating the session 𝑠21 = (3, 10), incorporating
two tickets for further review (𝑐5, 𝑐10). In query 𝑄2, agent responses
are first joined with escalations, creating two sessions: 𝑠21 = (3, 5) and
𝑠22 = (10) solely defined by the escalation 𝑐10. As a result, 𝑠22 reveals no
output tuple for the join with customer messages. Thus, the escalation
𝑐10 is omitted, leading to an incomplete analysis of unresolved issues.

4.3 Interval Joins
IVJs create a window𝑤𝑛 for each tuple 𝑡 on the left join side, with
interval bounds 𝑙𝐵 and 𝑢𝐵 relative to the timestamp of 𝑡 . Since
each 𝑡 derives its substream from the right join side, IVJs are not
logical clock aligned, duplicate-free, and only Option (1) 𝑐 ∈ 𝐶 𝑗

applies to form the output tuple (𝑎, 𝑏, 𝑐). Thus, (𝑎, 𝑏, 𝑐) is a valid
output of 𝑄1 if 𝑏.𝑡𝑠 ∈ 𝑤1

𝑖
= [𝑎.𝑡𝑠 − 𝑙𝐵, 𝑎.𝑡𝑠 + 𝑢𝐵] and 𝑐.𝑡𝑠 ∈ 𝑤2

𝑗
=

[𝑎𝑏.𝑡𝑠 − 𝑙𝐵, 𝑎𝑏.𝑡𝑠 + 𝑢𝐵]. We examine both event time propagation
strategies, a.ts and b.ts, as IVJs are exclusive to this domain.
CaseA6.We consider equal-sized bounds for𝑊2,i.e.,𝑊2 .𝑙𝐵 =𝑊2 .𝑢𝐵.

Proof. Propagation of A.ts. If 𝑎.𝑡𝑠 is propagated as the times-
tamp of 𝐴𝐵, it defines the windows 𝑤2

𝑗
for the second join of 𝐴𝐵

with 𝐶 in 𝑄1. In contrast, in 𝑄2, tuples 𝑏 ∈ 𝐵 define the windows
𝑤2
𝑗
for the join with 𝐶 . By definition, for (𝑎, 𝑏, 𝑐) in 𝑄1, 𝑏.𝑡𝑠 ∈

[𝑎.𝑡𝑠 − 𝑙𝐵, 𝑎.𝑡𝑠 + 𝑢𝐵]. Let us probe the two corner cases for 𝑄2:
(1) 𝑏.𝑡𝑠 = 𝑎.𝑡𝑠 − 𝑙𝐵:→ 𝑤2

𝑗
= [𝑎.𝑡𝑠 − 2 · 𝑙𝐵, 𝑎.𝑡𝑠 − 𝑙𝐵 +𝑢𝐵], where

𝑎.𝑡𝑠−𝑙𝐵+𝑢𝐵 = 𝑎.𝑡𝑠 . Thus, if c.ts > a.ts, the tuple (𝑏, 𝑐) is not detected
in [𝐵 ⊲⊳ 𝐶]𝑊2 and 𝑄2 is missing the result (𝑎, 𝑏, 𝑐).

(2) 𝑏.𝑡𝑠 = 𝑎.𝑡𝑠 + 𝑢𝐵:→ 𝑤 𝑗 = [𝑎.𝑡𝑠 + 𝑢𝐵 − 𝑙𝐵, 𝑎.𝑡𝑠2 · 𝑢𝐵], where
𝑎.𝑡𝑠−𝑙𝐵+𝑢𝐵 = 𝑎.𝑡𝑠 . Thus, if c.ts < a.ts, the tuple (𝑏, 𝑐) is not detected
in [𝐵 ⊲⊳ 𝐶]𝑊2 and 𝑄2 is missing the result (𝑎, 𝑏, 𝑐).
Propagation of B.ts. If 𝑏.𝑡𝑠 is propagated as the timestamp of
𝐴𝐵, it defines the windows 𝑤2

𝑗
→ [𝑏.𝑡𝑠 − 𝑙𝐵, 𝑏.𝑡𝑠 + 𝑢𝐵] for the

join of 𝐴𝐵 with 𝐶 in 𝑄1. In 𝑄2, each tuple 𝑏 creates a window
𝑤2
𝑗
= [𝑏.𝑡𝑠 − 𝑙𝐵, 𝑏.𝑡𝑠 + 𝑢𝐵] for the join [𝐵 ⊲⊳ 𝐶]𝑊2 , making 𝑤2

𝑗

equivalent in both queries. Thus, if (𝑏, 𝑐) is detected in𝑄1, it is also

2473

detected in 𝑄2. For the second join [𝐵𝐶 ⊲⊳ 𝐴]𝑊1 , propagating 𝑏.𝑡𝑠
leverages commutativity between 𝐴 and 𝐵 (see Theorem 3). □

Theorem 10. IVJs with equal-sized bounds are conditional asso-
ciative.

Case A7. We consider that the bounds of𝑊2 are not of equal size,
i.e.,𝑊𝑛 .𝑙𝐵 ≠𝑊𝑛 .𝑢𝐵.

Proof (sketch). We apply the proof of Case 𝐴6 respectively to
Case𝐴7. In contrast to Case𝐴6, for the propagation of 𝑏.𝑡𝑠 , we refer
to Theorem 4 that for unequal bounds IVJs are not commutative.

Theorem 11. IVJs with unequal-sized bounds are not associative.

5 ACQUISITION OF PROPERTIES
Our analysis of WJ properties reveals that WJ reordering is feasi-
ble without altering query semantics but remains limited across
the full range of WJ types, depending on their semantics and the
applied time propagation strategy. In this section, we introduce
transformation rules that acquire the commutativity of Case 𝐶4 in
Section 5.1 and expand the associativity of Case𝐴4 in Section 5.2. In
sum, these transformation rules enable reordering in five additional
configurations. Additionally, we present a transformation rule for
accurate time propagation in Section 5.3, facilitating reordering in
conditionally associative cases while preserving query semantics.
Then, we discuss the impact of time propagation in Section 5.3.
Finally, we conclude our property analysis in Section 5.4.

5.1 Acquiring Commutativity for Case C4
The content-based windowing of IVJs causes non-commutativity
when bounds are unequal, limiting alternative join orders. This issue
is resolved by swapping bounds when reordering joins. Specifically,
for 𝑄1 = [𝐴 ⊲⊳ 𝐵]𝑊 with𝑊 = (𝑙𝐵,𝑢𝐵), the reordered join 𝑄2 =

[𝐵 ⊲⊳ 𝐴]𝑊 must use𝑊 ′ = (𝑢𝐵, 𝑙𝐵). We revisit Case 𝐶4 and apply
this boundary swap in 𝑄2:

CaseC4 - Revisited.We consider the IVJ query𝑄1 with unequal
bounds 𝑙𝐵 ≠ 𝑢𝐵, which are swapped in 𝑄2. We then examine the
two corner cases of 𝑄2, where tuples 𝑏 ∈ 𝐵 define 𝑤 𝑗 , to verify
whether all tuples (𝑎, 𝑏) detected in 𝑄1 are also captured in 𝑄2.

Proof. (1) 𝑏.𝑡𝑠 = 𝑎.𝑡𝑠 − 𝑙𝐵 in 𝑄1 → 𝑤 𝑗 ∈ 𝑄2 = [𝑎.𝑡𝑠 − 𝑙𝐵 −
𝑢𝐵, 𝑎.𝑡𝑠 − 𝑙𝐵 + 𝑙𝐵]. Thus, (𝑎, 𝑏) is also detected in 𝑄2 as 𝑎.𝑡𝑠 ∈
[𝑎.𝑡𝑠 − 𝑙𝐵 − 𝑢𝐵, 𝑎.𝑡𝑠].
(2)𝑏.𝑡𝑠 = 𝑎.𝑡𝑠+𝑢𝐵 in𝑄1 → 𝑤 𝑗 ∈ 𝑄2 = [𝑎.𝑡𝑠+𝑢𝐵−𝑢𝐵, 𝑎.𝑡𝑠+𝑢𝐵+𝑙𝐵].
Thus, (𝑎, 𝑏) is detected in 𝑄2 as 𝑎.𝑡𝑠 ∈ [𝑎.𝑡𝑠, 𝑎.𝑡𝑠 + 𝑙𝐵 + 𝑢𝐵]. □

Theorem 4 (Revisited). IVJs with unequal-sized bounds are com-
mutative if the bounds are swapped when the join order is reversed.

Moreover, the boundary swapping also enables conditional asso-
ciativity for Case 𝐴7.

Theorem 11 (Revisited). IVJs with unequal-sized bounds are
conditionally associative if their bounds are swapped whenever the
join order is altered.

5.2 Acquiring Full Associativity for Case A4
Our analysis reveals that equal-sized, non-overlapping SWJs ex-
hibit commutativity and full associativity (see Section 4.1, Case𝐴2).

Figure 5: Approaches to Expand Associativity in Case A4.

This property arises because SPSs align window sequences created
by𝑊𝑛 and𝑊𝑛+1 in multi-way WJs by the logical clock, ensuring
∀𝑤𝑛

𝑖
∃𝑤𝑛+1

𝑗
: 𝑤𝑛

𝑖
= 𝑤𝑛+1

𝑗
. Figure 5a illustrates this alignment, re-

gardless of the time domain, propagation strategy, or join order.
In contrast, Case 𝐴4 loses this property due to differing window
parameters (i.e., length and slide), resulting in misaligned windows.
Figure 5b captures this misalignment, showing how altered join
orders assign intermediate results to different windows, leading to
inconsistent outputs. Adjusting window parameters and window
assignment can restore full associativity in Case 𝐴4.

Processing Time. Aligned window ends (𝑡𝑒𝑖 = 𝑡𝑒 𝑗) enable full
associativity in Case A2 (see Figure 5a). Largest Window Only
(LWO) [30] ensures alignment by applying the longest window
length 𝑙𝑚𝑎𝑥 to all window operators. The containment property
guarantees that a reordered WJ query using LWO produces a su-
perset of the original query 𝑄 , necessitating additional filtering
for semantic equivalence. Furthermore, aligned window ends re-
quire all slide sizes to share a divisor relationship. However, LWO
negatively impacts performance, as larger windows accumulate
more data and increase computational load [25, 30]. We evaluate
the impact of the window length in Section 7.

Event Time. The time propagation in event time spreads out-
put tuples over the time interval of 𝑤𝑖 . Thus, full associativity is
achieved if each window boundary is either fully nested within or
completely disjoint from the next. Formally, 𝑤𝑛

𝑖
⊆ 𝑤𝑛+1

𝑗
∨ 𝑤𝑛

𝑖
∩

𝑤𝑛+1
𝑗

= ∅. This alignment implies a divisor relationship between
all window lengths in the query. We revisit the proof of Case 𝐴4
for a three-way SWJ with𝑊𝑛 .𝑙 <𝑊𝑛+1 .𝑙 , investigating the condi-
tion 𝑤𝑛

𝑖
⊆ 𝑤𝑛+1

𝑗
and the propagation of 𝑎.𝑡𝑠 . In short, we ensure

that any tuple (𝑎, 𝑏, 𝑐) detected in 𝑄1 = [[𝐴 ⊲⊳ 𝐵]𝑊1
𝑎.𝑡𝑠 ⊲⊳ 𝐶]𝑊2

is also detected in 𝑄2 = [𝐴 ⊲⊳ [𝐵 ⊲⊳ 𝐶]𝑊2
𝑏.𝑡𝑠
]𝑊1 . As Case 𝐴4 con-

siders non-overlapping sliding windows, only Option (1) is of rel-
evance, and the divisor relationship between windows guaran-
tees that no partial overlap exists between𝑤1

𝑖
and𝑤2

𝑗+𝑛 . Formally,
∀𝑤2

𝑗+𝑛,𝑤
1
𝑖
: 𝑤2

𝑗+𝑛 ∩ 𝑤
1
𝑖
= ∅ (𝑛 ≠ 0, 𝑛 ∈ Z). Associativity for the

propagation of 𝑏.𝑡𝑠 in 𝑄1 has been proven in Section 4.1.

Proof. Propagation of A.ts. (1) 𝑐 ∈ 𝐶 𝑗 → 𝑐.𝑡𝑠 ∈ 𝑤2
𝑗
∧ (𝑊1 .𝑙 |

𝑊2 .𝑙 ∧𝑊1 .𝑙 < 𝑊2 .𝑙). It follows that ∀𝑏 : 𝑏.𝑡𝑠 ∈ 𝑤1
𝑖
→ 𝑏.𝑡𝑠 ∈ 𝑤2

𝑗
.

By applying the containment property [30], all (𝑏, 𝑐) tuples of 𝑄1
are also in 𝑄2 (𝑤2

𝑗
∈ 𝑄1 = 𝑤2

𝑗
∈ 𝑄2). However, since the time

constraints on 𝑏 tuples are relaxed due to𝑊1 .𝑙 <𝑊2 .𝑙 , 𝑄2 detects
additional pairs (𝑏, 𝑐) compared to 𝑄1. The first join [𝐵 ⊲⊳ 𝐶]𝑊2 of
𝑄2 has to propagate 𝑏.𝑡𝑠 to leverage commutativity (see Theorem 1).
In the second join [𝐵𝐶 ⊲⊳ 𝐴]𝑊2 , this ensures that (𝑏, 𝑐) tuples
are filtered by aligning 𝑎 and 𝑏 tuples according to the window
constraints of𝑊1, reducing the superset of (𝑏, 𝑐) ∈ 𝑄2. Since𝑤1

𝑖
∈

𝑄1 = 𝑤1
𝑖
∈ 𝑄2, the output of both queries is equivalent. □

2474

Algorithm 1 DeriveAllWindowPermutations(𝜔,𝑊)
1: for ⊲⊳𝑛 ∈ 𝜔.𝑘𝑒𝑦𝑠 do ⊲ For each join operator in the function𝜔
2: if ⊲⊳𝑛 [0].size > 1 then ⊲ Check if multiple streams are composed in the left join side
3: ⊲⊳𝑘𝑛← decomposeJoinPair(⊲⊳𝑛) ⊲ If true, decompose, e.g., (AB:C) into (A:C), (B:C)
4: for each ⊲⊳𝑘 ∈ ⊲⊳𝑘𝑛 do ⊲ Check if left side is time propagating stream of current
5: 𝑊𝑛 ← 𝜔.𝑔𝑒𝑡 (⊲⊳𝑛) ⊲ Get the window specification for ⊲⊳𝑛
6: if ⊲⊳𝑘 [0] ==𝑊𝑛−1 .getTimeProgation() then
7: 𝜔 .add(⊲⊳𝑘 ,𝑊𝑛) ⊲ E.g., (A:C):𝑊2
8: else ⊲ E.g., (B:C)
9: 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 ←𝑊𝑥 ∈𝑊 : 𝑥 ≤ 𝑛

10: 𝜔 .add(⊲⊳𝑘 , windows) ⊲ E.g., (B:C):𝑊1,𝑊2
11: 𝜔,𝑊 ′ ← generateCommutativePairs(𝜔,𝑊) ⊲ incl. boundary swap for IVJs (see Section 5.1)
12: return𝜔,𝑊 ′ ⊲ (A:B):{𝑊1 }, (B:A):{𝑊1 },(A:C):{𝑊2 },(C:A):{𝑊2 }, (B:C):{𝑊1,𝑊2 },(C:B):{𝑊1,𝑊2 }

We propose the transformation rule Largest Window First (LWF)
to extend this property to configurations where𝑊1 .𝑙 >𝑊2 .𝑙 and the
more selective window operator𝑊2 excludes valid compositions
of 𝑄1, if applied first in 𝑄2. To ensure semantic equivalence, LWF
swaps the window operators to leverage the containment property
of larger windows in the first join. In addition, LWF adjusts the
time propagation from 𝑏.𝑡𝑠 to 𝑐.𝑡𝑠 to preserve commutativity for
𝐴 ⊲⊳ 𝐶 , leading to 𝑄2 = [𝐴 ⊲⊳ [𝐵 ⊲⊳ 𝐶]𝑊1

𝑐.𝑡𝑠]𝑊2 .
Window Offsets and Their Limitations. Since window mis-

alignment prevents full associativity, we examine the alignment
strategy of offsets [23]. Offsets shift entire window sequences by
adjusting logical clock references, i.e., modifying start times from
𝑡𝑏 to 𝑡𝑏+ offset as shown in Figure 5c. While offsets must be pre-
served when present in the original query, they cannot acquire full
associativity as they do not affect the divisor relationships between
window operators. Following our findings, we revisit Theorem 8:

Theorem 8 (Revisited). SWJs of Case A4 are fully associative in
processing time under the condition that all window ends of reverted
window operators𝑊𝑛 are aligned and𝑊1 .𝑠 |𝑊2 .𝑠 . SWJs of Case A4
are fully associative in event time under the condition that𝑊1 .𝑙,𝑊1 .𝑠 |
𝑊2 .𝑙,𝑊2 .𝑠 and the reverted join orders process all window assignments
of the original query with larger windows first.

5.3 Leveraging Time Propagation
Time propagation poses a unique challenge for WJs because each
output tuple carries multiple timestamps to subsequent WJs. Thus,
associativity is governed by the different propagation strategies.

Processing Time. A single timestamp, i.e., the maximal times-
tamp of each window𝑤𝑖 , is assigned to all output tuples, neglecting
the timestamps of the contributing tuples. For this reason, associa-
tivity holds only for non-overlapping sliding windows with logical
clock alignment, as observed in Case𝐴2 (see Section 5.2). For Cases
𝐴1 and 𝐴3 with overlapping windows, shifting all tuples to a sin-
gle larger timestamp disrupts full associativity since intermediate
results may fall into different windows when the join order changes.

Event Time. A contributing tuple’s timestamp is propagated,
which enables conditional associativity, analogous to key depen-
dencies in relational joins. These dependencies do not necessarily
degrade performance but do alter query semantics. In particular,
as shown for Cases 𝐴1-𝐴4, 𝐴6, and 𝐴7 in Table 2, propagating the
timestamps of stream 𝐵 (𝐸𝑇 ∗

𝑏.𝑡𝑠
) preserves semantic equivalence,

whereas propagating the timestamps of stream 𝐴 (𝐸𝑇 ∗𝑎.𝑡𝑠) does not.
Thus, WJs can exploit the dependencies in other join orders as
long as the time-propagating streams are involved. For instance,
in query 𝑄 = [[𝐴 ⊲⊳ 𝐵]𝑊1

𝑎.𝑡𝑠 ⊲⊳ 𝐶]𝑊2 that propagates 𝑎.𝑡𝑠 , all join
orders where𝐴 appears in the first join are semantically equivalent.

Table 2: Commutative andAssociative Properties by Solution.
Case Type Parameter Time Domain

Setting 𝐸𝑇 ∗𝑎.𝑡𝑠 𝐸𝑇 ∗
𝑏.𝑡𝑠

PT
Commutative Properties

C1 𝑆𝑊 𝐽 - ✔ ✔ ✔

C2 𝑆𝑒𝑠𝑠𝑊 𝐽 - ✔ ✔ ✔

C3 𝐼𝑉 𝐽 lB = uB ✔ ✔ -
C4 𝐼𝑉 𝐽 lB != uB ●(§ 5.1) ●(§ 5.1) -

Associative Properties
A1 𝑆𝑊 𝐽 𝑊1 .𝑙 =𝑊2 .𝑙 ∧ 𝑠𝑙𝑖𝑑𝑒 < 𝑙𝑒𝑛𝑔𝑡ℎ ✗ ✔(§ 5.3) ✗

A2 𝑆𝑊 𝐽 𝑊1 .𝑙 =𝑊2 .𝑙 ∧ 𝑠𝑙𝑖𝑑𝑒 ≥ 𝑙𝑒𝑛𝑔𝑡ℎ ✔ ✔ ✔

A3 𝑆𝑊 𝐽 𝑊1 .𝑙 ≠𝑊2 .𝑙 ∧ 𝑠𝑙𝑖𝑑𝑒 < 𝑙𝑒𝑛𝑔𝑡ℎ ✗ ✔(§ 5.3) ✗

A4 𝑆𝑊 𝐽 𝑊1 .𝑙 ≠𝑊2 .𝑙 ∧ 𝑠𝑙𝑖𝑑𝑒 ≥ 𝑙𝑒𝑛𝑔𝑡ℎ ●(§ 5.2) ✔(§ 5.3) ●(§ 5.2)
A5 𝑆𝑒𝑠𝑠𝑊 𝐽 gap 𝑔 ✗ ✗ ✗

A6 𝐼𝑉 𝐽 𝑊𝑛 .𝑙𝐵 =𝑊𝑛 .𝑢𝐵 ✗ ✔(§ 5.3) -
A7 𝐼𝑉 𝐽 𝑊𝑛 .𝑙𝐵 ≠𝑊𝑛 .𝑢𝐵 ✗ ●(§ 5.1, § 5.3) -

ET∗𝑡 .𝑡𝑠 = event time with user-defined time propagation of t, PT = processing time, ✔= semantically
equivalent (default), ✗= changed semantics, ●= semantically equivalent (acquired)

To systematically derive valid join orders, Algorithm 1 extends
the window assignment function 𝜔 by determining which window
operator applies to which join pair, leveraging the predefined time
propagation. It takes 𝜔 and the window specifications𝑊 (see Sec-
tion 2) as input and iterates through all join pairs ⊲⊳𝑛 . If a pair ⊲⊳𝑛
involves more than two streams (Line 2), it is decomposed into pairs
⊲⊳𝑘𝑛 containing a single stream per join side (Line 3). If the left side
of a decomposed pair ⊲⊳𝑘 [0] is a time-propagating stream, then
the operator𝑊𝑛 of ⊲⊳𝑛 is assigned to ⊲⊳𝑘𝑛 , reflecting the dependency
on its timestamp (Lines 6–7). Otherwise, the pair ⊲⊳𝑘𝑛 inherits all
windows in 𝑄 relevant to its streams (Lines 8–10). Algorithm 1
returns the expanded mapping of 𝜔 , including updated window
specifications for IVJs where applicable. For WJs classified as condi-
tional associative,𝜔 assigns the respective windows to all join pairs,
and each pair that yields only a list of windows can be discarded.
For instance, given 𝑄 , the join order [[𝐵 ⊲⊳ 𝐶]𝑊𝑥 ⊲⊳ 𝐴]𝑊𝑦 , yields
the list {𝑊1,𝑊2} as a possible assignment for𝑊𝑥 and can thus be
discarded. In contrast, fully associative WJs of Cases𝐴2 and𝐴4 can
exploit multiple window assignments: As proven in the revisit of
Case𝐴4 (see Section 5.2), assigning the largest window of the list to
𝑊𝑥 yields semantic equivalence. However, the join orders remain
invalid if the list contains less than two sliding windows with 𝑠 < 𝑙 .

5.4 Classification of Window Join Properties
Our analysis, summarized in Table 2, reveals that WJ properties are
governed by two key factors: window semantics and time propaga-
tion strategies. Based on these characteristics, we classify WJs into
three hierarchical levels: (i) commutative-only, (ii) conditionally
associative, and (iii) fully associative.

Commutative-only: The semantics of SessWJs restrict reordering
to only two valid join orders, regardless of the time domain (Case
𝐴6). Additionally, overlapping SWJs in processing time (Case 𝐴1,
𝐴3) lack associativity due to the time propagation strategy of this
time domain (Section 5.3). However, adapting event-time propaga-
tion strategies for intermediate results can restore associativity.

Conditional associative: SWJs and IVJs exhibit conditional asso-
ciativity under event time, leveraging rule-based timestamp propa-
gation (see Section 5.3) and boundary swapping (see Section 5.1).
Alternative propagation strategies, e.g., using maximum or mini-
mum timestamps [23, 34], still do not achieve full associativity, as
they can also lead to the loss of intermediate results. Under these
conditions, the search space expands to at most 2(𝑛−1)! join orders.

2475

Full associative: Non-overlapping SWJs (Cases𝐴2 and𝐴4) exhibit
full associativity in both time domains, enabling maximal flexibility
with 𝑛! enumerated join orders (see Section 5.2).

Across all levels, associativity is maintained when timestamp
propagation preserves all intermediate results across ancestor and
successorwindows andwhenwindow sequences remain unchanged.

6 WJR ALGORITHM AND INTEGRATION
We introduce our enumeration algorithmWJR in Section 6.1 and
discuss its integration into existing SPSs in Section 6.2.

6.1 Window Join Enumeration Algorithm
Algorithm 2 presents WJR, our WJ enumeration algorithm that
systematically generates semantically equivalent join orders for
a given WJ query 𝑄 by assigning appropriate window operators
and propagating timestamps for each join pair. As a first step, WJR
extracts window-related details from 𝑄 , i.e., (1) the set of window
specifications𝑊 that define the window type and parameters for
each window operator𝑊𝑛 , and (2) the window assignments of 𝜔 ,
indicating which window𝑊𝑛 is assigned to which join pair ⊲⊳𝑛 .
Then,WJR adjusts and extends the window specifications𝑊 based
on the time domain of 𝑄 and its window parameters. In particular,
WJR checks and, if possible, applies LWO for processing time (Line
4, see Section 5.2), whereas it expands the initial window assignment
𝜔 to all possible join pairs in𝑄 for event time (Line 8, see Section 5.3).
Next, WJR generates all candidate join orders 𝑄𝑎𝑙𝑙 𝐽𝑂𝑠 and iterates
through them (Lines 9-11). For each join ⊲⊳𝑛 in a candidate order
𝑄𝑝 , it verifies that a valid window assignment exists under our
transformation rules and determines the time propagation attribute
(Lines 12–14). If all ⊲⊳𝑛 are valid, the cost of𝑄𝑝 is estimated using a
simple cost model that accumulates the intermediate results of each
join. Our cost model is based on a rate-based cost function [65],
common for SPSs. We enhanced this function with window-specific
factors based on our analysis of WJ semantics to better capture the
impact of windowing on join costs. In particular, for a given WJ
query 𝑄 , that joins 𝑛 streams 𝑆𝑘 (𝑘 = 1, ..., 𝑛) using 𝑛 − 1 window
operators𝑊𝑗 (𝑗 = 1, ..., 𝑛 − 1), we estimate the cost as follows:

𝑐 (𝑄) =

𝑛−1∑︂
𝑗=1

[︄(︂ 𝑗+1∏︂
𝑘=1

𝑟
(︁
𝑆𝑘

)︁)︂
× 𝜎 𝑗 ×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(︃
𝑊𝑗 .𝑙

Δ𝑡

)︃2
· Δ𝑡

𝑊𝑗 .𝑠
, if𝑊𝑗 is SW

𝑊𝑗 .𝑙𝐵 + 𝑊𝑗 .𝑢𝐵

Δ𝑡
, if𝑊𝑗 is IV⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

𝜔 (𝑊𝑗) (window factors)

]︄

, where 𝑟 (𝑆𝑘) is the rate of 𝑆𝑘 , and Δ𝑡 is the base time granularity
(e.g., seconds). The term Δ𝑡

𝑊𝑗 .𝑠
penalizes overlaps by accounting for

the number of windows triggered within Δ𝑡 by SWJs, and𝑊𝑗 .𝑙𝐵 +
𝑊𝑗 .𝑢𝐵 represents the window length of𝑊𝑗 for IVJs. Valid join
orders are collected and subsequently ranked in𝑄𝑣𝑎𝑙𝑖𝑑 𝐽𝑂𝑠 and then
returned in Line 20. By enumerating WJ orderings,WJR can extend
conventional search algorithms for join order optimization, such
as Dynamic Programming [54], to support reordering in SPSs.

6.2 System Integration Details
In the following section, we outline practical considerations that
enable the applicability of WJR within common SPSs.

Algorithm 2 WJR(𝑄)
1: 𝜔,𝑊 ← getWindowSpecifications(𝑄)
2: if 𝑄 is in PT then
3: if𝑊 contains 𝑆𝑊 𝐽 && s ≥ l then
4: 𝑊 ′ ← checkAndApplyLWO(𝑄,𝑊) ⊲ see Section 5.2
5: else
6: return generateCommutativeJoinOrders(𝑄)
7: if 𝑄 is in ET then
8: ∇𝜔,𝑊 ′ ← deriveAllWindowPermutations(𝜔,𝑊) ⊲ see Section 5.3, Algorithm 1
9: 𝑄𝑎𝑙𝑙 𝐽𝑂𝑠 ← generateJoinOrders(𝑄)
10: 𝑄𝑣𝑎𝑙𝑖𝑑 𝐽𝑂𝑠 ← {} ⊲ Initialize result set to collect valid join orders
11: for𝑄𝑝 in𝑄𝑎𝑙𝑙 𝐽𝑂𝑠 do
12: while𝑄𝑝 .getNextJoinPair() do
13: ⊲⊳𝑛← 𝑄𝑝 .getNextJoinPair()
14: 𝑣𝑎𝑙𝑖𝑑 ← assignWindowOperator(⊲⊳𝑛 , ∇𝜔)
15: if !𝑣𝑎𝑙𝑖𝑑 then
16: break
17: if 𝑣𝑎𝑙𝑖𝑑 ∧ !𝑄𝑝 .getNextJoinPair() then
18: 𝑄𝑝 .𝑐𝑜𝑠𝑡 ← estimateCost(𝑄𝑝) ⊲ Assign cost estimation for ranking
19: 𝑄𝑣𝑎𝑙𝑖𝑑 𝐽𝑂𝑠 ← add(𝑄𝑝) ⊲ Add valid join order, ranked by cost, to result set
20: return𝑄𝑣𝑎𝑙𝑖𝑑 𝐽𝑂𝑠 ⊲ Return all valid join orders

Integration into Existing SPSs. WJR can be seamlessly in-
tegrated into the query optimizer of existing SPSs by incorporat-
ing our WJ transformation rules as logical rewriting rules. Many
modern SPSs, including Apache Flink, Storm, and Beam, leverage
rule-based optimization frameworks such as Apache Calcite [8]. In
these systems, our transformation rules would be applied during
the logical optimization phase. For instance, a new Calcite rule
WindowJoinReorderRule would automatically generate alternative
plans when matching query patterns are detected in a query plan.

By integrating WJR, SPSs can explore multiple semantically
equivalent WJ plans instead of being constrained to a single fixed
order. This unlocks optimization techniques that were previously
unavailable or highly restricted. For instance, cost-based optimiza-
tion, which is largely impractical without alternative plans, can
now be leveraged to rank and select efficient join orders. Likewise,
placement strategies, operator fusion, and sharing benefit from the
increased flexibility due to the availability of multiple plans [31].

Handling Limited Stream Statistics. Cost models rely on
statistics, such as stream rates or join cardinalities, which are chal-
lenging to obtain in SPSs compared to relational databases, making
their collection an active research area [12, 49]. Because precise
statistics are typically unavailable, heuristic approaches are essen-
tial. Without statistics, SPSs can leverage static window specifica-
tions to estimate the relative ranking of join orders heuristically.
Specifically, our cost model in Section 6.1 incorporates key window
parameters (e.g., length and slide size), enabling simple rankings
even without exact stream rates. Additionally, systems can inte-
grate user-provided hints (e.g., estimated or relative stream rates)
to guide order selection [19]. Moreover, WJs are often combined
with windowed aggregations that reduce input streams to a single
tuple per group (key) and window. This property facilitates approx-
imating the maximal arrival rate of aggregated output streams per
key [34]. Together, these heuristics help guide the deployment of
WJR when detailed statistics are unavailable.

Support for Multiple Window Types. Although our analysis
focuses on queries with a single window type,WJR can handle WJs
with multiple window types, e.g., a three-way WJ with the window
operators𝑊1 = 𝐼 (𝑙𝐵,𝑢𝐵) and𝑊2 = 𝑆𝑊 (𝑙, 𝑠) [29]. This is possible
because all WJs, except for SessWJs, are conditionally associative
under event time, which underpins the foundation of our WJR
algorithm, i.e., explicitly assigning each join pair the appropriate

2476

Table 3: Summary of Queries
Query Case Window Specification Intermediate Rates Per Key Partition

𝑊1 𝑊2 AB (𝑊1) AC (𝑊2) BC
S1 S2 S3 S1 S2 S3 S1 S2

𝑄1 𝐴1 𝑆𝑊 (20, 2) 𝑆𝑊 (20, 2) 750 1500 - 750 100 - - -
𝑄2 𝐴1 𝑆𝑊 (20, 10) 𝑆𝑊 (20, 10) 150 300 - 150 20 - - -
𝑄3 𝐴3 𝑆𝑊 (10, 2) 𝑆𝑊 (20, 2) 188 375 - 750 100 - - -
𝑄4 𝐴3 𝑆𝑊 (20, 10) 𝑆𝑊 (15, 10) 150 300 - 84 11 - - -
𝑄5 𝐴2 𝑆𝑊 (30, 30) 𝑆𝑊 (30, 30) 113 225 - 113 15 - 113 8
𝑄6 𝐴2 𝑆𝑊 (30, 45) 𝑆𝑊 (30, 45) 75 150 - 75 10 - 75 5
𝑄7 𝐴4 𝑆𝑊 (30, 30) 𝑆𝑊 (5, 30) 113 225 - 3 < 1 - 113 8
𝑄8 𝐴4 𝑆𝑊 (30, 45) 𝑆𝑊 (5, 45) 75 150 - 2 <1 - 75 5
𝑄9 𝐴4 𝑆𝑊 (5, 30) 𝑆𝑊 (30, 30) 3 6 - 113 15 - 113 8
𝑄10 𝐴4 𝑆𝑊 (5, 45) 𝑆𝑊 (30, 45) 2 4 - 75 10 - 75 5
𝑄11 𝐴7 𝐼 (0, 10) 𝐼 (10, 10) 38 75 - 75 10 - - -
𝑄12 𝐴6 𝐼 (10, 10) 𝐼 (10, 10) 75 150 - 75 10 - - -
𝑄13 𝐴7 𝐼 (10, 10) 𝐼 (10, 0) 75 150 - 38 5 - - -
𝑄14 𝐴3, 𝐴4 𝑆𝑊 (60, 30) 𝑆𝑊 (5, 5) - - 3000 - - <1 - -
𝑄15 𝐴3, 𝐴7 𝑆𝑊 (30, 15) 𝐼 (0, 10) - - 1500 - - 3 - -

window operators𝑊𝑛 (see Algorithm 1). As a result, WJR only
needs to treat SessWJs and full associative WJs as a special case to
manage heterogeneous window configurations correctly.

Overall, our implementation considerations support the integra-
tion of WJ reordering into existing SPS architectures, even when
detailed statistics are unavailable and multiple window types are
in use. By enabling WJ reordering, WJR broadens the range of
optimization opportunities, improving both single-query and multi-
query optimization scenarios under a variety of SPS constraints.

7 EVALUATION
In this section, we evaluate the impact of WJ reordering on per-
formance and resource utilization. We describe our experimental
setup in Section 7.1. In Section 7.2, we introduce our applied case
validation, where we evaluate each theoretical case through actual
queries. We investigate the impact of join reordering in Section 7.3.

7.1 Experimental Setup
In the remainder, we present hardware and software configurations
as well as details about data and workloads.

Hardware and Software. We conduct our experiments on a
two-node cluster. Each node is equipped with a 16-core Intel Xeon
Silver CPU (4216, 2.10 GHz) and 528 GB of RAM. We use one node
exclusively as a master and one as a worker. We use Apache Flink
(version 1.11.6) for all experiments, as it is the only SPS that supports
all four analyzed WJ types (see Section 2).

Metrics. We measure the maximum sustainable throughput
(short: throughput) in tuples per second (tpl/s), representing the
highest throughput the SPS can handle before latency increases
and backpressure occurs. For each valid join order of a query 𝑄𝑛 ,
we assess this throughput and use it as the ingestion rate, ensuring
that we evaluate each query at its maximum feasible rate. We report
speedup as the throughput ratio between the best and worst join
order. To prevent the sink from becoming a bottleneck, we ensure
a constant output rate across all queries and collect latency, i.e., the
time from tuple creation (𝑡𝑠𝑃𝑇) to its arrival at the sink [36], per
second. Additionally, we measure CPU and memory usage.

Workloads. Data. We use two real-world sensor datasets for
our applied case validation, with samples available on our GitHub
repository (1): (1) traffic congestion data (vehicle quantity and ve-
locity) collected per minute, and (2) air quality data [55] (particulate
matter, temperature, humidity) collected every 3–5 minutes.

For performance analysis, we generate synthetic workloads us-
ing a parallel source function that uniformly distributes tuples of
the form (𝑖𝑑 : int, 𝑣𝑎𝑙𝑢𝑒 : int, 𝑡𝑠𝐸𝑇 : long, 𝑡𝑠𝑃𝑇 : long) across 16
key partitions 𝑝 (one per core). Each stream 𝑆 is generated by a ded-
icated source instance running for 25 minutes [36]. The ingestion
rate for each stream is determined by the evaluated throughput of
the join order, proportioned based on event-time arrival rates.

Event Time Arrival Rates. Event time arrival rates define the
number of tuples occurring within a window and, thus, influence
join selectivity. For our evaluation, we use three baseline settings:
S1: r(A)=r(B)= r(C)=15; S2: r(A)=30, r(B)=15, r(C)=1; and S3: r(A)=15,
r(B)=100, r(C)=1. Here, 𝑟 (𝑆𝑝) denotes the arrival rate within 60 time
units for each key partition 𝑝 of stream 𝑆 (𝑝 = 1, ..., 16). We use
𝑟 (𝑆𝑝) for simplicity, as all partitions produce the same rate. Low-
rate streams may not appear in every window (e.g., r(S)=1 with
𝑆𝑊 (30, 30)), resulting in fewer join matches and highly selective
intermediate results. In contrast, higher-rate streams (e.g., r(B)=100)
increase intermediate results (see also Table 3). To ensure the system
processes tuples at its tested throughput capacity, we scale the
actual ingestion rate proportionally to these arrival-rate settings.

Queries.Wedefine the baseline queries𝑄1−𝑄15, each correspond-
ing to a three-way WJ 𝑄𝑛 = [[𝐴 ⊲⊳ 𝐵]𝑊1 ⊲⊳ 𝐶]𝑊2 and execute all
their valid join orders. Each query represents an associative case
from Table 2, excluding SessWJs. To systematically assess the im-
pact of window parameters, we introduce variations per WJ type.
Table 3 details query specifications and shows the estimated inter-
mediate arrival rates of a key partition for each setting, computed
using our cost function in Section 6.1 (𝜎 𝑗 = 1). Additional queries
and settings are introduced in the respective evaluation sections.
Unless stated otherwise, all queries exclusively contain WJs.

7.2 Applied Case Validation
To underscore the correctness and completeness of our case study
and proposed transformation rules, we provide various example
queries in our GitHub repositories covering all commutativity and
associativity cases in event time outlined in Section 3 and 4, as well
as cases involving more than two joins. Each case is implemented
as a JUnit test, running different join orders to demonstrate how
commutativity and associativity properties (or their absence) affect
query outcomes using both small synthetic datasets and real-world
samples from 𝑄𝑛𝑉 and AQ-Data, covering diverse scenarios.

7.3 Impact of Window Join Reordering
In this experiment, we evaluate the impact of reordering WJs based
on our findings, which enable multiple join orders instead of a fixed
plan per query. We omit figures for queries with identical rates and
window operators since their results are equivalent. The following
subsections detail the outcomes for each WJ type.

7.3.1 Sliding Window Joins with 𝑠 < 𝑙 . Workloads. We evaluate
Case A1 (𝑊1 =𝑊2) and Case A3 (𝑊1 ≠𝑊2) under Setting 1 and 2
with slide parameters 𝑠 = 2 and 𝑠 = 10, i.e., 𝑄1 − 𝑄4. Each query
permits four orders due to conditional associativity (see Section 5.3).

Observations. In Figure 6a, we present the speedups observed for
𝑄1 −𝑄4. First, the throughput is very low, i.e., below 200,000 tpl/s
for 𝑠 = 2 and 2 million tpl/s for 𝑠 = 10. This is because overlapping
SWJs generate duplicates. In particular, the smaller the slide, the

2477

Setting 1 Setting 2
0
1
2
3

Sp
ee
du

p

𝑄𝐴1
1 𝑄𝐴1

2 𝑄𝐴3
3 𝑄𝐴3

4

Setting 1 Setting 2
0
1
2
3
4

Sp
ee
du

p

𝑄𝐴2
5 𝑄𝐴2

6 𝑄𝐴4
7 𝑄𝐴4

8 𝑄𝐴4
9 𝑄𝐴4

10

Setting 1 Setting 2
0

0.5
1

1.5

Sp
ee
du

p

𝑄𝐴7
11 𝑄𝐴6

12 𝑄𝐴7
13

Setting 3 Setting 4
0
5
10

Sp
ee
du

p

𝑄
𝐴3,𝐴4
14 𝑄

𝐴3,𝐴7
15 𝑄

𝐴3,𝐴4
16

(a) SWJs with 𝑠 < 𝑙 (b) SWJs with 𝑠 ≥ 𝑙 (c) IVJs (d) Extended WJ Scenarios

Figure 6: Speedup of Maximum Sustainable Throughput between Best and Worst Join Order.

more duplicates are in the intermediate results. These duplicates
must be maintained in the operator state, which increases memory
usage and garbage collection overhead, resulting in lower through-
put. The high intermediate result rates shown in Table 3 reflect
the heavy computational effort caused by these duplicates. Sec-
ond, commutative pairs have similar throughput, with an average
speedup of 1.09 (min. 1.01, max. 1.15). Third, associative pairs yield
significant performance gains. In Setting 1, where streams have
equal input ratios, the different window lengths determine the best
and worst join orders with speedups of up to 2 (avg. 1.52, min. 1.13).
In Setting 2, throughput improves with larger slides, and speedups
between join orders reach up to 2.91 (min. 1.98, avg. 2.35).

7.3.2 Sliding Window Joins with 𝑠 ≥ 𝑙 . Workloads. We evaluate
Case𝐴2 (𝑊1 =𝑊2) and the two configurations of Case𝐴4 identified
in Section 5.2 (𝑊1 .𝑙 >𝑊2 .𝑙 and𝑊1 .𝑙 <𝑊2 .𝑙) under Setting 1 and 2
with slide parameters 𝑠 = 𝑙 and 𝑠 > 𝑙 , i.e., 𝑄5 − 𝑄10. All queries
permit six join orders due to full associativity.

Observations. In Figure 6b, we show the speedups observed for
𝑄5 −𝑄10. First, non-overlapping SWJs achieve significantly higher
throughput than overlapping ones, ranging from 1.2 million tpl/s
(lowest for𝑄5) to 9.55million tpl/s (highest of𝑄10). In particular, the
throughput increases with the slide size. Second, commutative pairs
have similar throughput across all cases, with an average speedup
of 1.08 (min. 1.01, max. 1.19). Third, associative join orders yield
substantial performance improvements. In Case 𝐴2, we observe
speedups of up to 3 (min. 2.52, avg. 2.83). For Case𝐴4, when𝑊1 .𝑙 >
𝑊2 .𝑙 (𝑄7 and 𝑄8), speedups reach up to 3.84 (min. 2.83, avg. 3.26),
whereas when𝑊1 .𝑙 <𝑊2 .𝑙 (𝑄9 and 𝑄10), speedups are lower, up to
2.33 (min. 1.5, avg. 1.9). The main reason for the different speedup
results is that𝑄7 and𝑄8 execute the expensive join between 𝐴 and
𝐵 over the larger window operator𝑊1, while𝑄9 and𝑄10 do so over
the smaller window operator𝑊2. Thus,𝑄7 and𝑄8 profit more from
reordering, where our transformation rules enable the processing
of the more restrictive (i.e., selective) window operators first, to
reduce intermediate results and achieve higher throughput.

7.3.3 Interval Joins. Workloads.We evaluate Case 𝐴6 with equal-
sized, and Case 𝐴7 with unequal-sized boundaries and boundary
swapping (Section 5.1) under Setting 1 and 2, i.e., 𝑄11 −𝑄13. Each
query permits four join orders due to conditional associativity.

Observations. In Figure 6c, we present the speedups observed for
𝑄11 −𝑄13. First, IVJs exhibit distinct throughput behavior. At inges-
tion rates that avoid prolonged backpressure, latencies remain in
the order of minutes, a phenomenon not seen with SWJs. When the
ingestion rate is reduced to achieve latencies of seconds, through-
put drops below 400,000 tpl/s, comparable to overlapping SWJs
with small slide values. Second, commutative pairs yield similar

20 40 60 80

50
100
150

Ratio of Stream 𝐵Th
ro
ug

hp
ut

in
T
tp
l/s

ABC ACB BCA

Figure 7: Impact of Tuple Distribution on Throughput

throughput across all cases, with an average speedup of 1.02 (min.
1.01, max. 1.05), indicating that boundary swapping does not af-
fect performance. Third, associative pairs have a more pronounced
effect, achieving speedups of up to 1.5 (min. 1.05, avg. 1.34).

7.3.4 Extended Window Join Scenarios. Workloads.We run three
queries that extend the base case by containing multiple window
types and more streams. In particular,𝑄14 and𝑄16 mix overlapping
and non-overlapping sliding windows. Furthermore, 𝑄16 is a five-
way join with the following window specifications:𝑊1 = 𝑊2 =

𝑆𝑊 (20, 10),𝑊3 = 𝑆𝑊 (20, 20), and𝑊4 = (20, 5), and arrival-rate
setting 4: 𝑟 (𝐴) = 29, 𝑟 (𝐵) = 2, 𝑟 (𝐶) = 8, 𝑟 (𝐷) = 1, and 𝑟 (𝐸) = 60.
𝑄15 contains one overlapping sliding window and an IVJ. We apply
a positive integer filter to the 𝑣𝑎𝑙𝑢𝑒 attribute (random Integer) across
all streams, disrupting their uniform distribution.

Observations. In Figure 6d, we show the speedups achieved for
these three queries. While commutative combinations yield simi-
lar throughput consistent with previous observations, associative
combinations involving multiple windows and non-uniform distri-
butions show more pronounced speedups. Specifically, we observe
speedups of up to 10.6 (min. 4.22, avg. 7.27) when costlier overlap-
ping sliding windows are executed after smaller, non-overlapping
window operators. The throughput ranges from 4,000 tpl/s (lowest
for 𝑄16) to 7.9 million tpl/s (highest of 𝑄14).

7.3.5 Impact of Rate Distribution. Workloads. We run 𝑄5 under
different event-time arrival rates, i.e., we fix 𝑟 (𝐴) = 1, vary 𝑟 (𝐵)
(e.g., 20, 40, etc.), and assign the remaining tuples to stream C to
maintain a total of 100. Since commutative pairs yield similar results,
we focus on the join orders ABC, ACB, and BCA.

Observation. In Figure 7, we present the throughputs of the three
join orders. First, the orders ABC and ACB exhibit symmetric perfor-
mance: ACB outperforms when 𝑟 (𝐵) is low, while ABC is preferable
when 𝑟 (𝐵) is high, i.e., processing the more frequent stream first
with 𝐴 prevents an unnecessarily large intermediate result. Second,
BCA consistently achieves the lowest throughput across all settings
because it executes the costliest join first. The maximum observed
speedups across the tested settings range from 4.6 to 5.5.

7.3.6 Resource Utilization and Latency. At maximum sustainable
throughput, memory usage is the primary bottleneck: All join or-
ders fully utilize available memory, while CPU utilization stays

2478

moderate at 34% for IVJs and 57% for SWJs. Thus, speedups are
attributed to join orders that reduce intermediate results. Orders
with extensive intermediate results require more CPU resources
and occasionally cause garbage collection stalls. Latency likewise
remains low: SWJs average 3 s (min. 0.4 s, max. 1min), and IVJs
average 1 s (min. 0.1 s, max. 5min). The upper ranges occur occa-
sionally when garbage collection of large operator states interrupts
the execution pipelines.

7.4 Observations on Join Order Performance
Our experiments confirm that the join order strongly impacts WJ
performance. Since the most complex WJ typically determines the
overall pipeline throughput, suboptimal orders create performance
bottlenecks [31]. A key takeaway of our evaluation is that placing
more selective joins with lower arrival rates and restrictive win-
dow parameters upfront improves execution efficiency. Examples of
such parameters include smaller window lengths (𝑄3), larger slide
sizes (𝑄8), or duplicate-free windows (𝑄15). Starting the execution
pipeline with highly selective joins minimizes intermediate results
and unnecessary computations in downstream operations, which
improves performance by decreasing memory usage and avoiding
garbage collection stalls. Additionally, our evaluation indicates that
queries with high variance in stream rates (𝑆2) or window parame-
ters (𝑄7) benefit the most from reordering. Moreover, our rate-based
cost function (Section 6.1), enhanced with window-specific factors,
accurately reflects WJ performance, i.e., inefficient orders correlate
with higher costs due to large intermediate results. These findings
align with the principles of relational database optimizers, which
also prioritize join orders that minimize intermediate results, as
the query cost is directly tied to them [17, 32, 41]. An SPS opti-
mizer could leverage these takeaways by applying and enhancing
our simple cost model to rank and prune WJ orders. Even without
stream rates, our insights suggest that static window properties and
user-provided heuristics can guide order selection (see Section 6.2).

8 RELATEDWORK
Stream Processing Optimizations.Most stream processing op-
timizations are rule-based and are applied statically at compile-
time [31, 58]. Query plan optimizations consider operator reorder-
ing, separation, fusion, and fission [31]. Techniques proposed for
reordering focus on stateless operations such as selection and pro-
jection [6], which improve performance by minimizing the number
of tuples and their size early in the execution process [31, 34, 58].
However, WJ optimizations remain confined to techniques that
preserve the query graph, such as load shedding or algorithm selec-
tion [26, 36, 48] even though preliminary studies show promising
results [58]. Moreover, operator reordering is a key enabler of other
stream processing optimizations [31], such as redundancy elimina-
tion, placement, or multi-query merging [10], all of which enhance
the performance of complex stream queries but are currently not
possible for MWJs. Our work enablesWJ reordering, thus providing
the foundation for advanced WJ optimizations in SPS.

Current research on stateful operations involving windowing
has mostly centered around optimizations for window aggrega-
tion [9, 61, 64] with less focus on WJs [18, 37]. Those optimiza-
tions target the improvement of the actual execution instead of the

execution pipeline. Thus, they leave the query graph unchanged
but utilize operator placement [44], load shedding [26], algorithm
selection [48], incremental computation, slicing, and resource shar-
ing [37, 61], as well as tuple routing and smart data partitioning [18].
These optimizations enhance the efficiency of SPS and are orthogo-
nal to our work in optimizing the query graph.

Another related line of research explores adaptive stream pro-
cessing, where the SPS reacts to changes in the data characteristics
to maintain performance for continuous queries [12, 18, 19, 28, 49,
58]. These approaches focus on dynamically collecting and main-
taining stream statistics to estimate costs at runtime. Combining
WJ enumeration with adaptive runtime statistics complements our
approach towards cost-based join order selection.

Relational Join Query Optimization. Join query optimization
is a well-studied field in the context of relational databases [41, 46].
Relational join query optimization aims to find the cheapest plan
from all semantically equivalent plans for an input query to exe-
cute. To this end, optimizers use mathematical cost models based
on factors like tuple counts, join selectivity, and intermediate result
sizes. Algebraic rules from relational algebra allow query plans to
be reordered while obtaining the same result [40, 42, 54]. However,
traditional join optimization techniques do not account for the
unique properties of WJs. Simply treating timestamps as ordinary
attributes overlooks crucial aspects of streaming, such as out-of-
order events and dynamic window boundaries. Consequently, WJs
incorporate additional constraints, preventing the seamless applica-
bility of relational join reordering techniques. Using our in-depth
analysis of WJ semantics, we unlock the usage of relation join
optimization for WJs in SPSs.

9 CONCLUSION
In this paper, we address the fundamental problem ofWJ reordering
in SPSs. By analyzing the algebraic properties of SWJs, SessWJs,
and IVJs under both event time and processing time, we reveal
that WJs diverge from relational join properties due to window
semantics and time propagation strategies. To overcome these limi-
tations, we propose three transformation rules that accommodate
these constraints and enable WJ reordering without compromising
query correctness. We consolidate these rules into our enumeration
algorithmWJR. Our evaluation shows speedups of up to 10x across
the different WJ types, underscoring the impact of join order on
throughput and resource efficiency. As a result, our findings lay
the foundation for more flexible and efficient query optimization
in streaming scenarios by providing multiple alternative WJ plans,
rather than a single one. A natural next step is to integrate our
approach into the logical rewrite phase of an SPS optimizer, where
WJ reordering can be leveraged alongside system-wide, statistics-
independent objectives such as maximizing operator sharing across
concurrent queries or strategically placing operators in decentral-
ized deployments to reduce network overhead.

ACKNOWLEDGMENTS
We gratefully acknowledge funding from the German Federal Min-
istry of Education and Research under the grant BIFOLD25B. We
thank Philipp M. Grulich, Sebastian Bress, Leon Papke, and our
reviewers for their insightful suggestions and comments.

2479

REFERENCES
[1] Microsoft 2024. 2024. Microsoft Learn - Stream Analytics Query Lan-

guage. https://learn.microsoft.com/en-us/stream-analytics-query/stream-
analytics-query-language-reference. Accessed Sept. 2024.

[2] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and SamWhittle. 2015. The Dataflow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-
of-Order Data Processing. Proc. VLDB Endow. 8, 12 (2015), 1792–1803.

[3] T. Akidau, S. Chernyak, and R. Lax. 2018. Streaming Systems: The What, Where,
When, and how of Large-scale Data Processing. O’Reilly. https://books.google.
de/books?id=48-BAQAACAAJ

[4] Samira Akili and Matthias Weidlich. 2021. MuSE Graphs for Flexible Distribution
of Event Stream Processing in Networks. In SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 10–22.

[5] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Frey-
tag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker
Markl, Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax, Se-
bastian Schelter, Mareike Höger, Kostas Tzoumas, and Daniel Warneke. 2014.
The Stratosphere platform for big data analytics. VLDB J. 23, 6 (2014), 939–964.

[6] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2003. CQL: A Language
for Continuous Queries over Streams and Relations. In Database Programming
Languages, 9th International Workshop, DBPL 2003, Potsdam, Germany, September
6-8, 2003, Revised Papers (Lecture Notes in Computer Science), Georg Lausen and
Dan Suciu (Eds.), Vol. 2921. Springer, 1–19.

[7] Edmon Begoli, Tyler Akidau, Fabian Hueske, Julian Hyde, Kathryn Knight, and
Kenneth L. Knowles. 2019. One SQL to Rule Them All - an Efficient and Syntac-
tically Idiomatic Approach to Management of Streams and Tables. In Proceedings
of the 2019 International Conference on Management of Data, SIGMOD Conference
2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. ACM, 1757–1772.

[8] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and
Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Opti-
mized Query Processing Over Heterogeneous Data Sources. In Proceedings of
the 2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, Gautam Das, Christopher M. Jermaine,
and Philip A. Bernstein (Eds.). ACM, 221–230.

[9] Lawrence Benson, Philipp M. Grulich, Steffen Zeuch, Volker Markl, and Tilmann
Rabl. 2020. Disco: Efficient Distributed Window Aggregation. In Proceedings
of the 23rd International Conference on Extending Database Technology, EDBT
2020, Copenhagen, Denmark, March 30 - April 02, 2020, Angela Bonifati, Yongluan
Zhou, Marcos Antonio Vaz Salles, Alexander Böhm, Dan Olteanu, George H. L.
Fletcher, Arijit Khan, and Bin Yang (Eds.). OpenProceedings.org, 423–426.

[10] Ankit Chaudhary, Steffen Zeuch, Volker Markl, and Jeyhun Karimov. 2023. Incre-
mental Stream Query Merging. In Proceedings 26th International Conference on
Extending Database Technology, EDBT 2023, Ioannina, Greece, March 28-31, 2023,
Julia Stoyanovich, Jens Teubner, Nikos Mamoulis, Evaggelia Pitoura, Jan Mühlig,
Katja Hose, Sourav S. Bhowmick, and Matteo Lissandrini (Eds.). OpenProceed-
ings.org, 604–617.

[11] Surajit Chaudhuri. 1998. An Overview of Query Optimization in Relational
Systems. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, June 1-3, 1998, Seattle, Washington,
USA, Alberto O. Mendelzon and Jan Paredaens (Eds.). ACM Press, 34–43.

[12] Grigorios Chrysos, Odysseas Papapetrou, Dionisios N. Pnevmatikatos, Apostolos
Dollas, and Minos N. Garofalakis. 2019. Data Stream Statistics Over Sliding
Windows: How to Summarize 150 Million Updates Per Second on a Single Node.
In 29th International Conference on Field Programmable Logic and Applications,
FPL 2019, Barcelona, Spain, September 8-12, 2019, Ioannis Sourdis, Christos-Savvas
Bouganis, Carlos Álvarez, Leonel Antonio Toledo Díaz, Pedro Valero-Lara, and
Xavier Martorell (Eds.). IEEE, 278–285.

[13] E. F. Codd. 1983. A Relational Model of Data for Large Shared Data Banks
(Reprint). Commun. ACM (1983).

[14] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. 2003. Approximate
Join Processing Over Data Streams. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, San Diego, California, USA, June
9-12, 2003. ACM, 40–51.

[15] Databricks. 2025. Virgin Australia boosts productivity, real-time data with the
Databricks Data Intelligence Platform. https://www.youtube.com/watch?v=
pWqx1P1BV1o. Accessed Feb. 2025.

[16] dbt Labs. 2025. dbt Case Studies. https://www.getdbt.com/case-studies. Accessed
Jan. 2025.

[17] Bailu Ding, Vivek Narasayya, Surajit Chaudhuri, et al. 2024. Extensible Query
Optimizers in Practice. Foundations and Trends® in Databases 14, 3-4 (2024),
186–402.

[18] Manuel Dossinger and Sebastian Michel. 2021. Optimizing Multiple Multi-Way
Stream Joins. In 37th IEEE International Conference on Data Engineering, ICDE
2021, Chania, Greece, April 19-22, 2021. IEEE, 1985–1990.

[19] Manuel Dossinger, Sebastian Michel, and Constantin Roudsarabi. 2019. CLASH:
A High-Level Abstraction for Optimized, Multi-Way Stream Joins over Apache
Storm. In Proceedings of the 2019 International Conference on Management of Data,
SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019.
ACM, 1897–1900.

[20] Tarek Elsaleh, Shirin Enshaeifar, Roonak Rezvani, Sahr Thomas Acton, Valentinas
Janeiko, and María Bermúdez-Edo. 2020. IoT-Stream: A Lightweight Ontology
for Internet of Things Data Streams and Its Use with Data Analytics and Event
Detection Services. Sensors 20, 4 (2020), 953.

[21] Ioannis Flouris, Nikos Giatrakos, Antonios Deligiannakis, Minos N. Garofalakis,
Michael Kamp, and Michael Mock. 2017. Issues in complex event processing:
Status and prospects in the Big Data era. J. Syst. Softw. 127 (2017), 217–236.

[22] Apache Software Foundation. 2024. Apache Beam. https://beam.apache.org.
Accessed Jun. 2024.

[23] Apache Software Foundation. 2024. Apache Flink. https://flink.apache.org.
Accessed Feb. 25.

[24] Apache Software Foundation. 2024. Apache Spark. https://spark.apache.org.
Accessed Jun. 2024.

[25] Apache Software Foundation. 2024. Apache Storm. https://storm.apache.org.
Accessed Aug. 2024.

[26] Bugra Gedik, Kun-Lung Wu, Philip S. Yu, and Ling Liu. 2007. A Load Shedding
Framework and Optimizations for M-wayWindowed Stream Joins. In Proceedings
of the 23rd International Conference on Data Engineering, ICDE 2007, The Marmara
Hotel, Istanbul, Turkey, April 15-20, 2007, Rada Chirkova, AsumanDogac,M. Tamer
Özsu, and Timos K. Sellis (Eds.). IEEE Computer Society, 536–545.

[27] Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis, and
Minos N. Garofalakis. 2020. Complex event recognition in the Big Data era: a
survey. VLDB J. 29, 1 (2020), 313–352.

[28] Philipp M. Grulich, Sebastian Breß, Steffen Zeuch, Jonas Traub, Janis von Ble-
ichert, Zongxiong Chen, Tilmann Rabl, and Volker Markl. 2020. Grizzly: Efficient
Stream Processing Through Adaptive Query Compilation. In Proceedings of the
2020 International Conference on Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pot-
tinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo
(Eds.). ACM, 2487–2503.

[29] Moustafa A. Hammad, Walid G. Aref, and Ahmed K. Elmagarmid. 2003. Stream
Window Join: Tracking Moving Objects in Sensor-Network Databases. In Pro-
ceedings of the 15th International Conference on Scientific and Statistical Database
Management (SSDBM 2003), 9-11 July 2003, Cambridge, MA, USA. IEEE Computer
Society, 75–84.

[30] Moustafa A. Hammad, Michael J. Franklin, Walid G. Aref, and Ahmed K. El-
magarmid. 2003. Scheduling for shared window joins over data streams. In
Proceedings of 29th International Conference on Very Large Data Bases, VLDB
2003, Berlin, Germany, September 9-12, 2003, Johann Christoph Freytag, Peter C.
Lockemann, Serge Abiteboul, Michael J. Carey, Patricia G. Selinger, and Andreas
Heuer (Eds.). Morgan Kaufmann, 297–308.

[31] Martin Hirzel, Robert Soulé, Scott Schneider, Bugra Gedik, and Robert Grimm.
2013. A catalog of stream processing optimizations. ACM Comput. Surv. 46, 4
(2013), 46:1–46:34.

[32] Alexander K. Hudek, David Toman, and Grant E. Weddell. 2015. On Enumerating
Query Plans Using Analytic Tableau. In Automated Reasoning with Analytic
Tableaux and Related Methods - 24th International Conference, TABLEAUX 2015,
Wrocław, Poland, September 21-24, 2015. Proceedings (Lecture Notes in Computer
Science), Hans de Nivelle (Ed.), Vol. 9323. Springer, 339–354.

[33] Yannis E. Ioannidis. 1996. Query Optimization. ACM Comput. Surv. 28, 1 (1996),
121–123.

[34] Anand Jayarajan, Wei Zhao, Yudi Sun, and Gennady Pekhimenko. 2023. TiLT: A
Time-Centric Approach for Stream Query Optimization and Parallelization. In
Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, ASPLOS 2023,
Vancouver, BC, Canada, March 25-29, 2023, Tor M. Aamodt, Natalie D. Enright
Jerger, and Michael M. Swift (Eds.). ACM, 818–832.

[35] Hyunchul Kang. 2013. In-Network Processing of Joins in Wireless Sensor Net-
works. Sensors 13, 3 (2013), 3358–3393.

[36] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, and Volker Markl. 2018. Benchmarking Distributed Stream Data
Processing Systems. In 34th IEEE International Conference on Data Engineering,
ICDE 2018, Paris, France, April 16-19, 2018. IEEE Computer Society, 1507–1518.

[37] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2019. AStream: Ad-hoc
Shared Stream Processing. In Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki,
Amol Deshpande, and Tim Kraska (Eds.). ACM, 607–622.

[38] Ilya Kolchinsky and Assaf Schuster. 2018. Efficient Adaptive Detection of Com-
plex Event Patterns. Proc. VLDB Endow. 11, 11 (2018), 1346–1359.

[39] Ilya Kolchinsky and Assaf Schuster. 2018. Join query optimization techniques
for complex event processing applications. Proc. VLDB Endow. (2018).

[40] Donald Kossmann and Konrad Stocker. 2000. Iterative dynamic programming:
a new class of query optimization algorithms. ACM Trans. Database Syst. 25, 1

2480

https://learn.microsoft.com/en-us/stream-analytics-query/stream-analytics-query-language-reference
https://learn.microsoft.com/en-us/stream-analytics-query/stream-analytics-query-language-reference
https://books.google.de/books?id=48-BAQAACAAJ
https://books.google.de/books?id=48-BAQAACAAJ
https://www.youtube.com/watch?v=pWqx1P1BV1o
https://www.youtube.com/watch?v=pWqx1P1BV1o
https://www.getdbt.com/case-studies
https://beam.apache.org
https://flink.apache.org
https://spark.apache.org
https://storm.apache.org

(2000), 43–82.
[41] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,

and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215.

[42] Volker Markl, Guy M. Lohman, and Vijayshankar Raman. 2003. LEO: An auto-
nomic query optimizer for DB2. IBM Syst. J. 42, 1 (2003), 98–106.

[43] Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl. 2022.
Rethinking Stateful Stream Processing with RDMA. In SIGMOD ’22: International
Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022.
ACM, 1078–1092.

[44] Matteo Nardelli, Valeria Cardellini, Vincenzo Grassi, and Francesco Lo Presti.
2019. Efficient Operator Placement for Distributed Data Stream Processing
Applications. IEEE Trans. Parallel Distributed Syst. 30, 8 (2019), 1753–1767.

[45] Mauro Negri, Giuseppe Pelagatti, and Licia Sbattella. 1991. Formal Semantics of
SQL Queries. ACM Trans. Database Syst. 16, 3 (1991), 513–534.

[46] Thomas Neumann. 2018. Query Optimization (in Relational Databases). In
Encyclopedia of Database Systems, Second Edition, Ling Liu and M. Tamer Özsu
(Eds.). Springer.

[47] Thomas Neumann, Viktor Leis, and Alfons Kemper. 2017. The Complete Story of
Joins (in HyPer). In Datenbanksysteme für Business, Technologie und Web (BTW
2017), 17. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssys-
teme" (DBIS), 6.-10. März 2017, Stuttgart, Germany, Proceedings (LNI), Bernhard
Mitschang, Daniela Nicklas, Frank Leymann, Harald Schöning, Melanie Herschel,
Jens Teubner, Theo Härder, Oliver Kopp, and Matthias Wieland (Eds.), Vol. P-265.
GI, 31–50.

[48] Dwi P. A. Nugroho, Philipp M. Grulich, Steffen Zeuch, Clemens Lutz, Stefano
Bortoli, and Volker Markl. 2024. Benchmarking Stream Join Algorithms on GPUs:
A Framework and its Application to the State-of-the-art. In Proceedings 27th
International Conference on Extending Database Technology, EDBT 2024, Paestum,
Italy, March 25 - March 28, Letizia Tanca, Qiong Luo, Giuseppe Polese, Loredana
Caruccio, Xavier Oriol, and Donatella Firmani (Eds.). OpenProceedings.org, 188–
200.

[49] Odysseas Papapetrou, Minos N. Garofalakis, and Antonios Deligiannakis. 2015.
Sketching distributed sliding-window data streams. VLDB J. 24, 3 (2015), 345–
368.

[50] Steven Purtzel, Samira Akili, and Matthias Weidlich. 2022. Predicate-based push-
pull communication for distributed CEP. In 16th ACM International Conference
on Distributed and Event-based Systems, DEBS 2022, Copenhagen, Denmark, June
27 - 30, 2022, Yongluan Zhou, Panos K. Chrysanthis, Vincenzo Gulisano, and
Eleni Tzirita Zacharatou (Eds.). ACM, 31–42.

[51] Quix. 2024. A Guide to Windowing in Stream Processing. https://quix.io/blog/
windowing-stream-processing-guide?utm_source=chatgpt.com Accessed Jan.
2025.

[52] Redpanda. 2023. Popular Stream Processing Patterns. https://www.redpanda.
com/blog/popular-stream-processing-patterns?utm_source=chatgpt.com Ac-
cessed Jan. 2025.

[53] Radhya Sahal, John G Breslin, and Muhammad Intizar Ali. 2020. Big data and
stream processing platforms for Industry 4.0 requirements mapping for a predic-
tive maintenance use case. Journal of manufacturing systems 54 (2020), 138–151.

[54] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. 1979. Access Path Selection in a Relational Database
Management System. In Proceedings of the 1979 ACM SIGMOD International
Conference on Management of Data, Boston, Massachusetts, USA, May 30 - June 1,
Philip A. Bernstein (Ed.). ACM, 23–34.

[55] SENSOR.COMMUNITY. 2022. Global Sensornetzwork. https://sensor.
community/de/ Accessed July 2024.

[56] Shobhit Seth. 2023. Basics of Algorithmic Trading: Concepts and Exam-
ples. https://www.investopedia.com/articles/active-trading/101014/basics-
algorithmic-trading-concepts-and-examples.asp Accessed Jan. 2025.

[57] Amirhesam Shahvarani and Hans-Arno Jacobsen. 2020. Parallel Index-based
Stream Join on a Multicore CPU. In Proceedings of the 2020 International Con-
ference on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai
Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM,
2523–2537.

[58] Darya Sharkova, Alexander Chernokoz, Artem Trofimov, Nikita Sokolov, Ekate-
rina Gorshkova, Igor Kuralenok, and Boris Novikov. 2021. Adaptive SQL Query
Optimization in Distributed Stream Processing: A Preliminary Study. In Inter-
national Workshop on Software Foundations for Data Interoperability. Springer,
96–109.

[59] Snowflake. 2024. The Modern Data Streaming Pipeline. https:
//www.snowflake.com/wp-content/uploads/2024/03/The-Modern-Data-
Streaming-Pipeline-1.pdf Accessed Jan. 2025.

[60] Tri Minh Tran and Byung Suk Lee. 2010. Distributed stream join query processing
with semijoins. Distributed Parallel Databases 27, 3 (2010), 211–254.

[61] Jonas Traub, Philipp M. Grulich, Alejandro Rodriguez Cuellar, Sebastian Breß,
Asterios Katsifodimos, Tilmann Rabl, and Volker Markl. 2019. Efficient Window
Aggregation with General Stream Slicing. In Advances in Database Technology -
22nd International Conference on Extending Database Technology, EDBT 2019, Lis-
bon, Portugal, March 26-29, 2019, Melanie Herschel, Helena Galhardas, Berthold
Reinwald, Irini Fundulaki, Carsten Binnig, and Zoi Kaoudi (Eds.). OpenProceed-
ings.org, 97–108.

[62] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. 2008. Nexmark–
a benchmark for queries over data streams (draft). Technical report (2008).

[63] Juliane Verwiebe, Philipp M. Grulich, Jonas Traub, and Volker Markl. 2022. Algo-
rithms for Windowed Aggregations and Joins on Distributed Stream Processing
Systems. Datenbank-Spektrum 22, 2 (2022), 99–107.

[64] Juliane Verwiebe, PhilippM. Grulich, Jonas Traub, and VolkerMarkl. 2023. Survey
of window types for aggregation in stream processing systems. VLDB J. 32, 5
(2023), 985–1011.

[65] Stratis Viglas and Jeffrey F. Naughton. 2002. Rate-based query optimization
for streaming information sources. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, Madison, Wisconsin, USA, June
3-6, 2002, Michael J. Franklin, Bongki Moon, and Anastassia Ailamaki (Eds.).
ACM, 37–48.

[66] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das,Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. 2016.
Apache Spark: a unified engine for big data processing. Commun. ACM 59,
11 (2016), 56–65.

[67] Steffen Zeuch, Xenofon Chatziliadis, Ankit Chaudhary, Dimitrios Giouroukis,
Philipp M. Grulich, Dwi Prasetyo Adi Nugroho, Ariane Ziehn, and Volker Markl.
2022. NebulaStream: Data Management for the Internet of Things. Datenbank-
Spektrum 22, 2 (2022), 131–141.

[68] Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavri-
ilidis, Dimitrios Giouroukis, Philipp M. Grulich, Sebastian Breß, Jonas Traub,
and Volker Markl. 2020. The NebulaStream Platform for Data and Application
Management in the Internet of Things. In 10th Conference on Innovative Data
Systems Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020,
Online Proceedings. www.cidrdb.org.

2481

https://quix.io/blog/windowing-stream-processing-guide?utm_source=chatgpt.com
https://quix.io/blog/windowing-stream-processing-guide?utm_source=chatgpt.com
https://www.redpanda.com/blog/popular-stream-processing-patterns?utm_source=chatgpt.com
https://www.redpanda.com/blog/popular-stream-processing-patterns?utm_source=chatgpt.com
https://sensor.community/de/
https://sensor.community/de/
https://www.investopedia.com/articles/active-trading/101014/basics-algorithmic-trading-concepts-and-examples.asp
https://www.investopedia.com/articles/active-trading/101014/basics-algorithmic-trading-concepts-and-examples.asp
https://www.snowflake.com/wp-content/uploads/2024/03/The-Modern-Data-Streaming-Pipeline-1.pdf
https://www.snowflake.com/wp-content/uploads/2024/03/The-Modern-Data-Streaming-Pipeline-1.pdf
https://www.snowflake.com/wp-content/uploads/2024/03/The-Modern-Data-Streaming-Pipeline-1.pdf

	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 Stream Processing Fundamentals
	2.2 Window Join Types and their Semantics

	3 Commutativity
	3.1 Sliding Window Joins
	3.2 Session Window Joins
	3.3 Interval Joins

	4 Associativity
	4.1 Sliding Window Joins
	4.2 Session Window Joins
	4.3 Interval Joins

	5 Acquisition of Properties
	5.1 Acquiring Commutativity for Case C4
	5.2 Acquiring Full Associativity for Case A4
	5.3 Leveraging Time Propagation
	5.4 Classification of Window Join Properties

	6 WJR Algorithm and Integration
	6.1 Window Join Enumeration Algorithm
	6.2 System Integration Details

	7 Evaluation
	7.1 Experimental Setup
	7.2 Applied Case Validation
	7.3 Impact of Window Join Reordering
	7.4 Observations on Join Order Performance

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

