
Federated Data Distribution Shi� Estimation

Graham Cormode
Meta and University of Warwick

gcormode@meta.com

Daniel Ting
Meta

dting@meta.com

ABSTRACT

As data is increasingly held at the edge of the network, newmethods
are needed to perform analysis over distributed inputs. This has led
to the emergence of the federated model of distributed computation,
which places emphasis on privacy and scalability. A central problem
is to analyze data distributions where the data is spread across a
large number of distributed clients. This supports a number of
tasks within federated learning and federated analytics. We present
techniques to measure the similarity of distributions of data in the
federated model. We de�ne sketches for this task that allow e�cient
estimation of the di�erence between two distributions based on the
total variation distance (!1) metric. These have accuracy and privacy
guarantees, and can be computed incrementally over dynamic data.
Our experimental study shows that these are practical to implement
and provide accurate estimates.

PVLDB Reference Format:

Graham Cormode and Daniel Ting. Federated Data Distribution Shift
Estimation. PVLDB, 18(8): 2399 - 2412, 2025.

doi:10.14778/3742728.3742736

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://�gshare.com/s/7a1c725a293d1c5b88a8.

1 INTRODUCTION

The federated model of computation captures the case where many
clients cooperate with a central aggregator to compute over their
distributed data, while preserving the privacy of their information.
Federated computation has beenmost heavily studied in the context
of distributed machine learning (ML) [38], but applies more gener-
ally to any application where many clients hold data for analysis
and modelling [9]. Within this setting, modern data management
systems must address many important tasks: building models for
prediction and inference; tracking statistics and analytics; and per-
forming general computations over the distributed data. These are
all used to inform decision making using past data. It is thus of
particular importance to know when data distributions, and hence
the relevant decisions, may have changed.

Several key distinctions separate the federated setting from tra-
ditional notions of computation. Privacy is paramount, and so the
participating clients only have their own data to operate on. The
scale can vary widely: from a small number of separate institutions
forming a federation to perform a collaborative computation over

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.
doi:10.14778/3742728.3742736

the union of their (sensitive) data, to a vast number of mobile clients,
such as all users of a popular app. Within this scale, heterogeneity is
common: some clients have many examples while others have only
a few. Moreover, the data distributions among clients can vary dras-
tically. Understanding properties of the (global) data distribution by
gathering statistics of the clients’ (local, heterogenous) distributions
is at the heart of many federated tasks in data management.

A key concern in (federated) data analytics and machine learning
is detecting when the data distribution has shifted. For instance,
when a pre-trained ML model is applied to new data, the current
data distribution should be similar to the training distribution.
When this is not the case, the old model’s results can be incor-
rect, and we should trigger some remediation or retraining instead.
This paper addresses this question of detecting when the data dis-
tribution has measurably changed or shifted, formalized as the
problem of quantifying data distribution shift. This could be tack-
led in a number of ways. A parametric model could �ag when an
estimated parameter changes by more than a threshold. However,
such approaches depend on whether the model still represents the
data well after distribution shift. Here, we adopt a non-parametric
approach, and focus on total variation distance (�TV) between pairs
of data distributions, a common statistical formulation. Our work
allows data heterogeneity to be quanti�ed, by measuring the extent
to which the distributions held by di�erent clients vary among
each other, or from a reference distribution. We consider discrete
distributions de�ned by frequencies of di�erent items 8 . Each client
holds a subset of items, which gives a local empirical distribution.
The normalized item frequency gives its empirical probability, ?8 .

We will use a scenario based on tracking popular music as a
running example, since music can be a very personal matter, and
re�ective of an individual’s political, sexual, and religious views.
Consider a collection of distributed users who each express their
personal music preferences: some listen exclusively to a few artists,
while others have very wide-ranging tastes. Over this population,
the preferred artists of each user correspond to the items, and
so de�ne a current distribution of popular artists. The task is to
quantify how the support changes between snapshots.

If we could directly inspect the distributions, the task is easy: we
can compare their (empirical) probabilities, and derive a measure of
distance. The problem of measuring distances is more challenging
when the distributions are: Large (i.e., high dimensional, and sup-
ported over a large number of indices); Distributed (i.e., spread out
over a large collection of users); and Private (i.e., the values held
by the users are private, and cannot be shared easily). To address
this (Large, Distributed, Private) challenge, we describe techniques
which provide compact summaries of distributions that can be
merged across distributed observers, and are amenable to privacy
protections. This captures the federated model of computation [9].

Our main tool is to build a “sketch” of each input distribution,
which forms a small representation of it that allows the distance

2399

https://doi.org/10.14778/3742728.3742736
https://figshare.com/s/7a1c725a293d1c5b88a8
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3742728.3742736
https://www.acm.org/publications/policies/artifact-review-and-badging-current

to be estimated accurately. By ensuring the sketch can be merged
and is amenable to combine with privacy-preserving distributed
noise addition and secure aggregation, it satis�es the requirements
for federated computation. Our focus is on �nding the !1 distance
between distributions, such as the distance between the current
distribution and a historical distribution from a previous month;
or the distance between values observed on the East coast versus
on the West coast of a large country. The !1 distance corresponds
to the total variation distance in statistics. Federated computation
of other statistical distances, such as information divergences and
Fréchet distance [32] are also of interest, but are outside the scope
of this paper, and are subject to strong lower bounds for sketch-
ing [2, 29]. The sketch we build can be viewed as a method for
sampling elements from the input distribution where items with
larger contributions to the distance are more likely to be sampled
and where sampling is coordinated across individuals by using
a random hash function. The sketches can be combined with an
addition-like operation, allowing us to build summaries of (the
average of) multiple distributions, or other weighted combinations.

The resulting summaries tackle the challenge of the federated
model: (a) using summaries reduces the large size of the inputs
and communication costs; (b) the summaries can be combined with
arithmetic-like operations to address the distributed nature of the
problem; (c) in addition, these summaries can be constructed quickly
with low overhead on participants, who may use weak devices (mo-
bile devices or wearables). Privacy concerns can be addressed by
(d) performing a secure aggregation of summaries [8, 12, 49], and
(e) adding suitably calibrated noise to mask the true content [24].
The summaries can be understood in the context of federated com-
putation: instead of collecting all of each user’s information, the
summary captures only a small amount of data, which can be further
masked. They also apply data compression: reducing the communi-
cation cost for mobile clients with low bandwidth availability.

1.1 Technical overview and contributions

We now describe the objective and our results in more mathemat-
ical terms. We consider inputs that can be thought of as vectors,
although they may not be presented in this format. That is, given a
set of observations of items from a �nite universeU, we represent
them as a vector G that records the number of occurrences of each
item. Then, given any input vector G , our aim is to estimate ∥G ∥?
(the !? norm of G), in a way that can be distributed over multiple
participants, and is amenable to privacy. We are most interested
in the case when G is formed as the di�erence of two probability
distributions, % and & , and ? = 1. The total variation distance of %
and& is given by the !1 norm of the di�erence of the two probabil-
ity distributions, as �TV (%,&) = 1

2 ∥% −& ∥1. Estimating ∥G ∥1 for
G =

1
2 (% −&) gives us the total variation distance between % and

& . Since ∥% ∥1, ∥& ∥1 f 1, we have ∥G ∥1 =
∑

8
1
2 |A8 − B8 | f 1. In our

music example, % and & can represent the popularity of artists at
di�erent times, or in di�erent regions. For instance, we could write
?xcx for the probability mass associated with the singer Charli XCX
in distribution % , so |Gxcx | is her contribution to �TV. If ?xcx = 0.03

and @xcx = 0.05, then |Gxcx | = 0.01. A key technical notion we use
is !? sampling, which samples elements from G according to their
contribution to the !? norm [19].

Our contributions. We de�ne summaries that build on the core
notion of !? sampling. !? sampling lets us preferentially sample
coordinates that are more informative for the norm. We derive
two estimators that accurately estimate the target norm from the
sample. In detail, our contributions are:

•We present new sketch-based techniques for estimating�TV in
the federated setting. These build on prior !? samplingworks [5, 13]
but simplify and optimize them for the !1 case.

• We show how our sketches can be built quickly based on a
statistical technique to only sample a single value instead of : ,
resulting in orders of magnitude speed-ups.

•We show for the �rst time how these sketches can be combined
with privacy models, demonstrating their �exibility.

•We evaluate the utility of the sketches on real and synthetic
data. We see that they obtain very strong accuracy, while being
considerably faster than alternatives from prior work.

2 RELATED WORK

Federated Computation. Recent years have seen an explosion of
interest in systems implementing federated learning, where an ML
model is trained on labeled examples held by a number of clients
and are not allowed to be directly read by a central server. Progress
typically takes place over many rounds. In each round, the server
broadcasts a current model, and each client proposes a model up-
date based on gradients of model parameters. The client updates
are usually combined by averaging [44]. By sharing updates rather
than raw data points, clients enjoy a baseline level of privacy; on-
going research in federated learning seeks to o�er more formal
privacy guarantees, optimize the communication costs, better han-
dle heterogeneous data, and so forth. [38]. Techniques like Secure
Aggregation [12] can ensure the coordinating server only sees the
�nal aggregation over clients and not individual updates. Outside
of machine learning, there is growing interest in applying the fed-
erated model to other data analysis tasks, building on earlier e�orts
in private and distributed systems. The umbrella term ‘federated an-
alytics’ (FA) covers the private collection of statistics on distributed
data, such as building histograms and identifying the most popular
items [16, 54]. Other works in FA have looked at tracking frequency
distributions [20] and range queries [52], among others [9, 25].

Sketches. The notion of data sketches – compact summaries of
data that can be manipulated with arithmetic-like operations – has
been well-studied in the database community for many years [22].
Sketches can estimate the cardinality of sets [26], track the mem-
bership of sets [11], or summarize frequency distributions [17].
Sketches that capture the norm of vectors have been widely used
in nearest neighbor search for over two decades [35], and form the
basis of deployed similarity search systems [36]. Within federated
computation, sketches have been used to reduce the communication
cost and speed up convergence of federated model training [30, 47].

Several sketching techniques have been developed to estimate
the !1 or !? norm of vectors. In particular, Indyk [34] introduced
sketches based on sampling from stable distributions. Brinkman
and Charikar showed that it was not possible to achieve dimension-
ality reduction for !1 via embedding-based approaches, meaning
that non-embedding based sketches are needed [14]. Li introduced

2400

improved estimators based on the stable distributions technique
with sparsity [40, 41]. For sketches with near-optimal space cost
and fast update time, Nelson and Woodru� proposed a di�erent
hashing-based approach that uses stable distributions [45]. How-
ever, we �nd that these above-mentioned approaches are not very
well-suited to the federated setting. Speci�cally, they can be com-
plex to implement and incur large hidden constants as shown by
our evaluation of stable distribution-based sketches in our empirical
study (Section 5). They are also not amenable to providing a privacy
guarantee: the noise added can considerably distort the results.

Our focus is on hashing-based techniques that can be made to
run fast. Io�e [37] introduced a modi�ed hashing technique that
can be applied to !1 sketching that ensures that processing each
item takes constant time. Andoni, Krauthgamer and Onak intro-
duced the idea of precision sampling, which uses a reweighting
based on hash values to determine a subset of items with which to
build an estimator [5]. More recently, Braverman, Krauthgamer and
Yang [13] propose a di�erent “alpha sampling”-based technique
for !? norms. These two last techniques form the basis of our es-
timators discussed in subsequent sections. Collectively, the prior
work studying sketching techniques for !1 norms have focused
on theoretical aspects, with little empirical evaluation; we seek to
make them practical to implement at scale and privacy-friendly.

Privacy.Given the sensitivity of data held by clients (e.g., onmobile
devices), there are strong incentives to provide formal privacy guar-
antees for data analysis procedures. The dominant model is the sta-
tistical notion of Di�erential Privacy [24], which places stipulations
on the output distribution of a randomized procedure. Di�erential
privacy guarantees have been provided for a large number of tasks,
such as model training via stochastic gradient descent [1], data
mining [27], census table release [3], and gathering statistics on
device usage [23]. Most relevant to this work is interest in privacy
and sketching [53] and counting distinct items [31, 46]. Various
results are known that show that sketches for distinct items [48]
and Euclidean norms [10], and more generally frequency moments
(a closely related objective to !? norms) [51] achieve a level of
privacy, under the assumption that the hash functions used are
secret. In our setting, the hash functions are shared among many
participants, and so we seek to achieve privacy by noise addition
instead. Part of our contribution in this paper is in studying the
interaction between privacy and sketches for distance estimation.

3 PRELIMINARIES

3.1 Norms and Sketching

Given a vector G of dimension 3 , denote its !? norm by ∥G ∥? =

(∑3
8=1 |G8 |?)1/? . Throughout, we will be interested in frequency

vectors G , where G8 g 0 denotes the frequency of an input item
8 , and probability vectors ~ such that ∀1 f 8 f 3, 0 f ~8 f 1 and
∥~∥1 = 1. We can easily build a probability vector from a frequency
vector as ~ = G/∥G ∥1, and so will not distinguish between these
two notions in what follows. We write G tail(C) to denote the vector
G with the C largest entries (in absolute magnitude) removed. We
will often suppress the parameter C , and just write G tail.

Table 1: Table of notation

Symbol Meaning

∥G ∥1 !1 norm of vector G
�TV (%,&) Total variation distance between % and &

58 frequency of item 8 in the data
G tail (C) Vector G with C largest entries removed

(Sketch transform (represented as a matrix)
k Sketch error on E is bounded byk ∥E tail∥1

(n, X)-approx. Relative error 1 ± n with prob. 1 − X
g Threshold used by heavy hitters estimator
^ Number of samples used by top-: estimator

(Y,�)-privacy Di�erential privacy with parameters Y, �
1(0) Indicator function: 1 if 0 is true, 0 otherwise

F » G Hadamard product of G and ~
$̃ (G) Big-O of G times a polylogarithmic factor

De�nition 3.1 (Linear sketch). We say that an algorithm computes
a (linear) sketch of a vector G if it can be written as (G , where (is a
linear mapping sampled from an appropriate random distribution.

We are concerned with �nding sketches that let us approximate
the !? norm of an input vector. Speci�cally, we seek (n, X) approxi-
mations that provide an estimate Ĝ so that

(1 − n)∥G ∥1 f Ĝ f (1 + n)∥G ∥1 (1)

with probability at least 1 − X , where the probability is taken over
the randomness used to draw the sketch mapping (. We use the
notation- = (1±n). as shorthand for (1−n). f - f (1+n). . We
say estimators satisfying (1) with constant X are “(1±n)-estimators”.

In building our sketches, we make use of frequency sketches, such
as Count-Min sketch [21] and CountSketch [17], which estimate
any E8 from vector E with additive error bounded by n ∥E tail∥1 [22].

3.2 Federated computation model

The sketching-based methods that we present are �exible, and can
be applied in a variety of distributed computational models. We
next specify a concrete model, with the understanding that our
results also apply to other settings.

De�nition 3.2 (Federated distribution). Given a set of clients who
each hold a collection of items, let 58 denote the frequency (count)
of item 8 across the set of clients, and let � =

∑

8 58 . The (aggregate)
probability distribution % is de�ned as ?8 = 58/� .

De�nition 3.3 (Data distribution shift problem.). Given probability
distributions % and & de�ned in the federated setting, the data
distribution shift problem is to compute an estimate of�TV (%,&) =
1
2 ∥% −& ∥1 by building a sketch of each distribution, sketch(%) and
sketch(&), where the sketches can be combined to give the estimate.

A trivial solution to this problem would be to compute the
sketch as a complete description of the corresponding probabil-
ity distribution. In what follows, we will evaluate the suitabil-
ity of a sketch based on (i) the size of the sketch data structure
(ii) the speed with which the sketch can be built from updates
(iii) the accuracy guarantees of the resulting estimator. The data
shift sketches that we build can be combined algebraically, so that

2401

Sketch
Sketch

Sketch
Sketch

Summed
Sketch

Heavy items

Top-k
estimator

HH estimator

Figure 1: Querying the combined sketch.

U sketch(%) + V sketch(&) = sketch(U% + V&) (see Section 4.6)
Hence, in what follows, we focus on the task of using sketches to
estimate ∥% ∥1: this then solves the data distribution shift problem.

3.3 Security and Privacy

We seek both security (protection of the data while in transit) and
privacy (ensuring the output does not leak sensitive information).

De�nition 3.4 (Secure Aggregation (SecAgg)). Given a collection
of = vectors G (9) , their aggregation (summation) is the sum - =

∑=
9=1 G

(9) . A secure aggregation protocol allows the computation of

- where each G (9) is held by a distinct client 9 , without revealing
any intermediate values to any participant.

There are various alternatives to implement secure aggregation,
such as via multi-party computation [49], communication between
clients and a server [8, 12] or with secure hardware [33].

De�nition 3.5 (Di�erential Privacy, DP). An algorithm" is said to
be (Y,�)-di�erentially private if Pr[" (G) ∈ $] f exp(Y) Pr[" (G ′) ∈
$] + � for any possible set of outputs $ for inputs G , G ′ that are
neighboring. In this paper, we de�ne neighboring to be inputs that
di�er in the occurrence of one element, i.e., ∥G − G ′∥1 f 1.

There aremany standardways to achieve di�erential privacy [24].
We adopt methods which proceed by noise addition: adding ran-
dom noise sampled from an appropriate distribution (Gaussian or
Laplace) to statistics computed by an algorithm.

The DP de�nition can be applied at di�erent places in a dis-
tributed system according to the requirements and trust model
adopted. If there is a fully trusted central entity, it can receive all
the data from clients and perform DP noise addition itself. How-
ever, in our federated case we reduce the degree of trust, and focus
on noise added by clients. In the most extreme case when clients
have zero trust in other entities, each client can add noise to its
own message and ensure its privacy before releasing it for (secure)
aggregation: this is called the local model of DP. Since the accuracy
of the result degrades due to many independent noise additions, we
advocate distributed noise generation. Here, each client adds only a
small level of noise, so the accumulation of all (independent) client
noise samples under secure aggregation yields the desired level
of privacy protection without needing to trust the central entity.
This is achieved by Pólya noise [6], Discrete Gaussian noise [4],
or Poisson-Binomial noise [18]. Section 4.7 explains how we can
combine DP noise with our sketching approach.

4 DATA SHIFT SKETCHES

In what follows, we build up the technical basis for our approach,
starting with an overview in Section 4.1. In Section 4.2, we give the
basic notion of !? -sampling by reweighting the input vector. We

use this to build two di�erent estimators for estimating data shift, a
heavy hitters (Section 4.3) and a top-: estimator (Section 4.4). These
make use of the same sketch, but have di�erent properties, yielding
two di�erent algorithms presented in Section 4.5. We discuss how
to implement these methods in the federated setting in Section 4.6,
and how to achieve privacy guarantees in Section 4.7. The technical
details in Sections 4.2, 4.3 and 4.4 are required to build up the
solutions, but can be skipped on an initial read if so desired.

4.1 High-level overview

The core of our methods builds on notions of !? sampling [19],
which can be represented as a linear sketch. The starting point is
to build a sketch data structure to represent a vector G and which
allows us to sample an index 8 (and the corresponding G8) with
probability proportional to |G8 |, i.e., index 8’s contribution to the
!1 norm of G . From this, we can build estimators for the !1 norm
based on counting how many samples exceed a threshold value
(the HH estimator), or looking at the weight associated with the
heaviest samples (top-: estimator). The approach is suitable for the
federated setting, since each client can build a sketch on local data,
and these can be combined to produce a sketch for the summation of
their inputs. Importantly, the resulting sketch immediately applies
to measuring the data shift via total variation distance. The total
variation distance between two distributions is the !1 norm of a
vector that is the di�erence of the two distributions. Given sketches
of the two distributions, the distance is measured by negating the
entries in one sketch and adding it (entrywise) to the other, then
applying the estimation methods described below (see Fact 4.11).

To obtain an accurate result, we need to extract multiple samples
from the data structure, and repeat the procedure hundreds or
thousands of times. Doing this explicitly would be burdensome,
due to the time cost of the independent repetitions. Instead, we will
present a “faster” version of the sampling procedure that allows
the same accuracy level to be met with the cost of only a single
modi�ed execution of the algorithm. In what follows, we develop
this by �rst describing the ‘basic’ (slow) estimator, then show the
�nal ‘faster’ version with equivalent or better accuracy. We follow
this path for the two estimators (top-: and HH), which both operate
on the same data structure summarizing the input G .

4.2 !? sampling

The !? sampling approach draws a random weight vectorF , and
computes the reweighted vector E = F»G where » is the Hadamard
product, so that E8 = F8G8 [19]. This allows us to approximate ∥G ∥?
from properties of E . To be of practical use, we use a hash function
to de�ne the weight vectorF to obtain a compact representation
that allows any entry to be accessed quickly without requiring us
to storeF explicitly. In what follows we also discuss how to store E
in a summary data structure that is much smaller than 3 , so that
the entire representation is the composition of a number of linear
transformations, and so forms a linear sketch (De�nition 3.1).

To instantiate the !? sampling method for parameter ? , we ran-

domly pick the vectorF so thatF8 ∼ 1/(* [0, 1])1/? . That is, entries
are drawn as the reciprocal of uniform random values in the range
[0, 1], raised to the power 1/? . We can then examine the sampling
probability for an item when we take the items with highest weight.

2402

From this, we have for a suitably large threshold g , that the proba-
bility the absolute value of E8 exceeds g is proportional to the ?’th
power of the original weight G8 , as follows:

Fact 4.1. Pr[|E8 | g g] =
(

|Gğ |
g

)?

Proof.

Pr[|E8 | g g] = Pr[|G8 |F8 g g] = Pr

[

|G8 |
(* [0, 1])1/?

g g

]

(2)

= Pr

[(

|G8 |
g

)?

g * [0, 1]
]

=

(

|G8 |
g

)?

□

This property holds provided g > |G8 |. The probability is over the
randomness associated with the choice ofF . In our music example,
suppose we sampleFxcx = 3.2, and have Gxcx = −0.01. For g = 10,
we �nd |Gxcx |Fxcx = 0.032, so xcx does not pass the threshold.

Fact 4.1 states that picking large entries of E8 is the same as sam-
pling an index 8 with probability proportional to its contribution
to the !? norm of the vector G . This is a key step for the subse-
quent estimators. Small sketches of E enable us to do this e�ciently.
Importantly, because E is a linear transformation of G , E can be
computed incrementally and additively. Updates �8 to the input
vector G generate a corresponding update E ′8 = E8 + �8F8 which is
processed by the frequency sketch. To ensure the update is e�cient
and every update to index 8 will retrieve the same valueF8 ,F8 is
de�ned using a random hash function and not stored explicitly. The
size of the frequency sketch is a function of an accuracy parameter,
n , and independent of the dimension of the input, 3 . Although we
will treat the entries ofF as independent draws for the purposes of
analysis, the proof will still hold when the hash is drawn from a
pairwise-independent family. From here on, we focus on the case
? = 1, which captures the !1 distance (total variation distance).

4.3 Heavy hitters-based estimator

Our �rst estimator is based closely on adapting precision sam-
pling [5], but is simpli�ed and streamlined due to our focus on
estimating distances between distributions. We build a frequency
sketch of size$ (1/k) of the vector E , so that we can estimate any E8
by Ê8 with error ±k ∥E tail∥1. Recall that E tail is the vector E with the C
largest entries removed, for a parameter C we will de�ne later. This
is equivalent (after rescaling) to �nding an estimate Ĝ8 of G8 with
additive error k ∥E tail∥1/F8 . We will later bound ∥E tail∥1 in terms
of ∥G ∥1 and other parameters, and choosek so thatk ∥E tail∥1 f 1.
Hence, we can obtain |Ĝ8 − G8 | f 1/F8 .

4.3.1 Basic HH Estimator. The basic estimator counts the number
of E8 values greater than a threshold g that we will determine below.
That is, we de�ne the estimator - = g · |{8 : |Ê8 | > g}|. For our
running example, if we set g = 10 and there are 6 artists whose
(estimated) Ê8 value is above g , then the estimator is 6g = 60.

Lemma 4.2. The expectation of the estimator- is (1±n)∥G ∥1, and
the variance is at most 2g ∥G ∥1.

Proof. To analyze - , we apply the sampling approach of (2),
and consider the probability that |Ê8 | g g . That is, we sample 8 if
Ĝ8F8 g g . Provided the sketch parameterk is set so that (Ĝ8 −G8) f

Algorithm 1 Update the data structure for item 8 with weightF

Input Item 8 with associated weightF

1: D8 ← Sample(* [0, 1]) by hashing 8

2: ,8 ← 1/(1 − D1/:8) ² For fast estimators (Sections 4.3.3, 4.4.3)
3: B ← F ∗,8 ² Scaled weight
4: Sketch.Update(8, B)
5: E8 ← Sketch.Query(8) ² E8 is (estimated) weight of 8
6: FixedSizeHeap.Update(8, |E8 |) ² Track the : largest weights

1/F8 , this can be written as F8 |G8 | ± 1 g g , i.e., F8 |G8 | g g ± 1. In
other words, using Ĝ8 gives a very similar result as if we used G8 .

To re-express this proximity, we choose a value of g large enough
so that g ± 1 ¦ g/(1 ± n),1 for some accuracy parameter 0 < n f 1.
This is satis�ed, for example, by choosing g =

1+n
n f 2/n . Then we

can write the sampling condition asF8 |G8 | (1±n) g g . Our estimator
- counts g towards the estimate for every index 8 where Ê8 is such
that |Ê8 | g g . Based on (2), we have that

E[-] =
3
∑

8=1

g Pr[|Ê8 | g g] = g

3
∑

8=1

(1 ± n) |G8 |
g

= (1 ± n)
3
∑

8=1

|G8 | = (1 ± n)∥G ∥1 (3)

Var[-] f
∑

8

g2 Pr[|Ê8 | g g] = g2
∑

8

(1 ± n) |G8 |
g

f 2g ∥G ∥1 (4)
□

4.3.2 Accurate HH Estimator. The variance of a single estimate is
quite large, so the standard way to reduce error is to take the mean
of : independent repetitions of- . That is, we use : randomly drawn
weight vectorsF (9) . This gives a new estimator . =

1
:

∑:
9=1 -

(9) .

Corollary 4.3. Averaging : = $ (n−3) independent copies of -
gives a (1 ± n) estimate of ∥G ∥1 with probability at least 3

4 .

Proof. It follows immediately that - and . have the same
expectation (E[.] = E[-] ¦ (1 ± n)∥G ∥1), and . ’s variance is

Var[.] = 1
:
Var[-] f 2g

∥G ∥1
:

. Applying Chebyshev’s inequality,

Pr[|. − E[.] | g X] f Var[.]
X2

f 1

:X2
2g ∥G ∥1 f

4

:nX2

where we use ∥G ∥1 f 1 and g f 2/n . We can make this probability
of a poor estimate at most a constant, say 1

4 , by setting : g 16
nX2

.

For our guarantee, we choose n = X , which sets : = $ (n−3). □

The success probability can be further ampli�ed using standard
techniques (taking the median of $ (log 1/X ′) repetitions of the
overall procedure) to 1 − X ′. However, this construction may be
slow in practice, so we next present a faster accurate estimator.

4.3.3 Fast HH Estimator. Naively, taking the mean of : repetitions
would incur a slowdown by a factor : , as we would need to compute
vectors E (1) . . . E (:) , based on weightsF (1) . . .F (:) . The key idea is
to use a single sample to simulate the e�ect of all these : repetitions
at once. This concept is used in prior work on sampling [5, 50] –
here, we apply it to !1 estimation.

1Recall that G ± ~ is shorthand for the range [G − ~, G + ~] so G ± ~ ¦ F ± I means
that F − I f G − ~ and G + ~ f F + I.

2403

Algorithm 2 Fast heavy hitters estimation procedure

Input Parameter n , Heap and Sketch
Output HH estimate for the !1 of the processed input

1: g ← 2/n ; ! ← 0 ² Initialize values
2: for all items 8 in Heap do

3: Ê8 ← Sketch.Query(8)
4: if Ê8 > g then ! ← ! + g (1 + :−1

:
· Êğ/g−1,ğ−1) ² Via eqn. (6)

5: return (!)

Lemma 4.4. The information needed to build the estimator . can

be gathered using $ (1) time to process each update.

Proof. We analyze what information is needed to build the esti-
mator . , and argue that we can represent this with a single sample,
deferring other sampling decisions until estimation time. We note
that for each index 8 , it su�ces to track only the contribution from

the largest weight,8 = max:9=1F
(9)
8 . That is, we represent the

whole set {F (1)8 ,F
(2)
8 . . .F

(:)
8 } by just storing information on,8 .

The max of : uniform random variables is distributed as* [0, 1]1/: ,
and so the min of : is (symmetrically) distributed as (1−* [0, 1]1/:).
Hence, we directly sample,8 ∼ 1/(1 −* [0, 1]1/:), and use this to
update the sketch in time $ (1), as shown in Algorithm 1.

To complete the proof, we use the information stored about,8

to reconstruct the information needed at query time to build the
estimator . . Recall that our estimator . is built by computing

. =
1
:

∑

9 -
(9)

=
1
:

∑

9 g |{(8, 9) : Ê
(9)
8 g g}|. (5)

We can write the contribution to the sum from item 8 as

.8 =
1
:

∑

9 -
(9)
8 =

1
:

∑

9 1(Ê
(9)
8 g g) .

Observe that for an index 8 , if we know,8 , there is enough informa-
tion to sample the other : − 1 weights for 8 , by conditioning on the
value of,8 : sample : − 1 other values, conditioned on the fact that
they are smaller than,8 , by picking uniform random values for

D
(9)
8 that are in the range (1/,8 , 1]. More directly, since we need the
count of the number of cases that cross the threshold g , we can work
with the expectation instead. See [5] for an argument that using
the expectation of such a random variable only serves to decrease
the variance. Conditioned on,8 , we count the number of the other
: − 1 samples that exceed g . Working in the space of the uniform

random values D (9)8 , the smallest of these corresponds to,8 , and
the remaining values are distributed uniformly over (1/,8 , 1]. The
condition Ĝ8F

(9)
8 g g maps onto D (9)8 f Ĝ8/g . Hence, the probabil-

ity for each sample of being picked is Ĝğ/g−1/,ğ

1−1/,ğ
=

Ĝğ,ğ/g−1
,ğ−1 . The

contribution to the mean from each of the : − 1 samples that meet

this criterion is 1
:
, so the expected contribution is :−1

:
Ĝğ,ğ/g−1
,ğ−1 .

This lets us compute the estimator (also shown in Algorithm 2) as

.8 =

{

g
:

(

1 + (: − 1) Ĝğ,ğ/g−1
,ğ−1

)

if,8 |Ĝ8 | g g

0 otherwise
(6)
□

4.3.4 Bound on ∥E tail∥1. Next, in order to set the sketch parameter
k , we analyze and bound the magnitude of E tail.

Fact 4.5. With constant probability, ∥E tail∥1 = $ (:).

Proof. The value of ∥E tail∥1 is determined by the = values of,8

that are sampled to make E , where as before,8 = max9 1/D (9)8 .
First, observe that there cannot be too many very large values

in E (9) . Set a threshold \ = 10∥G ∥1. Then, Pr[E (9)8 > \] = |G8 |/\
(using (2)), so the expected number of entries in E (9) that exceed \ is
bounded by

∑

8, 9 |G8 |/\ = : ∥G ∥1/\ = :/10. By Markov’s inequality,
there are at most : such large values with probability at least 0.9.

Now consider the norm of the ‘tail’ of the vector after removing

entries with weight more than \ . Let +\ =

∑

8, 9 :E
(Ġ)
ğ
f\ (E

(9)
8)

2. Then

E[+\] = E

[

∑

8, 9 :E
(Ġ)
ğ
f\

G28 (F
(9)
8)

2

]

= :
∑

8

G28

∫ \/ |Gğ |

1
~2 Pr[F (9)8 = ~] 3~

= :
∑

8

G28

∫ \/ |Gğ |

1
1 3~

f :
∑

8

G28 (\/|G8 |) = :\ ∥G ∥1 = 10: ∥G ∥21

By Markov’s inequality, we have that Pr[+\ > 100: ∥G ∥21] f
1
10 .

De�ne the vector E tail as the vector E with the : largest elements
removed. By the above argument, with constant probability,

∥E tail∥1 f ∥E tail∥22 =
∑

8:maxĠ E
(Ġ)
ğ
f\

max
9
(E (9)8)

2

f +\ = $ (: ∥G ∥21) = $ (:) . □

4.3.5 Space and time cost. We bound the size of the sketches
needed. Frequency sketches of size $̃ (1/k) o�er an error guar-
antee of at mostk ∥E tail∥1. Our error bound sets this equal to 1, so
rearranging, the space bound is $̃ (∥E tail∥1) = $̃ (:) for the sketches.
When : = $ (n−3), the total space is $̃ (n−3). Thus,

Theorem 4.6. The Fast HH-based estimator builds sketches of size

$̃ (n−3), and takes time $ (1) to process each update. These sketches

allow us to form a (1 ± n) estimate for the !1 norm.

4.4 Top-:-based estimator

Our second estimator uses the same basic data structure as that
for the fast HH estimator, but instead of counting the number of
estimates above a threshold, it �nds the :’th largest weight. The
basic version of this estimator corresponds to the approach of [13]
for the !1 norm, which we then modify and further adapt to be
faster. We �rst analyze the behavior based on the exact vectors E (9) .

4.4.1 Basic top-: Estimator. As above, consider an estimator based
on vectors E (9) , formed as the product of inputs G with : weight
vectorsF (9) , each entry of which is sampled as 1/(* [0, 1]). Nowwe
de�ne our estimate/ to be the:/2’th largest entry across all the E (9)
vectors, scaled by 1/2. In our running music example, ifFxcx = 3.2

and Gxcx = −0.01 (as before) then we have |Gxcx |Fxcx = 0.032. If

2404

it happens that this is the :/2th largest entry, then we estimate
∥G ∥1 = 0.016.

Lemma 4.7. With probability at least 4
5 , we have that / ∈ (1 ±

n)∥G ∥1 for : at least 30n2.

Proof. To analyse / , observe that it will be a good estimate if
there are not more than :/2 entries across the E (9) vectors that
are higher than 2(1 + n)∥G ∥1, and not fewer than :/2 entries that
are larger than 2(1 − n)∥G ∥1. Consider entries that are higher than
22 ∥G ∥1 for 2 that is close to 1, and let /2 denote the number of such

entries. By (2), we have that Pr[|E8 | g 22 ∥G ∥1] = |Gğ |
22 ∥G ∥1 . Then,

E[/2] =
=
∑

8=1

:
∑

9=1

1

22

|G8 |
∥G ∥1

=

:

22
and Var[/2] f E[/2] =

:

22
.

By Chebyshev’s ineq., Pr[|/2 − E[/2] | g C] f Var[/]
C2

f :

22C2
(7)

We use this to analyze Pr[/1+n > :/2], since for 2 > 1,

Pr
[

/2 − :
22 >

:
2 −

:
22

]

f Pr
[

/2 − E[/2] > :
2
2−1
2

]

f 4:22

22:2 (2 − 1)2
=

22

: (2 − 1)2
(8)

For 2 = (1 + n), this yields a probability of 2(1+n)
:n2

f 4/:n2.
Similarly, for Pr[/1−n < :/2], we have for 2 < 1,

Pr
[

:
22 − /2 >

:
22 −

:
2

]

f Pr
[

E[/2] − /2 >
:
2
1−2
2

]

f 4:22

22:2 (2 − 1)2
=

22

: (2 − 1)2
(9)

Substituting 2 = (1 − n), this probability is 2(1−n)
:n2

f 2/:n2.
Summing both these probabilities yields 6/:n2. Hence, if we set

: g 30/n2, this bound on the estimate being good is at least 4
5 . □

4.4.2 Smoothed top-: Estimator. We propose a smoothed version
of the estimator, using a range of ^ entries around the :/2’th largest.

Lemma 4.8. Let / ′ be the estimate formed by picking any item

whose rank is between :/2 and (1 + n/2):/2 in the sorted order,

for : = $ (1/n2). Then, with constant probability, / ′ is a (1 ± n)-
approximation of ∥G ∥1.

Proof. We consider the entries between :/2 and (1 + n/2):/2
in the sorted order, and modify the above argument to consider the
probability that there are not fewer than (1 + n/2):/2 entries that
are larger than 2(1−n)∥G ∥1. Adapting (9), we obtain for 2 = (1−n)

Pr
[

:
22 − /2 >

:
22 −

(1+ Ċ2):
2

]

f Pr
[

E[/2] − /2 >
: (1−(1+ Ċ2)2)

22

]

f 22

: (1 − 2 (1 + n/2))2
=

2(1 − n)
: (n/2(1 + n))2

=

8(1 − n)
:n2 (1 + n)2

f 8

:n2

This ensures there are¬(n:) = ¬(
√
:) items in the target range. □

This result gives some additional �exibility in picking an esti-
mator: we can pick any of the items in this window, or take the
mean of multiple items in the window, and still obtain an accurate
estimate. In our experiments, we take the mean of the items in the
range [:/2, :/2 + ^], where ^ denotes the size of this window.

Algorithm 3 Fast top-: estimation procedure

Input Parameter : , Heap and Sketch
Output Top-: estimate for the !1 of the processed input

1: " ← [] ² Initialize empty list
2: for all items 8 in Heap do

3: Ê8 ← Sketch.Query(8)
4: Ĝ8 ← Ê8/,8 ² Extract estimated G8 , via Section 4.2
5: M.Append(Ĝ8)
6: for 9 ∈ [: − 1] do
7: M.Append(Ĝ8 ((,8 − 1)* [0, 1] + 1)/,8) ² Via eqn. (10)

8: return (M.SortDecreasing())[:/2]

4.4.3 Fast top-: Estimator. Naively implementing the estimator /
requires us to repeat the process : times in parallel for each update.
As for the heavy-hitters based estimator, we reduce update cost by
computing the largest weight,8 only, using Algorithm 1 again.

Lemma 4.9. The information needed to build our estimator / ′ can
be gathered using $ (1) time to process each update.

Proof. As in Lemma 4.4, themaxweight,8 ∼ 1/(1−* [0, 1]1/:),
so we can track G8,8 via sketches. At query time, identify the

:/2 largest values of G8,8 . For each of these 8 , compute D (9)8 for

9 = 2 . . . : , conditioned on D (9)8 > D
(1)
8 , where D (1)8 = 1/,8 . That is,

D
(9)
8 ∼ * [1/,8 , 1] ∼ 1

,ğ
+* [0, 1] (1− 1

,ğ
) ∼ (1+(,ğ−1)* [0,1])

,ğ
(10)

The estimator is built by “back�lling” the values that would have
been inserted in the naive estimator, by �nding Ĝ8 = (G8,8)/,8 =

E8/,8 , and making a list with all Ĝ8D
(9)
8 values inserted (Algo-

rithm 3). The top-: estimate / ′ is applied to the reconstituted
list of values. The correctness follows by invoking the principle of

deferred decisions to sampling of D (9)8 at query time. □

4.4.4 Top-: estimate using approximate weights and sketches. The
discussion so far assumes that the top-: estimator uses rescaled
values of the exact weights. To implement the estimator in the fed-
erated setting, it must instead use frequency sketches to summarize
the weight values. This means the estimator takes an approximate
value for the :th largest entry of E , requiring an updated proof.

Theorem 4.10. The top-: estimator builds sketches of size $̃ (n−3),
and takes time $ (1) to process each update. These sketches allow us

to form a (1 ± n) estimate for the !1 norm.

Proof. First, assume that for every entry in vector E , the fre-
quency sketch estimates Ê such that |E − Ê | f n ′, for some n ′.
Observe that the ℓ ’th largest value from Ê is close to the ℓ ’th largest
value from E , for any ℓ . Assume for convenience that the values
are re-indexed so that E1 > E2 > E3 Now consider Êℓ . There
are at most ℓ entries in E such that E8 g Eℓ , so Êℓ cannot be more
than Eℓ + n ′ (since Êℓ being the ℓ’th largest implies that there are ℓ
entries in Ê that are as big as Êℓ). Similarly, Êℓ cannot be less than
Eℓ − n ′, since there are no more than ℓ entries that are as big as Eℓ
in E . Hence, |Êℓ − Eℓ | f n ′.

Combining this with our estimator, the frequency sketch param-
eters must be set so that the �rst assumption is met, i.e., all entries
of E have error proportional to n . By a standard analysis, sketches

2405

of size B obtain an error bound of ∥E tail∥1/B [22]. Using Lemma 4.5
above, ∥E tail∥1 = $ (:) (with constant probability) means that the
sketch size is set to $̃ (:/n). Since we set : = $ (1/n2), the total
space is $̃ (1/n3) to obtain additive error of n for ∥G ∥1. □

Comparing Theorem 4.10 with Theorem 4.6, we see that the
space and update costs for these two estimators are the same. Im-
portantly, both estimators use the same sketch: while the estimation
algorithms di�er, the sketching procedure is the same for both. This
is shown schematically in Figure 1. Hence, we compare the accuracy
of estimates built using these two methods in our experiments.

4.5 Pseudocode and Algorithmic Summary

Algorithm 1 lists out the pseudocode for updating the information
needed for the two (fast) estimators. It uses a frequency Sketch data
structure to summarize weights, and a (�xed-size) Heap to track
the items with the largest weights. For each update 8 that arrives,
Lines 1-2 compute,8 (based on hash functions on 8 , to ensure that
,8 is the same every time an update to G8 arrives), and Lines 4-6
update the sketch and heap based on the updated contribution to
E . The heap is used to make queries faster: as items are updated, it
keeps track of the : heaviest (estimated) weights seen so far. This
avoids probing the estimated weights of all possible items at query
time. The size of this heap is bounded by : in both cases. The HH
estimator needs to recall only those items larger than the absolute
value g = 2/n . Recall that we showed the bound that ∥E tail∥1 =

$ (: ∥G ∥21) with constant probability. Consequently, the number of

items above this threshold is at most : +$ (:n ∥G ∥21) = $ (:), using
that ∥G ∥1 f 1 in our setting. Hence, keeping a heap of �xed size
� = $ (:) will allow us to track the heavy items. Meanwhile, the
top-:-based estimator just needs to track the � = $ (:) largest
estimated E8 values in order to have the information necessary to
build the �nal estimator. In both cases, we can maintain these E8
values in a maxheap, truncated to hold � values. Every time we
perform an update to item G , we can test its current estimated value
in the current sketch, and add it to the heap (or update its weight
in the heap) if necessary (Algorithm 1, line 6).

The estimators are computed directly from the information
stored in Sketch and Heap, following the mathematical de�nitions
in Section 4.3 and 4.4. These are spelled out in Algorithms 2 and 3,
respectively. These assume access to,8 on demand, by applying
the same hashing procedure as in Algorithm 1 lines 1-2.

4.6 Distributed Computation

When the methods are applied to distributed data, as is the case
in the federated setting, it is necessary to combine information
from multiple, distributed computational entities. If each entity
has kept a sketch of their (scaled) inputs, along with a heap of the
current heavy items, they are merged in a straightforward way.
The sketches are added, entrywise, and scaled appropriately (e.g.,
if uniformly combining< sketches, we weight each sketch by 1

<).
For �TV, we subtract the sketches, entrywise.

Fact 4.11. The sketched information can be combined linearly.

Proof. Recall that we can write the derived vector E = F » G ,
whereF is the weight vector, and G is the input vector (Section 4.2).

The frequency sketch is a linear map (applied to E (De�nition 3.1).
Hence, the overall sketch is (F » G . Given vectors G and ~, and
scalars U and V , it follows by linearity that

U ((F » G) + V ((F » ~) = ((F » UG) + ((F » V~)
= ((F » UG +F » V~) = (F » (UG + V~) .

In other words, we can algebraically combine the sketches to obtain
the exact sketch of the correspondingly manipulated inputs. □

To combine the heaps, the union of all items from each individual
heap are extracted. The combined sketch is used to estimate each
of their combined weights, which are used to insert into a fresh
�xed-size heap. A challenge arises when some items may have
negative weight (corresponding to �nding the di�erence between
two distributions): this could mean that the true aggregate weight of
the item becomes much smaller. The consequence is that items with
smaller weight might have been overlooked for inclusion in the
new heap, but should still count towards the estimate. For the heavy
hitters approach, this is not a concern. Items contribute towards the
estimator only if their weight is above a �xed (data independent)
threshold, so the addition or removal of other items does not a�ect
whether they cross this threshold. For the top-: estimator, we can
observe that, if we are satis�ed with an additive approximation of
the !1 distance, then we can safely overlook all items whose weight
is less than some low threshold. Similar to the above argument
for the heap size, dropping items whose weight is less than W in
absolute magnitude will only cause the estimate to be o� by at most
W . Hence, we just need ensure all items with magnitude above W are
retained, of which there are at most $ (:/W). Thus, in summary,

Corollary 4.12. The HH and top-: estimators can be built over

federated distributions (De�nition 3.2) with the same guarantees as

Theorems 4.6 and 4.10, respectively.

4.7 Privacy and Security

We show how to achieve privacy and security guarantees. First, we
show how to achieve our main result, of di�erential privacy protec-
tion based on client noise addition. Then, to show the �exibility of
our approach, we show how our approach performs when security
is needed but di�erential privacy is relaxed.

4.7.1 Main result: Di�erential Privacy via local or distributed noise.

Ourmethod enables a di�erential privacy guarantee in the federated
setting by having the clients add noise to their data before it is
processed into a sketch. We �rst describe the process for local
di�erential privacy (LDP) at the item level (Section 3.3). That is, we
assume that the client’s input is a histogram of items observed by
that client, and the noise is added to introduce su�cient uncertainty
about the presence or absence of a particular item in the client’s
input such as a particular artist in our running example. In other
words, if - denotes the client’s histogram of item counts, input
histograms - and - ′ are neighboring if ∥- − - ′∥1 f 1.

To achieve (Y,�)-di�erential privacy each client �rst adds inde-
pendent noise to each count in their histogram using the “stability-
based histograms” technique [7]. Importantly, this uses a truncated
noise distribution which has �nite support – for example, a sym-
metric geometric distribution with parameter exp(Y), truncated so
that the residual probability mass is at most �. This ensures that

2406

the expected noise is a constant, and is of bounded magnitude) .
A threshold is applied to the noisy histogram, so that counts with
noisy weight) or less are removed. This means that any input
items with true count 0 cannot be included in the thresholded out-
put. This lets us work with arbitrarily large domains of input items
without introducing arbitrarily large amounts of noise. As a result,

Theorem 4.13. The fast sketch estimator with client noise addition

provides (Y,�)-item level local di�erential privacy in the federated

model for the data distribution shift problem (Defninition 3.3).

For constant values of Y, the magnitude of the noise is constant,
i.e., Θ(1). If a client holds< distinct values, then the noise on each
is Θ(1), totalling up to Θ(<). After normalization, the contribution
to the error in the !1 distance estimation is Θ(1), i.e., potentially
large. However, when the client has a less uniform input value
distribution, we expect the error to reduce, to $ (3/<), where 3
is the number of distinct values held by the client, while< is the
(larger) number of values. A �rst crude initial test on synthetic data
(comparing two Normal distributions) bears this out: using Y = 3,
and setting the threshold to 4, we observe a change to the !1 norm
of less than 1%, for � ∼ 10−6. More in-depth results are reported in
the experimental study in Section 5.

The exact same outline is used to instantiate the distributed
di�erential privacy version, where each client again adds some
noise to their input. However, this time, the magnitude of the noise
is much less (Section 4.7). The noise volume is now calibrated so
that the sum of noise from all clients is equivalent to the noise that
would have been added in the central setting. To ensure that the
server only sees the aggregated output of the computation with the
full noise, Secure Aggregation (De�nition 3.4) should be used to
combine the sketches from the clients via addition [12].

4.7.2 Security without noise addition. Our sketches can also be
applied in other privacy models. Next, we describe how to use the
sketches in a distributed setting when DP is not required.

Here, there are< clients who each hold a distribution %ℓ , andwho
wish to cooperate to compute the di�erence between a given proxy
distribution& and the (weighted) sum of the client distributions, as
�TV (%,&) = ∥

∑<
ℓ=1 %ℓ−& ∥1. In this situation, the clients send their

sketches to the server, who will sum them together as described
in Section 4.6, and probe them to build the �nal estimate. This
instantiates the model of “Federated Analytics” [9, 25], where each
client reveals only a partial view of their data in order to compute
the desired function, rather than sharing their data in its entirety.
However, if the messages from client to server were accessible to a
curious third party, this would reveal some information about the
inputs. The observer would not learn every item and weight in the
client’s distribution, but theymay see some sensitive item identi�ers
from the client’s distribution. If the hash function used to de�ne
the weightsF is public, an observer could also infer approximate
original weights of items from the client’s distribution.

To address this, we ensure that messages from clients to server
are encrypted (to prevent observation by external parties), and
that the server is trusted to receive the sketches and perform the
aggregations without “snooping” on the intermediate results. This
trusted server can compute the required estimate, and release it
(possibly with noise). To reduce the level of trust in the server, the

clients cooperate to mask the identity of the items that they are
reporting. Speci�cally, the clients agree on a secret (salted) one-way
hash function that they apply to the identities of their items, but
which is kept secret from the server. Because the labels attached
to the items are unimportant for the !1 distance, relabelling them
does not change it. Then, the server is still able to compute the
necessary estimate, but is oblivious as to which items are present
in the inputs. This model is suitable when no clients will collude
with the server to give up the details of the hash function.

Finally, Secure Aggregation (De�nition 3.4) is used to produce
a combined sketch, without any information about which client
contributed what. However, it is still necessary to use (masked)
item identi�ers to extract the estimate, so an additional secure
primitive is needed to gather the union of the item identi�ers from
the clients. The options are to use anonymous messages (using
anonymous credentials [39]), or by secure aggregation over one-
hot vector encodings. Together, this information is su�cient to
probe the aggregated sketches, and build either of the estimators.

5 EXPERIMENTAL STUDY

We implemented the di�erent sketching techniques in Python. The
methods we implemented were:

• Our “fast estimators” using the HH and top-: approaches
described in Sections 4.3 and 4.4.

• The U-sketches of Braverman et al. [13] which correspond to
the basic version of the top-: approach (Section 4.4).

• The same U-sketch but using the HH estimation procedure,
i.e., the accurate but slow HH estimator of Section 4.3.

• The Very Sparse Stable Random Projections (“Sparse”) sketch
due to Li [40]. These use hashing to sample a V fraction of entries,
then compute the projection of these by symmetric Pareto distri-
butions, repeated : times. The estimate is formed by taking the
scaled geometric mean of the : sampled scaled sums. We default to
V = 0.05 and : = 100 for this sketch, the same values as in [40].

Our experiments are arranged in three parts. First, we see how
best to set the parameters of our fast sketches. Second, we compare
against the alternatives (U-sketches and sparse sketches) in terms
of both speed and accuracy. Third, we evaluate across a range of
real and synthetic data both with and without privacy imposed, to
test the consistency of our �ndings. For the initial tests, we evaluate
accuracy when there is no privacy noise addition, i.e., cases where
Secure Aggregation is su�cient to protect the data; in our later
tests we add privacy noise in the local model (so all client messages
have privacy protection before aggregation).

We evaluate on both real and synthetic data. The synthetic data
is sampled from two Zip�an distributions with di�erent skewness
parameters (default: skewness 1.2 and 1.4), resulting in a measurable
�TV. The default domain size for the synthetic data is 350,000.
The real data are standard benchmark datasets from the ML and
Federated Learning communities [15]. In each case, we map the
raw examples into frequency vectors to act as distributions.

Sent140 [28]. The Sent140 dataset is a collection of 1.6M tweets,
each tagged as positive or negative in sentiment. Each word is
hashed to a 20 bit range, and the dataset was divided up variously

2407

100 101 102 103

Ç

0.00

0.05

0.10

0.15

A
bs

ol
ut

e
E

rr
or

Zipf
Normal

(a) Varying g , synthetic data

100 101 102 103

Ç

0.00

0.02

0.04

0.06

0.08

0.10

A
bs

ol
ut

e
er

ro
r

Celeb-A
FEMNIST
IMDB
Sent140

(b) Varying g , Sent140 data

Figure 2: Calibration experiments for the HH estimator

100 101 102 103 104

»

0.00

0.01

0.02

0.03

0.04

0.05

A
bs

ol
ut

e
er

ro
r

Zipf
Normal

(a) Varying ^, synthetic data

100 101 102 103 104

»

0.00

0.02

0.04

A
bs

ol
ut

e
er

ro
r

Celeb-A
FEMNIST
IMDB
Sent140

(b) Varying ^, Sent140 data

Figure 3: Calibration experiments for the top-: estimator

as: (i) distribution of word use in positive reviews vs. in negative
reviews (ii) word use between two clusters of users.

FEMNIST [15]. The FEMNIST dataset is a collection of 803,000
handwritten characters in greyscale. We map the digits into inten-
sity vectors, encoding the brightness in di�erent regions of the
image. These are formed into pairs of distributions in three ways:
(i) intensity distribution of odd digits vs. even digits; (ii) intensity
distribution of digits with more curves (0, 3, 6, 8, 9) vs. digits with
more straight lines (1, 2, 4, 5, 7); (iii) splitting the digits into two
disjoint halves by author.

Celeb-A [42] The Celeb-A dataset is a collection of 200,000 color
images of celebrities with a variety of tags. We map these into
vectors of luminance and chroma values, and diivide them based
on the labels: (i) males vs. females; (ii) old vs. young; (iii) smiling
vs. not smiling.

IMDB [43]. The IMDB review sentiment database is a collection
of 50,000 movie reviews, divided into positive and negative classes.
Each word is hashed to a 20 bit range, and the dataset was divided
up variously as: (i) distribution of word use in positive reviews vs.
in negative reviews (ii) word use in two disjoint halves.

In each experiment, we use the various sketch techniques to
estimate the true total variation distance (�TV) between each pair
of input distributions (building a sketch for each distribution then
combining them to estimate the di�erence), and compare this to the
ground truth by exhaustively building the exact distribution. We
measure and report the absolute di�erence between the estimated
and exact distances; ideally, we want this to be as close to zero as
possible for an accurate estimate. We perform 5 repetitions of each
experiment, and show the standard error via error bars.

Our experiments are performed on a single machine with an
Intel Xeon CPU with 3.2GHz cores and 48GB memory. They fully
simulate the work of the clients and the server in the protocol, and
account for the communication, storage, and computational costs
incurred by all parties. The plots focus on the accuracy and the
client side costs (space and time), since the server-side costs are
negligible (j 1MB storage andj 1s time).

5.1 Initial parameter setting

Our initial set of experiments determine suitable values for the
key parameters: g for the heavy-hitters estimator, and ^ for the
(smoothed) top-: estimator (Section 4.4.2). Importantly, the goal
here is to �nd a parameter choice that is robust to use over the
range of di�erent datasets, not to tune g and ^ for each dataset. We
ran experiments to estimate the TV-distance between two Zip�an
distributions (�TV ≈ 0.16), two Normal distributions (�TV = 0.31)
and between the real datasets (see Table 2), and measured the abso-
lute error when applying the di�erent estimators. Figure 2 shows
that there is a range of g values for which the error is low and
stable, allowing us to con�dently choose any setting in this range.
On synthetic data (Figure 2a), the results show similar results when
g ∈ (4, 50). Here, the error is quite small: around 0.01 for the pre-
ferred choice of g , corresponding to a very small deviation from
the true distance. On real data (Figure 2b), choices of g in the range
1–10 are comparable in terms of accuracy. After these tests we use
a default of g = 5 as a robust choice for subsequent experiments.

Figure 3 shows the top-: estimator as we vary ^ , which indicates
the number of estimates around the :/2th largest that we average
together (see Section 4.4.2). Although increasing ^ from 1 upwards
does not signi�cantly change the accuracy, on the synthetic data
(Figure 3a), there is a local optimum close to ^ = 1000 (here, : =

10000), then there is a rapid fall in accuracy for larger values of ^ . In
what follows, we use ^ = 100 (taking the average of 100 entries for
the top-: estimator). The take-away from these tests is that good
results can be obtained from the estimators. While there is not a
single optimal choice for the parameters ^ and g , we can �nd values
that are a good choice across a range of inputs.

The space of the sketch depends on : . Each sketch consists of a
�xed-size heap tracking the : largest estimated frequencies, and a
CountSketch [17] of size proportional to : . Concretely, the heap is
an array of exactly : words, and the CountSketch uses 3: words,
plus some constant overhead. With 32-bit words, the space is 16:
bytes (plus some bookkeeping), so choosing : = 10, 000 requires
160KB of space. This is our default : value for the fast sketches.

5.2 Comparison to prior work

Figure 4 compares our fast sketches with prior work on time cost
and accuracy and shows prior theoretical work is not competitive in
practice. For the FEMNIST data, Figure 4a shows time as a function
of sketch size : (tests on other datasets showed similar results).
Here, the U-sketching approach is up to three orders of magnitude
slower even for small : and worse for large : since time costs grow
linearly with : . Although sparse sketching approach is much faster,
its cost also grows linearly with : , while our fast sketches have a
running time independent of : . Figure 4b �xes : for each method

2408

101 102 103 104

k

100

101

102

Ti
m

e
(s

)

Alpha Sparse Fast

(a) Time to process FEMNIST data

103 104 105

N

1022

1021

100

101

102

Ti
m

e
(s

)

Alpha (k=10)
Sparse (k=100)
Fast (k=10000)

(b) Time as FEMNIST data size increases

101 102 103 104

k

0.00

0.25

0.50

0.75

1.00

A
bs

ol
ut

e
E

rr
or

Top-k (³)
HH (³)

Top-k
HH

Sparse

(c) Accuracy on FEMNIST data

Figure 4: Speed and accuracy comparison with prior work

0 5000 10000 15000
k

0.00

0.05

0.10

0.15

A
bs

ol
ut

e
E

rr
or

HH
Top-k

(a) Varying size parameter :

1022 1021 100

TVD

0.00

0.02

0.04

0.06

0.08

0.10

A
bs

ol
ut

e
E

rr
or

y = x
Top-k
HH
Sparse

(b) Varying !1 di�erence

104 105 106 107

N

0.000

0.025

0.050

0.075

0.100

A
bs

ol
ut

e
er

ro
r

Top-k
HH
Sparse

(c) Varying number of samples #

Figure 5: Testing on synthetic data

and varies the size of the input # . Our fast sketches stay the fastest,
and the time cost grows linearly with # .

Figure 4c shows that only the fast sketches are able to achieve
acceptable accuracy but they require somewhat large values of
sketch size : . For small : in the range 10-200, the U-sketches achieve
average error of greater than 0.5, which is unusable as �TV takes
values between 0 and 1. We did not evaluate the U-sketches for
larger : due to their extremely high computation cost. The sparse
sketching approach achieves error around 0.25 on this data, which
is better but still poor. Furthermore, their accuracy did not show
meaningful improvement even as we increased : to 10,000. For :
large enough (5,000-10,000), the fast sketches have better accuracy
than all other sketches and achieve an acceptable error close to 0.
Hence we conclude that the U-sketches are dominated in both speed
and accuracy, and so can’t be used in practice. The sparse sketch is
comparable in terms of time cost for moderate : (around 100), but
does not show accuracy improvements for : in the range 102-104.
In what follows, we show a few further tests with the sparse sketch,
but the accuracy is rarely strong enough to be competitive.

5.3 Accuracy results on synthetic data

Having established that our fast sketches achieve usable results, we
study their accuracy as parameters of the sketches and of the input
are varied (Figure 5). Figure 5a shows the impact of varying the
sketch size, : . As expected, increasing : tends to improve accuracy
with the top-: approach needing a fairly large value of : g 5000

to obtain good accuracy. The HH estimator also improves as :
increases but is less accurate than top-: except for smaller : values.

In Figure 5b, we generate Zip�an distributions with a range of
skewness parameters to obtain pairs of distributions with a range
of �TV values, from close to zero (very similar) to one (completely
disjoint) and show the error of our sketches on a log scale with
respect to the true �TV (heavy line). The heavy line is equivalent
to ignoring the sketches and always guessing that the distance is
zero. The plot demonstrates that the error is small relative to the
distance and decreases when the distance is smaller, so that we
can accurately determine its magnitude. The absolute values of the
error are also small: always below 0.01 for the top-: based method.
This gives evidence that we can make good use of the sketches for
this task: the error is small enough to accurately use to measure the
�TV. From these results, we may lean towards preferring the top-:
estimator, since it reliably achieves lower error here and in other
tests, at least when : is large enough (here, we use : = 10, 000).

Figure 5c varies the number of samples, # , and shows that our
estimators work for both small and large datasets. Larger values of
are associated with better accuracy, but not dramatically so. The
accuracy of the top-: estimator is slightly better than the heavy
hitters estimator and has appreciably less variation. The absolute
sketch error is often small – always < 0.02, and often < 0.01. This
is accurate enough to detect a change in a distribution, su�cient to
trigger retraining a model or other use cases discussed in Section 1.
The sparse sketch results improve as # increases, but remain much
worse than the fast sketches on this data.

2409

0 5000 10000 15000
k

0.00

0.02

0.04

0.06

A
bs

ol
ut

e
er

ro
r

Top-k
HH

(a) Varying : for both estimators

2 4
·

1023

1022

1021

A
bs

ol
ut

e
er

ro
r

Top-k
HH

(b) Varying DP parameter privacy Y

105 106 107

N

1022

1021

100

A
bs

ol
ut

e
er

ro
r

Top-k
HH
Exact

(c) Varying the size of the input #

Figure 6: Accuracy experiments on Sent140 data with di�erential privacy

Table 2: Accuracy and timing results on real data sets (Y = 3)

Dataset �TV Top-: HH Time(s) Sparse Time(s)
IMDB-(i) 0.137 0.005 0.008 2.335 0.274 5.378
IMDB-(ii) 0.038 0.001 0.006 2.354 0.426 5.345
Sent140-(i) 0.121 0.002 0.005 3.224 0.410 7.821
Sent140-(ii) 0.195 0.003 0.007 4.301 0.318 10.787
Celeb-A-(i) 0.465 0.011 0.016 0.467 0.065 0.503
Celeb-A-(ii) 0.525 0.011 0.013 0.463 0.065 0.453
Celeb-A-(iii) 0.413 0.007 0.013 0.451 0.073 0.492
FEMNIST-(i) 0.509 0.013 0.006 0.059 0.207 0.076
FEMNIST-(ii) 0.272 0.006 0.006 0.056 0.063 0.081
FEMNIST-(iii) 0.216 0.005 0.004 0.066 0.109 0.069

5.4 Real data with di�erential privacy

Next, we study di�erential privacy noise (discrete Laplace noise
corresponding to Y = 3) on the real datasets. Adding privacy noise
does not substantially weaken the accuracy in Figure 6. For the
sketch size : , we see a general trend that increasing : improves
accuracy (Figure 6a). Similar to the synthetic data case, the top-:
estimator requires a sketch that is large enough in order to obtain
accurate results. We see that for our preferred sketch size of : =

10, 000, it obtains very high accuracy, even with added privacy noise.
Moreover, the variation in error is lower for the top-: estimator,
compared to the HH-based estimator. The absolute error bound
is below 0.01 for large : and su�ciently accurate to identify any
notable change in the input distribution.

In Figure 6b, we vary the privacy parameter Y, also known as the
privacy budget, from 1 to 5. Unsurprisingly, the accuracy improves
as Y increases, corresponding to decreased levels of noise. The
accuracy of the HH method tends to �atten near 0.01 error on this
data even as the noise decreases to close to zero, because there
is still the inherent noise of the sketching. Meanwhile, the top-:
error decreases to negligible levels, as its sketching error keeps
decreasing. This is consistent with results on data without privacy
noise, where top-: is the preferred approach for accuracy.

Figure 6c shows the accuracy when varying the size of the input,
from a small fraction (100K words) to almost the whole Sent140
dataset (10M words). For both methods, error decreases with # .
The reason is that as # increases, the absolute magnitude of privacy
noise remains the same, so its relative impact on the !1 estimation
decreases as # increases. For this data, it means that for small

inputs (100K words), the privacy noise can drown out the signal,
since individual words have small absolute frequency. However,
for large enough inputs, the accuracy is su�cient to detect data
shift. To highlight this, we additionally plot the true total variation
distance on this �gure as “exact”. For # = 106, the estimate’s error
is almost equal to the target distance. Meanwhile, for # = 107, the
error is about an order of magnitude smaller than the distance.

Finally, Table 2 shows results with DP for all the di�erent ways
to split the four di�erent real data sets described above. Di�erent
splits lead to di�erent �TV values: splitting in half leads to lower
di�erences, while splitting based on labels means the distributions
are less alike. In all cases, the top-: estimator achieves the lowest
error in the fastest time. The HH error is larger but usable, while
the sparse sketch error is too large to be of value here.

6 CONCLUDING REMARKS

This paper introduced the problem of federated data shift distance
estimation, and presented fast sketches with proven accuracy. The
main experimental takeaway is that the sketch-based approach to
federated data shift distance estimation is feasible. With a moder-
ately small sketch (160KB), we can accurately estimate�TV between
distributed distributions. The same sketch admits two di�erent es-
timators. The top-: based estimator is preferred when : is large
enough. Our approach is the �rst to also o�er privacy guarantees, as
the results are quite robust to the addition of di�erentially private
noise on the item frequencies. The techniques are of most value
when the inputs are high dimensional: for lower-dimensional data,
it may be preferable to materialize the distributions directly.

Future work is to broaden the applicability of sketching tech-
niques within the federated model, to allow more properties of
distributed data to be estimated, in order to support federated com-
putations, such as data preparation and post-processing for modern
data management tasks. It will also be of interest to evaluate them
in distributed systems, and measure the e�ect of sketching for
downstream tasks. Scenarios with very weak clients (where it is
not feasible to store a small sketch) may need a new approach.

ACKNOWLEDGMENTS

This work is supported in part by EPSRC grant EP/V044621/1, the
UKRI Prosperity Partnership Scheme (FAIR) under the EPSRCGrant
EP/V056883/1, and The Alan Turing Institute.

2410

REFERENCES
[1] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Di�erential Privacy.
In ACM SIGSAC Conference on Computer and Communications Security. ACM,
308–318. https://doi.org/10.1145/2976749.2978318

[2] Amirali Abdullah, Ravi Kumar, Andrew McGregor, Sergei Vassilvitskii, and
Suresh Venkatasubramanian. 2016. Sketching, Embedding and Dimensional-
ity Reduction in Information Theoretic Spaces. In Proceedings of the 19th In-
ternational Conference on Arti�cial Intelligence and Statistics, AISTATS (JMLR
Workshop and Conference Proceedings), Vol. 51. JMLR.org, 948–956. http:
//proceedings.mlr.press/v51/abdullah16.html

[3] John M. Abowd. 2018. The U.S. Census Bureau Adopts Di�erential Privacy. In
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
(KDD). ACM, 2867. https://doi.org/10.1145/3219819.3226070

[4] Naman Agarwal, Peter Kairouz, and Ziyu Liu. 2021. The Skellam Mechanism
for Di�erentially Private Federated Learning. In Advances in Neural Information
Processing Systems. 5052–5064. https://proceedings.neurips.cc/paper/2021/hash/
285baacbdf8fda1de94b19282acd23e2-Abstract.html

[5] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. 2011. Streaming
Algorithms via Precision Sampling. In IEEE 52nd Annual Symposium on Founda-
tions of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011.
363–372. https://doi.org/10.1109/FOCS.2011.82

[6] Eugene Bagdasaryan, Peter Kairouz, Stefan Mellem, Adrià Gascón, Kallista A.
Bonawitz, Deborah Estrin, and Marco Gruteser. 2022. Towards Sparse Federated
Analytics: Location Heatmaps under Distributed Di�erential Privacy with Secure
Aggregation. Proc. Priv. Enhancing Technol. 2022, 4 (2022), 162–182. https:
//doi.org/10.56553/POPETS-2022-0104

[7] Victor Balcer and Salil P. Vadhan. 2019. Di�erential Privacy on Finite Computers.
J. Priv. Con�dentiality 9, 2 (2019). https://doi.org/10.29012/jpc.679

[8] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, andMar-
iana Raykova. 2020. Secure Single-Server Aggregation with (Poly)Logarithmic
Overhead. In CCS ’20: 2020 ACM SIGSAC Conference on Computer and Com-
munications Security, Virtual Event, USA, November 9-13, 2020, Jay Ligatti, Xin-
ming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM, 1253–1269. https:
//doi.org/10.1145/3372297.3417885

[9] Akash Bharadwaj and Graham Cormode. 2022. An Introduction to Federated
Computation. In International Conference on Management of Data (SIGMOD).
ACM, 2448–2451. https://doi.org/10.1145/3514221.3522561

[10] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or She�et. 2012. The Johnson-
Lindenstrauss Transform Itself Preserves Di�erential Privacy. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS. IEEE Computer Society,
410–419. https://doi.org/10.1109/FOCS.2012.67

[11] Burton H. Bloom. 1970. Space/Time Trade-o�s in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (1970), 422–426.

[12] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-
dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.
Practical Secure Aggregation for Privacy-Preserving Machine Learning. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 1175–1191.
https://doi.org/10.1145/3133956.3133982

[13] Vladimir Braverman, Robert Krauthgamer, and Lin F. Yang. 2020. Universal
Streaming of Subset Norms. CoRR abs/1812.00241 (2020). arXiv:1812.00241
http://arxiv.org/abs/1812.00241

[14] Bo Brinkman and Moses Charikar. 2005. On the impossibility of dimension
reduction in l1. J. ACM 52, 5 (2005), 766–788. https://doi.org/10.1145/1089023.
1089026

[15] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečný, H. Brendan McMahan,
Virginia Smith, and Ameet Talwalkar. 2018. LEAF: A Benchmark for Federated
Settings. CoRR abs/1812.01097 (2018). arXiv:1812.01097 http://arxiv.org/abs/
1812.01097

[16] Karan N. Chadha, Junye Chen, John C. Duchi, Vitaly Feldman, Hanieh Hashemi,
Omid Javidbakht, Audra McMillan, and Kunal Talwar. 2023. Di�erentially Private
Heavy Hitter Detection using Federated Analytics. CoRR abs/2307.11749 (2023).
https://doi.org/10.48550/arXiv.2307.11749

[17] Moses Charikar, Kevin C. Chen, andMartin Farach-Colton. 2004. Finding frequent
items in data streams. Theor. Comput. Sci. 312, 1 (2004), 3–15. https://doi.org/10.
1016/S0304-3975(03)00400-6

[18] Wei-Ning Chen, Ayfer Özgür, and Peter Kairouz. 2022. The Poisson Binomial
Mechanism for Unbiased Federated Learning with Secure Aggregation. In Inter-
national Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA (Proceedings of Machine Learning Research), Vol. 162. PMLR, 3490–
3506. https://proceedings.mlr.press/v162/chen22s.html

[19] Graham Cormode and Hossein Jowhari. 2019. Lp Samplers and Their Ap-
plications: A Survey. ACM Comput. Surv. 52, 1 (2019), 16:1–16:31. https:
//doi.org/10.1145/3297715

[20] Graham Cormode, Samuel Maddock, and Carsten Maple. 2021. Frequency Estima-
tion under Local Di�erential Privacy. Proc. VLDB Endow. 14, 11 (2021), 2046–2058.
https://doi.org/10.14778/3476249.3476261

[21] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream sum-
mary: the count-min sketch and its applications. J. Algorithms 55, 1 (2005), 58–75.
https://doi.org/10.1016/j.jalgor.2003.12.001

[22] Graham Cormode and Ke Yi. 2020. Small Summaries for Big Data. Cambridge
University Press.

[23] Di�erential Privacy Team at Apple. 2017. Learning with Privacy at Scale. https:
//machinelearning.apple.com/research/learning-with-privacy-at-scale.

[24] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Dif-
ferential Privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014), 211–407.
https://doi.org/10.1561/0400000042

[25] Hubert Eichner, Daniel Ramage, Kallista Bonawitz, Dzmitry Huba, Tiziano San-
toro, Brett McLarnon, Timon Van Overveldt, Nova Fallen, Peter Kairouz, Albert
Cheu, Katharine Daly, Adria Gascon, Marco Gruteser, and Brendan McMahan.
2024. Con�dential Federated Computations. arXiv:2404.10764 [cs.CR]

[26] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-
perloglog: The analysis of a near-optimal cardinality estimation algorithm. In
International Conference on Analysis of Algorithms.

[27] Arik Friedman and Assaf Schuster. 2010. Data mining with di�erential privacy. In
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 493–502. https://doi.org/10.1145/1835804.1835868

[28] Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classi�cation
using distant supervision. Project Report, Stanford.

[29] Sudipto Guha, Piotr Indyk, and Andrew McGregor. 2008. Sketching information
divergences. Mach. Learn. 72, 1-2 (2008), 5–19. https://doi.org/10.1007/S10994-
008-5054-X

[30] Farzin Haddadpour, Belhal Karimi, Ping Li, and Xiaoyun Li. 2020. FedSKETCH:
Communication-E�cient and Private Federated Learning via Sketching. CoRR
abs/2008.04975 (2020). arXiv:2008.04975 https://arxiv.org/abs/2008.04975

[31] Jonathan Hehir, Daniel Ting, and Graham Cormode. 2023. Sketch-Flip-Merge:
Mergeable Sketches for Private Distinct Counting. In ICML.

[32] Charlie Hou, Hongyuan Zhan, Akshat Shrivastava, Sid Wang, Aleksandr Livshits,
Giulia Fanti, and Daniel Lazar. 2023. Privately Customizing Pre�netuning to
Better Match User Data in Federated Learning. arXiv:2302.09042 [cs.LG]

[33] Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan
Yousefpour, Carole-Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas,
Kaikai Wang, Anthony Shoumikhin, Jesik Min, and Mani Malek. 2022. PA-
PAYA: Practical, Private, and Scalable Federated Learning. In Proceedings of
Machine Learning and Systems 2022, MLSys 2022, Santa Clara, CA, USA, August 29
- September 1, 2022. mlsys.org. https://proceedings.mlsys.org/paper/2022/hash/
f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html

[34] Piotr Indyk. 2000. Stable Distributions, Pseudorandom Generators, Embeddings
and Data Stream Computation. In Foundations of Computer Science (FOCS). IEEE
Computer Society, 189–197. https://doi.org/10.1109/SFCS.2000.892082

[35] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing. ACM, 604–613. https://doi.org/10.
1145/276698.276876

[36] Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh S. Vempala.
1997. Locality-Preserving Hashing in Multidimensional Spaces. In Proceedings of
the Twenty-Ninth Annual ACM Symposium on the Theory of Computing. ACM,
618–625. https://doi.org/10.1145/258533.258656

[37] Sergey Io�e. 2010. Improved Consistent Sampling, Weighted Minhash and L1
Sketching. In IEEE International Conference on Data Mining. IEEE Computer
Society, 246–255. https://doi.org/10.1109/ICDM.2010.80

[38] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham
Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El
Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih
Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie
He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri
Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushan-
far, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri,
Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh
Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng
Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu
Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. 2021.
Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn.
14, 1-2 (2021), 1–210. https://doi.org/10.1561/2200000083

[39] Saqib A. Kakvi, Keith M. Martin, Colin Putman, and Elizabeth A. Quaglia. 2023.
SoK: Anonymous Credentials. In Security Standardisation Research (Lecture Notes
in Computer Science), Vol. 13895. Springer, 129–151. https://doi.org/10.1007/978-
3-031-30731-7_6

[40] Ping Li. 2007. Very sparse stable random projections for dimension reduction in
lalpha (0 <alpha<=2) norm. In Proceedings of the 13th ACM SIGKDD International

2411

https://doi.org/10.1145/2976749.2978318
http://proceedings.mlr.press/v51/abdullah16.html
http://proceedings.mlr.press/v51/abdullah16.html
https://doi.org/10.1145/3219819.3226070
https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html
https://doi.org/10.1109/FOCS.2011.82
https://doi.org/10.56553/POPETS-2022-0104
https://doi.org/10.56553/POPETS-2022-0104
https://doi.org/10.29012/jpc.679
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3514221.3522561
https://doi.org/10.1109/FOCS.2012.67
https://doi.org/10.1145/3133956.3133982
http://arxiv.org/abs/1812.00241
https://doi.org/10.1145/1089023.1089026
https://doi.org/10.1145/1089023.1089026
http://arxiv.org/abs/1812.01097
http://arxiv.org/abs/1812.01097
https://doi.org/10.48550/arXiv.2307.11749
https://doi.org/10.1016/S0304-3975(03)00400-6
https://doi.org/10.1016/S0304-3975(03)00400-6
https://proceedings.mlr.press/v162/chen22s.html
https://doi.org/10.1145/3297715
https://doi.org/10.1145/3297715
https://doi.org/10.14778/3476249.3476261
https://doi.org/10.1016/j.jalgor.2003.12.001
https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://doi.org/10.1561/0400000042
https://arxiv.org/abs/2404.10764
https://doi.org/10.1145/1835804.1835868
https://doi.org/10.1007/S10994-008-5054-X
https://doi.org/10.1007/S10994-008-5054-X
https://arxiv.org/abs/2008.04975
https://arxiv.org/abs/2302.09042
https://proceedings.mlsys.org/paper/2022/hash/f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html
https://proceedings.mlsys.org/paper/2022/hash/f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html
https://doi.org/10.1109/SFCS.2000.892082
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/258533.258656
https://doi.org/10.1109/ICDM.2010.80
https://doi.org/10.1561/2200000083
https://doi.org/10.1007/978-3-031-30731-7_6
https://doi.org/10.1007/978-3-031-30731-7_6

Conference on Knowledge Discovery and Data Mining. ACM, 440–449. https:
//doi.org/10.1145/1281192.1281241

[41] Ping Li. 2008. Estimators and tail bounds for dimension reduction in lU (0 <U f 2)
using stable random projections. InACM-SIAM Symposium on Discrete Algorithms,
(SODA). SIAM, 10–19. http://dl.acm.org/citation.cfm?id=1347082.1347084

[42] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Large-scale Celeb-
Faces Attributes (CelebA) Dataset. https://mmlab.ie.cuhk.edu.hk/projects/CelebA.
html.

[43] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis.
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Association for Computational Lin-
guistics, 142–150.

[44] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. 2017. Communication-E�cient Learning of Deep Net-
works from Decentralized Data. In International Conference on Arti�cial Intelli-
gence and Statistics (AISTATS) (Proceedings of Machine Learning Research), Vol. 54.
PMLR, 1273–1282. http://proceedings.mlr.press/v54/mcmahan17a.html

[45] Jelani Nelson and David P. Woodru�. 2010. Fast Manhattan sketches in data
streams. In ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS). ACM, 99–110. https://doi.org/10.1145/1807085.1807101

[46] Rasmus Pagh and Nina Mesing Stausholm. 2021. E�cient Di�erentially Private
�0 Linear Sketching. In International Conference on Database Theory, (ICDT)
(LIPIcs), Vol. 186. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 18:1–18:19.
https://doi.org/10.4230/LIPIcs.ICDT.2021.18

[47] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica,
Vladimir Braverman, Joseph Gonzalez, and Raman Arora. 2020. FetchSGD:
Communication-E�cient Federated Learning with Sketching. In International
Conference on Machine Learning (ICML) (Proceedings of Machine Learning
Research), Vol. 119. PMLR, 8253–8265. http://proceedings.mlr.press/v119/
rothchild20a.html

[48] Adam D. Smith, Shuang Song, and Abhradeep Thakurta. 2020. The
Flajolet-Martin Sketch Itself Preserves Di�erential Privacy: Private
Counting with Minimal Space. In Advances in Neural Information

Processing Systems. https://proceedings.neurips.cc/paper/2020/hash/
e3019767b1b23f82883c9850356b71d6-Abstract.html

[49] Kunal Talwar, Shan Wang, Audra McMillan, Vojta Jina, Vitaly Feldman, Bailey
Basile, Áine Cahill, Yi Sheng Chan, Mike Chatzidakis, Junye Chen, Oliver Chick,
Mona Chitnis, Suman Ganta, Yusuf Goren, Filip Granqvist, Kristine Guo, Frederic
Jacobs, Omid Javidbakht, Albert Liu, Richard Low, Dan Mascenik, Steve Myers,
David Park, Wonhee Park, Gianni Parsa, Tommy Pauly, Christian Priebe, Rehan
Rishi, Guy Rothblum, Michael Scaria, Linmao Song, Congzheng Song, Karl Tarbe,
Sebastian Vogt, Luke Winstrom, and Shundong Zhou. 2023. Samplable Anony-
mous Aggregation for Private Federated Data Analysis. CoRR abs/2307.15017
(2023). https://doi.org/10.48550/arXiv.2307.15017 arXiv:2307.15017

[50] Mikkel Thorup. 2013. Bottom-k and priority sampling, set similarity and subset
sums with minimal independence. In Symposium on Theory of Computing Confer-
ence, Dan Boneh, Tim Roughgarden, and Joan Feigenbaum (Eds.). ACM, 371–380.
https://doi.org/10.1145/2488608.2488655

[51] Lun Wang and Dawn Song. 2021. Di�erentially Private Frequency Moments
Estimation with Polylogarithmic Space. In ICLR.

[52] Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong, Zhicong Huang, Ninghui
Li, and Somesh Jha. 2019. AnsweringMulti-Dimensional Analytical Queries under
Local Di�erential Privacy. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki,
Amol Deshpande, and Tim Kraska (Eds.). ACM, 159–176. https://doi.org/10.1145/
3299869.3319891

[53] Fuheng Zhao, Dan Qiao, Rachel Redberg, Divyakant Agrawal, Amr El Ab-
badi, and Yu-Xiang Wang. 2022. Di�erentially Private Linear Sketches: E�-
cient Implementations and Applications. CoRR abs/2205.09873 (2022). https:
//doi.org/10.48550/arXiv.2205.09873 arXiv:2205.09873

[54] Wennan Zhu, Peter Kairouz, Brendan McMahan, Haicheng Sun, and Wei Li.
2020. Federated Heavy Hitters Discovery with Di�erential Privacy. In In-
ternational Conference on Arti�cial Intelligence and Statistics, (AISTATS) (Pro-
ceedings of Machine Learning Research), Vol. 108. PMLR, 3837–3847. http:
//proceedings.mlr.press/v108/zhu20a.html

2412

https://doi.org/10.1145/1281192.1281241
https://doi.org/10.1145/1281192.1281241
http://dl.acm.org/citation.cfm?id=1347082.1347084
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1145/1807085.1807101
https://doi.org/10.4230/LIPIcs.ICDT.2021.18
http://proceedings.mlr.press/v119/rothchild20a.html
http://proceedings.mlr.press/v119/rothchild20a.html
https://proceedings.neurips.cc/paper/2020/hash/e3019767b1b23f82883c9850356b71d6-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e3019767b1b23f82883c9850356b71d6-Abstract.html
https://doi.org/10.48550/arXiv.2307.15017
https://doi.org/10.1145/2488608.2488655
https://doi.org/10.1145/3299869.3319891
https://doi.org/10.1145/3299869.3319891
https://doi.org/10.48550/arXiv.2205.09873
https://doi.org/10.48550/arXiv.2205.09873
http://proceedings.mlr.press/v108/zhu20a.html
http://proceedings.mlr.press/v108/zhu20a.html

	Abstract
	1 Introduction
	1.1 Technical overview and contributions

	2 Related Work
	3 Preliminaries
	3.1 Norms and Sketching
	3.2 Federated computation model
	3.3 Security and Privacy

	4 Data shift sketches
	4.1 High-level overview
	4.2 Lp sampling
	4.3 Heavy hitters-based estimator
	4.4 Top-k-based estimator
	4.5 Pseudocode and Algorithmic Summary
	4.6 Distributed Computation
	4.7 Privacy and Security

	5 Experimental study
	5.1 Initial parameter setting
	5.2 Comparison to prior work
	5.3 Accuracy results on synthetic data
	5.4 Real data with differential privacy

	6 Concluding Remarks
	Acknowledgments
	References

