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ABSTRACT
Acyclic join queries can be evaluated instance-optimally using Yan-

nakakis’ algorithm, which avoids needlessly large intermediate

results through semi-join passes. Recent work proposes to address

the significant hidden constant factors arising from a naive imple-

mentation of Yannakakis by decomposing the hash join operator

into two suboperators, called Lookup and Expand. We present a

novel method for integrating Lookup and Expand plans in inter-

preted environments, like column stores, formalizing them using

Nested Semijoin Algebra (NSA) and implementing them through a

shredding approach. We characterize the class of NSA expressions

that can be evaluated instance-optimally as those that are 2-phase:

no ‘shrinking’ operator is applied after an unnest (i.e., expand). We

introduce Shredded Yannakakis (SYA), an evaluation algorithm for

acyclic joins that, starting from a binary join plan, transforms it into

a 2-phase NSA plan, and then evaluates it through the shredding

technique. We show that SYA is provably robust (i.e., never pro-

duces large intermediate results) and without regret (i.e., is never

worse than the binary join plan under a suitable cost model) on

the class of well-behaved binary join plans. Our experiments on

a suite of 1,849 queries show that SYA improves performance for

85.3% of the queries with speedups up to 62.5x, while remaining

competitive on the other queries.
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1 INTRODUCTION
Computing joins efficiently has been a fundamental challenge in

query processing since the inception of the relational model. Un-

fortunately, consistently finding a good join order remains very
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difficult. This is especially true for the increasingly common queries

with up to a thousand relations featuring many-to-many joins [7,

23, 28]. At the same time, a poorly chosen join order will bring

even state-of-the-art systems to their knees [26]. In recent work [5],

Birler, Kemper, and Neumann (henceforth BKN) have dubbed the

problem underlying this phenomenon the diamond problem: a poor

query plan will compute subresults that are orders of magnitude

larger than the output, even if these subresults are unnecessary to

produce this final output—thereby wasting significant time.

Avoiding the diamond problem is intrinsically linked to query

engine robustness: by limiting the sizes of intermediate results,

the engine’s runtime becomes bounded and predictable. How to

avoid the diamond problem has in fact been a major topic in data-

base theory for decades. From the concept of acyclicity [3, 11]

and Yannakakis’ seminal algorithm (YA) for optimally process-

ing acyclic queries [39], over various notions of query width and

query decompositions [13], to the more recent worst-case-optimal

(WCO) [29, 30, 37] and factorized [19, 31] processing algorithms:

much research has been done to identify and exploit structural

properties of join queries that can either completely eliminate or

bound the size of intermediate results. Although many of these

techniques have been known for decades, they have not yet found

wide-spread adoption in practical query engines. Indeed, most con-

temporary systems [1, 12, 20, 24, 27, 32] continue to use non-robust

binary join plans for most queries, possibly resorting to WCO joins

in certain cases—in particular for cyclic queries. The reason for

this lack of adoption is that the above-mentioned research focuses

on asymptotic complexity and optimizes for the worst-case input

instance in avoiding the diamond problem. In fact, when imple-

mented in a concrete system, these techniques can be significantly

slower than traditional techniques on common-case instances and

queries [5, 26]. From an engineering viewpoint we are hence in

search for provably robust query processing algorithms without

regret: competitive with traditional join algorithms while avoiding

the diamond problem.

Towards this goal, BKN suggest tomove to a larger space of query

plans [5]. Concretely, they propose to decompose the traditional

hash join operator into two suboperators called Lookup and Expand

(or L&E for short). Lookup (denoted →) finds the first match of a

given tuple in a hash table, while expand ( e ) iterates over the

rest of the matches. By considering query plans where these two

suboperators can be freely combined and reordered, dangling tuples

(i.e., tuples that do not contribute to the output) can be eliminated as

early as possible, hence avoiding the diamond problem. It is shown
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that L&E plans can be used to optimally process acyclic joins as

well as effectively process certain cyclic joins when an additional

operator is added. However, their approach to create L&E plans

does not formally guarantee to always avoid the diamond problem

(see point (4) below for more detail).

While BKN successfully implement L&E plans inside Umbra [27],

a compiled query engine, it is unclear how to effectively implement

L&E plans inside interpreted query engines. Indeed, Umbra gener-

ates code from L&E plans using the produce-consume interface [25]

favored in compiled engines, and then rely on compiler optimiza-

tions to remove inefficiencies. Obtaining the same behavior in an

interpreted engine poses two challenges. First, in the typical ar-

chitecture of an interpreted engine, (physical) operators adopt a

uniform (physical) data model. In column stores, this data model is

simply a relation, implemented as set of column segments. While

BKN state that an L&E plan is also meant to produce a relation,

they also impose several constraints. For instance, after performing

𝑅 → 𝑆 , one cannot access the non-join attributes of 𝑆 without first

applying an expand operation. This suggests that the output of

→ is not a standard relation, making it unclear what exactly the

(physical) data model is one should implement for L&E plans.

The second challenge, particular to column stores, is that the

common wisdom in column stores is to let operators process a

column-at-a-time. This is empirically a (large) constant factor faster

than element at-a-time processing since it allows using vectoriza-

tion when applicable as well as amortize function-call overhead. Yet,

the code generated for L&E plans by BKN proceeds tuple-at-a-time.

In this paper, we build further upon the ideas in BKN by investi-

gating the implementation of L&E-based query processing inside

the more common interpreted query engines, in particular column

stores. We address the challenges above and obtain an evaluation

algorithm for acyclic joins, named Shredded Yannakakis (SYA), that
is provably robust without regret for a subclass of queries. We sum-

marize our contributions next and highlight the differences with as

well as improvements over BKN.

(1) In contrast to BKN who describe lookup and expand in terms

of their effect on some intermediate state during execution, we

provide a formal semantics to L&E plans based on the nested rela-

tional model [6, 36] which is an extension of the relational model

where individual records may themselves contain entire relations.

In particular, we design a set of nested relational operators that

we call the Nested Semijoin Algebra (NSA). Here, lookup can be

expressed as a form of nesting while expand is a form of unnesting.

By formalizing these operations algebraically, we explicitly define

the logical data model, allowing us to extend beyond lookup/expand

and joins, and generalize to all standard relational operators.

(2) We use NSA to implement L&E plans inside conventional in-

terpreted query engines, in particular column stores. Our implemen-

tation is based on query shredding techniques for simulating nested

relational algebra with standard relational algebra [8, 9, 33, 38]. We

take special care to provide an efficient column-oriented implemen-

tation for completely unnesting deeply nested relations.

(3) BKN observe that L&E plans consisting of two distinct phases—

where the first phase exclusively performs Lookups and the second

phase exclusively performs Expands—execute in time O(in + out)
for all inputs. In other words, such 2-phase plans are instance-

optimal. We extend this result to include all NSA operators, not

only L&E, by defining 2-phase NSA expressions as those in which

no ‘shrinking’ operator is applied after an unnest (i.e., expand)

operation has been performed. We show that a join query can be

evaluated by means of a 2-phase NSA join plan if and only if it is

acyclic. This result, therefore, generalizes the instance-optimality

of YA to NSA plans and provides an additional characterization for

the class of acyclic joins.

(4) The aforementioned formal guarantees focus on asymptotic

complexity, which often overlooks crucial constant factors. To ad-

dress this, we perform a finer-grained analysis of NSA plans in

terms of a cost model that takes such constant factors into account

(more specifically, the cost of building and probing hash maps as

well as generating single column vectors). We identify a class of

traditional binary join plans—referred to as well-behaved—that can

be transformed into equivalent 2-phase NSA plans that are guar-

anteed to always have a cost that is no worse than the binary join

plan. For binary join plans that are not well-behaved, we offer a

heuristic to transform them into equivalent well-behaved plans,

while minimizing additional cost.

Shredded Yannakakis (SYA) refers to the algorithm that takes a

binary join plan as input, transforms it into a well-behaved plan if

needed, and then evaluates the resulting 2-phase NSA plan using

shredding. Importantly, SYA can be seamlessly integrated with an

existing query optimizer that generates traditional binary join plans,

providing a provably robust solution that consistently avoids the

diamond problem. Additionally, SYA is guaranteed to be robust

without regret on the class of well-behaved binary join plans.

In comparison, while BKN observe that 2-phase L&E plans can

achieve instance-optimality, they adopt a cost-optimisation-based

approach to generating L&E plans that does not require, nor guar-

antee these plans to be 2-phase. As a result, the generated plans

are not guaranteed to be instance-optimal. Thus, as with binary

join algorithms, the robustness of the system still depends on the

quality of the cost estimation and the optimizer. In contrast, the

rewriting we propose in this paper is always provably robust, and

without regret on a clear subclass.

(5) We implement SYA inside Apache Datafusion [20], a high-

performance main-memory-based columnar interpreted query en-

gine written in Rust. Our experimental set-up comprises multiple

established benchmarks and includes 1,849 queries evaluated over

real-world data. We show that the performance of SYA is always

competitive with that of binary join plans, and often much better—

improving performance for 85.3% of the queries with speedups up

to 62.5x—while at the same time guaranteeing robustness. Addi-

tionally, our implementation of SYA shows relative speedups that

are comparable, and sometimes exceed, those observed by BKN in

their compiled query engine. The idea of L&E decomposition can

hence be successfully formulated and implemented in interpreted

query engines, in particular column stores.

In summary, we show how to process acyclic joins instance-

optimally and without regret. We hope that this perspective can

help system engineers to better understand YA, and pave the way

for its adoption into existing systems.

This paper is organized as follows. We introduce background

in Section 2, NSA in Section 3, and shredding in Section 4. We

discuss asymptotic complexity and instance-optimality of 2-phase

NSA in Section 5, and cost-based complexity and SYA in Section 6.
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We discuss experiments in Section 7, and conclude in Section 8.

Related work is discussed throughout the paper. Full proofs of

formal statements may be found in the extended paper version [4].

2 PRELIMINARIES AND BACKGROUND
For a natural number 𝑛 > 0 we denote the set {1, . . . , 𝑛} by [𝑛]. We

are concerned with the evaluation of natural join queries, a.k.a. full

conjunctive queries, which are queries of the form:

𝑄 = 𝑅1 (𝑥1) ⋈︁ · · · ⋈︁ 𝑅𝑘 (𝑥𝑘 ) . (1)

Here, 𝑘 ≥ 1; each 𝑅𝑖 is a relation symbol; and each 𝑥𝑖 is a tuple

of pairwise distinct attributes that denotes the schema of 𝑅𝑖 , for

𝑖 ∈ [𝑘]. Expressions of the form 𝑅𝑖 (𝑥𝑖 ) are called atoms.

Following the SQL-standard, we adopt bag semantics for join

queries. Each input relation 𝑅𝑖 (𝑥𝑖 ) is assumed to be a bag (i.e.,

multiset) of input tuples over 𝑥𝑖 , and 𝑄 computes a bag of tuples

over 𝑥1∪· · ·∪𝑥𝑘 . Tuple 𝑡 occurs in the result of𝑄 if for every 𝑖 ∈ [𝑘]
the tuple 𝑡 [𝑥𝑖 ] (i.e., 𝑡 projected on 𝑥𝑖 ), occurs with multiplicity

𝑚𝑖 > 0 in input relation 𝑅𝑖 . The result multiplicity of 𝑡 is then

𝑚1 × · · · ×𝑚𝑘 . In what follows, we use doubly curly braces {{. . .}} to
denote bags as well as bag comprehension and denote by supp(𝑀)
the set, without duplicates, of all elements present in a bag𝑀 .

Example 2.1. We use 𝑄3 = 𝑅(𝑥,𝑦) ⋈︁ 𝑆 (𝑦, 𝑧) ⋈︁ 𝑇 (𝑧,𝑢) as an
example query throughout the paper. The query is over binary

relations and can be seen to compute graph paths of length three.

Binary Join Plans. The standard approach to processing a join

query𝑄 is to compute one binary join at a time. A binary plan (also

known as a binary join order) is a rooted binary tree where each

internal node is a join operator ⋈︁ and each leaf node is one of the

atoms 𝑅𝑖 (𝑥𝑖 ) of the query. To be correct under bag semantics, it is

required that each atom occurs exactly as many times in the plan

as it occurs in 𝑄 . We will only consider such valid plans in what

follows. A binary plan is left-deep if the right child of every join

node is a leaf; it is right-deep if the left child of every join node is a

leaf; and it is bushy otherwise.

We interpret binary plans as physical query plans where all the

joins are evaluated by means of hash-joins. We focus on hash-joins

as they are the most common type of joins in database systems.

Concretely, every join node in a binary plan indicates a hash-join

where the left child is the probe side and the right child is the build

side. Leaf nodes indicate input relations.

Example 2.2. Consider the binary plan 𝑃 = (𝑅 ⋈︁ 𝑆) ⋈︁ 𝑇 for

𝑄3. Figure 1 illustrates two input databases. In database db1, every

relation has 𝑁 tuples and every tuple joins with exactly one tuple

of the other relations. On this database 𝑄3 hence returns 𝑁 output

tuples. Processing 𝑄3 on db1 by means of left-deep plan 𝑃 involves

building a hash table on 𝑆 and 𝑇 ; |𝑅 | probes of 𝑅-tuples in the hash

table on 𝑆 ; and |𝑅 ⋈︁ 𝑆 | = 𝑁 probes into the hash table on 𝑇 , hence

doing O(𝑁 ) work in total, which is optimal.

The second database db2 has 𝑁 + 1 tuples in 𝑅 and 𝑇 , and 2𝑁

tuples in 𝑆 . Specifically, the relations are defined as follows:

𝑅 = {(𝑥1, 𝑦1)} ∪ {(𝑥𝑖+1, 𝑦𝑁+1) | 𝑖 ∈ [𝑁 ]}
𝑆 = {(𝑦𝑖 , 𝑧1) | 𝑖 ∈ [𝑁 ]} ∪ {(𝑦𝑁+1, 𝑧𝑖+1) | 𝑖 ∈ [𝑁 ]}
𝑇 = {(𝑧1, 𝑢𝑖 ) | 𝑖 ∈ [𝑁 ]} ∪ {(𝑧𝑁+1, 𝑢𝑁+1)}

𝑅(𝑥,𝑦)

𝑆 (𝑦, 𝑧)

𝑇 (𝑧,𝑢)

(a) 𝐽3

𝑥1 𝑦1 𝑧1 𝑢1

𝑥2 𝑦2 𝑧2 𝑢2
.
.
.

.

.

.
.
.
.

.

.

.
𝑥𝑁 𝑦𝑁 𝑧𝑁 𝑢𝑁

𝑅 𝑆 𝑇

(b) Database db1

𝑥1 𝑦1 𝑧1 𝑢1

𝑦2 𝑢2
.
.
.

.

.

.
𝑦𝑁 𝑢𝑁

𝑅 𝑆 𝑇

𝑦𝑁+1

𝑥2 𝑧2

𝑥3 𝑧3
.
.
.

.

.

.
𝑥𝑁+1 𝑧𝑁+1 𝑢𝑁+1

(c) Database db2

Figure 1: Join tree 𝐽3 for the three-path query 𝑄3, and two
input databases. Tuples in db2 not contributing to the final
output are in gray.

While there are only 2𝑁 output tuples to be produced, plan 𝑃 is

Ω(𝑁 2) since it will do at least |𝑅 ⋈︁ 𝑆 | = 𝑁 2 + 1 probes into 𝑇 . It

hence wastes time computing tuples in 𝑅 ⋈︁ 𝑆 which in the end do

not contribute to the output.

While we may be tempted to think that we were just unlucky in

choosing an suboptimal binary plan to process db2 in the previous

example, this is not the case: it is straightforward to verify that any

binary join plan for 𝑄3 will produce a quadratic subresult. As such,

binary join plans are highly effective on certain inputs but cannot

efficiently process joins on all inputs, even if the query is acyclic—a

concept that we introduce next.

Acyclicity andYannakakis’ Algorithm.A join query𝑄 is acyclic

if it admits a join tree [3, 11]. A join tree for𝑄 is a rooted undirected

tree 𝐽 in which each node is an atom of 𝑄 . To be correct under bag

semantics, it is required that each atom in 𝑄 appears exactly as as

many times in 𝐽 as it does in𝑄 . Join trees are required to satisfy the

connectedness property: for every attribute 𝑥 , all the nodes contain-

ing 𝑥 form a connected subtree of 𝐽 . To illustrate, Figure 1a shows

a join tree for 𝑄3.

Checking whether a query is acyclic and constructing a join tree

if it exists can be done in linear time w.r.t. the size of the query

by means of the GYO algorithm [15, 35, 40]. A seminal result by

Yannakakis [39] states that acyclic join queries can be processed

instance-optimally under data complexity, i.e., in time that is asymp-

totically linear in the size of the input plus the output. Yannakakis’

Algorithm (YA) does so by fixing a join tree and computing in three

passes. Define the semijoin 𝑅 ⋉ 𝑆 of bag 𝑅 by 𝑆 to be the bag con-

taining all 𝑅-tuples for which a joining tuple in 𝑆 exists. If a tuple 𝑡

appears in 𝑅 ⋉ 𝑆 it has the same multiplicity as in 𝑅.

1. The first pass operates bottom-up over the join tree. For the

leaves there is nothing to do. When we reach an internal node 𝑅

with children 𝑆1, . . . , 𝑆𝑘 YA will replace 𝑅 by the semijoin of 𝑅

and all of its children, i.e., we set 𝑅 := (. . . ((𝑅⋉𝑆1)⋉𝑆2) . . . 𝑆𝑘 ).
2. The second pass operates top-down over the join tree. There is

nothing to do for the root. For all other nodes 𝑅 with parent 𝑃 ,

𝑅 is replaced by the semijoin of 𝑅 and its parent, 𝑅 := 𝑅 ⋉ 𝑃 .

3. The final pass uses standard binary joins to join the relations

resulting from the second pass. While YA is typically described

to again work bottom-up over the join tree, any binary join plan

𝑃 for 𝑄 that avoids needless Cartesian products
1
can be used in

this step.

1
Meaning that if in a subplan 𝑃 ′ = 𝑃1 ⋈︁ 𝑃2 of 𝑃 no attributes are shared between 𝑃1
and 𝑃2 , then the same must hold for all ancestors of 𝑃 ′

.
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⋈︁

⋈︁

⋉

𝑅(𝑥,𝑦) ⋉

𝑆 (𝑦, 𝑧) 𝑇 (𝑧,𝑢)

⋉

𝑆 (𝑦, 𝑧) 𝑇 (𝑧,𝑢)

𝑇 (𝑧,𝑢)

⋈︁

⋉

𝑅 (𝑥, 𝑦) ⋉

𝑆 (𝑦, 𝑧) 𝑇 (𝑧,𝑢)

⋈︁

⋉

𝑆 (𝑦, 𝑧) ⋉

𝑅 (𝑥, 𝑦) ⋉

𝑆 (𝑦, 𝑧) 𝑇 (𝑧,𝑢)

⋉

𝑇 (𝑧,𝑢) ⋉

𝑆 (𝑦, 𝑧) ⋉

𝑅 (𝑥, 𝑦) ⋉

𝑆 (𝑦, 𝑧) 𝑇 (𝑧,𝑢)

Figure 2: Semijoin plans induced byYA on join tree 𝐽3(Fig.1a).
Left: pass two and three combined. Right: all three passes.

The first two passes are known as a full semijoin reduction and

remove so-called dangling tuples from the input: input tuples that

cannot be joined to form a complete join result. Once dangling

tuples are removed, standard binary joins can be used to compute

the actual join result. At that point any intermediate result tuple

produced is guaranteed to participate in at least one output tuple.

Example 2.3. Reconsider 𝑄3 and the input database db2 from

Example 2.2. Assume we execute YA using the join tree 𝐽3 for 𝑄3

shown in Figure 1a. The bottom-up pass of the algorithm first

replaces 𝑆 with 𝑆⋉𝑇 , removing tuples over 𝑧2, . . . , 𝑧𝑁 from 𝑆 . Note

that this retains the full range of𝑦-values in 𝑆 . Next, 𝑅 is semijoined

with the reduced 𝑆 . However this does not remove any tuples from𝑅,

since all𝑦-values in 𝑅 are also in 𝑆 . The top-down pass then replaces

𝑆 with 𝑆 ⋉ 𝑅, removing tuples over 𝑦2, . . . , 𝑦𝑁 . The final semijoin

𝑇 ⋉ 𝑆 again removes nothing. At this point, all gray-colored tuples

in Figure 1c are removed, leaving only the black-colored tuples.

On this reduced database, any binary join plan without Cartesian

product runs instance-optimally. Note that the removal of dangling

tuples is essential, as we know from Example 2.2 and the subsequent

discussion that on the original input db2 every binary join plan will

require Ω(𝑁 2) time.

A straightforward way to implement YA in a database engine

is to record the sequence of joins and semijoins that YA does in a

physical query plan [14]. These kinds of query plans, which we will

refer to as semijoin plans, are binary join plans where leaf nodes

are replaced by trees that compute semijoins on input relations.

For example, the right of Figure 2 shows a semijoin plan for 𝑄3,

corresponding to executing YA using the join tree 𝐽3 of Figure 1a

and using the left-deep join order (𝑅 ⋈︁ 𝑆) ⋈︁ 𝑇 in the last phase.

Unfortunately, this straightforward implementation of YA cre-

ates significant overhead when the input database contains no, or

only few dangling tuples. Indeed, for 𝑄3 observe that every rela-

tion now participates in at least one join and at least one semijoin,

while some relations, like 𝑆 , participate in five semijoins. Semijoins

are also executed by means of hashing and therefore also incur

build and probing costs even if they do not remove any tuples in

the concrete input database that we execute on. This commonly

happens: BKN note that on the Join Order Benchmark [22], this

way of implementing YA by adding full semijoin reductions yields

a 5-fold slowdown compared to binary join plans.

One way to overcome this limitation is to adopt a cost-based

approach and selectively add semijoin operators only when they are

deemed useful [34]. However, this no longer guarantees instance-

optimality. Another possibility, which preserves instance-optimality,

is to observe that instead of doing the full three passes of classical

YA, the second and third pass can actually be combined [2, 17, 18].

It then suffices to do only the first pass of semijoin-reductions. This

modification of YA leads to somewhat simpler plans as illustrated

in the left of Figure 2 for our running example 𝑄3 and join tree

𝐽3. Note, however, that while this reduces the overhead, it does

not completely eliminate it since 𝑇 and 𝑆 continue to participate

in multiple (semi)joins. Recent so-called enumeration-based join

evaluation algorithms go one step further: they compute only the

semijoin 𝑅 ⋉ (𝑆 ⋉𝑇 ) and reuse the hash tables created during the

semijoin to enumerate the join result 𝑅 ⋈︁ 𝑆 ⋈︁ 𝑇 using a special-

ized algorithm [2, 17, 18]. While such enumeration algorithms have

previously been difficult to cast as operators in a physical query

plan algebra, and have to date been limited to specialized research

prototypes, L&E/NSA plans will provide exactly this functionality.

In conclusion. Binary join plans suffer from the diamond problem.

By contrast, semijoin plans induced by running YA (in full, or with

the latter two phases combined) are instance-optimal and hence

avoid the diamond problem, but on common inputs they may suffer

from a constant-factor slowdown compared to binary join plans.

Our objective in this paper, therefore, is to engineer the instance-

optimality of YA in a database engine without regret.

3 NESTED SEMIJOIN ALGEBRA
In this section, we provide a formal syntax and semantics for L&E

plans, including how they interact with other relational algebra

(RA) operators, in terms of a set of nested relational operators that

we call the Nested Semijoin Algebra (NSA). Having specified the

data model and nested operators required to support L&E plans,

we subsequently use this formalisation in Section 4 to derive an

implementation strategy of L&E plans in interpreted query engines.

The nested relational model is an extension of the standard rela-

tional model. In a nested relation, a tuple may consist not only of

scalar data values but also of entire relations in turn. The nested

relational algebra (NRA) for querying nested relations is obtained

by generalizing the operators of relational algebra (selection, projec-

tion, join, . . . ) to work on nested relations, and by adding two extra

operators: nesting and unnesting [36]. Many variants of the nested

relational model have been proposed, including extensions that

allow for mixed collection types such as sets, bags, lists, arrays [6]

as well as dictionaries [10]. In this paper, we consider a variant

where each (nested) relation is bag-based, and where we also have

dictionaries. To make the connection with L&E plans, we depart

from the standard set of operators of NRA, and instead introduce a

set of operators that we call the Nested Semijoin Algebra (NSA).

Schemes and Nested Relations. Just like flat relations have flat
schemes, nested relations have nested schemes. We refer to the at-

tributes that appear in the scheme of classical flat relations as flat at-

tributes. LetA denote the set of all flat attributes. A (nested) scheme

is a finite set𝑋 , like {𝑥, {𝑦}, {𝑢, {𝑣}}}, that consists of flat attributes
(𝑥 in this case) and other schemes (i.e., {𝑦} and {𝑢, {𝑣}}). No flat

attribute is allowed to occur more than once, so {𝑥, {𝑦}, {𝑢, {𝑥}}}
is not a valid scheme. Schemes are also called nested attributes.

We range over flat attributes by lowercase letters (𝑥,𝑦, . . . ); over
schemes by uppercase letters (𝑋 , 𝑌 , . . . ), both from the end of the

alphabet; and over finite sets of flat attributes by 𝑥 . We writeA(𝑋 )
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𝑥 {𝑦} {𝑢, {𝑣}}

𝑎1 𝑏1 𝑐1 𝑑1

𝑏2 𝑑2

𝑐2 𝑑1

𝑎2 𝑏1 𝑐3 𝑑3

𝑏3 𝑑4

R

𝑥 {𝑦 } {𝑢, {𝑣 }}
hd 𝑤 hd 𝑤

𝑎1 2 2 2 3

𝑎2 4 2 3 2

Σ𝑅 ( {𝑢, {𝑣 }})
𝑢 {𝑣 } nxt

hd 𝑤

1 𝑐1 2 2 0

2 𝑐2 3 1 �
3 𝑐3 5 2 0

Σ𝑅 ( {𝑣 })
𝑣 nxt

1 𝑑1 0

2 𝑑2 �
3 𝑑1 0

4 𝑑3 0

5 𝑑4 �

Σ𝑅 ( {𝑦 })
𝑦 nxt

1 𝑏1 0

2 𝑏2 �
3 𝑏1 0

4 𝑏3 �

Figure 3: (left) A nested relation 𝑅. (right) Its shredded rep-
resentation R. The gray numbers indicate tuple offsets; nxt
points to the next tuple (via �) or is 0 when there is none.

for the set of all flat attributes occurring somewhere in 𝑋 (either

directly or in some inner nested scheme); and sub(𝑋 ) for the set of
all schemes occurring in 𝑋 (again, either directly or in some inner

nested scheme). So for 𝑋 = {𝑥, {𝑦}, {𝑢, {𝑣}}}, A(𝑋 ) = {𝑥,𝑦,𝑢, 𝑣}
and sub(𝑋 ) = {{𝑦}, {𝑢, {𝑣}}, {𝑣}}.

Fix a scheme 𝑋 . A relation over a 𝑋 is a finite bag of tuples over

𝑋 . Here, a tuple over 𝑋 is a mapping 𝑡 on𝑋 such that 𝑡 (𝑥) is a scalar
data value (of appropriate type) for each flat attribute 𝑥 ∈ 𝑋 , and

𝑡 (𝑌 ) is a non-empty relation over 𝑌 for each nested attribute 𝑌 ∈ 𝑋 .

Note that if 𝑋 is flat, i.e., if 𝑋 ⊆ A, then this definition of a relation

over 𝑋 coincides with the usual one. We call 𝑅 a flat relation in that

case. We restrict inner nested relations to be non-empty as in this

paper we always start from flat relations and the operators that

we consider will never introduce empty inner nested relations. We

write 𝑅 : 𝑋 and 𝑡 : 𝑋 to denote that 𝑅 is a relation (resp. 𝑡 is a tuple)

over scheme 𝑋 . We write |𝑅 | denote the cardinality of 𝑅, i.e., the

total number of tuples in 𝑅. Note that |𝑅 | only refers to the number

of tuples in the outer-most bag of 𝑅, and does not say anything

about the cardinality of the inner-nested relations appearing in

those tuples. Figure 3 shows a nested relation with cardinality 2

and scheme {𝑥, {𝑦}, {𝑢, {𝑣}}}.
We adopt the following notation on tuples. If 𝑠 : 𝑋 and 𝑡 : 𝑌 are

tuples over disjoint schemes then 𝑠 ◦ 𝑡 denotes their concatenation,
which is a tuple over𝑋∪𝑌 . Furthermore, if𝑍 ⊆ 𝑋 then 𝑡 [𝑍 ] denotes
the restriction (i.e., projection) of mapping 𝑡 to the attributes in 𝑍 .

Dictionaries. A dictionary scheme is an expression of the form

𝑦⇝𝑍 such that no flat attribute in 𝑦 occurs anywhere in 𝑍 . A

dictionary over 𝑦⇝𝑍 is a finite mapping 𝐷 that maps 𝑦-tuples to

non-empty relations over 𝑍 . The tuples in the domain dom(𝐷) of
𝐷 are called the keys of 𝐷 . The cardinality of 𝐷 , denoted |𝐷 | is the
number of keys. We write𝐷 : 𝑦⇝𝑍 to indicate that𝐷 is a dictionary

over 𝑦⇝𝑍 . Conceptually, a dictionary is a special kind of nested

relation with scheme 𝑦 ∪ {𝑍 }; in contrast to a nested relation it also

allows to lookup keys.

NSA. Our Nested Semijoin Algebra (NSA) consists of the standard
relational operators filter (𝜎), projection (𝜋 ), renaming (𝜌), bag-

union (∪), bag difference (−)—all straightforwardly extended to

operate on nested relations—and four new operators: group-by

(𝛾 ), nested semijoin ( ), unnest (𝜇), and flatten (𝜇∗). We can think

of 𝛾 , , and 𝜇 as corresponding to the three separate phases of a

traditional hash-based join: hash-table building, probing, and output

construction, respectively. We define these additional operators

next and provide examples in Figure 4.

𝜇{𝑢}
𝑥1 𝑦1 𝑧1 𝑢1
𝑥1 𝑦1 𝑧1 𝑢2
𝑥2 𝑦3 𝑧3 𝑢3
𝑥3 𝑦3 𝑧3 𝑢3

𝜇{𝑧,{𝑢}}

𝑥1 𝑦1 𝑧1 𝑢1

𝑢2

𝑥2 𝑦3 𝑧3 𝑢3

𝑥3 𝑦3 𝑧3 𝑢3

𝑥1 𝑦1 𝑧1 𝑢1

𝑢2

𝑥2 𝑦3 𝑧3 𝑢3

𝑥3 𝑦3 𝑧3 𝑢3

𝑅 (𝑥, 𝑦)
𝑥1 𝑦1
𝑥2 𝑦3
𝑥3 𝑦3

𝛾 {𝑦}

𝑦1 → 𝑧1 𝑢1

𝑢2

𝑦2 → 𝑧1 𝑢1

𝑢2

𝑦3 → 𝑧3 𝑢3

𝑦1 𝑧1 𝑢1

𝑢2

𝑦2 𝑧1 𝑢1

𝑢2

𝑦3 𝑧3 𝑢3

𝑆 (𝑦, 𝑧)
𝑦1 𝑧1
𝑦2 𝑧1
𝑦3 𝑧2
𝑦3 𝑧3

𝛾 {𝑧}

𝑧1 → 𝑢1

𝑢2

𝑧3 → 𝑢3

𝑇 (𝑧,𝑢)
𝑧1 𝑢1
𝑧1 𝑢2
𝑧3 𝑢3

(𝐴)

(𝐵)

(𝐶)

(𝐸)

(𝐹 )

(𝐺)

Σ𝐺 ( {𝑢 })
𝑢 nxt

1 𝑢1 0

2 𝑢2 �
3 𝑢3 0

G = (h𝐺 , Σ𝐺 )

h𝐺 : 𝑧1 ↦→ (2, 2)
𝑧3 ↦→ (3, 1)

F

𝑦 𝑧 {𝑢 }
hd 𝑤

1 𝑦1 𝑧1 2 2

2 𝑦2 𝑧1 2 2

3 𝑦3 𝑧2 0 0

4 𝑦3 𝑧3 3 1

F = (F, Σ𝐺 , f)

f = [1, 2, 4]

Σ𝐸 ( {𝑧, {𝑢 }})
𝑧 nxt {𝑢 }

hd 𝑤

1 𝑧1 0 2 2

2 𝑧1 0 2 2

3 𝑧2 0 0 0

4 𝑧3 0 3 1

E = (h𝐸 , Σ𝐸+Σ𝐺 )

h𝐸 : 𝑦1 ↦→ (1, 2)
𝑦2 ↦→ (2, 2)
𝑦3 ↦→ (4, 1)

C

𝑥 𝑦 {𝑧, {𝑢 }}
hd 𝑤

1 𝑥1 𝑦1 1 2

2 𝑥2 𝑦3 4 1

3 𝑥3 𝑦3 4 1

C = (C, Σ𝐸+Σ𝐺 , c)

c = [1, 2, 3]

B

𝑥 𝑦 𝑧 {𝑢 }
hd 𝑤

1 𝑥1 𝑦1 𝑧1 2 2

2 𝑥2 𝑦3 𝑧3 3 1

3 𝑥3 𝑦3 𝑧3 3 1

B = (B, Σ𝐺 , b)

b = [1, 2, 3]

Figure 4: Example evaluation of anNSAexpression. Interme-
diate nested relations and dictionaries are labeled (𝐴), (𝐵), . . .
Shredded processing is illustrated on the right.

The group-by operator𝛾𝑦 when applied to a relation𝑅 : 𝑋 creates

a dictionary by grouping the tuples in 𝑅 on the attributes in 𝑦, and

mapping each group-key to its group projected on 𝑍 = 𝑋 \ 𝑦.
Formally, the result dictionary 𝐷 : 𝑦⇝𝑍 has supp(𝜋𝑦 (𝑅)) as keys,
and maps each key 𝑡 ↦→ 𝜋𝑍 (𝜎𝑦=𝑡 (𝑅)). As an example, in Figure 4,

𝛾 {𝑧 } (𝑇 ) is shown as 𝐺 , and 𝛾 {𝑦 } (𝐹 ) as 𝐸.
The nested semijoin operator takes two arguments, a relation

𝑅 : 𝑋 and a dictionary 𝐷 : 𝑦⇝𝑍 . It is required that 𝑋 is compatible

with 𝑦⇝𝑍 , meaning that (i) 𝑦 ⊆ 𝑋 and (ii) A(𝑍 ) ∩ A(𝑋 ) = ∅,
implying that the union𝑋 ∪{𝑍 } is again a scheme. Compatibility is
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𝑅 : 𝑥𝑅

𝑒 : 𝑋 𝑦 ⊆ 𝑋

𝜎𝜃 (𝑦) (𝑒) : 𝑋
𝑒 : 𝑋 𝑌 ⊆ 𝑋

𝜋𝑌 (𝑒) : 𝑌
𝑒 : 𝑋

𝜌𝜑 (𝑒) : 𝜑 (𝑋 )

𝑒1 : 𝑋 𝑒2 : 𝑋

𝑒1 ∪ 𝑒2 : 𝑋

𝑒1 : 𝑥 𝑒2 : 𝑥

𝑒1 − 𝑒2 : 𝑥

𝑒 : 𝑋 𝑦 ⊆ 𝑋 𝑍 = 𝑋 \ 𝑦
𝛾𝑦 (𝑒) : 𝑦⇝𝑍

𝑒1 : 𝑋 𝑒2 : 𝑦⇝𝑍 𝑋 ∼ 𝑦⇝𝑍

𝑒1 𝑒2 : 𝑋 ∪ {𝑍 }
𝑒 : 𝑋 𝑌 ∈ 𝑋 \ A
𝜇𝑌 (𝑒) : 𝑋 \ {𝑌 } ∪𝑌

𝑒 : 𝑋

𝜇∗ (𝑒) : A(𝑋 )

Figure 5: NSA type rules.

denoted 𝑋 ∼ 𝑦⇝𝑍 . The nested semijoin operator 𝑅 𝐷 probes 𝐷

for each tuple 𝑡 in 𝑅; if 𝐷 contains 𝑡 [𝑦], then it extends 𝑡 by a single

nested attribute, 𝑍 , which contains the entire relation associated to

𝑡 [𝑦] by 𝐷 ,

𝑅 𝐷
def

= {{𝑡 ◦ {𝑍 ↦→ 𝐷 (𝑡 [𝑦])} | 𝑡 ∈ 𝑅, 𝑡 [𝑦] ∈ dom(𝐷)}}. (2)

Figure 4 depicts the result of 𝑆 𝐺 as 𝐹 , and that of 𝑅 𝐸 as 𝐶 .

The unnest operator 𝜇𝑌 (𝑅) unnests a nested attribute 𝑌 ∈ 𝑋

from input relation 𝑅 : 𝑋 and has semantics

𝜇𝑌 (𝑅)
def

= {{𝑠 [𝑋 \ {𝑌 }] ◦ 𝑡 | 𝑠 ∈ 𝑅, 𝑡 ∈ 𝑠 (𝑌 )}}. (3)

It hence pairs each tuple 𝑠 ∈ 𝑅 with all tuples in the relation 𝑠 (𝑌 ).
Figure 4 shows the result of 𝜇 {𝑢 } (𝐵) as 𝐴, and that of 𝜇 {𝑧,{𝑢 }} (𝐶)
as 𝐵.

Finally, the flatten operator 𝜇∗ (𝑅) completely flattens a nested

relation 𝑅 : 𝑋 , returning a flat relation with scheme A(𝑋 ). Specifi-
cally, if 𝑌1, . . . , 𝑌𝑘 is an enumeration of sub(𝑋 ) such that schemes

occur before their subschemes (i.e., for all 𝑖, 𝑗 , if 𝑌𝑖 ∈ 𝑌𝑗 then 𝑗 < 𝑖),

then 𝜇∗ (𝑅) def

= 𝜇𝑌1 . . . 𝜇𝑌𝑘 (𝑅). For example, if 𝑅 : {𝑥,𝑦, {𝑧{𝑢}} then
𝜇∗ (𝑅) = 𝜇 {𝑢 } (𝜇 {𝑧,{𝑢 }} (𝑅)). While 𝜇∗ is hence already expressible

inNSA through repeated unnests, we add 𝜇∗ as a primitive operator

to NSA for reasons that will become clear in Section 4.

Like standard relational algebra, the expressions in NSA must

be well-typed. Figure 5 shows the NSA typing rules, where we

write 𝑒 : 𝑋 to denote that NRA expression 𝑒 is well-typed and has

output scheme 𝑋 . There, 𝑅 ranges over flat input relation symbols,

for which we assume to have an associated input scheme 𝑥𝑅 . For

the selection operator, 𝜃 (𝑦) ranges over selection predicates that

concern the values in attributes in 𝑦. For the renaming operator 𝜌 ,

the subscript 𝜑 denotes a permutation ofA and we denote by 𝜑 (𝑋 )
the result of applying such a permutation recursively to scheme 𝑋 .

Complexity. For the complexity results that follow, it is impor-

tant to emphasize that the NSA type rules (i) restrict to flat input

relations, and (ii) restrict all operators that involve checking tuple-

equality, like filter, difference, group-by, and nested semijoin, to

check equality on flat tuples only. Indeed, recall that by conven-

tion 𝑥 denotes a flat scheme. Then, the type rule for group-by, for

example, indicates that only flat tuples can be group-by keys. The

reason for this restriction is that tuples over a flat scheme have

a size that is constant in data complexity, whereas nested tuples

can have arbitrary size. Hence checking equality over flat tuples

is constant time, whereas it may be linear for nested tuples. We

adopt the same restriction to selection predicates 𝜃 in a selection

𝜎𝜃 (𝑦) (𝑅): only predicates 𝜃 (𝑦) for which we can check in constant

time (in data complexity, in the RAM model of computation) that a

tuple 𝑡 ∈ 𝑅 satisfies 𝜃 are allowed.

Relating NSA to other operators. Standard relational algebra

operators such as join and flat semijoin, as well as the lookup (→)

and expand ( e ) operators of BKN and the nesting operator (𝜈) of

standard nested relational algebra [36]
2
are cleanly expressible in

NSA as a composition of NSA operators. For example,

𝑅(𝑥,𝑦) ⋈︁ 𝑆 (𝑦, 𝑧) ≡ 𝜇 {𝑧 } (𝑅 𝛾 {𝑦 } (𝑆)) (4)

𝑅(𝑥,𝑦) ⋉ 𝑆 (𝑦, 𝑧) ≡ 𝜋𝑥,𝑦 (𝑅 𝛾 {𝑦 } (𝑆)) (5)

𝑅(𝑥,𝑦) → 𝑆 (𝑦, 𝑧) ≡ 𝑅 𝛾 {𝑦 } (𝑆) (6)

e (𝑅(𝑥,𝑦) → 𝑆 (𝑦, 𝑧)) ≡ 𝜇 {𝑧 } (𝑅 𝛾 {𝑦 } (𝑆)) (7)

𝜈𝑥,𝑦 𝑅(𝑥,𝑦,𝑢, 𝑣) ≡ 𝜋𝑥,𝑦 (𝑅) 𝛾 {𝑥,𝑦 } (𝑅) (8)

Actually, we can take the right-hand sides in the above expressions

as the definition in NSA of the operators on the left-hand side. As

such, this provides a formalisation of L&E plans in terms of NSA.
The advantage of our algebraic approach is that it clearly defines

the underlying data model and allows free operator composition.

4 SHREDDED PROCESSING
We next turn our attention to the efficient processing of NSA, fo-
cusing on its implementation in main memory column stores. NSA
is a form of Nested Relational Algebra (NRA), and it is well-known

that one can evaluate NRA using standard flat relational algebra

operators by representing a nested relation as a collection of flat

relations, and simulating nested relational operators by flat rela-

tional operators on this representation [8, 9, 33, 38]. We adapt this

technique, known as query shredding, to implement NSA. We differ

from traditional shredding in that some nested operators, in partic-

ular 𝜇, are implemented by means of a join of flat relations. In our

setting, however, we want to use NSA as a description of physical

query plans where 𝛾 , and 𝜇 correspond to the three phases of

a traditional hash join: build, probe, and construct. Specifically, 𝜇

must then be limited to constructing the output tuples when the

set of matching tuples have already previously been identified by an

earlier operator; its shredded implementation hence should not

require further joins. To obtain this behavior we modify the tra-

ditional shredded representation of a nested relation: each nested

attribute 𝑌 will be encoded by a flat attribute that holds an iterator

over the elements of 𝑌 , instead of an abstract identifier as is tradi-

tionally done. Additionally, to support efficient flatten (𝜇∗), we also
store the weight of every 𝑌 , which is the total number of tuples

produced when flattening 𝑌 . A benefit of the shredding approach

is that it only requires modest change to existing query engines to

implement: for many NSA operators we can simply delegate to the

implementation of existing relational algebra operators; only 𝛾 , ,

𝜇, and 𝜇∗ require separate treatment.

To simplify notation in the discussion that follows, we restrict

our attention in this section to the shredded processing of nested

relations 𝑅 : 𝑋 for which ∅ does not occur multiple times in 𝑋 . So,

𝑋 = {𝑥, {𝑦, ∅}} is allowed but 𝑋 = {𝑥, ∅, {𝑦, ∅}} is not. We silently

assume throughout this section that all considered NSA operators

consume and produce nested relations satisfying this criterion. Our

implementation does not have this restriction.

We begin by describing how to represent nested relations in

Section 4.1; evaluation algorithms are discussed in Section 4.2.

2
But restricted to using flat tuples as nesting keys.
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4.1 The shredding representation
Columnar layout.We assume that we are working in main mem-

ory, and that a flat relation 𝑅(𝑥1, . . . , 𝑥𝑛) is physically represented

as a tuple R = (R.𝑥1, . . . , R.𝑥𝑛) of vectors R.𝑥𝑖 , all of length |𝑅 |. It is
understood that values at the same offset in these vectors encode

a complete tuple, i.e., 𝑅 = {{(R.𝑥1 [𝑖], . . . , R.𝑥𝑛 [𝑖]) | 1 ≤ 𝑖 ≤ |𝑅 |}}.
In particular, it is possible to refer to tuples positionally, i.e., the

1st tuple in R, the second tuple in R, and so on.
3
We will refer to

R as a physical relation, and denote the number of tuples in R by

|R|. If 1 ≤ 𝑖 ≤ |R| and 𝑦 = 𝑦1, . . . , 𝑦𝑘 is a subset of {𝑥1, . . . , 𝑥𝑛}, then
we write R[𝑖] (𝑦) for the tuple (R.𝑦1 [𝑖], . . . , R.𝑦𝑘 [𝑖]). We denote the

length of a vector 𝑣 by |𝑣 |. A position vector for R is a vector 𝑝 of

natural numbers, all between 1 and |R|. We assume an operation

take(R.𝑥, 𝑝) that can be used to construct a new vector from an

existing vector 𝑥 in R and a position vector 𝑝 on R: take(R.𝑥, 𝑝)
returns a new column 𝑐 of length |𝑝 | such that 𝑐 [𝑖] = R.𝑥 [𝑝 [𝑖]]
for all 𝑖 . The take operation hence re-arranges the entries of R.𝑥
according to 𝑝 , possibly repeating some entries and filtering out

others. If the entries in 𝑝 are strictly increasing then 𝑝 is a selection

vector for R. Note that this implies |𝑝 | ≤ |R|, and if |𝑝 | = |R| then
𝑝 = [1, . . . , |R|]. We denote the latter vector also by allR. Note that
take(R.𝑥, 𝑝) can only filter entries when 𝑝 is a selection vector.

Weights. The weight of a nested relation 𝑅 is the total number of

tuples produced when flattening 𝑅, i.e. weight(𝑅) = |𝜇∗ (𝑅) |. Simi-

larly, the weight of a nested tuple 𝑡 is |𝜇∗ ({{𝑡}}) |, the total number

of tuples produced when flattening 𝑡 .

Schemes shredding. For a scheme 𝑋 = {𝑦1, . . . , 𝑦𝑘 , 𝑍1, . . . , 𝑍ℓ }
define the flat schemes shred(𝑋 ) and ishred(𝑋 ) as

shred(𝑋 ) def

= {𝑦1, . . . , 𝑦𝑘 , hd_𝑍1, . . . , hd_𝑍ℓ ,w_𝑍1, . . . ,w_𝑍ℓ } (9)

and ishred(𝑋 ) = shred(𝑋 )∪{nxt}. Here, the attributes hd_𝑍𝑖 ,w_𝑍𝑖 ,
and nxt are fresh flat attributes, all pairwise distinct as well as

distinct from the𝑦 𝑗 . Intuitively, hd_𝑍𝑖 will store the head of a linked
list that represents the contents of nested attribute 𝑍𝑖 , whereas nxt
will be used to point to the next tuple in such lists. w_𝑍𝑖 will store
the weight of the nested 𝑍𝑖 relations. Observe that if 𝑋 is flat to

begin with, then shred(𝑋 ) = 𝑋 .

Relation shredding. The shredded representation of a nested rela-
tion 𝑅 : 𝑋 is a triple R = (R, Σ𝑅, r) where (i) R is a physical relation

over shred(𝑋 ); (ii) Σ𝑅 is a store over 𝑋 : a collection of physical

relations, one physical relation Σ𝑅 (𝑌 ) for every nested attribute

𝑌 ∈ sub(𝑋 ), such that Σ𝑅 (𝑌 ) has schema ishred(𝑌 ); and (iii) r is a
selection vector for R.

The nxt attribute of the tuples in Σ𝑅 (𝑌 ) is used to encode a linked
list of tuples: for all positions 1 ≤ 𝑖 ≤ |Σ𝑅 (𝑌 ) |, if Σ𝑅 (𝑌 ).nxt[𝑖] = 0

then the tuple at position 𝑖 in Σ𝑅 (𝑌 ) is the final tuple in the list;

otherwise its successor in the list is the tuple at offset Σ𝑅 (𝑌 ) .nxt[𝑖].
Correspondingly, each hd_𝑌 -value of a tuple in R points to the head
of the linked list in Σ𝑅 (𝑌 ) storing the nested tuples.

Example 4.1. To clarify the discussion that follows, we illustrate

shredding by means of Figure 3 which shows a nested relation 𝑅 : 𝑋

with 𝑋 = {𝑥, {𝑦}, {𝑧, {𝑢}}} on the left, and its shredded representa-

tion R on the right. We omit the selection vector. R contains four

flat relations, or “shreds”: one for the full scheme 𝑥, {𝑦}, {𝑢, {𝑣}},
3
Note that we start our offsets at 1, so the first tuple has offset 1.

and one each for the nested schemes {𝑢, {𝑣}}, {𝑣}, and {𝑦}. Let us
focus on the first shred R. The first column stores values of the flat

attribute 𝑥 . The attribute {𝑦} has two columns: hd stores point-

ers (offsets) to the Σ𝑅 ({𝑦}) shred, each indicating the head of the

linked list of tuples nested under the corresponding 𝑥-value. The

𝑤 column stores the weight, which is the size of the nested rela-

tion if we were to flatten it. In each nested shred, the nxt column

link together tuples that belong to the same nested segment. For

example, the first tuple in R has 𝑥 = 𝑎1, {𝑦}.hd = 2, {𝑦}.𝑤 = 2; this

points to the head of the linked list in Σ𝑅 ({𝑦}) at offset 2, whose
nxt column points to tuple above it. Similarly, the {𝑢, {𝑣}} attribute
of the first tuple has hd = 2 and 𝑤 = 3, pointing to the 2nd tuple

in Σ𝑅 ({𝑢, {𝑣}}). However, note that although𝑤 = 3, the linked list

has length 2, becuase the shred over Σ𝑅 ({𝑢, {𝑣}}) further nests the
shred over {𝑣}.

The shredded representation of 𝑅 works as follows: every tu-

ple 𝑡 ∈ 𝑅 is represented by exactly one tuple in R. Let 𝑖 be the

index of the tuple in R representing 𝑡 . Then 𝑡 (𝑥) = R.𝑥 [𝑖] for ev-
ery flat 𝑥 ∈ 𝑋 . For every nested attribute 𝑌 ∈ 𝑋 we have that

R.w_𝑌 [𝑖] = weight(𝑡 (𝑌 )). Furthermore, R.hd_𝑌 [𝑖] = 𝑗 for some

1 ≤ 𝑗 ≤ |Σ𝑅 (𝑌 ) |, which is the head index of the linked list of tu-

ples in Σ𝑅 (𝑌 ) that together represent the tuples occurring in 𝑡 (𝑌 ).
Note that the tuples in 𝑡 (𝑌 ) may themselves contain further nested

relations, and the shredding hence proceeds recursively.

Every tuple in 𝑅 will be represented in the above sense in R. To
allow efficient implementation of repeated semijoins of the form

(𝑆 𝑒1) 𝑒2, we do allow that in the shredding R for 𝑅 = 𝑆 𝑒2,

the physical relation R contains tuples that have already been fil-

tered out by the nested semijoin, i.e., we allow that |R| ≥ |𝑅 |. In
that case, the selection vector r of R contains the offsets of the valid
tuples in R, i.e., those that actually represent tuples in 𝑅 (having

passed previous ). So, we always have |r| equal to the cardinality

of 𝑅. Additionally, if 𝑋 is a flat scheme, then R is not allowed to con-
tain redundant tuples, i.e., |R| = |r|, and r = allR. It is important to

observe that if 𝑋 is a flat scheme, then Σ𝑅 is empty; the shredding

R of 𝑅 is then simply R = (R, ∅, allR).
Dictionary shredding. The shredded representation of a dictio-

nary 𝐷 : 𝑦⇝𝑍 is similarly defined as the shredding of a nested

relation, except that it has a hash-map as first component and

does not have a selection vector. Concretely, the shredding of 𝐷

is a pair D = (h, Σ𝐷 ) where h is a hash-map, mapping 𝑦-tuples

to pairs ( 𝑗,𝑤), and Σ𝐷 is a store over {𝑍 }. For every 𝑦-tuple 𝑡 ,

if h(𝑡) = ( 𝑗,𝑤) then 𝑗 is the head index in Σ𝐷 (𝑍 ) of the linked

list of tuples that together represent the nested relation 𝐷 (𝑡), and
𝑤 = weight(𝐷 (𝑡)). See node (G) in Figure 4 for an example.

4.2 Processing
We implementNSA by defining a physical operator f for everyNSA
operator 𝑓 . Physical operators consume and produce shredded rep-

resentations: ifR is the shredding of 𝑅 then f(R) is the shredding of
𝑓 (𝑅). For the NSA operators 𝑓 ∈ {𝜎, 𝜋, 𝜌,∪,−} that also exist in flat

RA, the physical operator f simply consists of applying the corre-

sponding flat physical RA operator to one or more physical relations

in R, possibly with a slight variation. For example, consider 𝑓 = 𝜋𝑌
and 𝑅 : 𝑋 . To get a representation of 𝜋𝑌 (𝑅) from R = (R, Σ𝑅, r), it
suffices to simply return (𝜋

shred(𝑌 ) (R), Σ′𝑅, r) where Σ
′
𝑅
is obtained
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1: def groupby(R,Σ𝑅,r,𝑋,𝑦,𝑍):
2: w = multiply_weights(R, X)
3: nxt = [0] * |R |
4: h = {} # maps keys -> (pos, weight)
5: for i in r :
6: key = R[𝑖 ] (𝑦)
7: if h.contains(key) :
8: (j, prev_w) = h[key]
9: nxt[i] = j
10: h[key] = (i, prev_w + w[i])
11: else
12: h[key] = (i, w[i])

13: Σ𝑅(Z) = new_physical_relation()
14: Σ𝑅(Z).nxt = nxt
15: for 𝑢 in shred(𝑍 ) { Σ𝑅(Z).𝑢 = R.𝑢 }
16: return (h, Σ𝑅)

1: def semijoin(R,Σ𝑅,r,h,Σ𝐷,𝑋,𝑦,𝑍):
2: sel = []
3: R.hd_𝑍 = [0] * |R |
4: R.w_𝑍 = [0] * |R |
5: for i in r :
6: key = R[𝑖 ] (𝑦)
7: if h.contains(key) :
8: sel.append(i)
9: (R.hd_𝑍[i], R.w_𝑍[i]) = h[key]

10: return (R,Σ𝑅 + Σ𝐷, sel)

11:

12: # iterator over linked list at row
13: def itr(R,Σ𝑅,𝑌,row):
14: curr = R.hd_𝑌[row]
15: while curr != 0 :
16: yield curr
17: curr = Σ𝑅(𝑌).nxt[curr]

1: def unnest(R,Σ𝑅,r,𝑋,𝑌):
2: pos_R = []; pos_𝑌 = []
3: for i in r :
4: for j in itr(R, Σ𝑅, 𝑌, i) :
5: pos_R.append(i)
6: pos_Y.append(j)

7: O = new_physical_relation()
8: for 𝑢 in shred(𝑋 ) \ {hd_𝑌 } :
9: O.𝑢 = take(R.𝑢, pos_R)

10: for 𝑢 in shred(𝑌 ) \ {nxt} :
11: O.𝑢 = take(Σ𝑅 (𝑌 ) .𝑢, pos_𝑌)

12: del(Σ𝑅, Y)
13: return (O, Σ𝑅, allO)

Figure 6: Physical implementation of group-by, nested semijoin, and unnest.

1: def flatten(R,r,Σ𝑅,𝑋):
2: O = new_physical_relation()
3: rep = [1] * |r |
4: rflatten (R,r,rep,Σ𝑅,𝑋,O)
5: return (O, ∅, allO)
6:

7: def rflatten(R,pos,rep,Σ𝑅,𝑋,O):
8: w = multiply_weights(R, 𝑋)
9: # Generate output columns for all flat attrs in R
10: generate (R,pos,rep,𝑋,O)
11: # Recursively generate columns for nested attrs in R
12: for 𝑌 in 𝑋 \ A :
13: npos = []; nrep = []
14: # w = total weight of all remaining nested attrs
15: w = div(w, R.w_Y)
16: for (row, i) in enumerate(pos) :
17: for k = 1 to rep[row] :
18: for j in itr(R,Σ𝑅,𝑌,i) :
19: npos.append(j); nrep.append(w[i])

20: # already update rep for the next 𝑌

21: rep[row] *= R.weightY[i]

22: rflatten (Σ𝑅(Y),npos,nrep,Σ𝑅,𝑌, O)

23:

24: def generate(R,pos,rep,w,𝑋,O):
25: rwpos = []
26: for (i,r) in zip(pos, rep), j in 1..r*w[i]:
27: rwpos.append(i)

28: for u in 𝑋 ∩ A :
29: O.u = take(R.u, rwpos)

Figure 7: Physical implementation of flatten.

from Σ𝑅 by removing all entries in sub(𝑋 \𝑌 ). This works because
𝜋
shred(𝑌 ) (R) retains only those columns in R required to represent

𝜋𝑌 (𝑅). Because the nested attributes in sub(𝑋 \ 𝑌 ) are removed

from 𝑅 we can also remove them from Σ𝑅 . The other standard op-

erators in {𝜎, 𝜋, 𝜌,∪,−} are similarly implemented by calling flat

RA physical operators. Because of space constraints, we omit their

definition. The interested reviewer may find them in [4].

The implementation of 𝛾, , and 𝜇 is defined in Figure 6 and

illustrated on an example in Figure 4. Group-by 𝛾𝑦 (𝑅) with 𝑅 : 𝑋

follows conventional hash-build. Given shredding R = (R, Σ𝑅, r) of
nested relation 𝑅, as well as schemes 𝑦 and 𝑍 = 𝑋 \ 𝑦, we compute

the weight of each tuple in R, using a function multiply_weights
(definition not shown) that returns a vector𝑤 with𝑤 [𝑖] equal to the
product over all nested attributes 𝑌 ∈ 𝑋 of R.w_𝑌 [𝑖]. Then vector

nxt of length |R| is created, initialized to 0 so that initially all tuples

terminate the linked lists encoded in nxt. We further initialize h
to the empty hash-map. We then iterate over the group-by keys

mentioned in r, adding them to h, and storing the position of the

most recent R-tuple with the current key as well as the total weight

of the key. If we have previously already encountered the same key,

the current tuple’s nxt value is set to point to the position in R of
the previous tuple with the same key, and the weight is updated.

Finally, we create the store entry for 𝑍 by selecting the columns in

𝑍 from R, and adding nxt.
The implementation of nested semijoin 𝑅 𝐷 takes as argument

the shredding R = (R, Σ𝑅, r) of nested relation 𝑅 : 𝑋 and the shred-

ding D = (h, Σ𝐷 ) of dictionary 𝐷 : 𝑦⇝𝑍 , as well as the schemes 𝑋 ,

𝑦, and 𝑍 . It simply executes as a conventional hash join probe. We

collect in selection vector sel the positions of the valid tuples in R
whose keys can be successfully probed in 𝐷 . We add new vectors

hd_𝑍 and w_𝑍 to R, in which we store the matching positions in

Σ𝐷 (𝑍 ) according to h, as well as their weights. In line 10, Σ𝑅+Σ𝐷
denotes the disjoint union of the two stores Σ𝑅 and Σ𝐷 .

4

Unnesting 𝜇𝑌 (𝑅) takes as argument the shredding (R, Σ𝑅, r) of 𝑅
as well as 𝑌 . It first creates two position vectors, pos_R and pos_Y
that are populated with valid positions in R and Σ𝑅 (𝑌 ), respectively.
Specifically, for every tuple 𝑡 ∈ 𝑅 that is represented at position 𝑖 in

Rwe append the positions of all the tuples in Σ𝑅 (𝑌 ) that encode the
elements of 𝑡 (𝑌 ) to pos_Y; and we add 𝑖 to pos_R as many times

as |𝑡 (𝑌 ) |. In line 4, itr(R,Σ𝑅,𝑌,i) returns an iterator over the

positions in Σ𝑅 (𝑌 ) that encode the elements of 𝑡 (𝑌 ). We use the

position vectors to index into R resp. Σ𝑅 (𝑌 ) to create the physical

representation O of the output in lines 7–12. Finally, we remove the

entry for 𝑌 from Σ𝑅 as this is no longer required.

4
This is disjoint because the type rules for require 𝑋 compatible with 𝑦 → 𝑍 . In

particular,𝑋 ∪ {𝑍 } is a scheme; therefore the domains of Σ𝑅 and Σ𝐷 must be disjoint.
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Flatten.When multiple unnest operations are applied in sequence,

there is an overhead in the number of take operations applied. To

illustrate, consider 𝜇 {𝑢 } 𝜇 {𝑧,{𝑢 }} (𝐶) from Figure 4, where 𝐶 : {𝑥,𝑦,
{𝑧, {𝑢}}}. The first unnest, 𝜇 {𝑧,{𝑢 }} (𝐶), will already perform a take
on 𝑥 , 𝑦, and 𝑧 (among others) to produce the result with scheme

{𝑥,𝑦, 𝑧, {𝑢}}. The second unnest performs a take again on 𝑥,𝑦, 𝑧

to produce the final result. While this overhead is modest in Fig-

ure 4, it grows linearly in the number of 𝜇 applied sequentially. For

𝜇𝑌1 𝜇𝑌2 . . . 𝜇𝑌𝑘 (𝑅), the outer-most flat attributes would be copied

and re-arranged 𝑘 times by means of take before producing the

final, flat relation. It is for this reason that we have included flat-

ten (𝜇∗) as a primitive operator in NSA, and provide the dedicated

physical implementation flatten shown in Figure 7. It performs

only a single take operation per flat attribute.

Flatten is implemented by calling the auxiliary function rflatten,
which takes a physical relation R as argument, a position vector

pos for R, and a numerical vector rep of the same length as pos
containing only strictly positive numbers, called the repetition vec-

tor.
5
Initially, pos is the selection vector of R and rep contains all

1s, but this changes when we call rflatten recursively. Intuitively,

for each tuple 𝑖 specified in pos and matching repetition number 𝑟

specified in rep, rflatten will completely flatten the 𝑖-th tuple of

R, but additionally repeat each produced flattened tuple 𝑟 times. To

be precise, let 𝑠𝑖 denote the nested tuple represented at offset 𝑖 in

R. Let us write 𝜇∗ (𝑠𝑖 ) for 𝜇∗ ({{𝑠𝑖 }}). When we implement 𝜇∗ (𝑠𝑖 ), it
will produce tuples in a certain order; say it produces the flattened

tuples 𝑡1, . . . , 𝑡𝑛 . Then, let 𝜇
∗ (𝑠𝑖 , 𝑟 ) be this sequence with every 𝑡 𝑗

repeated 𝑟 times as follows

𝜇∗ (𝑠𝑖 , 𝑟 )
def

= 𝑡1, . . . , 𝑡1⏞ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄⏞
𝑟 times

, . . . , 𝑡𝑛, . . . , 𝑡𝑛⏞ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄⏞
𝑟 times

. (10)

Assuming pos = [𝑖1, . . . , 𝑖𝑝 ] and rep = [𝑟1, . . . , 𝑟𝑝 ], the call to

rflatten(R, pos, rep) will produce a physical relation that repre-

sents the sequence of tuples 𝜇∗ (𝑠𝑖1 , 𝑟1), . . . , 𝜇∗ (𝑠𝑖𝑝 , 𝑟𝑝 ), in this order.

To understand how rflatten works consider the flattening

of a single tuple 𝑠𝑖 having flat attributes 𝑥 and nested attributes

𝑌1, . . . , 𝑌𝑘 . By definition,

𝜇∗ (𝑠𝑖 ) = {{𝑠𝑖 [𝑥]}} × 𝜇∗ (𝑠𝑖 (𝑌1)) × · · · × 𝜇∗ (𝑠𝑖 (𝑌𝑘 )) .

All tuples in 𝜇∗ (𝑠𝑖 ) hence have the same 𝑥-values, which is com-

bined with the cartesian product of flattening 𝑌1, . . . , 𝑌𝑘 . As such,

for each 𝑢 ∈ 𝑥 we can easily produce the entire 𝑢-column of 𝜇∗ (𝑠𝑖 )
by taking 𝑠𝑖 (𝑢) and repeating this value 𝑟𝑖 ∗ weight(𝑠𝑖 (𝑌1)) × · · · ×
weight(𝑠𝑖 (𝑌𝑘 )) times. This is exactly what rflatten does in lines 8

and 9 by first calculating the total weight for each tuple, and subse-

quently calling generate to produce each column.

Next, lines 12–22 produce 𝜇∗ (𝑠𝑖 (𝑌1)) × · · · × 𝜇∗ (𝑠𝑖 (𝑌𝑘 )) in a

column-wise fashion, so that (i) the recursive 𝜇∗ calls can inde-

pendently produce the columns for their respective flat attributes

and (ii) these independent calls produce the flattened tuples in an

order so that all columns together give a physical representation for

the entire cartesian product. For the recursive call on 𝑌1 this is triv-

ial: flatten each tuple in 𝑠𝑖 (𝑌1) and repeat it weight(𝑠𝑖 (𝑌2)) × · · · ×

5
Additionally, rflatten takes the associated store Σ𝑅 as input, as well as the physical

relation O in which the output is to be constructed. We ignore these in our explanation.

weight(𝑠𝑖 (𝑌𝑘 )) times to account for the cartesian products that fol-

low. For the recursive call on 𝑌ℓ with 2 ≤ ℓ ≤ 𝑘 this becomes more

involved. Assume that 𝑠𝑖 (𝑌ℓ ) contains the tuples represented at off-

sets [ 𝑗1, . . . , 𝑗𝑚] in Σ𝑅 (𝑌ℓ ). Then, letting 𝑟 ′ = 𝑟𝑖 ×weight(𝑠1 (𝑌1)) ×
. . .weight(𝑠1 (𝑌ℓ−1), the recursive call to rflatten in line 22 will

flatten 𝑌ℓ with the position vector containing

[ 𝑗1, . . . , 𝑗𝑚]+ . . . +[ 𝑗1, . . . , 𝑗𝑚]⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝑟 ′ times

This ensures that every tuple already produced in the recursive

calls for 𝑠 (𝑌1), . . . , 𝑠 (𝑌ℓ−1) get paired with every tuple of 𝑠 (𝑌ℓ ). To
ensure that the they also get paired with the recursive calls that

follow, the repetition vector for 𝑌ℓ specifies that the flattened result

of each 𝑗𝑞 is to be repeated weight(𝑠𝑖 (𝑌ℓ+1)) × · · · ×weight(𝑠𝑖 (𝑌𝑘 ))
times. Lines 13–21 construct the correct position and repetition

vector in this respect.

5 INSTANCE-OPTIMAL NSA EXPRESSIONS.
In this section we study the asymptotic complexity of shredded

processing and identify a class of instance-optimalNSA expressions.

We focus on the RAM model of computation with unit cost model

and assume that hashing is O(1) per tuple, both for hash map

building as well as probing. We focus on data complexity, i.e., the

NSA operators to be executed as well as the input and scheme of

each operator is fixed.

Define the size of shredding R = (R, Σ𝑅, r) of relation 𝑅 : 𝑋 ,

to be the sum of cardinalities of all physical relations in R, i.e.
|R| +∑︁

𝑌 ∈sub(𝑋 ) |Σ𝑅 (𝑌 ) |. Note that |𝑅 | equals the size of R for flat

relations. Similarly, the size of shreddingD = (h, Σ𝐷 ) of dictionary
𝐷 : 𝑦⇝𝑍 is |h| plus ∑︁𝑌 ∈sub(𝑍 ) |Σ𝐷 (𝑌 ) | where |h| is the number

of keys in h. By analysis of the physical operators proposed in

Section 4.2 we readily obtain:

Proposition 5.1. For every NSA operator except 𝜇 and 𝜇∗, shredded
processing runs in time O(in) while 𝜇 and 𝜇∗ run in O(in + out)
where in and out are the sizes of the operator’s shredded input, and

output, respectively.

General NSA expressions may suffer from the diamond problem.

Indeed, every binary join plan is a validNSA expression bymeans of

the equivalence (4). Hence, the NSA expression in Figure 8b, which

is the equivalent of binary join plan 𝑅(𝑥,𝑦) ⋈︁ (𝑆 (𝑦, 𝑧) ⋈︁ 𝑇 (𝑧,𝑢))
exhibits the diamond problem when run on instances like db2 from

Figure 1c (see also Example 2.2). The utility of NSA for avoiding the

diamond problem is as follows: all operators except 𝜇, 𝜇∗ are linear
and hence produce shredded outputs whose size is at most linear

in that of the input. In contrast to the standard join, this is true in

particular for the nested semijoin 𝑅 𝐷 . Indeed, every tuple in 𝑅

can produce at most one tuple in 𝑅 𝐷 . As such, like the classic flat

semijoin, the output of 𝑅 𝐷 cannot increase in size. This is also

the reason why we call a nested semijoin. By contrast, 𝜇 and 𝜇∗,
because they pair each tuple 𝑡 in input 𝑅 with the tuples in an inner

relation of 𝑡 , can produce outputs whose cardinality is not linear

in the input size. Observe that 𝜇, 𝜇∗ are hence the only operators

that can cause “dangling tuples” to be created. This happens when

they generate a more-than-linear subresult while another operator

applied later removes tuples from this subresult. If no such later
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𝜇∗

𝑅 (𝑥, 𝑦) 𝛾 {𝑦}

𝑆 (𝑦, 𝑧) 𝛾 {𝑧}

𝑇 (𝑧,𝑢)

{𝑥, 𝑦, {𝑧, {𝑢 }}}

{𝑦, 𝑧, {𝑢 }}(a)

𝜇{𝑧,𝑢}

𝑅 (𝑥, 𝑦) 𝛾 {𝑦}

𝜇{𝑢}

𝑆 (𝑦, 𝑧) 𝛾 {𝑧}

𝑇 (𝑧,𝑢)

{𝑥, 𝑦, {𝑧,𝑢 }}

{𝑦, 𝑧, {𝑢 }}

(b)

Figure 8: (a) A 2-phaseNSA plan. (b) A non 2-phaseNSA plan.

operator is applied, all tuples produced by 𝜇, 𝜇∗ will appear in the

output, and none will be dangling. This motivates the following

definition.

Definition 5.2. An NSA expression is non-shrinking if it always

produces an output (relation or dictionary) whose cardinality is

at least as large as the cardinality of its largest input. An NSA
expression is 2-phase if, when viewed as a syntax tree, every 𝜇 and

𝜇∗ operator has only non-shrinking operators as ancestors.

In other words, the output of a 2-phase expression 𝑒 is computed

in two phases: a first phase where subexpressions generate linear-

sized subresults (possibly filtering tuples from their input), and a

second phase (delimited by the first 𝜇 or 𝜇∗) where subexpressions
may create subresults of larger-than-linear cardinality but where

the tuples in these subresults, once created, can afterwards never

be eliminated from the final output. It is important to stress that

non-shrinking is a requirement on the output cardinality produced

by an operator, not its size. In particular, the store in the operator’s

output may be smaller than that of either input.

The following theorem shows that all 2-phase NSA expressions

avoid the diamond problem. We refer to [4] for the proof.

Theorem 5.3. Every 2-phase NSA expression that maps flat input

relations to flat output relations is evaluated in time O(in + out) by
shredded processing, where in is the sum of the cardinalities of the

expression’s flat input relations, and out is the output cardinality.

A similar result was observed in [5] for expressions with only →

and e . Here, we generalize it to include all other NSA operators.

It is straightforward to verify that 𝜋 , 𝜌 , ∪, 𝜇 and 𝜇∗ are the only
non-shrinking operators inNSA. For 𝜋 this holds because projection

is bag-based; hence it has exactly the same output cardinality as

the input. For 𝜌 and ∪ this is trivial. Unnest and flatten themselves

are non-shrinking because inner nested relations cannot be empty.

Example 5.4. Figure 8a is a two-phase NSA expression. Figure 8b

is not two-phase since 𝜇 {𝑢 } has as ancestor. Note that this plan

is equivalent to 𝑅(𝑥,𝑦) ⋈︁ (𝑆 (𝑦, 𝑧) ⋈︁ 𝑇 (𝑧,𝑢)), which exhibits the

diamond problem.

We should hence prefer 2-phase NSA expressions as physical

query plans since these are the only expressions guaranteed to avoid

the diamond problem. This begs the question of when a 2-phase

NSA expression exists for a given query. The following theorem

answers this question for join queries. Call an NSA expression a

join plan if it uses only the operators 𝛾 , , 𝜇, and 𝜇∗.

Theorem 5.5. A join query 𝑄 can be evaluated by means of a 2-

phase NSA join plan if and only if 𝑄 is acyclic.

BKN [5] have already illustrated the “if” direction of Theorem 5.5;

here we generalize it to a characterisation of the ayclic joins.

6 COMPARING BINARY JOIN PLANS TO
2-PHASE NSA PLANS

For parsimony, let us refer to binary join plans simply as “binary

plans” and to 2-phase NSA plans as “2NSA plans” in what follows.
6

In Section 5 we have shown that 2NSA plans are robust physical

plans for acyclic join queries, as we can evaluate such plans instance-

optimally in O(in+out) time. Instance-optimality, however, is only

concerned with asymptotic complexity and may hide an important

constant factor. In this section we therefore move from asymptotic

complexity to analyzing plans based on a more detailed cost model

that accounts for the sizes of the hashmaps built, the number of

probes done in them, and the number of input data accesses.

Cost model.We adopt three abstract cost functions,

build : N→ R≥0 probe : N2 → R≥0 take : N→ R≥0,
so that build(𝑁 ) represents the runtime cost of a building a hash

map on a relation with 𝑁 tuples; probe(𝑁,𝑀) represents the cost of
probing 𝑁 keys in a hash map of𝑀 entries; and take(𝑁 ) represents
the cost of generating a single column (vector) of length 𝑁 , whose

content is populated by doing 𝑁 accesses in an already existing

column. In other words, take(𝑁 ) is the cost of take(u,pos) when

|𝑝𝑜𝑠 | = 𝑁 . We assume monotonicity: if 𝑁 ≤ 𝑁 ′
and𝑀 ≤ 𝑀 ′

then

probe(𝑁,𝑀) ≤ probe(𝑁 ′, 𝑀 ′) and similarly for build and take.

Let us analyze binary join and the NSA plan operators in this

cost model. Let #𝑅 denote the number of attributes (flat or nested)

in the scheme of 𝑅, i.e., if 𝑅 : 𝑋 then #𝑅 = |𝑋 |. Consider a traditional
binary join 𝑅 ⋈︁ 𝑆 of flat relations 𝑅 and 𝑆 on join keys 𝑦. It will

build on 𝑆 , yielding a hash map with | 𝛾𝑦 (𝑆) | keys. It probes into
this hashmap from 𝑅, and needs to construct all columns in 𝑅 ⋈︁ 𝑆 .

Its total cost hence is

CJ𝑅⋈︁𝑆K = build( |𝑆 |)+probe( |𝑅 |, | 𝛾𝑦 (𝑆) |) +#(𝑅⋈︁𝑆)×take( |𝑅⋈︁𝑆 |) .
Furthermore, by inspecting the physical operators given in Figures 6

and 7 we obtain, for nested relations 𝑅 and 𝑆 and dictionary 𝐷

CJ𝛾𝑦 (𝑆)K = build( |𝑆 |)
CJ𝑅 𝐷K = probe( |𝑅 |, |𝐷 |)
CJ𝜇𝑌 (𝑅)K = #(𝜇𝑌 (𝑅)) × take( | 𝜇𝑌 (𝑅) |)
CJ𝜇∗ (𝑅)K = #(𝜇∗ (𝑅)) × take( |𝜇∗𝑌 (𝑅) |)

The cost of an entire plan (binary orNSA) is then the sum of costs of

each individual operator, given the true cardinalities of the relations

produced by the operator’s subexpressions.

Example 6.1. It is instructive to compare the cost of right-deep

binary plan 𝑃 = 𝑅(𝑥,𝑦) ⋈︁ (𝑆 (𝑦, 𝑧) ⋈︁ 𝑇 (𝑧,𝑢)) with that of the

2NSA plan 𝑒 shown Figure 8a. Let 𝑘 = #(𝑆 ⋈︁ 𝑇 ) and ℓ = #(𝑃). Then

6
Recall that 2NSA plans are 2-phase NSA expressions using only 𝛾, , 𝜇, and 𝜇∗ .
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CJ𝑃K = build( |𝑇 |) + probe( |𝑆 |, | 𝛾 {𝑧 }𝑇 |) + 𝑘 take( |𝑆 ⋈︁ 𝑇 |) +
build( |𝑆 ⋈︁𝑇 |) + probe( |𝑅 |, | 𝛾 {𝑦 } (𝑆 ⋈︁𝑇 ) |) + ℓ take( |𝑅⋈︁𝑆 ⋈︁𝑇 |).

We note that this is exactly the cost of the (non-two-phase) NSA
plan in Figure 8(b), which is obtained by applying equivalence (4)

to 𝑃 . The embedding of binary plans in NSA hence preserves cost.

To compute the cost of the 2NSA plan 𝑒 of Figure 8a, we first note

that the subexpression 𝑆 (𝑦, 𝑧) 𝛾 {𝑧 }𝑇 (𝑧,𝑢) produces a nested rela-
tion whose cardinality is exactly |𝑆 ⋉𝑇 | (the flat semijoin between

𝑆 and 𝑇 ). Its parent operator 𝛾 {𝑦 } therefore builds a hashmap on

|𝑆 ⋉𝑇 | tuples. Continuing this reasoning yields

CJ𝑒K = build( |𝑇 |) + probe( |𝑆 |, | 𝛾 {𝑧 }𝑇 |) + build( |𝑆 ⋉𝑇 |)+
+ probe( |𝑅 |, | 𝛾 {𝑦 } (𝑆 ⋉𝑇 ) |) + ℓ take( |𝑅 ⋈︁ 𝑆 ⋈︁ 𝑇 |).

Since |𝑆 ⋉𝑇 | ≤ |𝑆 ⋈︁ 𝑇 |, this is at most CJ𝑃K due to monotonicity.

The crucial reason why in Example 6.1 2NSA plan 𝑒 has at most

the cost of binary plan 𝑃 is that 𝑒 can be obtained from 𝑃 by first

turning 𝑃 into an NSA plan using equivalence (4) (which yields

the plan of Fig. 8b) and then rewriting the latter into a 2NSA plan

by pulling to the top all 𝜇 operations, and combining them into a

single 𝜇∗. We next show that we can generalize this rewriting to

arbitrary binary plans as long as they are well-behaved.

Well-behaved plans. Denote by LL(𝑃) the left-most leaf atom of

binary plan 𝑃 , when viewing 𝑃 as a tree. For example, if 𝑃 = (𝑅 ⋈︁
(𝑆 ⋈︁ 𝑇 )) ⋈︁ 𝑈 then LL(𝑃) = 𝑅. For plans that consist of a single

atom, LL(𝑃) is the atom itself. Denote by LA(𝑃) the set of attributes
of LL(𝑃) and by JA(𝑃) the set of join attributes of 𝑃 ’s root join node.
For example, JA (𝑅(𝑥,𝑦) ⋈︁ (𝑆 (𝑦, 𝑧) ⋈︁ 𝑇 (𝑧,𝑢))) = {𝑦}. If 𝑃 is a leaf

relation then JA(𝑃) = ∅. A binary join plan 𝑃 is well-behaved if

for every subplan 𝑃 ′ = 𝑃1 ⋈︁ 𝑃2 in 𝑃 (including 𝑃 itself) we have

JA(𝑃 ′) ⊆ LA(𝑃1) and JA(𝑃 ′) ⊆ LA(𝑃2).
To illustrate, both the right-deep 𝑅(𝑥,𝑦) ⋈︁

(︁
𝑆 (𝑦, 𝑧) ⋈︁ 𝑇 (𝑧,𝑢)

)︁
and the bushy [𝑅(𝑥,𝑦) ⋈︁

(︁
𝑆 (𝑦, 𝑧) ⋈︁ 𝑇 (𝑧,𝑢)

)︁
] ⋈︁ 𝑈 (𝑥, 𝑣)) are

well-behaved while 𝑅(𝑥,𝑦) ⋈︁
(︁
𝑇 (𝑧,𝑢) ⋈︁ 𝑆 (𝑦, 𝑧)

)︁
is not: there

JA(𝑃) = {𝑦} ⊈ {𝑧} = LA(𝑇 (𝑧,𝑢) ⋈︁ 𝑆 (𝑦, 𝑧)).
If 𝑃 is well-behaved, then let 𝑃𝜈 be the 2NSA expression obtained

by recursively replacing every ⋈︁ by means of 𝛾
JA(𝑃 ) :

𝑅𝜈 = 𝑅 (𝑃1 ⋈︁ 𝑃2)𝜈 = 𝑃𝜈
1

𝛾
JA(𝑃1⋈︁𝑃2) 𝑃

𝜈
2
.

Theorem 6.2. 𝑃𝜈 is a well-typed 2NSA expression for every well-

behaved binary plan 𝑃 . Moreover, 𝜇∗ (𝑃𝜈 ) ≡ 𝑃 and the cost of 𝜇∗ (𝑃𝜈 )
is at most that of 𝑃 , on every database.

Theorem 6.2 identifies a large class of binary plans for which we

can find equivalent 2NSA plans without regret. Ill-behaved plans

may incur additional cost when converted to 2NSA plans, as we

illustrate in the full paper [4] .

Making binary plans well-behaved.We propose the following

strategy for generating 2NSA plans that may performance-wise

compete with the binary plans generated by existing query opti-

mizers, while additionally being provably instance-optimal. If the

optimizer already outputs a well-behaved plan, we simply execute

𝜇∗ (𝑃𝜈 ), which is guaranteed to match the cost. Otherwise, we apply

a dynamic programming algorithm to “repair” the ill-behaved plan,

making it well-behaved while minimizing the additional cost, and

execute the obtained well-behaved plan. This repair algorithm is

described in detail in the full paper [4].

7 EXPERIMENTAL EVALUATION
Implementation. Leveraging the shredding approach introduced

in Section 4, we implemented 2NSA plans inside Apache Datafu-

sion [20] (v.34), a high-performance columnar query engine written

in Rust that uses Apache Arrow as its data representation. Since

Datafusion lacks a join order optimizer, we use the columnar engine

DuckDB [32] (v1.0.0) to generate optimized plans for all considered

queries. DuckDB’s optimizer may introduce projections and filters

in-between hash joins. To ensure that the resulting plans are strictly

binary, we remove these intermediate filters and projections in the

Datafusion binary plans, but keep filters and projections on input

relations. Datafusion binary plans are subsequently transformed

into 2NSA plans as discussed in Section 6.

Setup.We first focus on interpreted columnar engines. There, we

consider three ways of executing queries: DuckDB, using its original

binary-join plans (DuckDB-Bin); Datafusion executing the stripped

binary-join plans (DF-Bin); and our 2NSA implementation in Data-

fusion running the 2NSA plans (SYA). Subsequently, we extend this
comparison to the compiled engine Umbra using the reproducabil-

ity package of [5], both with and without L&E plans. To ensure fair

comparison, we focus on plan execution time reporting the median

of 10 runs. This excludes query optimization time but includes hash

join time as well as reading input from disk, filters, projections and

aggregations if applicable. We have also compared systems when

considering only the hash join times. Due to space reasons, we

defer these results, which show even more pronounced speedups,

to the full paper version [4]. All experiments are conducted on a

Ubuntu 22.04.4 LTS machine configured to use a single thread with

an Intel Core i7-11800 CPU and 32GB of RAM.

Benchmarks.We employ three established benchmarks: the Join

Order Benchmark (JOB) [21], STATS-CEB [16], and the cardinality

estimation (CE) graph benchmark [7]. JOB and STATS-CEB contain

only acyclic queries with base table filters and equijoins, followed

by a single aggregation. We excluded query 7c from JOB due to an

offset overflow error in Datafusion, and three STATS-CEB queries

with output cardinalities exceeding 10
10
, yielding 112 JOB queries

and 143 STATS-CEB queries. The CE benchmark contains both

cyclic and acyclic queries. After discarding the cyclic queries and

the acyclic queries that ran out of memory, 1,594 queries remained.

In summary, we employ a suite of 1,849 queries for our experiments.

DuckDB & Datafusion. We use log-log scatter plots, with each

point representing a query’s runtime under two approaches. The di-

agonal line indicates equal runtimes; points above (below) indicate

slower (faster) performance for the approach on the Y-axis.

Figure 9a compares DuckDB-Bin with DF-Bin on the complete

set of queries. DF-Bin is faster than DuckDB-Bin in 43% of the cases

when considering total plan runtime, and in 60.4% of the cases

when considering solely join time (not shown). Moreover, the aver-

age query runtime in DuckDB is 0.828 seconds, while Datafusion

executes the same queries in 0.518 seconds on average. We con-

clude that DF-Bin is a robust baseline to use for further comparison

against SYA, and focus on this comparison next.

Figure 9b comparesDF-Binwith SYA. To be precise, SYAmatches

or outperformsDF-Bin on 94.6% of the queries (JOB), 94.4% (STATS-

CEB), and 83.8% (CE). The improved robustness of SYA over DF-
Bin is illustrated in Figure 9c, which shows a box-plot comparison
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Figure 9: Comparison of runtime performance in seconds: (a) DF-Bin vs. DuckDB-Bin; (b-c) SYA vs. DF-Bin.

Table 1: Speedups of SYA over DF-Bin and Umbra-L&E over
Umbra-Bin.

SYA SYA Umbra-L&E
absolute speedup (s) relative speedup relative speedup

JOB

min -0.09 0.76 0.77
average 0.11 1.21 1.08

median 0.01 1.01 1.03
max 2.21 6.42 1.85

STATS-CEB

min -0.01 0.87 1.22
average 0.97 3.13 2.87

median 0.01 2.07 2.62
max 37.43 23.97 19.09

CE

min -0.70 0.40 0.33

average 0.20 1.81 1.65

median 0.01 1.21 1.44
max 14.96 62.54 16.82

of the absolute runtimes (log-scale) per dataset. The maximum

speedups and slowdowns, both relative and absolute, are shown in

Table 1. Slowdowns are small, as the maximum relative/absolute

slowdowns are limited to 1.3x/89ms (JOB), 1.15x/5ms (STATS-CEB),

and 2.5x/0.70s (CE). The maximum relative/absolute speedups are

6.4x/2.2s (JOB), 24x/37.4s (STATS-CEB), and 62.5x/15s (CE). We

conclude that SYA is always competitive with binary join plans, and

often much better, while at the same time guaranteeing robustness.

Recall from Section 6, that well-behaved plans can theoretically

be translated into 2NSA plans without increasing their execution

cost. We observe that 849 (46%) of the binary plans are well-behaved.

777 of these (92%) are indeed evaluated at least as fast by SYA
as by DF-Bin in our experiments. For the remaining 72 queries

where this is not the case, the absolute slowdown is at most 77ms.

We conclude that our cost model, while an abstraction of reality,

accurately predicts performance in the vast majority of cases. 54% of

the binary plans are not well-behaved. For such plans the rewriting

into a 2NSA plan is not guaranteed to be cost-preserving. However,

in our experiments, for 80% of them, SYA is at least as fast as DF-
Bin. This demonstrates that the benefit obtained by avoiding the

diamond problem often outweighs the additional build and/or probe

cost introduced by converting binary into 2NSA plans.

We next discuss some queries qualitatively. The query with the

highest relative speedup (62.5x), is yago_acyclic_star_6_39 from
the CE benchmark. This well-behaved binary plan clearly suffers

from the diamond problem, explaining the observed speedup: the

query produces an intermediate result of 1.5 × 10
7
tuples, while

the inputs are not larger than 2.1 × 10
5
and the output cardinality

is 7.1 × 10
5
. The query with the highest slowdown (2.5x) is query

yago_acyclic_chain_12_39 from the same benchmark. We ob-

serve that the binary plan is already well-optimized and does not

suffer from the diamond problem. Moreover, the binary plan is not

well-behaved, leading to a higher build cost in the 2NSA plan. This

increased build cost, combined with the absence of the diamond

problem in the binary plan, accounts for the observed slowdown.

Umbra. Absolutely speaking, binary join plans in Umbra (Umbra-
Bin) execute on average one order ofmagnitude faster thanDuckDB-
Bin and DF-Bin. The same holds for L&E plans in Umbra (Umbra-
L&E) compared to SYA (which is roughly Datafusion + L&E). We

attribute this significant difference in absolute runtime to the funda-

mental differences between compiled query engines and interpreted

column stores as well as other differences between the systems in-

cluding the query planner and various low-level optimizations.

When we compare the relative speedups obtained by SYA over

DF-Bin to the speedups obtained by Umbra-L&E over Umbra-Bin,
however, as shown in Table 1 we see that these speedups are com-

parable for all benchmarks. We can conclude that the benefits of

L&E, originally implemented in a compiled query engine, can be

successfully translated to column stores.

8 CONCLUSION
We have shown how to implement L&E decomposition inside col-

umn stores using nested relations and NSA as the logical model,

and query shredding as the physical model. We have thereby illus-

trated the feasibility of implementing Yannakakis-style instance-

optimal join processing inside a conventional main-memory colum-

nar query engine without regret: fast on every acyclic join, and

not only asymptotically. We hope that this perspective can help

system engineers to better understand YA, and pave the way for its

adoption into existing systems.
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