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ABSTRACT
Many linearizable local read algorithms have been proposed to min-
imize the read latency of strongly consistent distributed databases
deployed in geo-distributed networks. These algorithms do so by
enabling reads to be performed immediately against any process’
copy of the database in the best case. However, as our analysis
shows, worst-case read latency at every process with all existing
algorithms is at least the network’s relative diameter in terms of the
maximum message delay minus a known lower bound on message
delay between any two processes. We then show that by leveraging
the asymmetric message delays of geo-distributed networks, worst-
case read latency can be below the network’s relative diameter at
processes close to the leader or the network’s center by presenting
two new linearizable local read algorithms. Our experimental eval-
uation shows that these new algorithms reduce worst-case read
latency by up to 50x compared to existing ones.
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1 INTRODUCTION
Linearizability is a desirable property for distributed databases
because it provides the illusion that the database is run on a single
machine that performs operations one at a time [17]. Applications
built on top of these databases are more reliable and maintainable
because developers do not need to reason about side effects that
can arise from concurrent operations [16, 22].

To provide linearizability, databases often use a state machine
replication algorithm such as Paxos [21] or Raft [27]. These al-
gorithms totally order all operations by electing a distinguished
process known as the leader to assign each operation a unique
index number. They also ensure that the database remains available
despite process crashes by replicating the entire database across
multiple followers, i.e., processes other than the leader.

In geo-distributed networks, these algorithms take tens to hun-
dreds of milliseconds to perform an operation because they syn-
chronously communicate with distant datacenters. To avoid this
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Figure 1: Average message delays (and speed of light propa-
gation times) between three AWS regions.

communication when performing reads, the predominant oper-
ation in practice [11], many linearizable local read algorithms
have been proposed to perform reads without sending any mes-
sages [5, 6, 9, 20, 26, 29]. These algorithms enable all processes to
perform reads immediately against their local copy of the database
in the best case. However, in the presence of concurrent database
changes, reads may block for some time. This is to ensure that if a
read 𝑟 is performed against version 𝑉 of the database, then every
read that begins after 𝑟 will be performed against version𝑉 or later.

In this paper, we first show that in periods where message delays
are fixed and all processes are non-faulty1, existing algorithms fall
short in minimizing worst-case read blockage times when deployed
on commodity hardware.2 This is because their worst-case read
blockage time at every follower is at least the network’s relative
diameter, i.e., the maximum message delay minus a known lower
bound on message delay between any two processes. With state-of-
the-art existing algorithms, this is because they schedule “events”
using globally synchronized clocks, their worst-case read blockage
time is the bounds on clock skew Δ, and it is known that without
specialized clock synchronization hardware such as Truetime [11],
Δ is at least the network’s relative diameter in the worst-case [7].

We then show that in the same periods, by leveraging the asym-
metric message delays of geo-distributed networks, worst-case read
blockage times can be below the network’s relative diameter at fol-
lowers close to the leader or the network’s center by presenting two
new linearizable local read algorithms named Pairwise-Leader (PL)
and Pairwise-All (PA). With PL, the worst-case read blockage time
at a process is the round-trip relative message delay between it and
the leader, i.e., twice the message delay minus the known lower
bound between it and the leader. With PA, the worst-case read
blockage time at a process is its relative eccentricity, i.e., the max-
imum message delay minus the known lower bound on message
delay between it and all other processes. Both PL and PA enjoy
1These assumptions approximate the usual behavior of networks in practice because
the variance of message delays is low [18], and failures are infrequent [13].
2This precludes the use of specialized clock synchronization hardware.
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reduced worst-case read blockage times at “well-located” followers
because they do not rely on globally synchronized clocks to sched-
ule events. Instead, they use a novel event scheduling primitive to
schedule events across pairs of processes (hence the name Pairwise).

To illustrate the above, consider the three-region AWS [1] net-
work shown in Figure 1 where ℓ is the leader. When using the
speed of light propagation times as message delay lower bounds,
this network’s relative diameter is 27 ms. Therefore, with all exist-
ing algorithms, the worst-case read blockage time at process 𝑝 and
process 𝑞 is at least 27 ms. In contrast, the worst-case read blockage
time with PL is 10 ms at 𝑝 and 54 ms at 𝑞, because these are the
round-trip relative message delays from 𝑝 and 𝑞 to ℓ , respectively.
PL reduced 𝑝’s worst-case read blockage time compared to exist-
ing algorithms because it is close to ℓ at the cost of increasing 𝑞’s
worst-case read blockage time. While this presents a trade-off, in
the extreme scenario where a process 𝑟 is in the same datacenter
as the leader, 𝑟 ’s worst-case read blockage time is virtually zero
with PL. This is because message delays inside the same datacenter
are in the order of microseconds [19]. PA, on the other hand, does
not present the above trade-off. The worst-case read blockage time
with PA is 20 ms at 𝑝 and 27 ms at 𝑞 because these are the relative
eccentricities3 of 𝑝 and 𝑞, respectively. Compared to PL, PA reduces
worst-case read blockage times at processes far from the leader at
the cost of increasing them at processes close to the leader.

Besides our analysis, we compare the performance of our Pair-
wise algorithms to existing ones by evaluating them on a geo-
distributed AWS network. Our experiments show that PL and PA
reduce worst-case read latency by up to 50x and 2x, respectively,
and increase read throughput by up to 19.4x and 3.3x, respectively.
We also implement a distributed version of RocksDB [2] and show
that in a YCSB [10] workload, PL and PA increase throughput by
3.6x and 1.2x compared to existing algorithms, respectively.

In summary, this paper makes the following contributions:
• Shows that the worst-case read blockage time with existing

algorithms is at least the network’s relative diameter.
• Presents two new algorithms that provide worst-case read

blockage times below the network’s relative diameter at
processes close to the leader or the network’s center.

• Describes a primitive for scheduling events across pairs of
processes without requiring globally synchronized clocks.

• Shows experimentally that compared to existing algorithms,
PL (resp. PA) reduces worst-case read latency by up to 50x
(resp. 2x), increases read throughput by up to 19.4x (resp.
3.3x), and in a distributed version of RocksDB, increases
throughput by 3.6x (resp. 1.2x) in a YCSB workload.

2 BACKGROUND
We begin by describing existing linearizable local read algorithms.

2.1 Leader-Based State Machine Replication
The basis of all linearizable local read algorithms is a state machine
replication (SMR) algorithm such as Paxos [21] or Raft [27]. These
algorithms provide fault-tolerant replication of a state machine
across a set of processes. To do so, each process maintains a copy
of the state machine referred to as its replica. Replicas are assumed
3Note that a process’ relative eccentricity is at most the network’s relative diameter.

to transition atomically between states, so if two replicas apply the
same sequence of operations, they will reach the same state [28]. In
this context, operations are defined as deterministic computations
that transition the state machine from one state to another and
then return any outputs based on these states.

SMR algorithms provide linearizability [17]: a consistency model
that ensures that operations take effect in some total order consis-
tent with the real-time ordering of operations, i.e., if operation 𝑜1
completes in real-time before operation 𝑜2 begins, then 𝑜1 must take
effect before 𝑜2. SMR algorithms typically provide linearizability by
assigning each operation to a unique natural number known as its
index number. This assignment is consistent with the operation’s
real-time ordering, e.g., 𝑜1’s index number is smaller than 𝑜2’s.

In leader-based SMR algorithms, a process 𝑝 performs an opera-
tion 𝑜 by forwarding it to the leader, who ensures that all non-faulty
processes apply 𝑜 . It does so in two phases: prepare and commit. The
prepare phase starts with the leader assigning 𝑜 to the next largest
index number 𝑖 and proposing this assignment to all processes.
The prepare phase is then complete once a majority of processes
acknowledge this proposal. After this, the leader instructs each
process to commit 𝑜 , i.e., apply 𝑜 to their replica after all opera-
tions assigned to index numbers smaller than 𝑖 have been applied.
Finally, 𝑝 returns the output from applying 𝑜 to its replica.

2.2 Local Read Algorithms
Generally speaking, local read algorithms build on leader-based
SMR algorithms in the following way. They first add a procedure
that does not send any messages for performing reads, i.e., oper-
ations that do not transition the state machine’s state. They then
slightly modify the two-phase procedure described in §2.1 for per-
forming read-modify-writes (RMW), i.e., operations that do transi-
tion the state machine’s state (all operations other than reads).

A process 𝑝 performs a read 𝑟 by first assigning it to the index
number of some RMW. This is so that operations take effect in the
following order: the RMW assigned to index 1, the (possibly empty)
sequence of reads assigned to index 1, the RMW assigned to index 2,
and so forth. After 𝑝 assigns 𝑟 to some index 𝑖 , it returns the output
from applying 𝑟 against its replica once it is at the 𝑖th version, i.e.,
the maximum index assigned to any RMW applied against it is 𝑖 .

The challenge in performing readswithout sending anymessages
is determining what index number to assign a read to using only
local information. Local read algorithms overcome this by schedul-
ing a stop and go event for every index 𝑖 on every process. A stop
event for 𝑖 on process 𝑝 represents when 𝑝 stops assigning reads to
indices less than 𝑖 , whereas a go event for 𝑖 on 𝑝 represents when
𝑝 may apply reads against its replica assigned to 𝑖 . This generic
mechanism ultimately guarantees linearizability by ensuring that
all go events for 𝑖 occur at or after all stop events for 𝑖 .

To ensure that all go events for 𝑖 occur at or after all stop events
for 𝑖 in the absence of failures4, the leader waits to receive acknowl-
edgments from all processes, instead of from some majority of
processes, before sending commit messages for 𝑖 . This is roughly
because, as we will see next, every process 𝑝’s stop and go event
for 𝑖 occurs when 𝑝 receives a prepare and commit message for 𝑖 ,
respectively, or is delayed by a constant amount from these times.

4We outline how to tolerate crash failures in §7.
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(a) Eager Stamping.
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(b) Delayed Stamping.

Figure 2: Eager and Delayed Stamping algorithm’s worst-case read blockage time in the network shown in Figure 1. Black,
orange, and red arrows represent prepare, acknowledgment, and commit messages, respectively. Numbers above dashed lines
are times (in ms) since the leader sent the first prepare (time 0). Stop and go events are shown as S and G , respectively. S & G
illustrates a combined stop and go event. Subsequent figures are illustrated in the same format, so we refrain from repeating it.

2.3 Scheduling Stop and Go Events
Wenowdescribe the three approaches existing local read algorithms
use to schedule stop and go events.

In the Invalidation approach used by Megastore [5], PQL [26],
and Hermes [20], followers apply reads against their replica only
when it is valid. A follower’s replica becomes invalid once it receives
a prepare message for some index 𝑖 (this is 𝑖’s stop event). It then
again becomes valid once it receives a commit message for 𝑖 if
no other prepare messages have arrived in the meantime (this is
𝑖’s go event). The leader is an exception to this because it always
knows the state’s latest version. Specifically, at any time, the leader
performs a read against the version of the state it last sent a commit
message for (this is 𝑖’s stop and go event at the leader).

In the Eager Stamping approach used by CHT [9], if a follower
begins performing a read and the maximum index it has received
a prepare message for is 𝑖 (this is 𝑖’s stop event), then the read
is stamped with 𝑖 . The read is then applied once the follower has
received a commit message for all indices up to and including 𝑖 (this
is 𝑖’s go event). The leader is an exception to this as it can perform
reads in the same way as in the Invalidation approach. We illustrate
these events in Figure 2a in the network shown in Figure 1.

Lastly, the Delayed Stamping approach used by CockroachDB
Global Tables [29] and BHT [6] builds on the Eager Stamping ap-
proach by decoupling the occurrence of stop and go events from
the reception of prepare and commit messages. They do so by using
globally synchronized clocks to determine when RMWs become
visible. When the leader receives a RMW 𝑜 , it queries its current
clock time 𝑡 and assigns 𝑜 a visibility time 𝑣 = 𝑡 + 𝛼 where 𝛼 is
a configuration parameter known as the visibility delay. When a
process receives a prepare message for index 𝑖 and visibility time 𝑣 ,
it stops stamping reads with indices less than 𝑖 once 𝑣 has elapsed
on its clock (this is 𝑖’s stop event). In other words, a process stamps
a read with the maximum index whose visibility time has elapsed
on its clock at that time. To determine when 𝑣 has elapsed on every
process’ clock, they are assumed to always be within Δ of each
other where Δ is known “from the get-go”. A process waits to ap-
ply 𝑜 until it receives commit messages for all indices up to and
including 𝑖 and 𝑣 + Δ has elapsed on its clock (this is 𝑖’s go event).
Note that, unlike the previous two approaches, the leader does not
have special stop and go events. We illustrate this in Figure 2b.

3 ANALYSIS OF EXISTING ALGORITHMS
We now show that the worst-case read blockage time at every fol-
lower with all existing local read algorithms is at least the network’s
relative diameter when deployed on commodity hardware.

3.1 Assumptions and Notation
Our analysis considers periods where the delay of every message be-
tween every two processes 𝑝 and 𝑞 is exactly 𝛿𝑝𝑞 , and all processes
are non-faulty. We also assume that between 𝑝 and 𝑞 there is a
known lower bound on message delay denoted by 𝛿min

𝑝𝑞 , and that all
local computation is instantaneous. Moreover, the above quantities
are symmetric, i.e., for all 𝑝 and 𝑞, 𝛿𝑝𝑞 = 𝛿𝑞𝑝 and 𝛿min

𝑝𝑞 = 𝛿min
𝑞𝑝 .

We use the terms defined in Table 1 to describe the results
of our analysis. We define 𝑝’s eccentricity as 𝐸𝑝 = max𝑞∈Π 𝛿𝑝𝑞
(where Π is the set of all processes) and the network’s diame-
ter as 𝐷 = max𝑝∈Π 𝐸𝑝 . We also define the relative message de-
lay between 𝑝 and 𝑞 as 𝛿𝑝𝑞 = 𝛿𝑝𝑞 − 𝛿min

𝑝𝑞 , 𝑝’s relative eccentric-
ity as 𝐸𝑝 = max𝑞∈Π 𝛿𝑝𝑞 , and the network’s relative diameter as
𝐷 = max𝑝∈Π 𝐸𝑝 . Note that: 𝛿𝑝𝑞 ≤ 𝛿𝑝𝑞 , 𝐸𝑝 ≤ 𝐸𝑝 , and 𝐷 ≤ 𝐷 .

3.2 Analysis
We give the worst-case read blockage times provided by all existing
algorithms and our Pairwise algorithms in Table 2. We now justify
the values listed for all existing algorithms. The following two
sections justify the values listed for our Pairwise algorithms.

Recall that in Invalidation algorithms, follower 𝑝 performs reads
only when its replica is valid, and 𝑝’s replica is valid if it has received
a commit message for every index it has received a prepare message
for. So, when 𝑝 receives preparemessages formultiple indices before
receiving a commit message for any of them, 𝑝’s state is invalid until
it receives commit messages for all of them. Consequently, when
the leader sends prepare messages quicker than it sends commit
messages (because RMWs arrive at the leader more frequently than
acknowledgments from all processes do), 𝑝’s state is perpetually
invalid. Therefore, the worst-case read blockage time at 𝑝 is ∞.

In Eager Stamping algorithms, recall that 𝑝 stamps a read with
the maximum index 𝑖 it has received a prepare message for, and 𝑝
applies this read once it has received commitmessages for all indices
up to and including 𝑖 . Since a read at 𝑝 can be stamped with index 𝑖
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Table 1: Terms used in the paper.
Term Definition
𝛿𝑝𝑞 Assumed message delay between 𝑝 and 𝑞
𝐸𝑝 = max𝑞∈Π 𝛿𝑝𝑞 𝑝’s eccentricity
𝐷 = max𝑝∈Π 𝐸𝑝 Network’s diameter
𝛿min
𝑝𝑞 Lower bound on message delay between 𝑝 and 𝑞
𝛿𝑝𝑞 = 𝛿𝑝𝑞 − 𝛿min

𝑝𝑞 Relative message delay between 𝑝 and 𝑞
𝐸𝑝 = max𝑞∈Π 𝛿𝑝𝑞 𝑝’s relative eccentricity
𝐷 = max𝑝∈Π 𝐸𝑝 Network’s relative diameter

the moment 𝑝 receives a prepare message for 𝑖 , reads at 𝑝 block in
the worst-case from this time until 𝑝 receives a commit message for
all indices up to and including 𝑖 . Furthermore, since message delays
are fixed, 𝑝 receives commit messages in index order. Thus, reads at
𝑝 block in theworst-case from the time 𝑝 receives a preparemessage
for 𝑖 until it receives a commit message for 𝑖 . Since the leader sends
commit messages for 𝑖 only after it receives acknowledgments from
all processes, the leader sends commit messages for 𝑖 the maximum
round-trip message delay between it and all processes after it sends
prepare messages for 𝑖 . Hence, since prepare and commit messages
from the leader to 𝑝 take the same time, 𝑝 receives a commitmessage
for 𝑖 2 · 𝐸ℓ after it receives a prepare message for 𝑖 . Therefore, the
worst-case read blockage time at 𝑝 is 2 · 𝐸ℓ .

Recall that in Delayed Stamping algorithms, 𝑝 stamps a read with
the maximum index 𝑖 whose visibility time 𝑣 has elapsed on 𝑝’s
clock, and 𝑝 applies this read once it has received commit messages
for all indices up to and including 𝑖 and 𝑣+Δ has elapsed on 𝑝’s clock.
Since a read at 𝑝 can be stamped with index 𝑖 the moment 𝑣 elapses
on 𝑝’s clock, reads at 𝑝 block in the worst-case from this time until
𝑝 receives a commit message for all indices up to and including 𝑖
and 𝑣 +Δ has elapsed on 𝑝’s clock. Assuming that 𝑝 receives commit
messages for all indices up to and including 𝑖 before 𝑣 + Δ elapses
on its clock, the worst-case read blockage time at 𝑝 is Δ.

We now show that Δ ≥ 𝐷 when deployed on commodity hard-
ware. Suppose there is an upper-bound on message delay between
processes 𝑝 and 𝑞 (𝛿max

𝑝𝑞 ). Assuming that clocks don’t drift, Δ in
the worst-case is at least half the maximum message delay uncer-
tainty: Δ ≥ 1

2 · max𝑝,𝑞∈Π 𝛿max
𝑝𝑞 − 𝛿min

𝑝𝑞 [7]. To avoid assuming an
incorrect upper bound and violating linearizability, 𝛿max

𝑝𝑞 − 𝛿min
𝑝𝑞

is replaced by the measured message delay uncertainty between 𝑝

and 𝑞, i.e., the measured round-trip message delay between 𝑝 and 𝑞
minus 2 · 𝛿min

𝑝𝑞 [23]. Since in the periods our analysis considers the
round-trip message delay between 𝑝 and 𝑞 is 2 · 𝛿𝑝𝑞 , the measured
message delay uncertainty is 2 · 𝛿𝑝𝑞 . Therefore Δ ≥ 𝐷 .

Finally, we show that the worst-case read blockage time at every
follower with all existing local read algorithms is at least the net-
work’s relative diameter (𝐷). This is immediate for Invalidation and
Delayed Stamping algorithms. For Eager Stamping algorithms, this
is true under the additional assumption that 𝛿 respects the triangle
inequality (for all processes 𝑝 , 𝑞, and 𝑟 , 𝛿𝑝𝑟 ≤ 𝛿𝑝𝑞 + 𝛿𝑞𝑟 ). This is
because, in Eager Stamping algorithms, a follower’s worst-case read
blockage time is at least twice the network’s radius (𝑅 = min𝑝∈Π 𝐸𝑝 )
because by definition 2 · 𝐸ℓ ≥ 2 · 𝑅. Since 𝛿 is assumed to respect
the triangle inequality, the network’s diameter is at most twice the
network’s radius (2 · 𝑅 ≥ 𝐷). Thus, a follower’s worst-case read
blockage time is at least the network’s diameter, which by definition
is at least the network’s relative diameter (𝐷 ≥ 𝐷).

Table 2: Read blockage time at process 𝑝. ℓ is the leader.
Algorithm Worst-case read blockage time at 𝑝 ≠ ℓ

Invalidation ([5, 20, 26]) ∞
Eager Stamping ([9]) 2 · 𝐸ℓ

Delayed Stamping ([6, 29]) 𝐷

Pairwise-Leader (§4) 2 · 𝛿𝑝ℓ
Pairwise-All (§5) 𝐸𝑝

4 PAIRWISE-LEADER
We now describe Pairwise-Leader (PL), which achieves worst-case
read blockage times below𝐷 at followers close to the leader ℓ . Specif-
ically with PL, every process 𝑝’s worst-case read blockage time is
the round-trip relative message delay between it and ℓ (2 · 𝛿𝑝ℓ ).

4.1 Overview
To understand how PL achieves this, it is helpful to first consider
a stepping-stone algorithm that achieves slightly higher worst-
case read blockage times (2 · 𝛿𝑝ℓ vs. 2 · 𝛿𝑝ℓ ). The core idea of PL’s
stepping-stone is to selectively delay when prepare messages are sent
in Eager Stamping algorithms. Our goal in doing this is to decrease
the time between when a process 𝑝 receives a prepare message
for each index 𝑖 and when 𝑝 receives a commit message for 𝑖 . This
ultimately reduces 𝑝’s worst-case read blockage time because, as
our analysis of Eager Stamping algorithms showed, a read at 𝑝
stamped with 𝑖 blocks in the worst-case from the time 𝑝 receives a
prepare message for 𝑖 until it receives a commit message for 𝑖 .

To achieve this goal, prepare messages are delayed so that the
leader receives acknowledgments from all processes at the same
time (under the assumptions outlined in §3.1). Specifically, a pro-
cess 𝑝’s preparemessage is delayed by twice the leader’s eccentricity
minus the round-trip message delay between 𝑝 and the leader ℓ . For
example, in the network shown in Figure 1, 2 ·𝐸ℓ is 80 ms and 2 ·𝛿𝑝ℓ
is 16 ms so 𝑝’s prepare message is delayed by 64 ms.

As Figure 3 shows, by delaying the sending of 𝑝’s prepare mes-
sage, 𝑝’s prepare and commit messages differ by 16 ms. This is
because when the leader receives acknowledgments from all pro-
cesses at the same time𝑇 , every process 𝑝’s prepare message occurs
the message delay between it and the leader before 𝑇 , and 𝑝’s com-
mit message occurs the message delay between it and the leader
after𝑇 . Hence, 𝑝’s prepare and commit messages differ in real-time
by 2 · 𝛿𝑝ℓ and so, 𝑝’s worst-case read blockage time is 2 · 𝛿𝑝ℓ .

Since our goal with PL is 2 · 𝛿𝑝ℓ , what remains is to shave off
an additional 2 · 𝛿min

𝑝ℓ
from PL’s stepping stone. Recall that in §2,

we saw one approach for reducing worst-case read blockage times
by the message delay lower bounds: decouple the occurrence of stop
and go events from the reception of messages. This enabled Delayed
Stamping algorithms to reduce the worst-case read blockage times
provided by Eager Stamping algorithms from twice the leader’s ec-
centricity (2 · 𝐸ℓ ) to the network’s relative diameter (𝐷). By roughly
applying this idea to PL’s stepping stone, we obtain PL.

The challenge in applying this idea is ensuring that stop and go
events “maintain their shape” after decoupling. To see why, recall
that the Delayed Stamping algorithms assign a visibility time 𝑣

to each index 𝑖 , such that every process’ stop event for 𝑖 occurs
at 𝑣 and its go event for 𝑖 occurs at least at 𝑣 + Δ. Since Δ ≥ 𝐷 ,
decoupling stop and go events in this way results in their difference
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Figure 3: A stepping stone to Pairwise-Leader.

being at least 𝐷 on every process. Therefore, to achieve our goal,
we need a new approach for decoupling stop and go events.

PL decouples stop and go events using a novel event scheduling
primitive. This primitive enables events to be scheduled across a
pair of processes 𝑝 and 𝑞 that are guaranteed to occur before or
after each other in real-time as desired. The key feature of this
primitive is that under the assumptions outlined in §3.1, events
between 𝑝 and 𝑞 differ in real-time by 𝛿𝑝𝑞 . The leader in PL uses
this primitive to schedule every process 𝑝’s stop event for index 𝑖
before 𝑖’s visibility time and 𝑝’s go event for 𝑖 after 𝑖’s visibility time.
We illustrate this in Figure 4 where the green line represents 𝑖’s
visibility time. As we will show, scheduling events this way results
in every process 𝑝’s worst-case read blockage time being 2 · 𝛿𝑝ℓ .

4.2 The Event Scheduling Primitive
We begin by explaining how this primitive provides a process 𝑠 ,
known as the sender, the ability to compute a time𝑇𝑟 on a process 𝑟 ’s
clock, known as the receiver, such that𝑇𝑟 occurs before or after𝑇𝑠 on
the sender’s clock in real-time as desired. Note that when we say𝑇𝑟
occurs before or after 𝑇𝑠 , they could occur at the same real-time.

At the high level, the primitive provides this functionality by
establishing causally ordered timestamps calledmarkers. The sender
has a before marker𝑀𝑏 and an after marker𝑀𝑎 , while the receiver
has a single marker𝑀 , such that𝑀𝑏 occurs before𝑀 , and𝑀 occurs
before 𝑀𝑎 in real-time. To schedule 𝑇𝑟 , the sender computes the
elapsed time 𝐷 between 𝑇𝑠 and one of its markers, followed by
relaying 𝐷 to the receiver. The receiver then computes𝑇𝑟 as 𝐷 +𝑀 .

To establish markers, the sender first records its clock time as its
before marker𝑀𝑏 . The sender then sends a marker request to the
receiver. Once received, the receiver records its clock time as its
marker𝑀 . The receiver then sends the sender a marker acknowl-
edgment. Once received, the sender records its clock time as its after
marker𝑀𝑎 . At this point, the set of markers is established, and by
causality, 𝑀𝑏 occurs before 𝑀 in real-time, and 𝑀 occurs before
𝑀𝑎 in real-time. We illustrate this interaction in Figure 5a.

After a set of markers is established, the sender can schedule
events. It does so by computing 𝐷 based on whether 𝑇𝑟 should
occur before or after 𝑇𝑠 . We first describe computing 𝐷 assuming
that clocks do not drift and then with bounded drift afterward.

If𝑇𝑟 should occur before𝑇𝑠 in real-time, then 𝐷 = 𝑇𝑠 −𝑀𝑎 +𝛿min
𝑟𝑠 .

To see why this guarantees that 𝑇𝑟 occurs before 𝑇𝑠 , observe that
when clocks don’t drift, the real-time difference between 𝑇𝑠 on
the sender’s clock and 𝑇𝑠 − 𝑀𝑎 + 𝑀 on the receiver’s clock, is
the same as the real-time difference between𝑀𝑎 and𝑀 . Since𝑀
occurs at least 𝛿min

𝑟𝑠 before 𝑀𝑎 in real-time, 𝑇𝑠 − 𝑀𝑎 + 𝑀 on the
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Figure 4: Pairwise-Leader.
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Figure 5: The two event scheduling primitive interactions.

receiver’s clock occurs at least 𝛿min
𝑟𝑠 before 𝑇𝑠 on the sender’s clock

in real-time. Hence,𝑇𝑟 (𝑇𝑠 −𝑀𝑎 +𝛿min
𝑟𝑠 +𝑀) occurs before𝑇𝑠 in real-

time. In the other case where 𝑇𝑟 should occur after 𝑇𝑠 in real-time,
then 𝐷 = 𝑇𝑠 −𝑀𝑏 − 𝛿min

𝑠𝑟 for similar reasons.
We now describe computing 𝐷 assuming 𝜖-bounded clock drift.5

Let 𝐶𝑝 (𝑡) denote process 𝑝’s hardware clock time at real-time 𝑡 ;
𝑝’s clock has 𝜖-bounded drift for some 𝜖 ∈ [0, 1] if for all real-
times 𝑡1 ≤ 𝑡2, (1 − 𝜖) (𝑡2 − 𝑡1) ≤ 𝐶𝑝 (𝑡2) −𝐶𝑝 (𝑡1) ≤ (1 + 𝜖) (𝑡2 − 𝑡1).
To account for this, the above computations for𝐷 are scaled propor-
tionally to 𝜖 . Specifically, if 𝑇𝑟 should occur before 𝑇𝑠 in real-time,
then𝐷 = (1−𝜖) (𝑇𝑠−𝑀𝑎

1+𝜖 +𝛿min
𝑟𝑠 ). This is because the receiver’s clock

can tick as slowly as (1−𝜖) while the sender’s clock can tick as fast
as (1+ 𝜖). To account for this,𝑇𝑠 −𝑀𝑎 is scaled by 1−𝜖

1+𝜖 . Conversely,
the lower bound is scaled by 1 − 𝜖 since 𝛿min

𝑟𝑠 is perceived only by
the receiver. In the other case where 𝑇𝑟 should occur after 𝑇𝑠 in
real-time, 𝐷 = (1 + 𝜖) (𝑇𝑠−𝑀𝑏

1−𝜖 − 𝛿min
𝑠𝑟 ) for similar reasons.

We now show that under the assumptions outlined in §3.1, if
𝜖 = 0 then 𝑇𝑟 and 𝑇𝑠 differ in real-time by 𝛿𝑠𝑟 . If 𝑇𝑟 should occur
before 𝑇𝑠 , then as discussed above, since clocks do not drift, the
real-time difference between𝑇𝑠 on the sender’s clock and𝑇𝑠 −𝑀𝑎 +
𝑀 on the receiver’s clock is the same as the real-time difference
between𝑀𝑎 and𝑀 . Hence, the real-time difference between𝑇𝑠 and
𝑇𝑠 − 𝑀𝑎 + 𝑀 is 𝛿𝑟𝑠 . Furthermore, since 𝑇𝑟 = 𝑇𝑠 −𝑀𝑎 + 𝛿min

𝑟𝑠 +𝑀 ,
this difference shrinks by a factor of 𝛿min

𝑟𝑠 . Therefore, the real-time
difference between 𝑇𝑟 and 𝑇𝑠 is 𝛿𝑟𝑠 which by definition is equal
to 𝛿𝑠𝑟 . In the other case where𝑇𝑟 should occur after𝑇𝑠 , the real-time
difference between 𝑇𝑟 and 𝑇𝑠 is 𝛿𝑠𝑟 for similar reasons.

In the general case where 𝜖 ≥ 0, the real-time difference be-
tween𝑇𝑟 and𝑇𝑠 grows over time. This is because if𝑇𝑟 should occur
before 𝑇𝑠 , then the real-time difference between 𝑇𝑟 and 𝑇𝑠 grows as
a function of 𝑇𝑠 −𝑀𝑎 since it is scaled by 1−𝜖

1+𝜖 . Hence, to keep the
real-time difference between𝑇𝑟 and𝑇𝑠 as small as possible,𝑇𝑠 −𝑀𝑎

5In practice, 𝜖 is usually defined as 200 parts per million (ppm) [11, 24].
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needs to be as small as possible. We achieve this by periodically
re-establishing markers. This requires a slight modification to event
scheduling as𝐷 can now be computed using multiple markers. Each
set of markers is assigned a unique version number to distinguish
between them. Then, to schedule𝑇𝑟 before or after𝑇𝑠 , the sender in-
vokes the corresponding procedure before(𝑇𝑠 ) or after(𝑇𝑠 ). These
procedures return a payload 𝑃 containing 𝐷 computed using the
most recently established set of markers before𝑇𝑠 , alongwith its ver-
sion number. The receiver then computes 𝑇𝑟 by invoking event(𝑃 ),
which adds 𝐷 to the corresponding version of𝑀 . This interaction is
illustrated in Figure 5b. We note that by frequently re-establishing
markers, the real-time difference between 𝑇𝑟 and 𝑇𝑠 is virtually 𝛿𝑠𝑟 .
We confirm this experimentally in §8.

4.3 The Algorithm
We now describe PL in detail (Algorithm 1). We do so without
failures to highlight our main ideas and avoid rehashing ideas from
prior work. We outline how to tolerate crash failures in §7.

Algorithm 1 assumes a timed asynchronous system consisting
of a finite set of non-faulty processes Π [12]. This is the standard
asynchronous system in which messages passed between processes
may be arbitrarily delayed but not lost with the addition that pro-
cesses are equipped with hardware clocks with bounded drift. In
the version of the algorithm that tolerates failures, to guarantee
liveliness, there must be a known maximum message delay 𝛿max.

Since Algorithm 1 uses the event scheduling primitive, the user
must define 𝜖 and 𝛿min

𝑝𝑞 for all processes 𝑝 and 𝑞. To guarantee
linearizability, every process’ clock must have 𝜖-bounded drift, and
every message between process 𝑝 and 𝑞 must take at least 𝛿min

𝑝𝑞 . The
user must also define a non-negative visibility delay 𝛼 . As we will
see, 𝛼 must be sufficiently large to achieve our desired worst-case
read blockage times. Smaller values will increase worst-case read
blockage times, and larger values will increase RMW latency (see
§8). Note that the choice of 𝛼 does not impact correctness.

We now walk through Algorithm 1. We start with a few remarks
followed by describing how operations are performed. Each pro-
cess runs three threads in parallel, and each performs different jobs.
Thread 1 performs RMWs (line 1-6) and reads (line 7-12), Thread 2
handles RMW (line 13-20), prepare (line 21-25), and acknowledg-
ment messages (line 26-27), and Thread 3 handles commit messages
(line 28-44). Each thread performs one job at a time until completion.

Processes maintain multi-versioned replicas by applying oper-
ations via the following two procedures. The first is Apply(𝑖 , 𝑜),
which creates the 𝑖th version of the state and returns any outputs
by applying a RMW operation 𝑜 against the (𝑖 − 1)th version. The
second is Read(𝑖 , 𝑜), which applies a read operation 𝑜 against the
𝑖th version of the state once it is created and returns any outputs.

To schedule stop and go events, PL uses multiple instances of
the event scheduling primitive. This is because the leader schedules
these events on every process, so the leader is a sender, and each
process is a receiver. We discern which instance of the event sched-
uling primitive a process is using through the notation (𝑠, 𝑟 ) .proc,
which means proc is being invoked on the instance of the event
scheduling primitive where 𝑠 is the sender and 𝑟 is the receiver.

We now describe how a process 𝑝 performs operations. To per-
form a RMW 𝑜 , 𝑝 invokes RMW(𝑜) (line 1). This procedure begins

Thread 1:

1 procedure RMW(𝑜) at 𝑝 :
2 𝑐 ≔ + +𝐶𝑛𝑡𝑟 /* local operation counter, initially 0 */

3 𝑜𝑝 ≔ (𝑜, (𝑝, 𝑐 ) ) /* unique operation */

4 send ⟨𝑅𝑀𝑊 ,𝑜𝑝 ⟩ to ℓ /* send 𝑜𝑝 to leader */

5 wait until 𝑟𝑒𝑠𝑝 (𝑜𝑝 ) ≠ 𝑁𝑈𝐿𝐿 /* 𝑜𝑝’s response, initially 𝑁𝑈𝐿𝐿 */

6 return 𝑟𝑒𝑠𝑝 (𝑜𝑝 ) /* return response written on line 43 */

7 procedure read(𝑜):
8 𝑡 ≔ 𝑛𝑜𝑤 ( ) /* current hardware clock time */

9 (𝑙𝑏,𝑢𝑏 ) ≔ (𝐶𝐼𝑛𝑑𝑒𝑥, 𝑃𝐼𝑛𝑑𝑒𝑥 ) /* range of stop events to check */

10 𝑗 ≔ max{𝑖 | 𝑙𝑏 ≤ 𝑖 ≤ 𝑢𝑏 ∧ 𝑆𝑡𝑜𝑝 [𝑖 ] ≤ 𝑡 } /* version to read */

11 wait until𝐶𝐼𝑛𝑑𝑒𝑥 ≥ 𝑗 /* wait for 𝑗th version to be created */

12 return Read(𝑗 , 𝑜) /* apply 𝑜 against 𝑗th version */

Thread 2:

13 upon receiving ⟨𝑅𝑀𝑊 ,𝑜𝑝 ⟩:
14 𝑡 ≔ 𝑛𝑜𝑤 ( ) /* current hardware clock time */

15 𝑖 ≔ + + 𝐼𝑛𝑑𝑒𝑥 /* latest index, initially 0 */

16 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛[𝑖 ] ≔ 𝑜𝑝 /* record operation assigned to 𝑖 */

17 foreach 𝑝 ∈ Π do /* Π is the set of all processes */
18 𝑃𝑏 ≔ (ℓ, 𝑝 ) .before(𝑡 + 𝛼 ) /* 𝑝’s stop event for 𝑖 */

19 𝑃𝑎 ≔ (ℓ, 𝑝 ) .after(𝑡 + 𝛼 ) /* 𝑝’s go event for 𝑖 */

20 send ⟨𝑃𝑅𝐸𝑃𝐴𝑅𝐸, 𝑖, 𝑃𝑏 , 𝑃𝑎 ⟩ to 𝑝 /* send prepare to 𝑝 */

21 upon receiving ⟨𝑃𝑅𝐸𝑃𝐴𝑅𝐸, 𝑖, 𝑃𝑏 , 𝑃𝑎 ⟩ at 𝑞:
22 𝑆𝑡𝑜𝑝 [𝑖 ] ≔ (ℓ, 𝑞) .event(𝑃𝑏 ) /* stop event for 𝑖, initially ∞ */

23 𝐺𝑜 [𝑖 ] ≔ (ℓ, 𝑞) .event(𝑃𝑎 ) /* go event for 𝑖 */

24 𝑃𝐼𝑛𝑑𝑒𝑥 ≔ max(𝑃𝐼𝑛𝑑𝑒𝑥, 𝑖 ) /* maximum prepared index, initially 0 */

25 send ⟨𝐴𝐶𝐾, 𝑖 ⟩ to ℓ /* send ack to ℓ */

26 upon receiving ⟨𝐴𝐶𝐾, 𝑖 ⟩ from Π:
27 send ⟨𝐶𝑂𝑀𝑀𝐼𝑇, 𝑖,𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛[𝑖 ] ⟩ to Π

Thread 3:

28 upon receiving ⟨𝐶𝑂𝑀𝑀𝐼𝑇, 𝑖, 𝑜𝑝 ⟩:
29 commit_or_queue(𝑖 , 𝑜𝑝)

30 procedure commit_or_queue(𝑖 , 𝑜𝑝):
31 if 𝐶𝐼𝑛𝑑𝑒𝑥 ≠ 𝑖 − 1 then /* latest committed index, initially 0 */
32 𝐶𝑜𝑚𝑚𝑖𝑡𝑄𝑢𝑒𝑢𝑒.𝑖𝑛𝑠𝑒𝑟𝑡 ( (𝑖, 𝑜𝑝 ) ) /* priority queue by index */

33 else /* 𝐶𝐼𝑛𝑑𝑒𝑥 = 𝑖 − 1 */
34 commit(𝑖 , 𝑜𝑝) /* commit 𝑜𝑝 */

35 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ≔ 𝑖 + 1 /* next index to commit */

36 while𝐶𝑜𝑚𝑚𝑖𝑡𝑄𝑢𝑒𝑢𝑒.𝑚𝑖𝑛 ( ) = (𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑, −) do
37 (𝑖′, 𝑜𝑝′ ) ≔ 𝐶𝑜𝑚𝑚𝑖𝑡𝑄𝑢𝑒𝑢𝑒.𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑚𝑖𝑛 ( )
38 commit(𝑖′ , 𝑜𝑝′) /* commit 𝑜𝑝′ */

39 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 + + /* look for next contiguous index */

40 procedure commit(𝑖 , 𝑜𝑝):
41 wait until 𝑛𝑜𝑤 ( ) ≥ 𝐺𝑜 [𝑖 ] /* go event occurs for 𝑖 */

42 (𝑜, (−, −) ) ≔ 𝑜𝑝 /* extract 𝑜 from 𝑜𝑝 */

43 𝑟𝑒𝑠𝑝 (𝑜𝑝 ) ≔ Apply(𝑖, 𝑜 ) /* apply 𝑜 to the 𝑖 − 1th version */

44 𝐶𝐼𝑛𝑑𝑒𝑥 = 𝑖 /* advance latest committed index */

Algorithm 1: PL without failures. ℓ is the leader.

by creating a globally unique operation 𝑜𝑝 corresponding to this in-
stance of 𝑜 , i.e., 𝑝’s 𝑐th time invoking the RMW procedure (line 2-3).
Afterward, 𝑝 sends a RMW message for 𝑜𝑝 to the leader ℓ (line 4).

Upon receiving this message, the leader queries its current clock
time 𝑡 and assigns 𝑜𝑝 to the next index number 𝑖 (line 14-16). The
leader then schedules a stop and go event for 𝑖 on every process
to occur before and after 𝑖’s visibility time 𝑡 + 𝛼 using the event
scheduling primitive’s before(𝑡 + 𝛼) and after(𝑡 + 𝛼) procedures
(line 17-19). The leader then sends prepare messages for 𝑖 (line 20).

When a process 𝑞 receives this message, it computes its stop and
go event for 𝑖 using the event procedure provided by the event
scheduling primitive (line 22-23). 𝑞 then updates 𝑃𝐼𝑛𝑑𝑒𝑥 , the maxi-
mum prepared index so far, and sends an acknowledgment to the
leader (line 24-25). Once the leader has received acknowledgments
from all processes, it sends commit messages for 𝑖 (line 27).

When 𝑞 receives this message, it checks the latest committed
index 𝐶𝐼𝑛𝑑𝑒𝑥 (line 31). If it is not 𝑖 − 1, then (𝑖, 𝑜𝑝) is added to the
commit queue: a priority queue ordered by index number (line 32).
Otherwise, 𝑜𝑝 is committed, followed by committing all index con-
tiguous operations in the commit queue (line 35-39). To commit 𝑜𝑝 ,
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𝑞 first waits for its go event for 𝑖 to occur (line 41). 𝑞 then extracts
the RMW 𝑜 from 𝑜𝑝 , applies 𝑜 to its replica, stores its response
in 𝑟𝑒𝑠𝑝 (𝑜𝑝), and updates its latest committed index (line 42-44).
Finally, once 𝑝 commits 𝑜𝑝 , it returns 𝑟𝑒𝑠𝑝 (𝑜𝑝) (line 5-6).

To perform a read 𝑜 , 𝑝 invokes read(𝑜) (line 7). This procedure
queries 𝑝’s current clock time 𝑡 (line 8) and copies the current values
of 𝐶𝐼𝑛𝑑𝑒𝑥 and 𝑃𝐼𝑛𝑑𝑒𝑥 as 𝑙𝑏 and 𝑢𝑏, respectively (line 9). 𝑜 is then
stamped with the maximum index in [𝑙𝑏,𝑢𝑏] whose stop event has
occurred as of 𝑡 (line 10); let 𝑗 be this index. Finally, once the RMW
assigned to 𝑗 has been applied (line 11), 𝑜 is applied against the 𝑗 th
version of the state, and its output is returned (line 12).

4.4 Analysis
We now show that under the assumptions outlined in §3.1 if 𝜖 = 0
and 𝛼 ≥ 2 · 𝐸ℓ + 𝐸min

ℓ
where 𝐸min

ℓ
= max𝑞∈Π 𝛿min

ℓ𝑞
, then every pro-

cess 𝑝’s worst-case read blockage time is 2 · 𝛿𝑝ℓ . Recall that our
analysis assumes that all local computation is instantaneous. In
Algorithm 1, this means that only two steps take any real-time.
The first is when a process 𝑝 sends a message to a process 𝑞, 𝑞’s
upon receiving step happens 𝛿𝑝𝑞 real-time after 𝑝’s send step.
The second is how long a process spends on a wait until step.

Consider some process 𝑝’s invocation of read(𝑜) stamped with 𝑗

on line 10. We start with two observations about any 𝑖 ∈ [1, 𝑗] that
follow from our assumptions that 𝜖 = 0 and messages are not lost,
respectively. Let 𝑜𝑝𝑖 be the RMW assigned to index 𝑖 on line 15.
The first is that 𝑜𝑝𝑖 ’s visibility time 𝑉𝑖 occurs in real-time at 𝑇𝑖 + 𝛼

where 𝑇𝑖 is the real-time the leader received 𝑜𝑝𝑖 on line 13. The
second is that 𝑝 wrote timestamps into 𝑆𝑡𝑜𝑝 [𝑖] and 𝐺𝑜 [𝑖] on lines
22 and 23 which occur at real-times 𝑆𝑖 and 𝐺𝑖 , respectively.

We now relate these times. Since 𝑝’s stop event for 𝑖 is scheduled
to occur before 𝑜𝑝𝑖 ’s visibility time on line 18, and 𝜖 = 0, by our
analysis in §4.2 𝑆𝑖 = 𝑉𝑖 − 𝛿𝑝ℓ . Likewise, since 𝑝’s go event for 𝑖 is
scheduled to occur after 𝑜𝑝𝑖 ’s visibility time on line 19,𝐺𝑖 = 𝑉𝑖 +𝛿𝑝ℓ .

The rest of our analysis is done in two steps. The first is to show
that 𝑝 applies 𝑜𝑝 𝑗 on line 43 at 𝐺 𝑗 . This follows from two facts: (1)
for every 𝑖 ∈ [1, 𝑗) 𝐺𝑖 ≤ 𝐺𝑖+1 and (2) for every 𝑖 ∈ [1, 𝑗] 𝑝 receives a
commit message for 𝑖 by𝐺𝑖 . To see why, notice that (1) and (2) imply
that 𝑝 receives a commit message for all 𝑖 ∈ [1, 𝑗] by 𝐺 𝑗 . Thus, by
the commit_or_queue procedure, 𝑝 invokes commit( 𝑗 , 𝑜𝑝 𝑗 ) by 𝐺 𝑗 .
Therefore, line 41 finishes at 𝐺 𝑗 so 𝑝 applies 𝑜𝑝 𝑗 on line 43 at 𝐺 𝑗 .

We now justify (1) and (2). For (1), first notice that the leader
receives RMWs on line 13 in index order and so, 𝑇𝑖 ≤ 𝑇𝑖+1. Since
𝑉𝑖 = 𝑇𝑖 +𝛼 this implies that𝑉𝑖 ≤ 𝑉𝑖+1 and thus,𝑉𝑖 +𝛿𝑝ℓ ≤ 𝑉𝑖+1+𝛿𝑝ℓ .
Finally, since 𝐺𝑖 = 𝑉𝑖 + 𝛿𝑝ℓ it follows that 𝐺𝑖 ≤ 𝐺𝑖+1.

For (2), first notice that 𝑝 receives a commit message for 𝑖 at
𝑇𝑖 +2 ·𝐸ℓ +𝛿ℓ𝑝 . This is because the leader receives acknowledgments
for 𝑖 from all processes on line 26 at𝑇𝑖+2·𝐸ℓ and 𝑝 receives a commit
message for 𝑖 on line 28 after an additional 𝛿ℓ𝑝 . What remains is
to show that 𝐺𝑖 ≥ 𝑇𝑖 + 2 · 𝐸ℓ + 𝛿ℓ𝑝 . Recall that (a) 𝐺𝑖 = 𝑉𝑖 + 𝛿𝑝ℓ ,
(b) 𝑉𝑖 = 𝑇𝑖 + 𝛼 , and (c) 𝛼 ≥ 2 · 𝐸ℓ + 𝐸min

ℓ
, and observe that (d)

𝐸min
ℓ

+ 𝛿ℓ𝑝 ≥ 𝛿ℓ𝑝 . By (a), (b), and (c): 𝐺𝑖 ≥ 𝑇𝑖 + 2 · 𝐸ℓ + 𝐸min
ℓ

+ 𝛿𝑝ℓ
and therefore by (d) 𝐺𝑖 ≥ 𝑇𝑖 + 2 · 𝐸ℓ + 𝛿ℓ𝑝 .

The second step is to show that the real-time of read(𝑜) is at most
𝐺 𝑗 − 𝑆 𝑗 . First, observe that the real-time of read(𝑜) is how long it
waits on line 11. This is because lines 8 to 10 are local computations,

and when the wait on line 11 finishes, the 𝑗th version of the state
has already been created, so line 12 does not wait. Now observe
that 𝐶𝐼𝑛𝑑𝑒𝑥 ≥ 𝑗 at 𝐺 𝑗 . This is because 𝐶𝐼𝑛𝑑𝑒𝑥 is monotonically
increasing, and by step one,𝐶𝐼𝑛𝑑𝑒𝑥 is set to 𝑗 on line 44 at𝐺 𝑗 . These
two observations together imply that the real-time of read(𝑜) is the
time between when line 11 is invoked and 𝐺 𝑗 . Since 𝑜 is stamped
with index 𝑗 on line 10, the earliest line 11 can be invoked is 𝑆 𝑗 .
Therefore, the real-time of read(𝑜) is at most 𝐺 𝑗 − 𝑆 𝑗 .

Recall that 𝑆 𝑗 = 𝑉𝑗 − 𝛿𝑝ℓ and 𝐺 𝑗 = 𝑉𝑗 + 𝛿𝑝ℓ so 𝐺 𝑗 − 𝑆 𝑗 = 2 · 𝛿𝑝ℓ .
Therefore by step two 𝑝’s worst-case read blockage time is 2 · 𝛿𝑝ℓ .

5 PAIRWISE-ALL
The last section showed that with PL, every process 𝑝’s worst-case
read blockage time is 2 · 𝛿𝑝ℓ . Therefore, when a process 𝑞 is in the
same datacenter as the leader, 𝑞’s worst-case read blockage time
with PL is virtually zero compared to at least 𝐷 with all existing
algorithms. However, when 𝑞 is far from the leader, 𝑞’s worst-case
read blockage time can be higher than some existing algorithms.
For example, if 𝛿𝑞ℓ = 𝐷 then with PL 𝑞’s worst-case read blockage
time is 2 ·𝐷 compared to just 𝐷 with Delayed Stamping algorithms.

We now describe Pairwise-All (PA), which achieves worst-case
read blockage times below 𝐷 at some followers and at most 𝐷 at all
followers. Specifically, with PA, every process 𝑝’s worst-case read
blockage time is its relative eccentricity (𝐸𝑝 ). Compared to PL, PA
reduces worst-case read blockage times at processes far from the
leader, but increases them at processes close to the leader.

5.1 Overview
As in our overview of PL, to understand how PA achieves this,
we first consider a stepping-stone algorithm that achieves slightly
higher worst-case read blockage times (𝐸𝑝 vs. 𝐸𝑝 ). The core idea
of PA’s stepping stone is the same as PL’s: selectively delay when
prepare messages are sent in Eager Stamping algorithms. However,
in contrast to PL’s stepping stone, which delays prepare messages
so that the leader receives acknowledgments at the same time, PA’s
stepping stone delays prepare messages so that they all arrive at the
same time (under the assumptions outlined in §3.1). Specifically, a
process 𝑝’s prepare message is delayed by the leader’s eccentricity
minus the message delay between 𝑝 and the leader ℓ . For example,
in the network shown in Figure 1, 𝐸ℓ is 40 ms and 𝛿𝑝ℓ is 8 ms, so 𝑝’s
prepare message is delayed by 32 ms as shown in Figure 6.

PA’s stepping stone also differs from PL’s in that acknowledg-
ments are sent to all processes. This is instead of sending acknowl-
edgments only to the leader who then sends a commit message to
each process after it receives acknowledgments from all processes.
Notice that these two approaches are semantically equivalent. This
is because they both inform every process when it is safe to commit
a RMW 𝑜 , i.e., when all processes have received a prepare mes-
sage for 𝑜 . However, the benefit of sending acknowledgments to
all processes is that 𝑝 can commit 𝑜 quicker. Specifically, since all
processes receive prepare messages for 𝑜 at the same time, 𝑝 can
commit 𝑜 its eccentricity after it receives a prepare message for 𝑜 .
Therefore, 𝑝’s worst-case read blockage time is 𝐸𝑝 .

To achieve our goal of 𝐸𝑝 , we apply the same idea to PA’s step-
ping stone as we did with PL’s: decouple the occurrence of stop and
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Figure 6: A stepping stone to Pairwise-All.

go events from the reception of messages. However, since PA wants
all stop events to occur at the same time, we need to enhance the
event scheduling primitive with this functionality. The leader in
PA then uses this enhanced functionality to schedule every process
𝑝’s stop event for index 𝑖 to occur approximately at 𝑖’s visibility
time. Then, every process 𝑞 uses this primitive to schedule a stopped
event for 𝑖 on 𝑝 that occurs after 𝑞’s stop event for 𝑖 . 𝑝’s go event
for 𝑖 is then the maximum over all stopped events for 𝑖 on 𝑝 . We
illustrate this in Figure 7 where the green line represents 𝑖’s visi-
bility time. We emphasize that the leader’s accuracy in scheduling
𝑝’s stop event for 𝑖 does not impact correctness. This is because 𝑝’s
go event for 𝑖 is the maximum of all stopped events for 𝑖 over all
processes, which is guaranteed to occur after all stop events for 𝑖 .
Furthermore, as we will show, scheduling events in this way results
in every process 𝑝’s worst-case read blockage time being 𝐸𝑝 .

5.2 Enhancing the Event Scheduling Primitive
We now explain how to provide the sender 𝑠 with the ability to
compute a time 𝑇𝑟 on the receiver 𝑟 ’s clock such that 𝑇𝑟 occurs
approximately at 𝑇𝑠 on the sender’s clock in real-time.

To see how, first recall that the sender has a before marker𝑀𝑏
and an after marker𝑀𝑎 , while the receiver has a single marker𝑀 ,
such that𝑀𝑏 occurs before𝑀 in real-time, and𝑀 occurs before𝑀𝑎
in real-time. Also, recall that, to schedule 𝑇𝑟 , the sender computes
the elapsed time𝐷 between𝑇𝑠 and its markers, followed by relaying
𝐷 to the receiver. The receiver then computes 𝑇𝑟 as 𝐷 +𝑀 .

The sender schedules 𝑇𝑟 approximately at 𝑇𝑠 by computing 𝐷

as𝑇𝑠 minus the midpoint between𝑀𝑏 and𝑀𝑎 , i.e.,𝑇𝑠 − 1
2 (𝑀𝑏 +𝑀𝑎).

This is because when message delays are fixed, 12 (𝑀𝑏 +𝑀𝑎) on the
sender’s clock occurs at the same real-time as𝑀 on the receiver’s
clock. Thus, if 𝜖 = 0 then𝑇𝑟 occurs at the same real-time as𝑇𝑠 . Like
in §4.2, the primitive exposes this functionality through a procedure
called at(𝑇𝑠 ) which returns a payload 𝑃 that contains 𝐷 computed
using the most recently established set of markers before 𝑇𝑠 along
with its version number. The receiver then computes𝑇𝑟 by invoking
event(𝑃 ) which adds 𝐷 to the corresponding version of𝑀 .

5.3 The Algorithm
We now describe PA in detail (Algorithm 2). PA assumes the same
system as PL. Algorithm 2 builds onAlgorithm 1 by reusing Thread 1
and the commit_or_queue procedure but differs in how RMWs are
performed. We now describe how PA performs RMWs.

To perform a RMW 𝑜 , a process 𝑝 invokes RMW(𝑜). This proce-
dure first creates a unique operation 𝑜𝑝 and sends it to the leader.
Upon receiving this message, the leader records its current clock
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Figure 7: Pairwise-All.

Thread 2:

45 upon receiving ⟨𝑅𝑀𝑊 ,𝑜𝑝 ⟩:
46 𝑡 ≔ 𝑛𝑜𝑤 ( ) /* current time */

47 𝑖 ≔ + + 𝐼𝑛𝑑𝑒𝑥 /* latest index, initially 0 */

48 foreach 𝑝 ∈ Π do /* Π is the set of all processes */
49 𝑃 ≔ (ℓ, 𝑝 ) .at(𝑡 + 𝛼 ) /* 𝑝’s stop event for 𝑖 */

50 send ⟨𝑃𝑅𝐸𝑃𝐴𝑅𝐸, 𝑖, 𝑜𝑝, 𝑃 ⟩ to 𝑝 /* send prepare to 𝑝 */

51 upon receiving ⟨𝑃𝑅𝐸𝑃𝐴𝑅𝐸, 𝑖, 𝑜𝑝, 𝑃 ⟩ at 𝑝 :
52 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛[𝑖 ] ≔ 𝑜𝑝 /* record operation assigned to 𝑖 */

53 𝑆𝑡𝑜𝑝 [𝑖 ] ≔ (ℓ, 𝑝 ) .event(𝑃 ) /* stop event for 𝑖 */

54 𝑃𝐼𝑛𝑑𝑒𝑥 ≔ max(𝑃𝐼𝑛𝑑𝑒𝑥, 𝑖 ) /* max prepare index, initially 0 */

55 foreach 𝑞 ∈ Π do
56 𝑃 ′ ≔ (𝑝,𝑞) .after(𝑆𝑡𝑜𝑝 [𝑖 ] ) /* 𝑞’s stopped event for 𝑖 by 𝑝 */

57 send ⟨𝐴𝐶𝐾, 𝑖, 𝑃 ′ ⟩ to 𝑞 /* send ack to 𝑞 */

58 upon receiving ⟨𝐴𝐶𝐾, 𝑖, 𝑃 ′ ⟩ at 𝑝 from 𝑞:
59 𝑆𝑡𝑜𝑝𝑝𝑒𝑑 [𝑖 ] [𝑞 ] ≔ (𝑞, 𝑝 ) .event(𝑃 ′ ) /* stopped event */

Thread 3:

60 upon receiving ⟨𝐴𝐶𝐾, 𝑖, −⟩ from Π:
61 wait until ∀𝑞 ∈ Π 𝑆𝑡𝑜𝑝𝑝𝑒𝑑 [𝑖 ] [𝑞 ] ≠ 𝑁𝑈𝐿𝐿 /* wait for Thread 2 */

62 𝐺𝑜 [𝑖 ] ≔ max𝑞∈Π 𝑆𝑡𝑜𝑝𝑝𝑒𝑑 [𝑖 ] [𝑞 ] /* go event for 𝑖 */

63 commit_or_queue(𝑖 ,𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛[𝑖 ])

Algorithm 2: PA without failures. ℓ is the leader.

time 𝑡 and assigns 𝑜𝑝 to the next index number 𝑖 (line 46-47). The
leader then schedules a stop event for 𝑖 on every process to oc-
cur approximately at 𝑖’s visibility time. It does so by invoking the
at(𝑡 + 𝛼) procedure provided by the event scheduling primitive
(line 49). The leader then sends prepare messages for 𝑖 (line 50).

When a process 𝑝 receives this message it stores the operation
and computes its stop event using the event procedure provided
by the event scheduling primitive (line 52-53). Next, 𝑝 updates the
maximum index it has received so far (line 54). Then, 𝑝 schedules a
stopped event for 𝑖 to occur after its stop event for 𝑖 for each process
using the after(𝑆𝑡𝑜𝑝 [𝑖]) procedure (line 56). Lastly, 𝑝 sends an
acknowledgment message for 𝑖 (line 57).

When a process 𝑝 receives this message from a process 𝑞 it
computes its stopped event for 𝑖 from 𝑞 using the event proce-
dure (line 59). Finally, once 𝑝 has received acknowledgments for 𝑖
from all processes, it computes its go event for 𝑖 as the maximum
stopped event received by all processes (line 62) and invokes com-
mit_or_queue as described on line 30 of Algorithm 1.

5.4 Analysis
We now show that under the assumptions outlined in §3.1 if 𝜖 = 0
and 𝛼 ≥ 𝐸ℓ +𝐷min where 𝐷min = max𝑝∈Π 𝐸min

𝑝 then every process
𝑝’s worst-case read blockage time is 𝐸𝑝 .

Consider some process 𝑝’s invocation of read(𝑜) stamped with 𝑗

on line 10. We start with two observations about any 𝑖 ∈ [1, 𝑗],
which follow from our assumptions that 𝜖 = 0, messages are not
lost, and all processes are non-faulty. Let 𝑜𝑝𝑖 be the RMW assigned
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to index 𝑖 on line 47. The first is that 𝑜𝑝𝑖 ’s visibility time 𝑉𝑖 occurs
in real-time at 𝑇𝑖 + 𝛼 where 𝑇𝑖 is the real-time the leader received
𝑜𝑝𝑖 on line 45. The second is that 𝑝 wrote timestamps into 𝐺𝑜 [𝑖]
and 𝑆𝑡𝑜𝑝𝑝𝑒𝑑 [𝑖] [𝑞], for every process 𝑞, on lines 62 and 59 which
occur at real-times 𝐺𝑜 (𝑝, 𝑖) and 𝑆𝑡𝑜𝑝𝑝𝑒𝑑 (𝑝, 𝑖, 𝑞), respectively, and
every process 𝑞 wrote a timestamp into 𝑆𝑡𝑜𝑝 [𝑖] on line 53 which
occurs at real-time 𝑆𝑡𝑜𝑝 (𝑞, 𝑖). We now relate these times.

Since process 𝑞’s stop event for 𝑖 is scheduled at 𝑜𝑝𝑖 ’s visibility
time on line 49, and 𝜖 = 0, by our analysis in §5.2 𝑆𝑡𝑜𝑝 (𝑞, 𝑖) = 𝑉𝑖 .
Furthermore, since 𝑞 schedules 𝑝’s stopped event for 𝑖 after 𝑞’s stop
event for 𝑖 on line 56, by our analysis in §4.2 𝑆𝑡𝑜𝑝𝑝𝑒𝑑 (𝑝, 𝑖, 𝑞) =

𝑆𝑡𝑜𝑝 (𝑞, 𝑖) + 𝛿𝑞𝑝 . Finally, since 𝑝’s go event for 𝑖 is 𝑝’s maximum
stopped event for 𝑖 over all processes (line 62), 𝐺𝑜 (𝑝, 𝑖) = 𝑉𝑖 + 𝐸𝑝 .

Our analysis is done in the same two steps as in §4.4. The first
is to show that 𝑝 applies 𝑜𝑝 𝑗 on line 43 at 𝐺𝑜 (𝑝, 𝑗). This follows
from two facts: (1) for every 𝑖 ∈ [1, 𝑗) 𝐺𝑜 (𝑝, 𝑖) ≤ 𝐺𝑜 (𝑝, 𝑖 + 1) and
(2) for every 𝑖 ∈ [1, 𝑗] 𝑝 receives an acknowledgment message for 𝑖
from every process by 𝐺𝑜 (𝑝, 𝑖). To see why, notice that (1) and (2)
imply that for every 𝑖 ∈ [1, 𝑗] 𝑝 invokes commit_or_queue(𝑖 , 𝑜𝑝𝑖 )
by 𝐺𝑜 (𝑝, 𝑗), and therefore 𝑝 applies 𝑜𝑝 𝑗 on line 43 at 𝐺𝑜 (𝑝, 𝑗).

The argument for (1) is similar to that in §4.4. For (2), first no-
tice that 𝑝 receives acknowledgment messages for 𝑖 from every
process at 𝑇𝑖 + max𝑞∈Π 𝛿ℓ𝑞 + 𝛿𝑞𝑝 . This is because every process
𝑞 receives a prepare message for 𝑖 on line 51 at 𝑇𝑖 + 𝛿ℓ𝑞 and 𝑝

receives an acknowledgment message for 𝑖 from 𝑞 on line 58 af-
ter an additional 𝛿𝑞𝑝 . What remains is to show that 𝐺𝑜 (𝑝, 𝑖) ≥
𝑇𝑖+max𝑞∈Π 𝛿ℓ𝑞+𝛿𝑞𝑝 . Recall that (a)𝐺𝑜 (𝑝, 𝑖) = 𝑉𝑖+𝐸𝑝 , (b)𝑉𝑖 = 𝑇𝑖+𝛼 ,
and (c) 𝛼 ≥ 𝐸ℓ + 𝐷min, and observe that (d) 𝐷min + 𝐸𝑝 ≥ 𝐸𝑝 . By
(a), (b), and (c): 𝐺𝑜 (𝑝, 𝑖) ≥ 𝑇𝑖 + 𝐸ℓ + 𝐷min + 𝐸𝑝 and therefore by (d)
𝐺𝑜 (𝑝, 𝑖) ≥ 𝑇𝑖 + 𝐸ℓ + 𝐸𝑝 = 𝑇𝑖 +max𝑞∈Π 𝛿ℓ𝑞 + 𝛿𝑞𝑝 .

The second step is to show that the real-time of read(𝑜) is at
most 𝐺𝑜 (𝑝, 𝑗) − 𝑆𝑡𝑜𝑝 (𝑝, 𝑗). Again, the argument is similar to that
in §4.4 so we omit it for brevity. Now recall that 𝑆𝑡𝑜𝑝 (𝑝, 𝑗) = 𝑉𝑗

and𝐺𝑜 (𝑝, 𝑗) = 𝑉𝑗 + 𝐸𝑝 so𝐺𝑜 (𝑝, 𝑗) − 𝑆𝑡𝑜𝑝 (𝑝, 𝑗) = 𝐸𝑝 . Therefore, by
step two 𝑝’s worst-case read blockage time is 𝐸𝑝 .

6 CORRECTNESS SKETCH
We now sketch why Algorithms 1 and 2 are linearizable. Recall
that this requires all operations to take effect in some total order
that is consistent with the real-time ordering of operations, i.e., if
operation 𝑜1 completes before operation 𝑜2 begins, then 𝑜1 must
take effect before 𝑜2. Operations in PL and PA take effect in the
same total order: the RMW assigned to index 1, the (possibly empty)
sequence of reads stamped with index 1, the RMW assigned to index
2, and so forth. This is ultimately enforced by the Apply and Read
procedures. We now show that this ordering is consistent with the
real-time ordering of operations. Consider any operations 𝑜1 and
𝑜2 such that 𝑜1 completes before 𝑜2 begins. There are four cases.

Case 1: 𝑜1 and 𝑜2 are RMWs. Since 𝑜1 is complete, the process
𝑝 that invoked 𝑜1 executed Apply(𝑖1, 𝑜1) on line 43 where 𝑖1 is
𝑜1’s index. First notice that 𝐼𝑛𝑑𝑒𝑥 = 𝑖1 on the leader before 𝑝

executed Apply(𝑖1, 𝑜1). This is because 𝑝 executes Apply(𝑖1, 𝑜1) after
receiving a commit message for 𝑖1 on line 28 in PL or receiving
acknowledgments for 𝑖1 from all processes on line 60 in PA. Hence,
the leader sent prepare messages for 𝑖1 beforehand and therefore set

𝐼𝑛𝑑𝑒𝑥 = 𝑖1 before 𝑝 executed Apply(𝑖1, 𝑜1). Now, since 𝑜1 completed
before 𝑜2 begins in real-time, this implies that 𝐼𝑛𝑑𝑒𝑥 = 𝑖1 on the
leader before 𝑜2 begins. Since 𝐼𝑛𝑑𝑒𝑥 is monotonically increasing,
this implies that the leader assigns 𝑜2 to an index larger than 𝑖1.
Therefore, 𝑜1 is before 𝑜2 in the above total order.

Case 2: 𝑜1 is a RMW and 𝑜2 is a read. Let processes 𝑝1 and
𝑝2 be the processes that invoked 𝑜1 and 𝑜2, respectively. Since 𝑜1
is complete, 𝑝1 executed Apply(𝑖1, 𝑜1) on line 43 at real-time 𝐴

where 𝑖1 is 𝑜1’s index. Hence, line 41 finished at some real-time
𝐺𝑜 (𝑝1, 𝑖1) ≤ 𝐴where𝐶𝑝1 (𝐺𝑜 (𝑝1, 𝑖1)) ≥ 𝐺𝑜 [𝑖1]. We now show that
𝑝2 wrote a timestamp into 𝑆𝑡𝑜𝑝 [𝑖1] and 𝑃𝐼𝑛𝑑𝑒𝑥 ≥ 𝑖1 before or at
𝐺𝑜 (𝑝1, 𝑖1). Since line 41 finishes on 𝑝1 at𝐺𝑜 (𝑝1, 𝑖1), commit(𝑖1, 𝑜𝑝1)
was executed on line 40 where 𝑜𝑝1 is the unique operation created
on line 3 for𝑜1. In PL, this implies that 𝑝1 received a commitmessage
for 𝑖1 on line 28, and so the leader received acknowledgments for
𝑖1 from all processes on line 26. In PA, this implies that 𝑝1 received
acknowledgments for 𝑖1 from all processes on line 58. Hence, 𝑝2
executed 𝑆𝑡𝑜𝑝 [𝑖1] = 𝐶𝑝2 (𝑆𝑡𝑜𝑝 (𝑝2, 𝑖1)) and 𝑃𝐼𝑛𝑑𝑒𝑥 ≥ 𝑖1 before or
at 𝐺𝑜 (𝑝1, 𝑖1). Now, observe that in both PL and PA, 𝐺𝑜 (𝑝1, 𝑖1) ≥
𝑆𝑡𝑜𝑝 (𝑝2, 𝑖1). This follows from the real-time ordering guarantees
provided by the event scheduling primitive and the definitions of
𝐺𝑜 [𝑖1] on 𝑝1 and 𝑆𝑡𝑜𝑝 [𝑖1] on 𝑝2. Now consider 𝑝2’s invocation of
read(𝑜2) stamped with 𝑖2 on line 10. In read(𝑜2), 𝑝2 first queries its
hardware clock on line 8 which returns a timestamp 𝑡 = 𝐶𝑝2 (𝑅).
Since 𝑝2’s invocation of read(𝑜2) occurs after 𝑜1 completes, 𝑅 ≥ 𝐴,
and since 𝐴 ≥ 𝐺𝑜 (𝑝1, 𝑖1), 𝑅 ≥ 𝐺𝑜 (𝑝1, 𝑖1). 𝑝2 then computes 𝑙𝑏 and
𝑢𝑏 on line 9. Since 𝑃𝐼𝑛𝑑𝑒𝑥 ≥ 𝑖1 before or at 𝐺𝑜 (𝑝1, 𝑖1), 𝑃𝐼𝑛𝑑𝑒𝑥
is monotonically increasing, and 𝑢𝑏 is computed after 𝐺𝑜 (𝑝1, 𝑖1),
𝑢𝑏 ≥ 𝑖1. There are now two cases to consider. If 𝑙𝑏 ≥ 𝑖1 then by
line 10 𝑖2 ≥ 𝑙𝑏 so 𝑖2 ≥ 𝑖1. Otherwise, 𝑖1 > 𝑙𝑏. Since 𝑅 ≥ 𝐺𝑜 (𝑝1, 𝑖1)
and𝐺𝑜 (𝑝1, 𝑖1) ≥ 𝑆𝑡𝑜𝑝 (𝑝2, 𝑖1), 𝑅 ≥ 𝑆𝑡𝑜𝑝 (𝑝2, 𝑖1). Hence, since 𝐶𝑝2 is
monotonically increasing, 𝑡 ≥ 𝑆𝑡𝑜𝑝 [𝑖1] and so by line 10 𝑖2 ≥ 𝑖1.
Therefore, 𝑜1 is before 𝑜2 in the above total order.

For brevity, we omit arguments for case 3 (𝑜1 is a read operation
and 𝑜2 is a RMW operation) and case 4 (𝑜1 and 𝑜2 are read opera-
tions) because you can satisfy both by first identifying the RMW
operation that was assigned to the same index that 𝑜1 was stamped
with, then use the above argument for case 1 to satisfy case 3 and
use the above argument for case 2 to satisfy case 4.

7 FAULT TOLERANCE
We now outline how to extend our failure-free descriptions of
existing algorithms (§2) and the Pairwise algorithms (§4 and §5) to
tolerate 𝑓 <

|Π |
2 crash failures using ideas from prior work [6, 9].

We start with how to tolerate follower failures. As we have
seen, in the absence of failures, all followers must acknowledge
a prepare message for index 𝑖 before any process can commit the
RMW 𝑜 assigned to 𝑖 . This is so that all followers stop stamping
reads with indices less than 𝑖 before 𝑜 completes. The challenge
with handling follower failures is providing this guarantee without
receiving acknowledgments from all followers.

To achieve this, every follower 𝑝 only stamps reads with indices
less than 𝑖 while it has an active lease for an index 𝑗 < 𝑖 . A lease
for 𝑗 is a limited-time promise from the leader to 𝑝 that no RMW
stamped with an index greater than 𝑗 will take effect without 𝑝’s
acknowledgment [15]. This allows 𝑝 to perform reads like in our
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failure-free descriptions, except that 𝑝 cannot stamp reads with
indices smaller than 𝑗 . Using these leases, the leader can ensure 𝑝
has stopped stamping reads with indices less than 𝑖 by waiting for
all leases previously granted to 𝑝 for indices less than 𝑖 to expire.6

We now discuss how to tolerate leader failure. As we have seen,
the leader is responsible for granting leases and linearizing RMW
operations. These responsibilities must be gracefully transferred
between successive leaders to maintain correctness.

Transferring the responsibility of granting leases requires that
the previous leader stops granting leases before the new leader
begins. This ensures that an old leader cannot grant a lease “behind
the back” of the new leader, allowing processes to read a stale
version of the state. To avoid this, leader election is done by the
enhanced leader service of [9], which guarantees there is at most
one leader at any time, and a leader is eventually elected. Once a
new leader is elected, it begins granting leases after waiting for all
leases from the previous leader to expire. Specifically, it periodically
grants leases for the maximum prepared index after it is “initialized”,
as described next, to the set of active leaseholders. If a process learns
it is not in this set, it sends a message to the leader to be added.

Transferring the responsibility of linearizing RMWs is done in
a way reminiscent of Paxos. After a new leader ℓ is elected, it is
initialized by contacting a majority of processes to ensure that they
dismiss prepare messages from all previous leaders and also to de-
termine all half-done operations. ℓ then finishes these operations
and begins linearizing new RMWs. A RMW 𝑜 is linearized in the
same way as our failure-free descriptions, except instead of waiting
for acknowledgments from all followers, ℓ waits to receive acknowl-
edgments from a majority of processes. This enables future leaders
to recover operations linearized by ℓ . Then, ℓ waits until it receives
acknowledgments from all active leaseholders or until some grace
period passes.7 If the grace period passes, ℓ waits for the leases of all
unresponsive active leaseholders to expire and removes them from
the set of active leaseholders. This is to ensure a crashed follower
only delays one RMW operation. ℓ then sends commit messages
for 𝑜 to all processes. In the fault-tolerant version of PA, ℓ also does
this after ℓ’s go event occurs. This enables followers who have not
received acknowledgments from all active leaseholders to apply 𝑜 .

8 EXPERIMENTAL EVALUATION
This section answers the following questions experimentally:
(1) What are the effects of asymmetry, 𝛼 , and 𝛿min on latency?
(2) How do latency spikes and follower failures impact PL and PA?
(3) What are the benefits of PL and PA in terms of average latency

and throughput compared to existing local read algorithms?

8.1 Implementation & Experimental Setup
Since all but the second part of question (2) is unrelated to fault
tolerance, we answer them by comparing failure-free versions of
Leader Reads (LR) [8] (described later), Invalidation (INV), Eager
Stamping (EAG), Delayed Stamping (DEL), Pairwise-Leader (PL),
and Pairwise-All (PA) implemented in Java using gRPC [3]. We then
6Leases are traditionally granted using synchronized clocks. Specifically, the leader
chooses a time 𝑡 for which a follower 𝑝’s lease will expire and sends 𝑡 to 𝑝 . The leader
then knows that 𝑝’s lease has expired once 𝑡 + Δ elapses on its clock. Alternatively,
leases can be granted using the event scheduling primitive’s before procedure.
7To guarantee liveliness, the grace period must be at least 2 · 𝛿max (defined in §4.3).

Message
Delays (ms)

𝛿ℓ𝑞 = 50

𝛿ℓ𝑝 = 50 − 𝑥

𝛿𝑝𝑞 = 50 − 𝑐 · 𝑥

Figure 8: Maximum read latency at process 𝑝 as the network
described by the table on the right becomesmore asymmetric.

explore the effects that follower failures have on PL and PA using
versions of PL and PA that can tolerate follower failures.

All experiments were run onAWS using c5.4xlarge EC2 instances.
Each experiment was run five times, and we plotted its average and
p99 confidence intervals (but they are barely visible). To answer
questions (1) and (2), we use three instances in North Virginia and
artificially impose constant message delays using traffic control [4].
To answer question (3), we use two different real-world networks
(described in §8.4). Our experiments replicate a no-op state machine,
except Figure 15, which replicates a RocksDB key-value store.

When running DEL, we synchronized clocks using NTP [25]
and set Δ = 𝐷 . When running PL and PA, we set 𝜖 = 200 ppm and
re-establish markers every 500 ms. Lastly, we configure 𝛼 for DEL,
PL, and PA as discussed in the second experiment of §8.2.

8.2 Effects of Asymmetry, 𝛼 , & 𝛿min on Latency
To measure the effects of asymmetry, 𝛼 , and 𝛿min on latency, we
measure the maximum read and RMW latency during a one-second
workload where every process performs a read every millisecond,
and the leader performs a RMW every millisecond.

We measure the effects of network asymmetry by using a three-
process network where the message delay between the leader ℓ
and 𝑞 is 50 ms, between ℓ and 𝑝 is 50 − 𝑥 ms, and between 𝑝 and 𝑞
is 50 − 𝑐 · 𝑥 ms where 𝑐 ∈ [0, 1]. The parameter 𝑐 controls how
asymmetry changes with 𝑥 . For example, when 𝑐 = 0, 𝑝 gets closer
to ℓ as 𝑥 increases, but 𝑝’s distance to 𝑞 remains equal to 50 ms.
Conversely, when 𝑐 = 1, 𝑝 gets equally closer to ℓ as it does to 𝑞
as 𝑥 increases. To isolate the effects of network asymmetry, we vary
𝑥 such that the diameter is always 50 ms. For the same reason, we
do not use lower bounds on message delay, so 𝐷 = 50 ms.

Figure 8 shows themaximum read latency at 𝑝 . As we can see, the
read latency of EAG and DEL is unaffected by network asymmetry.
Read latency with EAG is 100 ms for all 𝑐 and 𝑥 since 2 · 𝐸ℓ =

100 ms whereas with DEL it is 50 ms since 𝐷 = 50 ms. INV is also
unaffected by network asymmetry but is not shown in Figure 8
since all reads block until the experiment finishes. Conversely, the
read latency of PL and PA is affected by network asymmetry. Read
latency with PL is 2 · (50 − 𝑥) ms since this is 2 · 𝛿ℓ𝑝 whereas
with PA it is max(50 − 𝑥, 50 − 𝑐 · 𝑥) ms since this is 𝐸𝑝 . As a result,
PL and PA reduce maximum read latency at 𝑝 by up to 50x and
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Figure 9: Maximum operation latency
as 𝛼 is varied from 0 to 120 ms.

Figure 10:Maximumoperation latency
as 𝛿min

𝑝𝑞 is varied from 0 to 100% of 𝛿𝑝𝑞 .
Figure 11: Latency during a network
spike (top) and 𝑝’s failure (bottom).

2x compared to the best existing algorithm, respectively. Finally,
notice that the results in Figure 8 nearly match our analysis even
though 𝜖 = 200 ppm while our analysis assumed that 𝜖 = 0. This is
ultimately because markers are re-established every 500 ms.

We measure the effects of 𝛼 by varying it from 0 to 120 ms in the
three-process network shown in Figure 1. Furthermore, to isolate
the effects of varying 𝛼 , we do not use lower bounds on message
delay, so 𝐷 = 40 ms. Clockwise, Figure 9 shows the RMW latency
at the leader ℓ and the read latency at ℓ , 𝑝 , and 𝑞. We include EAG,
although it doesn’t use 𝛼 (the same value is plotted for all 𝛼).

As shown in Figure 9, 𝛼 controls the trade-off between RMW
and read latency for DEL, PL, and PA. Specifically, RMW latency
is flat up until some point, followed by linearly increasing. Read
latency has the opposite behavior; it linearly decreases until some
point, followed by plateauing. Notice that RMW latency begins to
increase when read latency starts to plateau; this instantaneous
point is the “sweet spot” for 𝛼 because smaller values increase read
latencies, and larger values increase RMW latencies. However, since
this sweet spot is instantaneous, it is impossible to hit it in practice
reliably. So, as Figure 9 shows, read latency is reliably minimized
when 𝛼 is at least 90 ms in DEL, 90 ms in PL, and 50 ms in PA.
This is 10 ms higher than each algorithm’s sweet spot of 3 · 𝐸ℓ − Δ
for DEL, 2 · 𝐸ℓ + 𝐸min

ℓ
for PL, and 𝐸ℓ + 𝐷min for PA. Since these

algorithms are designed to minimize read latency, we configure 𝛼
10 ms higher than these sweet spots throughout our evaluation.

We measure the effects of 𝛿min by setting 𝛿min
𝑝𝑞 = 𝑥

100 · 𝛿𝑝𝑞 for
all 𝑝 and 𝑞 and varying 𝑥 from 0 to 100. This experiment is run in
the network shown in Figure 1, so 𝐷 = 40 · (1 − 𝑥

100 ) ms.
As Figure 10 shows, read latency at all processes with DEL, PL,

and PA linearly decreases towards 0 as 𝑥 increases towards 100.
This is expected because our analysis of DEL, PL, and PA showed
that their worst-case read blockage times are all linearly depen-
dent on 𝛿min. Conversely, EAG provides constant read latency as it
cannot take advantage of known lower bounds on message delays.
Also, notice that the RMW latency with PL linearly increases with 𝑥 .
This is because with PL, the leader’s go events are scheduled fur-
ther in the future as 𝑥 increases, so its RMW latency also increases.
Conversely, with PA and DEL, the leader’s go events remain the
same irrespective of 𝑥 , and hence, so does their RMW latency.

8.3 Latency Spikes & Follower Failures
To measure the impact of latency spikes and follower failures on
PL and PA, we measure RMW and read latency during the same
workload as the last section over fifteen seconds.

We measure the impact of latency spikes in the three-process
network shown in Figure 1 by configuring message delays as shown
in Figure 1 in the first and last five seconds and by doubling them
in the middle five seconds. Moreover, we use the speed of light
propagation times shown in Figure 1 as the message delay lower
bounds. Since our configuration of 𝛼 depends on message delays,
we compare two different versions. PL and PA configure 𝛼 opti-
mistically using the message delays in the first and last five seconds.
In contrast, PL-P and PA-P configure 𝛼 pessimistically using the
message delays in the middle five seconds. The top of Figure 11
shows the RMW latency at ℓ and the read latency at 𝑝 .

As we can see at the top of Figure 11, the read latency at 𝑝 is the
same for both versions of each algorithm in the first and last five
seconds. However, during the middle five seconds, the pessimistic
versions provide read latency at 𝑝 equal to our analysis, while the
optimistic versions provide higher read latency. This is because
the pessimistic versions are always on the read latency plateau
we saw in Figure 9, while the optimistic versions are only on it
during the first and last five seconds. However, the downside of
the pessimistic versions is that they provide higher RMW latency
than the optimistic versions. So, to get the best of both versions, the
optimistic versions would ideally increase their configuration of 𝛼
during the middle five seconds. This can be done by integrating the
status mechanism of [6] into the Pairwise algorithms.

We measure the impact of follower failures by manually crashing
𝑝 after approximately 5 seconds in the same network as the last
experiment. The bottom of Figure 11 shows the RMW latency at ℓ
and the read latency at 𝑞 in log scale. In this experiment, the grace
period is one second, and leases are granted for two seconds.

As we can see in the bottom of Figure 11, after 𝑝 fails, RMW
latency at ℓ and the read latency at 𝑞 peaks at three seconds, i.e., the
sum of the grace period and the lease length as expected. Otherwise,
before 𝑝 fails and after 𝑝’s lease is revoked, ℓ ’s average RMW latency
is 103 ms with PL and 91 ms with PA, whereas 𝑞’s average read
latency is 55 ms with PL and 27 ms with PA.

2437



Figure 12: Average opera-
tion latency as the number
of RMWs per second is var-
ied from 25 to 250.

Figure 13: Read throughput
with different RMW inter-
vals as the number of pro-
cesses per region is varied.

Figure 14: Read through-
put as the interval between
consecutive RMWs is varied
from 10 to 640 ms.

Figure 15: Throughput on
a distributed version of
RocksDB during concurrent
YCSB updates and reads.

8.4 Performance in Real-World Networks
We measure the average latency benefits of PL and PA by perform-
ing 𝑥 RMWs per second at the leader ℓ and by performing a read
every millisecond at each process for 10 seconds. This experiment
is run across the three AWS regions shown in Figure 1. In this
network, 𝐷 is 27 ms, and 𝛼 is configured to 103 ms for DEL, 103 ms
for PL, and 63 ms for PA. Clockwise, Figure 12 shows the average
RMW latency at ℓ and the average read latency at ℓ , 𝑝 , and 𝑞.

As we can see in Figure 12, the average read latencies for all local
read algorithms converge to their worst-case read blockage times
as 𝑥 increases. This is because as 𝑥 increases, the likelihood of a
read blocking increases. Figure 12 is also the first time we see LR: an
optimization to leader-based state machine replication algorithms
that forwards all reads to the leader, who then performs them
immediately and returns the result [8]. As we can see, LR achieves
the lowest RMW latency since only a majority of processes need
to acknowledge each prepare message. The cost of this, however,
is that it cannot perform reads locally at any follower. As a result,
for small values of 𝑥 , LR’s average read latency at 𝑝 is significantly
higher than PL’s, and its average read latency at 𝑞 is significantly
higher compared to all local read algorithms. Moreover, LR’s read-
throughput is considerably lower, as we will see next.

We measure the read-throughput benefits of PL and PA by vary-
ing the interval between RMWs from 10 to 640 ms and the number
of processes per region (𝑥) from 1 to 16. This experiment has be-
tween 1 and 16 processes in the Montreal, North Virginia, North
California, Frankfurt, and Stockholm AWS regions. The leader is
in Montreal. In this experiment, the leader performs a RMW every
10 to 640 ms, and each process performs reads back-to-back for 1
minute. Moreover, we use the speed of light propagation times as
the known lower bounds on message delays, and so in this network,
𝐷 is 58 ms. Furthermore, 𝛼 is configured to 108 ms for DEL, 134 ms
for PL, and 92 ms for PA. Clockwise, Figure 13 shows the read
throughput when the RMW interval is 20, 40, 80, and 160 ms as 𝑥
varies from 1 to 16. Moreover, Figure 14 shows the read throughput
when 𝑥 = 16 as the RMW interval varies from 10 to 640 ms.

As we can see in Figure 13, PL provides significantly higher read-
throughput than all existing algorithms for small RMW intervals.
Furthermore, this improvement scales linearly with the number of
processes per region. Concretely, PL and PA improve throughput
by up to 19.4x and 3.3x, respectively, compared to the best existing

algorithm (when the interval is 40 ms and 𝑥 = 16). These results are
expected: since each process performs read operations back to back,
a lower worst-case read operation latency translates to more free
time to read the state without blocking. This is why in Figure 14,
as the RMW interval increases, the gap between all algorithms for
local reads shrinks until they coverage at 𝑥 = 640 ms. The exception
is LR, which cannot perform reads locally at any follower.

We also evaluate these algorithms in the context of a distributed
key-value store. Like prior works [14, 30], we use each algorithm
as a shim layer to implement a distributed version of RocksDB. We
first ran a YCSB workload of 1000 keys, in which each process ran
16 closed-loop clients performing 𝑥% updates and 100−𝑥% reads for
one minute. This experiment was conducted with four processes
per region in the same five-region network as the last experiment.
In this experiment, the average latency for all local read algorithms
linearly increased from ≈ 0 ms at 𝑥 = 0 to the average RMW latency
across all processes at 𝑥 = 100. However, this workload does not
stress these algorithms because each RMW takes around 100 ms,
so each client is mostly idle. To stress these algorithms, we split
the above workload’s clients into two different groups: eight that
only perform updates and eight that only perform reads. Figure 15
shows each algorithm’s throughput in this workload.

As shown in Figure 15, LR, EAG, DEL, PL, and PA perform 20.4,
25.3, 47.3, 170.4, and 59.7 KOps/sec, respectively. This is a 3.6x
and 1.2x improvement for PL and PA compared to the best existing
algorithm, respectively.We note that throughput drops compared to
the last experiment for two main reasons: this experiment performs
significantly more RMWs, and reads in RocksDB take microseconds
while reads in our no-op state machine take nanoseconds.

9 CONCLUSION
We first showed that in periods where message delays are fixed and
all processes are non-faulty, the worst-case read blockage time at
every follower with all existing linearizable local read algorithms
is at least 𝐷 when deployed on commodity hardware. We then
presented Pairwise-Leader and Pairwise-All and showed that in
the same periods, their worst-case read blockage time at every
process 𝑝 is 2 · 𝛿𝑝ℓ and 𝐸𝑝 , respectively, which is below 𝐷 at well-
located followers. Lastly, we showed experimentally that these new
algorithms reduce worst-case read latency by up to 50x and increase
read throughput by up to 19.4x compared to existing algorithms.
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