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ABSTRACT
Multimodal Entity Linking (MEL), which involves disambiguat-

ing a mention composed of multimodal inputs to a multimodal

knowledge base (KB), has gained increasing attention. Although ex-

isting MEL approaches using supervised learning show promising

performance, they depend heavily on large-scale labeled training

data, which is expensive to obtain for each new scenario. Unsuper-

vised learning MEL methods, on the other hand, typically consist

of two main steps. In the first multimodal data encoding step, these

methods either assume that the multimodal data inputs are of high

quality or attempt to filter out the noisy modality. In the second

entity ranking step, they employ a bipartite graph to model the

relationships only between mentions and entities. However, unsu-

pervised methods face challenges in both steps. In the first step,

data quality issues arise, including limited context in textual inputs

and noise in the corresponding images. Moreover, in the second

step, the bipartite graph fails to capture coherence between highly

correlated entities within the KB, which offers clues on shared do-

mains among entities. This limitation hinders effective retrieval of

the target entity. To address these issues, we propose a novel unsu-

pervised learning framework, OpenMEL, for solving the MEL task.

We enhance the textual modality contextual information by incor-

porating full context comprehension and general knowledge, and

generates three levels of visual inputs for further adaptive selection

to handle noise. To capture global entity coherence, we construct a

tree cover structure, defining it as a maximum spanning tree with

bounded nodes to meet the MEL objective. We then introduce a

greedy algorithm with theoretical guarantees to solve this problem.

Experimental results on three public benchmark datasets show that

OpenMEL outperforms various state-of-the-art baselines.
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1 INTRODUCTION
Over the decades, the task of text-based entity linking has been

widely studied [7, 8, 12, 15, 18, 24] to organize knowledge from

natural language documents into the structural format employed

by Knowledge Bases (KBs). This task supports a broad range of

applications, including question answering [12, 32, 42, 49], KB pop-

ulation [10, 22], and information retrieval [6, 19]. Recently, with

the surge of multimodal information such as images along with

texts [1, 31, 53], studies have increasingly focused on enhancing

text-based entity linking with visual information, leading to the

development of Multimodal Entity Linking (MEL) [1, 27, 31, 51–

53, 56, 58, 59]. The MEL task is an entity linking problem that aims

to link a mention (consisting of textual context along with a related

image) to the most similar entity (represented by its corresponding

image and textual context) in a given KB [1, 27, 31, 51–53, 56, 58, 59].

By leveraging multimodal information, MEL makes it easier and

more accurate to resolve ambiguous cases that are challenging in

traditional text-based entity linking. For example, the individual

profile is helpful in distinguishing whether “Michael Jordan” refers

to the computer scientist or the basketball player.

Figure 1: Examples of multimodal entity linking. Upper: Two
multimodal samples with fourmentions, highlighted in bold,
pending for linking. Lower: Link an example mention “Ryan
Scott” to the corresponding entity in KB.

Most existing works [1, 27, 31, 51, 52, 56] approach the MEL task

through supervised learning, which necessitates a large amount of

labeled data—an average of 15, 978 labeled instances across three

benchmark datasets [51, 53]. However, preparing such a large la-

beled dataset is resource-intensive. Consequently, some studies

evaluate existing methods in low-resource settings, using 10% and

20% of the training data. In these scenarios, the accuracy on the

WikiDiverse dataset [53] drops by an average of 24.8% and 13.9%,
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Figure 2: The OpenMEL framework operates as follows: given a multimodal mention context, OpenMEL first optimizes the
multimodal inputs by expanding the contextual information in the textual data and generating three levels of visual information
from the visual data. It then constructs a maximum spanning tree with bounded nodes for each mention, linking them to
entities in the KB while ensuring global coherence throughout the unsupervised entity ranking process.

respectively, across four commonly compared supervised MELmod-

els [27]. This significant decline highlights the heavy reliance of

supervised models on large-scale training data, while preparing

such datasets for every new scenario is costly. On the other hand,

unsupervised learning typically reduce annotation costs by encod-

ing multimodal inputs into feature representations and ranking

entities by their semantic similarity between the mention’s fea-

tures and those of the entities, selecting the entity with the highest

similarity as the linking target [27, 45, 53, 56]. However, there are

still challenges within the two main steps of unsupervised learn-

ing—multimodal data encoding and entity ranking—that need to be

addressed to develop a high-performing unsupervised MEL method.

The first challenge is the multimodal data quality problem.

Without labeled data, unsupervised MEL methods either make the

strong assumption that multimodal data is of high quality for direct

encoding and comparison [27, 45, 53, 56], or filter out noisy modal

data based on the similarity of multimodal data features [58, 59],

which risks losing valuable information from the discarded modal-

ity [56]. In real-world scenario, the multimodal data inputs has the

following quality problem. For the textual input, mentions often lack

sufficient context, making it difficult to resolve ambiguities, such as

polysemy (the same name can refer to different entities) [17, 31, 53]

and mention diversity (“J-Lo” and “Jennifer Lopez” refer to the same

person) [17, 27, 31, 53]. For instance, there exists polysemy prob-

lem (several distinct “Ryan Scott” entities in the KB) in the second

sample as shown in Figure 1. For the visual inputs, there is varying

relevance between the text and its accompanying image, ranging

from strongly correlated (e.g., President Barack Obama with the

image) to moderately correlated (e.g., Chris Bond and Ryan Scott

with the image) or even irrelevant (e.g., alternative energy with

the image), as illustrated in Figure 1. Thus, effectively addressing

the limited context problem and managing noise from moderately

correlated or irrelevant images remains a significant challenge.

The second challenge is the entity global coherence problem.

Existing unsupervised methods typically use a bipartite graph [17,

34] in the entity ranking step, comprising a mention set and an en-

tity set, with mention-to-entity relationships represented as edges

between the two sets. The entity with the edge of highest simi-

larity to the mention is then selected as the target [27, 45, 53, 56].

However, this structure fails to capture global coherence among

entities, as it excludes entity-entity edges within the entity set.

Global coherence within the entities is crucial for effective entity

linking. As illustrated in Figure 1, the co-occurrence of “Ryan Scott”

and “Chris Bond” associating with “Wheelchair” in the KB implies

a shared domain between them, providing a clue that mentions

of “Ryan Scott” and “Chris Bond” in the second sample are likely

linked to their athlete identities rather than other potential matches,

such as the chef or guitarist. Thus, it is essential for us to design

an appropriate data structure to capture both mention-to-entity

relationships and entity coherence within the KB [8, 24]. Moreover,

to effectively achieve the objectives of the MEL task, framing a

problem within the proposed data structure remains an ongoing

challenge.

In this paper, we address the aforementioned challenges by

proposing an unsupervised MEL framework on open domains

named OpenMEL (illustrated in Figure 2). Leveraging multimodal

data for a given mention, we employ human-in-the-loop contex-

tual prompts with instructions for large language models (LLMs)

to understand the full context and enhance queries with general

knowledge. To address potential visual noise, we process it into

three levels of visual inputs. Subsequently, we construct a tree cover

structure rooted at each given mention and its entities in the KB to

capture entity global coherence. Tomeet theMEL problem objective,

we define a maximum spanning tree problem with bounded nodes.

To summarize, in this paper, we make the following contributions.
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• We propose an unsupervised OpenMEL framework to effectively

tackle theMEL task by improvingmultimodal data quality during

the multimodal data encoding step, and resolving entity global

coherence in the entity ranking step.

• To improve the multimodal data quality, we design a human-in-

the-loop contextual prompts module for LLMs to enhance textual

inputs and process visual inputs into three levels of information

for adaptive selection.

• To resolve entity global coherence, we construct a tree cover

structure capturing both mention-entity and entity-entity edges.

We then formulate it as a maximum spanning tree with bounded

nodes problem, which is NP-hard but can be solved by our pro-

posed greedy algorithm under theoretical guarantees, to meet

the MEL problem objective.

• Our extensive experiments demonstrate that the proposed Open-

MEL framework outperforms many state-of-the-art methods, in-

cluding both supervised and unsupervised approaches, on three

real-world benchmark datasets. Additionally, the ablation study,

parameter sensitivity analysis, prompting comparison, and scal-

ability evaluation further validate the robustness of OpenMEL.

2 PRELIMINARY
In this part, we introduce some important definitions and the prob-

lem setup used in this paper.

Definition 1 (Knowledge Base (KB)). A KB is a collection of
facts representing real-world concepts and events stored as a triple
(𝑒1, 𝑟 , 𝑒2). 𝑒1, 𝑒2 are two entities and 𝑟 represents the relation between
them. Specifically, we denote the set of all entities in the KB as 𝐸.

Definition 2 (Multimodal Input). Each entity 𝑒𝑖 is character-
ized by the corresponding visual context (correlated image) 𝑉𝑒𝑖 and
textual context (textual spans around the entity) 𝑇𝑒𝑖 . Each mention
𝑚 is also represented by its associated textual context 𝑇𝑚 and visual
context 𝑉𝑚 .

Definition 3 (Mention set). A mention 𝑚 refers to a span
of text, typically a noun phrase, in the given text 𝑇𝑚 that can be
linked to an entity in the KB. A dataset D contains a set of mentions,
𝑀 = {𝑚1,𝑚2, . . . }, which is called the mention set.

For example, in Figure 2, two samples contain mentions of “Pres-

ident Barack Obama”, “alternative energy”, “Ryan Scott” and “Chris

Bond” in the mention set.

Definition 4 (Candidate Entity Set). For each mention𝑚𝑖 in
the mention set, there are multiple candidate entities {𝑒1

𝑖
, 𝑒2
𝑖
, . . . } ⊂ 𝐸

for that𝑚𝑖 . We then define the union of all candidate entities for every
mention in the mention set as the candidate entity set E where E ⊂ 𝐸.

As shown in Figure 2, the candidate entities for the mention

“Chris Bond” are {Chris Bond (footballer), Chris Bond (Wheelchair),

...}, and for the mention “Ryan Scott”, the candidates are {Ryan Scott

(Wheelchair), Ryan Scott (Chef), ...}. The candidate set E is the

union of candidate entities for all mentions in the mention set.

We then formally present the problem that we aim to solve.

Problem 1 (Open Multimodal Entity Linking). Let E repre-
sents the candidate entity set from an existing KB, where each entity
𝑒𝑖 ∈ E is characterized by multimodal input 𝑒𝑖 (𝑉𝑒𝑖 ,𝑇𝑒𝑖 ). Given a

mention with multimodal input, our objective is to effectively link
𝑚 to the most similar entity in E directly, without any training, as
𝑒∗ (𝑚) = argmax𝑚∼𝑒𝑖 ∈𝐿 Φ(𝑚(𝑇𝑚,𝑉𝑚, 𝜎); 𝑒𝑖 (𝑇𝑒𝑖 ,𝑉𝑒𝑖 )), where Φ(·)
denotes the similarity score. 𝑚(𝑉𝑚,𝑇𝑚, 𝜎) indicates the mention’s
multimodal inputs, which are initially affected by limited context in
𝑇𝑚 and noise 𝜎 in 𝑉𝑚 . The set 𝐿 denotes the edges formed between
the mention and some entities in the candidate entity set E, with each
edge represented by𝑚 ∼ 𝑒𝑖 .

To effectively address Problem 1, we face two technical chal-

lenges as discussed in Section 1: (1) the multimodal data quality

issue, where mention’s textual input𝑇𝑚 suffers from limited context

and visual input 𝑉𝑚 contains noise 𝜎 , and (2) the need to resolve

entity global coherence within the linked edge set 𝐿 and retrieve the

most similar entity in 𝐿. Accordingly, OpenMEL is structured into

two distinct modules: one module aims to optimize multimodal data

quality, transforming the original low-quality multimodal inputs,

denoted as𝑚(𝑇𝑚,𝑉𝑚, 𝜎), into𝑚(𝑇 ′𝑚, {𝑉𝑚,𝑉 ′𝑚, ∅}), where 𝑇 ′𝑚 repre-

sents the enhanced texts and {𝑉𝑚,𝑉 ′𝑚, ∅} represents the three-level
visual inputs for adaptive selection, as detailed in Section 3. The

other module addresses entity global coherence when constructing

the linked edge set 𝐿 and further retrieves the entity with highest

similarity via the function argmaxΦ(·), as discussed in Section 4.

3 NOISE-FREE EXPANDED QUERIES
GENERATION

In this section, we aim to address the multimodal data quality

problem in the given low-quality multimodal inputs𝑚(𝑇𝑚,𝑉𝑚, 𝜎)
by handling limited context in𝑇𝑚 and noise𝜎 in𝑉𝑚 . Specifically, the

original visual input𝑉𝑚 is processed into three levels of information

{𝑉𝑚,𝑉 ′𝑚, ∅} for further adaptive selection. Finally, we propose a

human-in-the-loop greedy algorithm to help mitigate potential

hallucinations.

3.1 Principles
As discussed in Section 1, mention’s multimodal input lacks suffi-

cient context thus suffering from polysemy and mention diversity.

On the other hand, there is noise within visual inputs such as im-

ages that are either irrelevant or relevant but misleading. We give

detailed analysis from the perspective of each modality.

• Polysemy and mention diversity issues become more prominent

when the textual content is limited. In particular, incorporating

noise-free visual information from accompanying images and

enriching the textual context with general knowledge can aid in

further disambiguation.

• As shown in Figure 1, images can display varying levels of rele-

vance to the mention being linked, ranging from highly corre-

lated to moderately correlated, or even completely irrelevant.

Consequently, our goal is to address the aforementioned mul-

timodal data quality issues to ultimately optimize the mention’s

multimodal inputs based on our analysis.

3.2 In-context Learning with Instructions
Large models, particularly transformer-based architectures have

been shown to effectively capture the contextual nuances of lan-

guage, which is beneficial in cases where traditional methods may
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Figure 3: In-depth in-context learning prompts, accompanied by instructions and additional demonstration examples, are
utilized to expand textual content and generate the second level visual information to address multimodal data quality problem.

struggle due to a lack of deeper understanding of full context [3, 21].

In this subsection, we use contextual prompts with instructions

to guide LLMs in understanding the task and full textual contents,

enabling them to generate enhanced text𝑇 ′𝑚 and process three-level

visual information {𝑉𝑚,𝑉 ′𝑚, ∅} as previously analyzed.

3.2.1 Textual Context Expansion. In the textual modality, we intu-

itively harness the general knowledge of LLMs and guide them in

understanding the MEL task, providing additional information on

the mention to be linked.

We illustrate the use of contextual prompts with instructions,

further supported by demonstration examples as depicted in Fig-

ure 3. Specifically, we craft a targeted question (i.e., Please provide
more information about this mention which will help our further

linking), alongside contextual instructions (i.e., You will be given

a text and a specific mention. We will further link the mention to

an entity in the existing knowledge base) for the MEL task. Given

the mention’s raw text and the name to be linked, LLMs process

the input and generate more detailed explanations following our

demonstration examples (i.e., Given text: A stamp issued by Russia

for the Paralympic Games held in Sochi in 2014. Mention: Russian.

Information you should generate: Russia is a country spanning

Europe and Asia) using general knowledge. In this way, we enrich

the textual inputs 𝑇𝑚 with contextual information, resulting in 𝑇 ′𝑚 .

3.2.2 Three Levels of Visual Inputs. Similar to how humans process

visual information, we divide and analyze it into three levels, as

illustrated in Figure 2. The first level is when the image directly

depicts the mention itself, such as a person’s profile, which allows

humans to compare the two profiles and determine if they refer to

the same mention. The second level is when the image is related to

the mention, and humans extract keywords from the image to assist

in further disambiguation, for example, identifying Ryan Scott as

a “wheelchair” athlete based on the image. Finally, the third level

is when the image is irrelevant to the mention, such as a profile of

“President Barack Obama” for the mention “alternative energy”, in

which case humans disregard the visual information.

Following this, each image can be processed into three levels

of visual information: the raw image 𝑉𝑚 , which includes complete

visual information as input; the vision caption 𝑉 ′𝑚 , which only de-

scribes the main contents of the image; and no visual input ∅ when
the image is irrelevant to the mention. The three levels of visual

information further support adaptive selection, helping to filter

out noise while retaining as much relevant information as possible.

Specifically, the vision caption𝑉 ′𝑚 is processed using the in-context

learning capability of multimodal LLMs, as depicted in Figure 3.

The initial prompt is “What’s in the image?”, to provide an objective

description of the image. For specific topics, such as PERSON, we

further refine the prompt to help LLMs generate more information

about the individual, particularly regarding their occupation. To

further address noise—defined as moderate relevance or irrelevance

between the accompanying image and the mention—we discuss the

adaptive selection of three levels of information in Section 4.1.

3.3 Hallucinations Mitigation
In this subsection, we implement a human-in-the-loop greedy algo-

rithm designed to identify potential hallucinations within the texts

generated by LLMs as an option module for the first step.

We face two primary challenges in this task. First, given the

substantial volume of data, it is impractical for humans to review

all the information. Second, there is a need to establish an evalua-

tion metric and a ground truth to assess the likelihood that a given

instance is a hallucination. Compared to raw visual inputs might

containing noise, textual inputs have a stronger correlation with

the mentions they contain. Therefore, raw texts are considered the

ground truth. The evaluation metric we use is normalized cosine

similarity ranging from 0 to 1 measuring the semantic similarity, de-

noted as 𝜙 (𝑥,𝑦) = (𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑥,𝑦) +1)/2, where 𝑥,𝑦 is any
two vectors with the same dimension. We measure the similarity
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of 𝑇 ′𝑚 and 𝑉 ′𝑚 generated by LLMs with ground truth 𝑇𝑚 . Given the

constraints on human involvement in the system, we greedily rank

instances based on their similarity. We then select the data items

with the lowest similarity for manual review and re-annotation.

In conclusion, we optimize the multimodal inputs to enhance

contextual information and eliminate noise, transforming them into

𝑚(𝑇 ′𝑚, {𝑉𝑚,𝑉 ′𝑚, ∅}) for adaptive selection and tree cover construc-

tion as follows.

4 GLOBAL COHERENCE RESOLUTION
In this section, we firstly construct a tree cover to establish mention-

to-entity and entity-to-entity edges in 𝐿, as defined in Problem 1, to

resolve the global coherence of entities. Then, we conduct the entity

ranking to realize the MEL task objective by further defining the

tree cover structure as the maximum spanning tree with bounded

nodes problem and propose an approximation algorithm to solve it.

4.1 Tree Cover Construction
In this subsection,we introduce a tree cover structure rooted at each

mention to model our goal of capturing the global coherence of

entities within the KB. Specifically, we define it as follows.

Definition 5 (Tree Cover). The tree cover (𝑉 , 𝐿) = ((𝑀, E), 𝐿)
is a weighted undirected heterogeneous graph, where𝑉 represents the
set of nodes and 𝐿 is the set of linked edges. Each node belongs to either
the mention set𝑀 or the candidate entity set E. The edge between any
two nodes is assigned a weight that measures the semantic distance
between their multimodal data representations. The root of each tree
corresponds to a specific mention awaiting linking.

The objective of tree cover construction is to discover all entities

𝑒𝑖 ∈ E that are related to the mention 𝑚, while simultaneously

considering the global coherence of the entities. For example, as

shown in Figure 4a, for each tree rooted at the mention 𝑚1,𝑚2,

we establish weighted edges between nodes to capture their co-

occurrence. Specifically, two types of edges are defined as follows.

Definition 6 (Tree Cover Edge Setup). In the tree cover, edges
are structured to satisfy the following conditions:

• A mention-entity edge is initially constructed by linking the men-
tion to its 𝐾 highest weighted (most similar) neighbors in the can-
didate entity set, using the similarity Ψ(𝑚(𝑉 ′𝑚,𝑇 ′𝑚), 𝑒𝑖 (𝑉𝑒𝑖 ,𝑇𝑒𝑖 )),
where 𝑒𝑖 ∈ E.

• An entity-entity edge is then connected to their 𝐾 highest weighted
neighbors within the candidate entity set using the similarity func-
tion on only textual inputs 𝜙 (𝑒𝑖 (𝑇𝑒𝑖 ), 𝑒 𝑗 (𝑇𝑒 𝑗 )) since textual inputs
have a stronger correlation with the entities they contain.

The similarity function Ψ is defined as the maximum value from

all multimodal similarity scores, as shown in Equation (1), to prevent

certain lightweight edges from dominating others. This approach

ensures that a lightweight edge, which reflects only a small semantic

distance from a local perspective, does not overshadow the broader

multimodal correlations captured from a global perspective.

Ψ(𝑚(𝑉1,𝑇1), 𝑒 (𝑉2,𝑇2)) = max{𝜙 (𝑉1,𝑉2), 𝜙 (𝑉 ′1 ,𝑇2),
𝜙 (𝑇 ′

1
,𝑉2), 𝜙 (𝑇 ′1 ,𝑇2)}

(1)

𝑉1,𝑉2 denotes the raw visual image, 𝑉 ′
1
,𝑇 ′

1
are the generated

vision caption and expanded textual query through the first step.

This approach addresses the challenge of varying relevance be-

tween vision and text inputs through adaptive selection. For ex-

ample, linking the mention “Ryan Scott” to the entity “Ryan Scott

(Wheelchair)” in the KB is achieved through this adaptive selection

of the maximum similarity, which corresponds to the edge between

the mention’s vision caption and the entity’s text, as shown in

Figure 2.

Algorithm 1: Tree Cover Edge Setup
Input:Mention set𝑀 , Candidate entity set E, Number of

Neighbors 𝐾

Output:Mention-entity edge index set 𝐼𝑚𝑒 and weight set

𝐷𝑚𝑒 ; Entity-entity edge index set 𝐼𝑒𝑒 and weight

set 𝐷𝑒𝑒
1 foreach𝑚𝑡 ∈ 𝑀 do
2 foreach 𝑒𝑖 ∈ E do
3 Calculate mention-entity edge weight using

similarity function:

Ψ(𝑚(𝑉 ′𝑚𝑡
,𝑇 ′𝑚𝑡
), 𝑒𝑖 (𝑉𝑒𝑖 ,𝑇𝑒𝑖 ))

4 Link𝑚 to its 𝐾 highest weighted entities, record their

indices and weights as 𝐼𝑚𝑡𝑒 and 𝐷𝑚𝑡𝑒 ;

5 foreach 𝑒𝑖 ∈ 𝐼𝑚𝑡𝑒 do
6 foreach 𝑒 𝑗 ∈ E do
7 Calculate entity-entity edge weight using

similarity function:

𝜙 (𝑒𝑖 (𝑇𝑒𝑖 ), 𝑒 𝑗 (𝑇𝑒 𝑗 ))

8 Link 𝑒𝑖 to its 𝐾 highest weighted entities, record

their indices and weights as 𝐼𝑒𝑖𝑒 and 𝐷𝑒𝑖𝑒 ;

9 return 𝐼𝑚𝑒 , 𝐷𝑚𝑒 , 𝐼𝑒𝑒 , 𝐷𝑒𝑒

In conclusion, the tree cover edge setup algorithm is detailed

in Algorithm 1. The algorithm first constructs the mention-entity

edges (lines 1–4), then establishes the entity-entity edges (lines 5–8).

Finally, it returns the edge index set along with the corresponding

weight set (line 9).

Time Complexity. The time complexity for the Tree Cover

Edge Setup is divided into two components. For each mention, the

mention-entity edge setup has a complexity of𝑂 ( |E |) for similarity

calculation and 𝑂 ( |E | · log |E |) for ranking. Similarly, for entity-

entity edge setup, the complexity is 𝑂 (𝐾 · ( |E | + |E | · log |E |)).
Consequently, the dominating term for the time complexity of

Algorithm 1 simplifies to 𝑂 ( |𝑀 | · |E | · log |E |).

4.2 Maximum Spanning Tree with Bounded
Nodes

To realize the MEL objective in Problem 1 within the constructed

tree cover, we define the maximum spanning tree with bounded

nodes problem as follows.

Problem 2 (The Maximum Spanning Tree with Bounded

Nodes Problem). Given the pre-constructed tree cover, the target
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mention𝑚 for linking, and the number of entities to be retrieved as the
selection bound 𝐵, our goal is to identify the maximum spanning tree
rooted at𝑚. This maximum spanning tree is a weighted, connected,
acyclic graph 𝑆 consisting of 𝐵 leaf nodes (entities), rooted at the target
mention𝑚, that maximizes 𝐺 (𝑆), as defined in Equation (2).

𝐺 (𝑆) =
∑︂
𝑒𝑖 ∈𝑆

𝑣 (𝑒𝑖 ), |𝑆 | ≤ 𝐵 (2)

Specifically, 𝑣 (𝑒𝑖 ) represents the edge weights in the tree rooted

at𝑚. As shown in Equation (3), we would like to find the set of

entities 𝑆∗ which can maximize the target value 𝐺 (𝑆) denoted as

Equation (2). For instance, for the tree rooted at the mention “Ryan

Scott,” as shown in Figure 2, we first add the entity “Ryan Scott”

in the KB to 𝑆 if the weight of the edge between it and the root

mention is the highest.

𝑆∗ = argmax

𝑆
𝐺 (𝑆) (3)

Notably, we explain the intuition to formulate the MEL problem

on the constructed tree cover as a maximum spanning tree with

bounded nodes problem as follows.

• In each step, each tree is rooted with a mention𝑚 for linking.

This ensures that no mention is excluded.

• Each tree, rooted at a specific mention𝑚, is connected to the

most similar 𝐾 entities in the KB. Additionally, each entity is

connected to its correlated neighbors in the KB, acting as leaf

nodes. This structure ensures the co-occurrence between the

mention and all potentially correlated entities within each tree,

thereby resolving the global coherence.

• By defining the cost of a tree as the sum of the weights of its

included leaf nodes and limiting the total number of leaf nodes

to 𝐵, where 𝐵 is the number of entities to be linked, maximizing

the cost of the tree equates to linking the mention to the 𝐵 most

similar entities.

Specifically, 𝐵 = 1 denotes linking the root𝑚 to the most sim-

ilar (Top-1) leaf node (entity) in the tree. Then, the solution to

Problem 2 satisfies the objective function of OpenMEL denoted

as 𝑒∗ (𝑚) = argmax𝑚∼𝑒𝑖 ∈𝐿 Φ(𝑚(𝑇 ′𝑚,𝑉 ′𝑚); 𝑒𝑖 (𝑇𝑒𝑖 ,𝑉𝑒𝑖 )) in Problem 1.

Notably, compared to existing works which commonly employs a

bipartite graph structure [17, 34], the coherence between entities is

not captured because the bipartite graph property precludes edges

within the set of candidate entities. On the other hand, our con-

structed tree cover captures the relationships between mentions

and entities, facilitating co-occurrence for further entity linking

as described in Problem 2. For instance, as shown in Figure 2, a

bipartite graph structure only establishes similarity between the

mention “Chris Bond” and candidate entities such as “Chris Bond

(Wheelchair)” or “Chris Bond (Footballer)”. However, our tree cover

additionally considers the similarity between entities “Chris Bond

(Wheelchair)” and related terms “Wheelchair” and “Ryan Scott

(Wheelchair)”, increasing the likelihood of correctly linking “Chris

Bond (Wheelchair)” to the mention.

Theorem 1 (Problem 2 is NP-hard). The maximum spanning
tree with the bounded node problem can be proven to be NP-Hard by
a reduction to the Knapsack problem.

Proof. Given an instance 𝐼 of the Knapsack problem as follows:

with a set of items {𝑖1, 𝑖2, . . . , 𝑖𝑛}, each with a weight𝑤𝑖 and a value

𝑣𝑖 , given the knapsack maximum weight capacity𝑊 , the goal is to

find a subset of items 𝑇 ⊆ {𝑖1, 𝑖2, . . . , 𝑖𝑛} such that the total weight

of 𝑆 does not exceed𝑊 and the total value is maximized.

We transform it to an instance 𝐽 of our maximum spanning tree

with bounded nodes problem by the following steps:

• Each entity in the candidate entity set E represents an item 𝑒𝑖
from the knapsack problem.

• We set the value of each entity 𝑣 (𝑒𝑖 ) as its edge weight linked to

its linked node 𝑛 in the distance set 𝐷 (𝑒𝑖 ,𝑛) .
• The weight capacity𝑊 is pre-defined, and we set the weight for

each entity to 1.

□

We then introduce how we address Problem 2 as follows.

4.3 The Approximation Algorithm
To solve Problem 2, we propose an approximation algorithm in-

spired by the methods in [23, 37]. In particular, the approximation

algorithm includes an edge pruning strategy and a greedy approach.

The input to the approximation algorithm is the tree cover con-

structed in Section 4.1, consisting of a set of mention nodes, each

rooted to a tree, along with a bound on the number of retrieved

entities, 𝐵. The output is a maximum spanning tree containing 𝐵

entities for each mention𝑚 ∈ 𝑀 .

4.3.1 Edge Pruning. Our goal is to prune redundant edges in the

tree to reduce the complexity of generating the maximum spanning

tree. There are two types of edges that can be pruned. The first is

any edge with a weight below a pre-defined threshold after edge

weight normalization. For example, as shown in Figure 4b, if the

threshold is set to 0.55, edges such as the one between 𝑒3 and 𝑒7
with weights equal to or below this threshold should be pruned.

The second step involves removing cycles associated with the

tree root. This means that if there is an edge between 𝑒1 and 𝑒2 while

the mention𝑚 is already linked to both 𝑒1 and 𝑒2, the edge between

𝑒1 and 𝑒2 can be pruned. Since 𝑒1 and 𝑒2 are already part of the

candidate set, removing this edge helps reduce the complexity in

the MST generation. For example, the pairs𝑚1, 𝑒1, 𝑒3 and𝑚2, 𝑒4, 𝑒6
form cycles, where we prune the edges between 𝑒1 and 𝑒3, as well

as between 𝑒4 and 𝑒6.

4.3.2 Maximum Spanning Tree (MST) Generation. To generate a

MST with bounded nodes in polynomial time, we propose a greedy

algorithm as shown in Algorithm 2. The start node is the root

mention𝑚. The basic idea is to firstly rank all edges for each node

in descending order then greedily select the entity which will not

form a cycle and bring the maximum weighted edge Δ𝐺 (𝑒 |𝑆) in
Equation (4) to its corresponding node in existing set 𝑆 until 𝑆

exceeding the selection bound. For example, as shown in Figure 4c,

we start from𝑚1 and first select 𝑒3, as the edge between𝑚1 and 𝑒3
has the highest similarity score.

Δ𝐺 (𝑒 |𝑆) = 𝐺 (𝑆 + {𝑒}) −𝐺 (𝑆) (4)

The details are illustrated in Algorithm 2. We begin by initial-

izing a heap to record the pushed edges, starting with the root
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(a) Tree Cover Construction. (b) Edge Pruning. (c) Maximum Spanning Tree Generation.

Figure 4: Running Examples for Entity Global Coherence Resolution. The blue line represents the existence of a circle. The
orange line indicates that the similarity of the edge is below the threshold. Dashed lines represent pruned edges. The red
entities are the Top-B entities linked to the corresponding mention.

mention. At each step, we pop the highest-weighted edges and

check whether the linked entity forms a cycle, in order to avoid

redundant selections. Specifically, to detect the cycles, we utilize

the Union-Find data structure [23]. Each node initially serves as

its own set (i.e., it is its own parent). For every new edge (𝑢, 𝑣), we
check if 𝑢 and 𝑣 are already connected (i.e., they belong to the same

set). If they do not belong to the same set, we merge them using

the union function and add this edge to the tree.

We further prove that the proposed greedy Algorithm 2 does

have a theoretical guarantee on its approximation ratio.

Theorem 2 (Approximation Ratio). The greedy algorithm on
the maximum spanning tree with bounded nodes problem can achieve
an approximation ratio of 1 − 1

𝑒 .

Proof. We first prove the following lemma.

Lemma 1. The objective of maximum spanning tree with bounded
nodes problem as shown in Equation (2) is monotone and submodular.

Proof. (1) 𝑣 (𝑒𝑖 ) represents the maximum edge weights among

the multimodal similarities, as shown in Equation (1), where each

component 𝜙 is positive. Consequently, 𝑣 (𝑒𝑖 ) is positive, and thus,

the summation of 𝑣 (𝑒𝑖 ) is monotonically increasing.

(2)We prove submodularity by showing that𝐺 (𝑆+𝑣 (𝑒𝑖 ))−𝐺 (𝑆) =
Δ𝐺 (𝑒𝑖 |𝑆) ≥ 𝐺 (𝑇 + 𝑣 (𝑒𝑖 )) − 𝐺 (𝑇 ) = Δ𝐺 (𝑒𝑖 |𝑇 ), where 𝑆 ⊆ 𝑇 and

node 𝑣 (𝑒𝑖 ) ∉ 𝑆,𝑇 . This holds because the order in which entities

are added depends on their weights. An entity with a higher weight

relative to the nodes in the existing set will be added to the result

earlier in 𝑆 than one with a lower weight. □

Since 𝐺 (𝑆) as defined in Equation (2) is monotone and submod-

ular, according to Hochbaum [20], the approximation ratio of pro-

posed Algorithm 2 is 1 − 1

𝑒 . □

Running Example. We present a comprehensive running ex-

ample of the global coherence resolution module as depicted in

Figure 4, which encompasses tree cover construction, edge prun-

ing, and maximum spanning tree generation. Specifically, we first

follow Definition 6 to construct a tree cover for each mention such

as𝑚1,𝑚2 pending linking. Secondly, we prune edges whose weight

is below the threshold, as well as the edge which forms a circle

with the root mention. For example, there are circles between𝑚1

and 𝑒1, 𝑒3 as well as𝑚2 and 𝑒4, 𝑒6. Then, according to the design in

Section 4.3.1, edge between 𝑒1, 𝑒3 and edge between 𝑒4, 𝑒6 should

be pruned. Thirdly, we conduct Algorithm 2 to retrieve the target

Algorithm 2:Maximum Spanning Tree for Mention𝑚

Input:Mention𝑚, mention-entity indices 𝐼𝑚𝑒 , distances

𝐷𝑚𝑒 , entity-entity indices 𝐼𝑒𝑒 , distances 𝐷𝑒𝑒 ,

selection bound 𝐵

Output:Maximum spanning tree for mention𝑚

1 Initialization:
2 start_node←𝑚

3 max_heap 𝐻 ← ∅
4 total_weight𝑊 ← 0

5 results← [𝑚]
6 edge_list 𝐸 ← ∅
7 𝐻.push(𝐷𝑚𝑒 ,𝑚, 𝐼𝑚𝑒 )
8 𝑒𝑚𝑒𝑖 ← 𝐻.pop()
9 results.add(𝑒𝑚𝑒𝑖 )

10 foreach 𝑒 𝑗 ∈ 𝐼𝑚𝑒 do
11 𝐻.push(𝐷𝑒𝑒 [𝑒 𝑗 ], 𝑒 𝑗 , 𝐼𝑚𝑒 [𝑒 𝑗 ])
12 while |𝑟𝑒𝑠𝑢𝑙𝑡𝑠 | < 𝐵 do
13 𝑒𝑎𝑏 ← 𝐻.pop() // Pop the next edge (a, b)

14 while 𝑎 ∉ 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 do
15 𝑒𝑎𝑏 ← 𝐻.pop()
16 if 𝐸.add(𝑏) does not form a cycle then
17 results.add(b)

18 return results

entities. As shown in Figure 4c, we set 𝐵 = 2 which requires Top-2

most similar entities to be retrieved.

Time Complexity. The first module requires 𝑂 (𝑙𝑜𝑔𝐾) to push

and pop an item in the Heap 𝐻 which we pre-defined the number

of entities recorded in 𝐼𝑚𝑒 is 𝐾 . And the loop to push further en-

tities requires 𝑂 (𝐾 · log𝐾). The second module is the main loop

which iterates 𝐵 times. Each iteration takes 𝑂 (log𝐾) to pop and

𝑂 (𝛼 (𝑛)) ≈ 𝑂 (1) for the cycle detection. Specifically, 𝛼 (𝑛) is the in-
verse Ackermann function, which grows very slowly and is nearly

constant for all practical purposes [48]. The overall time complex-

ity for the proposed greedy algorithm is 𝑂 ( |𝑀 | · 𝐾 · log𝐾) for all
mentions in the dataset.

OpenMEL Pipeline. The overview is as follows.
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• We optimize the multimodal data quality, enhancing textual in-

puts as 𝑇 ′𝑚 and three-level information as raw image embedding

(𝑉𝑚), image caption (𝑉 ′𝑚), and ∅ by prompts in Figure 3.

• We then construct the edge set 𝐿 with adaptive selection of visual

inputs associated with the target mention, while also considering

the entity’s global coherence, as outlined in Algorithm 1.

• Finally, we frame Problem 1 of the MEL task as a maximum span-

ning tree with bounded nodes problem, as defined in Problem 2,

which can be solved through Algorithm 2.

Time Complexity. After enhancing data quality through LLMs,

OpenMEL requires time complexity of 𝑂 ( |E | · log |E | + |𝑀 | · 𝐾 ·
log𝐾) = 𝑂 ( |E | · log |E |) (where |𝑀 | and 𝐾 are constants) for the

entity ranking step, which includes constructing the tree cover

using Algorithm 1, followed by generating the maximum spanning

tree with bounded nodes via Algorithm 2.

In conclusion, to solve Problem 1, the OpenMEL framework

follows the procedure of unsupervised learning methods while

addressing two key technical challenges during processing mul-

timodal inputs 𝑚(𝑇𝑚,𝑉𝑚, 𝜎) and constructing edges 𝐿 between

mention and entities. The first is improving the quality of multi-

modal input data during the data encoding step, and the second is

resolving entity global coherence within the KB.

5 EXPERIMENTS
In this section, we compare the performance of OpenMEL on the

MEL task against the state-of-the-art methods including both super-

vised and unsupervised ones, on three benchmark datasets. We also

conduct ablation studies, analyze parameter sensitivity, evaluate

prompting strategies, assess scalability, and conduct data analysis

for OpenMEL. Specifically, we intend to investigate the following

research questions (RQ):

• RQ1. How does the proposed OpenMEL perform compared with

various baselines?

• RQ2. How do the two proposed modules affect performance?

• RQ3. How does OpenMEL’s performance change with the pa-

rameters?

• RQ4. How does the quality of the LLM results influence the

outcome?

• RQ5.What is the data analysis of OpenMEL in terms of scalabil-

ity and image relevance?

5.1 Experimental Settings
In this subsection, we present the experimental settings of our

work, covering the implementation details of OpenMEL, datasets,

baseline comparisons, and evaluation metrics. All the experiments

are conducted on a server with 256GB RAM, 2.60GHz 18cores CPU,

with CentOS Linux release 7.9.2009 (Core) installed.

5.1.1 Implementation Details. We list the detailed techniques in

OpenMEL as follows.

• In the noise-free query expansion generation module, the LLMs

employed by OpenMEL are Llama3 [11] for the textual modality

and MiniCPM-Llama3-V-2_5 [57] for the visual modality. Af-

ter multimodal data enhancement, the multimodal data is fur-

ther processed into vector embeddings through the Vision-and-

Language Pre-training (VLP) model CLIP [39].

• For the WikiDiverse, which cover multiple mention topics, we

use the general visual prompt “What’s in the image?”. For datasets

focused on a specific topic, such as PERSON, we modify the

prompt to guide LLMs to provide more detailed descriptions by

leveraging in-context learning related to the individual’s occu-

pation, as detailed in Section 3.

• A KB containing large-scale entities makes mention linking

highly time-consuming, particularly when images are incorpo-

rated. For a fair comparison, the candidate entity set E is con-

structed according to prior works [27, 51, 53]. We use Wikidata

as the KB and exclude any mentions for which no corresponding

entity could be found in Wikidata [27].

Table 1: The statistics of multimodal entity linking datasets.
* stands for the average number.

Statistics WikiMEL RichpediaMEL WikiDiverse
# samples 22,136 17,806 7,969

# test 5,169 3,562 2,078

# mention* 1.2 1.8 2.0

# words* 8.2 13.6 10.1

# topic 1 1 7

5.1.2 Datasets. We employ three MEL datasets: WikiMEL, Richpe-

diaMEL [51], and WikiDiverse [53]. 1. WikiMEL [51] is sourced

fromWikipedia entity pages and comprises over 22,000 multimodal

sentences. The topic in WikiMEL is only PERSON. 2. Richpedi-
aMEL [51] is derived from a multimodal knowledge base Richpe-

dia [50]. The authors first extract entities from Richpedia, and then

enrich this information by obtaining additional multimodal data

fromWikidata. Like WikiMEL, RichpediaMEL also features a single

mention topic type: PERSON. 3. WikiDiverse [53] is a dataset

constructed from Wikinews, designed for multimodal tasks such as

entity linking or classification. WikiDiverse encompasses 7 topics,

including sports, technology, economy, and more, offering diverse

content that mirrors real-world scenarios.

We further illustrate the detailed statistics of each multimodal

entity linking dataset in Table 1. Specifically, each sample contains

multiple mentions to link in the textual input.

5.1.3 Baselines. We compare our method with various competitive

baselines, considering two aspects: the learning approach (super-

vised or unsupervised) and the different modality inputs, including

both text and vision.

Supervised learning methods include: 1. ARNN [13]: Takes text

as inputs and utilizes Attention-RNN to predict associations. 2.

DZMNED [31]: Employs a concatenated multimodal attention

mechanism to fuse visual, textual, and character features together. 3.

JMEL [1]: Projects visual and textual features into an implicit joint

space via fully connected layers. 4.MEL-HI [59]: Tries to remove

noisy images and mine implicit cues via multiple attention mecha-

nisms. 5. GHMFC [51]: Takes gated multimodal fusion and a novel

attention mechanism to link multimodal entities. 6. DWE [46]:

Serves as an advanced baseline enriching entity semantics and ob-

taining a more comprehensive textual representation. Since not all
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Table 2: Performance comparison. C, S, U, M separately stand for Classification, Supervised, Unsupervised Learning methods,
and Modality. T and V refer to Textual and Visual modality, respectively. The best result in S and U is highlighted in bold.
Baseline ended with * is implemented by us. Others are provided by corresponding papers. “Baseline (Aligned)” represents
using the same LLMs enhanced inputs aligned with OpenMEL. “w/o HITL” refers to evaluation conducted without any human-
in-the-loop for hallucination mitigation, while other inputs enhanced by LLMs are all tested with 10-shots annotations.

C M Methods WikiMEL RichpediaMEL WikiDiverse
HIT@1 HIT@5 HIT@10 HIT@1 HIT@5 HIT@10 HIT@1 HIT@5 HIT@10

S

T ARNN 32.0% 45.8% 56.6% 31.2% 39.3% 45.9% 22.4% 50.5% 68.4%

T+V DZMNED 34.7% 53.9% 58.1% 32.4% 43.7% 48.2% - 39.1% -

T+V JMEL 31.3% 49.4% 57.9% 29.6% 42.3% 46.6% 21.9% 54.5% 69.9%

T+V MEL-HI 38.6% 55.1% 65.2% 34.9% 43.1% 50.6% 45.7% 76.5% 88.6%

T+V GHMFC 43.6% 64.0% 74.4% 38.7% 50.9% 58.5% 46.0% 77.5% 88.9%

T+V DWE 44.7% 65.9% 80.8% 67.6% 97.1% 98.6% 47.5% 81.3% 92.0%

U

T BERT 31.7% 48.8% 57.8% 31.6% 42.0% 47.6% 22.2% 53.8% 59.8%

T BERT (Aligned)* 40.5% 54.1% 61.5% 37.6% 48.2% 50.4% 30.1% 59.9% 63.4%

T+V CLIP* 40.7% 56.0% 64.6% 38.1% 54.5% 62.4% 34.4% 59.7% 62.2%

T+V CLIP (Aligned)* 45.7% 64.2% 71.3% 41.4% 57.8% 65.3% 41.6% 64.8% 68.5%

T+V BM* 33.2% 50.7% 57.5% 45.1% 62.3% 69.9% 28.8% 48.8% 58.1%

T+V BM (Aligned)* 57.8% 72.1% 78.9% 54.4% 69.7% 76.8% 52.4% 68.2% 71.7%

T OpenMEL 61.9% 71.8% 74.6% 57.8% 66.5% 68.2% 63.0% 73.3% 75.6%

T+V OpenMEL (w/o HITL) 69.8% 81.0% 83.4% 65.5% 77.4% 80.4% 67.1% 82.2% 85.2%

T+V OpenMEL 69.8% 81.0% 83.4% 65.6% 77.4% 80.4% 67.1% 82.2% 85.2%
T+V OpenMEL (GPT-4o) 75.1% 84.3% 85.9% 72.6% 81.1% 83.2% 72.4% 87.2% 90.3%

Table 3: Experimental results of ablation studies on multimodal inputs and the two main modules of OpenMEL. All tests are
performed under same testing parameters (𝐾 = 10, 𝑓 = 0.5). The best scores are highlighted in bold.

Model WikiMEL RichpediaMEL WikiDiverse
HIT@1 HIT@5 HIT@10 HIT@1 HIT@5 HIT@10 HIT@1 HIT@5 HIT@10

OpenMEL 69.8% 81.0% 83.4% 65.6% 77.4% 80.4% 64.5% 76.8% 78.1%
m (T+V) + GCR 63.2% 79.9% 83.1% 55.5% 67.4% 71.4% 40.8% 63.8% 67.1%

NFEQ (T+V) + Top-K 49.7% 65.9% 73.6% 43.7% 59.3% 66.7% 44.6% 67.1% 70.8%

NFEQ (T) + GCR 61.9% 71.8% 74.6% 57.8% 66.5% 68.2% 63.0% 73.3% 75.6%

m (T) + GCR 54.9% 69.9% 73.4% 48.9% 61.0% 64.1% 45.8% 62.2% 66.4%

m (T+V) + Top-K 40.7% 56.0% 64.6% 38.1% 54.5% 62.4% 34.4% 59.7% 62.2%

methods and datasets support textual Wikipedia demonstrations,

DWE is also not equipped with it to ensure a fair comparison.

Unsupervised learning methods include: 1. BERT [9]: Stacks

several layers of transformers to encode each token in the text for

further similarity comparison. 2. CLIP [39]: Considers both textual

and visual features, concatenating multimodal features and further

calculating the similarity. 3. BM: is a multimodal Bipartite graph

Matching (BM) algorithm implemented from M3EL [17].

5.1.4 Evaluation Metrics. During evaluation, we set the parameter

𝐵 to 1, 5, 10 following the previous works [46, 51, 56, 59] to check

whether the Top-𝐵 entities, generated by OpenMEL, contain the

ground truth. We use HIT@B, as defined in Equation (5), to repre-

sent the hit rate of the ground truth entity when only considering

the top-𝐵 ranked entities produced by our method.

𝐻𝐼𝑇@𝐵 =
1

𝑁

𝑁∑︂
𝑖

𝐼 (𝑟𝑎𝑛𝑘 (𝑖) < 𝐵) (5)

𝑁 represents the total number of instances in test set, 𝑟𝑎𝑛𝑘 (𝑖)
denotes the rank of the 𝑖-th ground truth entity in the ranking list of

KB entities, and 𝐼 (·) refers to the indicator function, which equals

1 if the subsequent condition is satisfied and 0 otherwise [27].

5.2 Overall Comparison (RQ1)
We compare our proposed OpenMEL, using both textual inputs

and combined textual-visual inputs, against nine baseline models

across three benchmark datasets. To ensure a fairer comparison, we

also equip unsupervised baselines with the same LLM-enhanced

inputs, aligned with OpenMEL. Overall, OpenMEL achieves the

best performance in three benchmark datasets when compared to

all supervised and unsupervised learning methods in HIT@1 and

HIT@5 on average. Based on the experimental results in Table 2,

we present detailed observations and analysis as follows.

• According to Problem 1, the MEL task is to link the mention to

the most similar entity in the KB, measured by HIT@1 as the
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(a) Threshold 𝑓 on WikiMEL Dataset. (b) Threshold 𝑓 on RichpediaMEL Dataset. (c) Threshold 𝑓 on WikiDiverse Dataset.

(d) # Edges 𝐾 on WikiMEL Dataset. (e) # Edges 𝐾 on RichpediaMEL Dataset. (f) # Edges 𝐾 on WikiDiverse Dataset.

Figure 5: Parameter sensitivity experiments of filtering threshold 𝑓 and # edges 𝐾 on three datasets.

precision, while HIT@5 and HIT@10 measure the recall. Based

on the experimental results in Table 2, different methods have

their respective pros and cons. Our OpenMEL demonstrates com-

petitive performance in the precision metric, while supervised

learning methods, such as DWE, perform better in the recall

metrics, especially HIT@10.

• According to results of “Baseline (Aligned)”, integrating contex-

tual information via LLMs enhances the performance of all base-

lines across benchmark datasets and evaluation metrics, which

verifies that contextual enhancement by LLMs in MEL task is

effective. However, there is still a substantial performance gap

remaining between “Baseline (Aligned)” and OpenMEL. This

difference is primarily due to two key technical contributions

unique to OpenMEL: (1) a three-level adaptive selection of vi-

sual inputs, and (2) the construction of a maximum spanning

tree to ensure global coherence. Together, these advancements

significantly contribute to OpenMEL’s superior performance.

• When comparing models using text-only inputs and those using

textual-and-visual inputs, models with textual inputs demon-

strate satisfying results. OpenMEL (T) achieves a promising re-

sult compared to other baselines with multimodal data inputs.

Notably, MEL-HI [59] and JMEL [1], which incorporate both

visual and textual inputs, exhibits similar or even worse perfor-

mance compared to BERT [9], which uses only textual inputs.

This highlights the presence of noise in multimodal data. If a

method fails to properly manage such noise, its performance may

degrade when utilizing multimodal inputs. Additionally, textual

information remains a fundamental and crucial component for

entity linking, even within the MEL task [27].

5.3 Ablation Study (RQ2)
To examine the impact of the two main proposed modules as well

as multimodal inputs, we design four groups of experiments. In

the first group, we replace our first Noise-Free Expanded Queries

(NFEQ) generation module with the concatenated multimodal fea-

tures used in unsupervised baselines, along with our second Global

Coherence Resolution module (GCR), denoted as𝑚( [𝑇,𝑉 ]) + GCR.

In the second group, we keep the first NFEQ module, and replace

the second GCR module with Top-K retrieval from unsupervised

baselines, denoted as NFEQ(T+V) + Top-K. The third group employs

only textual inputs as NFEQ(T) + GCR and𝑚(𝑇 ) + GCR. The final

group removes both modules in OpenMEL, resulting in CLIP.

As shown in Table 3, replacing any module in OpenMEL with

the common unsupervised learning function as𝑚(𝑇 +𝑉 ) + GCR

and NFEQ(T+V) + Top-K compared with original OpenMEL leads

to a noticeable decline in all metrics across all datasets, demon-

strating the effectiveness of our designed NFEQ and GCR modules.

Specifically, the declines are more significant on the WikiDiverse

dataset, as it covers a wider range of mention topics and contains

the highest average number of mentions per sample, making it

the most challenging benchmark dataset for the MEL task. This

dataset exacerbates the problem of limited context, the noise trade-

off, and the entity global coherence challenge, all of which require

robust solutions to address. Additionally, removing visual inputs

from the multimodal inputs also results in a performance drop. This

demonstrates that visual inputs, which contain valuable contextual

information, can contribute to the improvement of the MEL task.

5.4 Parameter Sensitivity (RQ3)
In this subsection, we investigate the sensitivity of parameters in

OpenMEL on three metrics across three datasets. The experimental

results are shown in Figure 5. First, we examine the filtering thresh-

old 𝑓 , which varies from 0.3 to 0.8, and filter out entities with low

similarity based on the mention’s name. Specifically, the WikiMEL

and RichpediaMEL datasets, which focus on person-related topics,

show optimal performance when 𝑓 is around 0.5. For person en-

tities, filtering by name helps narrow down the entity candidates,
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Table 4: Various LLM Backbones and Prompt Design Evaluation on OpenMEL Framework.

LLMs Prompt WikiMEL RichpediaMEL WikiDiverse
HIT@1 HIT@5 HIT@10 HIT@1 HIT@5 HIT@10 HIT@1 HIT@5 HIT@10

Llama3-8B (free)

Our Prompt 69.8% 81.0% 83.4% 65.6% 77.4% 80.4% 67.1% 82.2% 85.2%

Ours w/o exp 66.4% 76.7% 79.1% 52.6% 65.6% 69.2% 57.8% 81.8% 87.0%
Ours w/o exp & ins 69.7% 79.5% 81.7% 59.4% 71.6% 74.7% 57.0% 80.7% 85.5%

DeepSeek-V3

(costly)

Our Prompt 67.2% 78.9% 81.7% 69.3% 78.7% 81.0% 63.8% 80.9% 84.7%
Ours w/o exp 68.9% 78.7% 80.9% 58.8% 71.5% 74.7% 60.6% 80.2% 84.6%

Ours w/o exp & ins 65.2% 75.8% 78.5% 53.7% 67.2% 71.3% 54.8% 72.9% 77.1%

GPT-4o (high-cost)

Our Prompt 75.1% 84.3% 85.9% 72.6% 81.1% 83.2% 72.4% 87.2% 90.3%
Ours w/o exp 74.8% 81.8% 83.2% 61.7% 72.0% 74.6% 61.5% 85.5% 89.5%

Ours w/o exp & ins 77.7% 84.0% 85.5% 64.8% 75.1% 77.6% 58.7% 82.1% 87.2%

GPT-4o-mini (costly)

Our Prompt 70.2% 81.0% 83.3% 64.5% 75.0% 78.3% 69.5% 84.6% 89.3%
Ours w/o exp 71.0% 79.5% 81.5% 57.1% 68.8% 72.4% 59.1% 82.3% 87.1%

Ours w/o exp & ins 67.6% 77.3% 79.9% 55.1% 68.3% 72.3% 47.8% 70.7% 77.1%

(a) # Mentions (b) # Entities (c) Distribution of WikiMEL (d) Distribution of RichpediaMEL (e) Distribution of WikiDiverse

Figure 6: Data Analysis on Scalability and Normalized Similarity Distribution Between the Accompanying Image and Text.

significantly improving the linking performance. On the other hand,

the WikiDiverse dataset, covering a range of topics, is less sensi-

tive to the filtering threshold. Secondly, we explore the impact of

the number of edges 𝐾 in the constructed tree cover. As shown

in Figure 5, performance initially increases and then plateaus as

𝐾 grows for metrics HIT@5 and HIT@10. Moreover, we observe

that 𝐾 = 1, 5, 10 is sufficient to achieve the best result for HIT@1,

HIT@5 and HIT@10. In conclusion, the parameter 𝐾 can be set to

the corresponding value of 𝐵 in HIT@B to achieve optimal results.

5.5 LLMs Generation Quality Influences (RQ4)
We investigate the impact of LLM-generated content quality on the

final linking results by a series of experiments focusing on two key

factors that could lead to variations in LLM outputs: (1) Different

LLM Backbones including GPT-4o, GPT-4o-mini, Llama3-8B, and

DeepSeek-V3. (2) Prompting Strategies including “Our prompt” as

shown in Figure 3, which includes both instructions and demon-

stration examples. Ours without demonstration examples denoted

as “Ours w/o exp”. Ours without both demonstration examples

and instructions denoted as “Ours w/o exp & ins”, using minimal

guidance. As shown in Table 4, integrating advanced backbone

LLMs such as GPT-4o for contextual enhancement can lead to supe-

rior performance in the entity linking task, but incurs higher API

costs. GPT-4o-mini, DeepSeek-V3, and Llama3-8B exhibit similar

performances. However, Llama3 is a cost-effective choice, achiev-

ing satisfactory results without additional expenses, particularly

suitable for large-scale datasets. Additionally, the “Our prompt”

strategy, which includes instructions and demonstration examples,

has proven robust across datasets and metrics on average, making

it the recommended approach for practical applications.

5.6 Data Analysis (RQ5)
We concludewith data analysis, as illustrated in Figure 6, to evaluate

the scalability of OpenMEL and the relevance of images within the

evaluation datasets. Specifically, the enhancement of multimodal

data quality, as outlined in Section 3, is implemented during the

preprocessing stage. This process requires LLMs for content gen-

eration, but since only a single round of generation is needed, the

time cost remains reasonable. Furthermore, as shown in Figure 6a,

OpenMEL demonstrates linear scalability with respect to the num-

ber of mentions awaiting linking, given a fixed number of candidate

entities, totaling 132,460. Finally, as outlined in Section 4, the over-

all time complexity of OpenMEL is 𝑂 ( |E | · log |E |) where E is the

number of candidate entities. In Figure 6b, the results indicate that

the running time remains relatively stable, with minimal increase

as the number of candidate entities grows.

Additionally, to highlight the importance of addressing visual

noise for multimodal inputs, we provide an analysis of the rele-

vance between the accompanying image and the text, as shown in

Figure 6. Specifically, accompanying images exhibit varying lev-

els of similarity to the text inputs, with a significant number of

instances falling into the low- and mid-similarity ranges. These

statistical results highlight the critical need to address noise within

accompanying images to enhance MEL performance.
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6 RELATEDWORK
In this section, we explore the related work on the entity linking

task, encompassing both traditional text-based and multimodal

entity linking methods.

6.1 Text-based Entity Linking
Mention and entity textual contexts are typically processed and

encoded separately [14, 15, 24, 25, 32]. To capture more information

from contexts, some methods employ query expansion [28, 33, 40,

43] to introduce external information aiding entity disambigua-

tion [24, 25, 47]. However, traditional query expansion methods

fail when surrounding context is unclear due to a lack of general

knowledge and comprehension of the full context [30, 41]. Then,

the enhanced or processed mention and entity text is represented

via deep learning models [16, 26, 55]. For entities, some existing

works use statistical co-occurrence methods to encode words [29]

or train dense embeddings by retrieving sparse entity features

through relationships between entities in the KB [5, 38]. More-

over, some works [35, 44] leverage knowledge graph embedding

methods [2, 36] to integrate multi-hop information.

The entity ranking step takes the encoded mention and entity

contexts and ranks the entities by assigning a score to each one. Ex-

isting methods for this step can be broadly categorized into unsuper-

vised and supervised learning approaches. Unsupervised learning

methods typically use dot product or cosine similarity to compute

the similarity. Some approaches add an additional feed-forward net-

work layer or a softmax layer to generate probabilities [16, 18]. Su-

pervised learning methods, on the other hand, employ models such

as reinforcement learning [15] and graph convolution networks

(GCNs) [4, 54] to integrate features and explore diverse external

cues between entities. Although text-based entity linking methods

have made significant progress, they are limited to handling only

textual data and are therefore incapable of addressing multimodal

entity linking tasks.

6.2 Multimodal Entity Linking
Most existing studies [1, 27, 31, 51, 52, 56] approach the MEL task

through supervised learning, which requires a large amount of

labeled data for training. In contrast, unsupervised MEL methods

reduce annotation costs by encoding multimodal inputs into feature

representations and ranking entities based on semantic similarity.

Unlike text-based entity linking, multimodal entity linking faces

the challenge of more severe limited context and noise within im-

ages during encoding with fusion. Supervised learning methods

focus on deeply fusing multimodal inputs to extract implicit cues

or attempt to eliminate noisy modalities. For the former, current

approaches use models like cross-modal attention [1, 31], inter-

and intra-modal attention [27, 53], or gate fusion techniques [51]

for multimodal concatenation. On the other hand, in the absence

of large training data, unsupervised learning methods typically

encode textual and visual information using a large multimodal

pre-trained model, such as CLIP [39]. These methods often propose

a two-stage approach that examines the correlation between image

categories and text semantics, filtering out noisy images with simi-

larity scores below a predefined threshold [59]. However, directly

filtering out noisy images exacerbates the limited context problem,

potentially further diminishing MEL performance.

In the entity ranking step, methods in MEL can also be divided

into two types, unsupervised and supervised learning approach.

Supervised learning methods with labeled data employ additional

model structures, particularly attention-based mechanisms, in the

encoding and fusion steps. These methods also use various tech-

niques to match mention-entity information, including static align-

ment [1, 27, 31, 51, 53] and dynamic alignment through GCNs [56],

each with their own specially designed loss functions. On the other

hand, unsupervised learning methods typically employ a bipartite

graph and further define the MEL task as the bipartite graph match-

ing problem to solve it [17, 34], where the bipartite graph consists

of two sets, the mention set and entity set with edges between

mention and entity. However, the bipartite graph structure does not

account for entity coherence, as their design inherently precludes

edges within the set of candidate entities.

7 CONCLUSIONS
In this paper, we propose a novel unsupervised MEL framework,

OpenMEL, designed to effectively tackle the MEL task by utilizing

noise-free expanded queries and a tree cover structure that captures

global entity coherence within the KB. Our approach specifically

addresses the challenge of multimodal data quality in the initial

data encoding step of unsupervised learning. We process images

into three levels of visual information and enhance textual inputs

with comprehensive context and general knowledge expansion.

To ensure global entity coherence in the entity ranking step, we

introduce a tree cover structure that captures both mention-entity

and entity-entity relationships, framing the task as a maximum

spanning tree problem with bounded nodes. We further propose a

greedy algorithm with theoretical guarantees to solve it. Extensive

experiments on five research questions related to the OpenMEL

framework demonstrate its effectiveness compared to various su-

pervised and unsupervised baselines.
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