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ABSTRACT

Data transformation poses significant challenges due to the wide
diversity in input data formats and different requirements. Exist-
ing approaches—including human-driven, algorithmic, and large
language model (LLM)-based solutions—each exhibits trade-offs in
terms of cost, accuracy, and the range of supported transformations.
To address these limitations, we propose MegaTran, a novel frame-
work for generating accurate and cost-effective data transformation
code. MegaTran employs a two-stage process: Weak2StrongPrompt,
which converts a user’s weak prompt (a loosely specified user in-
put) into a strong, structured prompt, and Prompt2Code, which
generates transformation code based on this refined prompt. In
Weak2StrongPrompt, a fine-tuned lightweight LLM predicts the
transformation type and generates a detailed task description from
the user’s input. In Prompt2Code, a powerful LLM generates the
corresponding transformation code, guided by two key optimiza-
tions: (1) Sanity-check Reflection with checklist, which iteratively
debugs and refines the code by addressing errors; and (2) Lazy-
RAG, a retrieval-augmented generation technique that retrieves
relevant code snippets or documentation from external resources
(e.g., GitHub, DataPrep) to enhance code quality. Extensive experi-
ments show that MegaTran achieves results varying from +2.2% to
+26.1% accuracy improvement compared with SoTA methods.
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Figure 1: Typical data transformation examples.

1 INTRODUCTION

Data transformation [7, 9, 13, 14, 29, 30, 38, 56, 59, 69], which refers
to the process of converting data into a standardized or normal-
ized format in this paper, is essential for ensuring consistency and
preparing the data for effective analysis or processing.

Data transformation can take various types [31, 38], which in-
cludes but is not limited to (see Figure 1): (a) formatting values, such
as abbreviating a name; (b) extracting substrings, such as extracting
a domain from a URL; (c) discrete value mappings, such as con-
verting HEX values to RGB values; (d) continuous value mappings,
such as converting from CST to EST; (e) unit conversions, such as
changing temperatures from Celsius to Fahrenheit; and (f) other
miscellaneous transformations.

Existing Solutions and Their Limitations. For data transforma-
tion tasks, scientists typically know which columns to transform,
can provide a few example cases, and have a general sense of the
transformation (see Figure 2 ). Additionally, they often uti-
lize various tools, such as profiling tools like Trifacta or Tableau,
or consult existing code libraries and community resources like
DataPrep [53] and GitHub, as shown in Figure 2 . Based on
this information, existing solutions are categorized as follows.

Experts manually write code (e.g., Python or domain-
specific languages) for data transformation. This incurs high human
costs ($$$) but it offers high accuracy (+++).

@ Various algorithms have been proposed based on input-output
pairs (referred to as Transform-by-Example [1, 23, 30, 32, 36]) or
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Figure 2: Different data transformation approaches.

unpaired input and output examples (referred to as Transform-by-
Pattern [37, 79]). They typically incur medium costs ($$), and offer
high accuracy (+++). Note, however, that the experts need to write
different algorithms for different types of transformations, and the
supported transformation types are limited.

Recently, large language models (LLMs) [5, 74] have demon-
strated significant potential across various tasks, such as in-context
learning [20, 54, 73, 78] and code generation [3, 8, 25, 45, 51]. LLMs
can either be directly prompted to transform data (i.e., implicit
transformation) [6, 39, 50, 55, 84] or leveraged for the generative
capabilities to produce transformation code (i.e., explicit transfor-
mation). However, the former approach lacks explainability, making
it difficult to adopt, while the latter tends to be error-prone, with
generated code often overfitting and lacking generalizability. These
methods typically incur low costs ($) with medium accuracy (++).

Our Goals: High-accuracy, Low-cost, and Explainable. High-
accuracy means ensuring that the transformed data closely aligns
with the ground truth, with minimal deviation from the expected
result. Low-cost refers to both minimizing human effort and reduc-
ing the monetary costs associated with prompting LLMs, making
the transformation process more efficient and affordable. Explain-
able means providing transparency into the transformation process,
not only identifying which values have been modified (i.e., the
“what”) but also clarifying the rationale behind each transformation
decision (i.e.,, the “why”).
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Challenges. Leveraging LLMs for code generation faces two key
challenges that must be addressed to achieve high accuracy.

(1) Weak Prompts. The first challenge is the loosely specified
user input (i.e., weak prompts), which can lead to LLMs generating
incorrect or overly specific code. In contrast, when users provide
clear, explicit instructions (i.e., strong prompts), it significantly
improves the quality of the generated code by reducing uncertainty
in the interpretation of the task.

ExXAMPLE 1. [ Weak Prompts vs. Strong Prompts.] Consider the
example in Figure 3 from a benchmark dataset, which involves con-
verting an Excel serial date into a human-readable format, with three
sample cases shown on the top left.

[ Weak Prompt to Bad Code.] A weak prompt, characterized by a
loosely specified instruction, leads to suboptimal results even when
using a powerful LLM such as GPT-4o. In this scenario, the generated
Python code is inadequate—it overfits to the few provided examples
and fails to generalize to all possible cases.

[Strong Prompt to Good Code.] In contrast, a strong prompt includes
a well-specified transformation type and a detailed task description.
With this additional context, LLMs can produce high-quality and
generalizable code that effectively handles a broader range of inputs.

Example 1 highlights the important role of strong prompts in
enabling LLMs to generate robust and reliable transformation code.
However, it is important to acknowledge that providing strong
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Figure 3: Bad code generation with weak prompts vs. good code generation with strong prompts.

prompts or precise instructions may not always fall within the
user’s expertise or responsibility.

(2) Data Challenges and Knowledge Gaps. Data transformation
tasks are frequently challenged by the inherent complexity of di-
verse data formats, structures, and contextual semantics, as well as
the need for domain-specific knowledge. Even with strong prompts,
code generated by powerful LLMs can still suffer from errors or
suboptimal performance due to these multifaceted challenges.

In response to the above two challenges, we propose a
novel two-stage framework, namely MegaTran, for the generation
of data transformation code, as shown in Figure 2.

Weak2StrongPrompt. The first stage transforms user-provided
weak prompts (Challenge 1) into strong prompts by generating
precise transformation types and detailed task instructions.

Prompt2Code. The second stage focuses on generating transfor-
mation code while addressing data-related challenges (Challenge
2), such as errors arising from data complexity or missing domain
knowledge. To ensure robust code generation, we design an error-
driven reflection mechanism that enables the LLM to self-debug
and iteratively refine its output. To further address domain-specific
knowledge gaps, we introduce a novel Lazy-RAG approach. Un-
like Eager-RAG methods that always retrieve external examples
or documentations [83], Lazy-RAG selectively retrieves relevant
information based on error analysis and task context.

Contributions. We summarize our contributions as follows:

(1) We define the problem of data transformation code generation,
categorize six common transformation operations, and introduce
our MegaTran framework in Section 2.

(2) We develop the Weak2StrongPrompt module by fine-tuning
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a lightweight LLM and constructing a task-specific fine-tuning
dataset in Section 3.

(3) We propose two optimization techniques for Prompt2Code: (i) a
Sanity-check Reflection with checklist module to enable error-driven
self-debugging and iterative refinement in Section 4, and (ii) a
Lazy-RAG strategy that selectively retrieves external knowledge to
address domain-specific knowledge gaps in Section 5.

(4) We perform extensive experiments to demonstrate the effective-
ness of MegaTran, which significantly outperforms the state-of-the-
art solutions (varying from +2.2% to +26.1% accuracy improvement
on five distinct datasets), in Section 6.

2 PRELIMINARY AND SOLUTION OVERVIEW
2.1 Preliminary

Data Transformation. Data transformation refers to the process
of modifying or converting the values in a specific column of a rela-
tional table to a predefined format or standardized representation.

Code Generation for Data Transformation. This refers to the
task of automatically generating program code that can perform
data transformation on a given dataset [19, 42, 46]. Given a rela-
tional table and a transformation task specification (such as con-
verting values in a column to a standardized format or mapping
values to a new domain, and a few examples), the goal is to generate
code that accurately implements the required transformation.

2.2 Data Transformation Operators

We categorize data transformation tasks into several common types
based on their function and characteristics. Note that these data



transformation types are aligned with a work from Microsoft [32].
Please refer to Figure 1 for examples.

(1) format: Formatting involves transforming data values into a uni-
fied and consistent format, typically without involving arithmetic
operations or complex transformations.

The primary goal of formatting is to standardize the appearance
or representation of data, such as converting dates into a consistent
format (e.g., MM/DD/YYYY), normalizing text case (e.g., converting
names to title case), or adjusting numeric formats (e.g., formatting
numbers with a fixed number of decimal places).

(2) extract: This process extracts specific parts of a value from a
larger or more complex value.

This process is often achieved using techniques such as regular
expressions, which allow for identifying and isolating substrings
based on patterns. For example, extracting the domain name from a
URL or pulling out the area code from a phone number are typical
extraction tasks.

(3) discrete_map: It involves converting values based on a finite,
predefined mapping relation, similar to a dictionary lookup.

This process is commonly used to map categorical values to cor-
responding output values. For example, converting product codes
to product names or translating country abbreviations to full coun-
try names are typical discrete mapping tasks. The transformation
is deterministic, where each input value is mapped to a specific
output based on the predefined mapping.

(4) continuous_map: This involves converting values through math-
ematical calculations, typically applied to numeric data. This trans-
formation is used to map one set of continuous values to another
based on a defined relationship or formula.

For example, converting timezone is an instance of continuous
mapping. Unlike discrete mapping, which is based on fixed lookups,
continuous mapping often involves arithmetic operations or math-
ematical formulas to transform the values.

(5) unit_convert: Unit conversion refers to the process of convert-
ing a value from one unit of measurement to another.

This transformation is common when dealing with physical
quantities that can be expressed in different units, such as tempera-
ture, length, weight, or volume. For example, converting temper-
atures from Celsius to Fahrenheit, or converting distances from
kilometers to miles, are typical unit conversion tasks.

(6)misc_transform: There are many other types of data trans-

formations that do not fall under the specific categories defined
above. These transformations, which may involve more complex or
context-specific operations, are grouped together as miscellaneous
transformations. This category encompasses any remaining trans-
formation types that do not fit neatly into the predefined categories,
such as aggregations, reshaping, or conditional value adjustments.
All such transformations are classified as miscellaneous due to their
diversity and specialized nature.

2.3 Solution Overview

Recall Figure 2 , starting with a user specification (e.g.,
text, JSON) that describes the column to be transformed, a few ex-
amples, and a loosely specified transformation intent (e.g., “convert
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date”, “extract domain”, or “format phone number”), MegaTran em-
ploys a two-stage process, Weak2StrongPrompt and Prompt2Code,
to generate high-quality data transformation code.

Weak2StrongPrompt: Enhancing User Prompts. It begins with
the user specification, treating it as a weak prompt, and refines it by
determining the appropriate transformation type (i.e., Operator) and
generating a more detailed task description (i.e., Description). Such a
novel weak-to-strong paradigm enhances prompting for code gener-
ation and plays a pivotal role in improving the quality of generated
code. By providing a well-defined transformation type and clear
instructions, Weak2StrongPrompt streamlines subsequent steps, as
evidenced by the empirical results in Section 6.

Predicting the transformation type and generating task-specific
instructions is inherently simpler than directly generating code. To
this end, MegaTran employs a lightweight LLM for this purpose.

To train the lightweight LLM, we first construct a fine-tuning
dataset encompassing a diverse set of transformation tasks, each
annotated with its corresponding transformation type. It consists of
two stages: (i) Offline Stage: We employ Supervised Fine-Tuning
(SFT) to adapt a base LLM using curated fine-tuning dataset; (ii)
Online Stage: The fine-tuned LLM is then used to analyze the
user specification, predict the appropriate transformation type, and
generate a precise, task-specific instruction to guide the subsequent
code generation process.

Prompt2Code: Code Generation and Optimization. To produce
accurate and reliable transformation code based on strong prompts,
we employ a powerful LLM (e.g., GPT-4). Powerful LLMs excel at
handling complex tasks, such as generating precise code solutions
tailored to the desired data transformation. To enhance the quality
of the generated code, ensuring it is both syntactically correct and
semantically aligned with the underlying data requirements, we
introduce two key optimization techniques:

(01) Sanity-check Reflection with Checklist. This technique
improves code accuracy by enabling the LLM to review and iter-
atively refine its own outputs. To focus on the reflection process,
we use an error-driven checklist that systematically identifies and
categorizes issues. Whenever the generated code encounters a run-
time error, such as ValueError or SyntaxError in Python, the
reflection mechanism is triggered. Guided by the checklist, the LLM
analyzes the errors, revises the code, and re-evaluates the updated
solution, ensuring continuous improvement.

(02) Lazy-RAG (Retrieval-Augmented Generation). To address
gaps in domain-specific knowledge or missing external context,
Lazy-RAG selectively retrieves relevant information. For example,
if the generated code depends on third-party libraries not explic-
itly mentioned in the user input, Lazy-RAG dynamically fetches
relevant documentation or examples from a knowledge base.
Interleaving Sanity-check Reflection and Lazy-RAG. These
two techniques are seamlessly integrated into the code generation
process of Prompt2Code to ensure accuracy and completeness. As
the workflow illustrated in Figure 4, we break it down into 3 steps:
(i) The strong prompt will guide LLM to generate the intermediate
code. (ii) The intermediate code will be executed to check whether
it can pass all test cases. If passed, it will be returned as the final
code. If not, the code optimization techniques will be connected. (iii)



Prompt2Code | (5 Max Accemps!

. Stron Prompt N
O, g P

Q Fix Suggestion

Sanity-
Check
Reflection

Code
Generator

Final Code

Executor

Intermediate Code

Figure 4: Prompt2Code iterative code generation.

(O1): The Sanity-check Reflection module will analyze the error and
provide a fix suggestion for the next attempt (Section 4); (O2) The
Lazy-RAG module will query the relevant documents and inject
them as additional context (Section 5).

Discussion on Generalizability. The framework demonstrates
strong generalizability through: (1) Extensible support for trans-
formation operators when it comes to adding new operators for a
certain group of transformation tasks; (2) Scalable design where new
error types can be incorporated via checklist updates; (3) Additional
code primitives can be integrated through vector database expan-
sion; (4) Our empirical experiments across five distinct datasets with
hundreds of unseen transformation tasks demonstrate consistent
performance improvements without task-specific tuning.

3 WEAK-TO-STRONG PROMPTS
3.1 Weak Prompts and Strong Prompts

Weak Prompt. A weak prompt, or a user specification, S, typically
provided in natural language format, serves as the primary interface
for interacting with our system. It comprises the three components
S = (G, E, I), representing the column specification, examples, and
intent specification, respectively.

[C: Column Specification.] Indicates the column containing the
values that require transformation.

[E: Examples (a.k.a. Demonstrations).] The user is encouraged
to provide a few examples to guide the transformation. We classify
these examples into two types:

(1) Instance-level examples: These are concrete input-output
pairs that explicitly demonstrate the desired transformation.
They help specify the exact mapping or pattern required
for the task.

Abstract-level examples: These examples provide a broader
context, including metadata and semantic information about
the source column and the transformed column. They might
specify data types, format requirements, or semantic con-
straints without detailing individual value mappings.

—
3
~

To illustrate these example types, we present three examples
corresponding to cases (a), (b), and (c) in Figure 1.

Note that users have the flexibility to provide instance-level
examples, abstract-level examples, or a combination of both, de-
pending on the level of detail and context they could provide.
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Table 1: Level of granularity on user-provided examples.

Level Input Output

Instance  Charles Wooten C. Wooten

Abstract  a person’s full name the abbreviated name

Instance  cnn.com.au com.au

Abstract URL top-level domain

Instance  #C2DCE9 194,220,233

Abstract hexadecimal representa- rgb values with value
tion range in 0-255

[I: Transformation Intent Specification.] It conveys a general
transformation intent, such as normalizing human names or stan-
dardizing phone numbers.

Instruction. An instruction I, inferred from the lightweight LLM,
acts as a crucial intermediary, enhancing the user-provided chat
input. It is composed of two key elements, I = (O, D):

[O: Transformation Operator.] An operator identifies a specific
type of transformation, ensuring precise alignment between the
user’s intent and the subsequent code generation process.

[D: Description.] The description provides detailed coding direc-
tives to guide the strong LLM effectively.

Experimental findings (see Exp-3: Ablation Study in Section 6)
highlight that directly using weak prompts results in suboptimal
performance, whereas incorporating structured, instruction-guided
strong prompts significantly improves accuracy and reliability.

Strong Prompt. A strong prompt inherits weak prompt with few
examples and generated instruction (operator and task description).
More details of Weak2StrongPrompt are shown in Figure 5.

EXAMPLE 2. |Generated Instructions.] Consider the six examples
in Figure 1, the corresponding instruction outputs are as follows: (a)
format: generate the abbreviation for a person’s name. (b) extract:
extract the top-level domain from the URL. (c) discrete_map: convert
a hexadecimal color code to RGB representation. (d) continuous_map:
convert central time to eastern time. (e) unit_convert: convert Cel-
sius to Fahrenheit. (f) misc_transform: convert a given latitude and
longitude into MGRS format.

Discussion on the Choice of Operators. To address the diverse
range of data transformation tasks, we define a set of functional
operators that encompass the most common transformation sce-
narios, as detailed in Section 2.2. Among these, the unit_convert
operator is designed to handle a broad category of tasks involving
conversions between different data types, such as converting Cel-
sius to Fahrenheit. This design choice is supported by findings from
He et al. [32], who analyzed a wide variety of transformation tasks
and identified the pattern “convert A to B” as a frequently queried
use case in the Bing search engine.

3.2 Offline Fine-Tuning

We fine-tuned a lightweight LLM to acquire the specific knowledge
in data transformation by curated samples [44]. Such a weak model
performs a predictive task to translate user intent into accurate
instructions for code generation. In practice, the expert user can
keep track of the newly occurred transformation, and then update
the predictive model from time to time.



Offline: Fine-tuning
Base LLM

Fine-tuned
LLM

N
\/

Dataset

Expert
Labeling :

Annotated
Fine-tuning

Dataset

Fine-tuned .-~~~
Weak LLM -~ Instruction 1
G ... o
@ L\A Description Prompt ;

Figure 5: The Weak2StrongPrompt module.

Supervised Fine-Tuning. Supervised fine-tuning (SFT) has been
widely used in the field of LLM fine-tuning [16, 48]. It is partic-
ularly well-suited for our framework as it allows us to train the
LLM on paired examples of user inputs and desired instructions.
Through SFT, we create a specialized model that can effectively
bridge the gap between natural language descriptions and struc-
tured transformation instructions. The training process involves
presenting the model with (S : specification,1 : Instruction) pair,
which contains the specification S from user side and the instruction
I that represents the desired structured output (O : Operator, D :
Description). This supervised approach ensures that the model
learns to consistently map user inputs to well-formed instructions
that can guide the subsequent code generation process.

Fine-Tuning Dataset Construction. We constructed a dataset
based on the TDE Benchmark [32], which contains over 200 trans-
formation tasks curated from popular and representative questions.
To adapt this dataset for fine-tuning, we refactored the original
samples in plain-text format into Alpaca-like pairs [70], mapping
the user specifications (S) to corresponding instructions (I). Upon
reviewing the original dataset, we observed that approximately 30%
of the tasks lacked sufficient information, such as vague descrip-
tions, external links without context, or missing textual details. To
address this, we modified the user specifications by supplementing
or refining them based on the provided examples to ensure clar-
ity and completeness. Since the original dataset did not include
detailed instructions, we manually annotated each task with its
corresponding operator (O) and description (D), leveraging domain
expertise to ensure accuracy.

We define information completeness through a systematic ap-
proach. For each data transformation task, we build a fine-tuning
sample following the completeness criteria below:

o Chat: The task briefing of the transformation. We harness
the task description provided in the TDE benchmark. If not
provided, we will create one based on the examples.
Examples (a.k.a. tuples): Typical input-output examples
of the transformation. All examples are collected from the
TDE benchmark.

Context: Context information related to the input and
output of the transformation e.g.,, data type, format, etc.
Instruction: It manifests the instruction I as the expected
output of the fine-tuned LLM, which consists of operator
(O) and description (D) for current task.
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Algorithm 1 Sanity-check Reflection with Checklist

Input: a prompt and a checklist
Output: generated code code™, execution log log
1: code” « 0;log « 0;sugg =0;cnt =0; k=3
2: do
3: code < LLM(prompt, sugg);
error « Executor(code)
if error == ( then
code® « code
break
else if error € checklist then
sugg < LLM_Reflection(code, error)
else
log < Log(error)
break

13: while (cnt ++ < k)
14: return code®, log

R A AN

> will send to Lazy-RAG module

This systematic approach ensures consistent annotation quality
while maintaining task authenticity, which took 18 hours in total.

3.3 Online Reasoning

During online reasoning, the user can simply feed a specification
S to the fine-tuned lightweight LLM, which will infer a suitable
instruction I [71, 82, 85]. Then, a strong prompt will be constructed
by integrating the weak prompt and the generated instruction.
Consequently, the refined strong prompt will be provided to the
following Prompt2Code module for code generation.

4 SANITY-CHECK REFLECTION WITH
CHECKLIST

Sanity-check. In programming analysis, a sanity-check is a basic
verification step that ensures a program or system behaves accord-
ing to fundamental expectations [22, 68]. It typically involves quick,
simple tests to catch obvious problems before proceeding with more
complex operations [80]. For example, checking if input values are
within reasonable ranges or if essential resources are available. To
mimic this programming practice in an LLM-based manner with
less human overhead, we cooperate with the reflection mechanism
to improve the quality of generated code.

Reflection for Self-Correction. The reflection mechanism has
proven to be effective in enhancing the performance of LLMs, par-
ticularly in the domain of code generation [10, 58, 62]. During
runtime execution, it allows the model to review and revise its own
outputs and errors autonomously. This self-correcting capability is
crucial for automated code generation and reducing the need for
human intervention. By iteratively analyzing the generated code
against expected outcomes and known error patterns, the reflec-
tion mechanism can refine the code, ensuring it meets the desired
specifications.

Inspired by this programming practice and the self-reflection
capabilities of LLMs, we design a Sanity-check Reflection module
to guarantee the correctness of generated code. Similar to how
developers use sanity-check to handle basic errors early, our module



performs error-driven verification of the generated code with the
help of a pre-defined checklist.

Checklist. Inspired by the technique from ACL 2020 best pa-
per [60], we design a checklist to handle common programming
errors, such as syntax/value/import errors, for data transforma-
tion. To clarify, we harness the conceptual idea of which conducts
behavioral testing of NLP models with Checklist, but extend the
technique by introducing an error checklist and novel reflection
mechanisms for the correctness of the code generation.

Checklist Extension. Extending checklist to other programming
languages involves a few simple steps: (i) Error Identification:
Identify common runtime and syntax errors specific to the target
programming language. This involves understanding the typical
error messages and scenarios encountered in that language; (ii)
Checklist Adaptation: Modify the existing checklist to include
these language-specific errors. This can be done by collaborating
with language experts or using existing documentation and re-
sources; (iii) Testing and Iteration: Conduct thorough testing
with sample code snippets in the new language to ensure that
the adapted checklist and reflection mechanism work as intended.
Iteratively refine the approach based on feedback and observed
performance.

Overall, while there is some initial effort required to adapt the
approach to a new programming language, the modular nature of
our system makes this process straightforward. By focusing on the
specific error patterns and leveraging the flexibility of the reflection
mechanism, we can extend our approach to support a wide range
of programming languages.

Algorithm. The algorithm for Sanity-check Reflection with check-
list is shown in Algorithm 1. It takes a prompt and a checklist as
input, and outputs the data transformation code and error logs. It
first initializes all variables (line 1). It then iteratively checks and
fixes the code until the maximum number of attempts is reached
(lines 2-13). During each iteration, it first generates code with LLM
(line 3) and captures error message by executing the code (line 4).
If the code can be successfully executed (line 5), the code will be
returned and the iteration will be terminated (lines 6-7). Otherwise,
if there is an execution error captured by the checklist (line 8), it
will use LLM to generate a fix suggestion (line 9), which will be
used for the next round of iteration. However, if the execution error
cannot be captured by the checklist (line 10), then LLM reflection
cannot solve the problem. It will log the error message (line 11) and
terminate the iteration (line 12). Finally, it will return the code and
error logs (line 14).
Note that, there are three types of outputs of the algorithm:

(1) code® # 0: good code is generated
(2) code* == 0 and log # 0: invoke the Lazy-RAG module
(3) code* == 0 and log == 0: cannot generate good code

EXAMPLE 3. Let’s illustrate with an example, as shown in Figure 6.

(i) [Code Generation.] The powerful LLM will generate an “Intermedi-
ate code” given the “Strong prompt” for converting shoe sizes on the
operator domain_map.

(ii) [Code Execution.] A code executor will execute the “Intermediate
code”. It will terminate if the code can pass all test cases (i.e., a final

domain_map(): Convert a given women's shoe
size to the corresponding men's shoe size.

### Examples ### i
Input: 7.5 Output: 6

Input: 14 Output: 12.5

Input: 8 Output: 6.5 Code

Strong prompt

Generator

def solution(input):
women's_size = float(input)
if women's_size < 0:
return "Invalid size"

men's_size = women's_size - 1.5
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output = str(round(men's_size, 1))

return output

Checklist Executor
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For Lazy-RAG T

SyntaxError
unterminated string literal

.—Q )

Reflector

SyntaxError: unterminated string literal

The error message indicates a syntax issue
related to the use of single quotes in
variable names. In Python, variable names
cannot contain special characters like
apostrophes.

Fix suggestion

def solution(input):

womens_size = float(input)

if womens_size < 0:
return "Invalid size"

mens_size = womens_size - 1.5

Final code

output = str(round(mens_size, 1))

return output

Figure 6: Sample workflow of Sanity-check Reflection.

code). Otherwise, it will send an error to the checklist. In this case, it
sends an error message.

(iii) [Reflection with Checklist.] If the error is registered in the check-
list, it will send the error to the Reflector to generate concrete fix
suggestion. Otherwise, it will send the log to the Lazy-RAG module.
In this case, the error SyntaxError is captured by the checklist and
the reflector will provide a “Fix suggestion”.

(iv) [Code Refinement.] The code generator will incorporate the “Fix
suggestion” and re-generate the code, and go back to step (i). In this
case, there is no error in the Executor and a good “Final code” is
generated.

5 LAZY-RAG

Retrieval-Augmented Generation (RAG) is a technique that en-
hances language model outputs by incorporating relevant informa-
tion from external knowledge sources during generation [2, 41]. In
the context of code generation, RAG becomes particularly crucial
as it allows the model to access up-to-date documentation, best
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practices, and proven code patterns that may not be present in its
training data [66, 77].

The necessity of RAG for code generation stems from several
challenges. First, programming languages, libraries, and APIs con-
stantly evolve, making it difficult for pre-trained models to stay
current. Second, many transformation tasks require specific do-
main knowledge or library-specific implementations that may be
sparsely represented in the model’s training data. By retrieving rel-
evant documentation and code examples during generation, RAG
helps maintain high accuracy and ensures the generated code fol-
lows current best practices and correct function usage.

Therefore, we utilize RAG to enhance our code generation pro-
cess via two components: code libs vector database and code
libs retriever (see Figure 7). This design balances efficiency with
effectiveness, allowing us to maintain a comprehensive knowledge
base while minimizing runtime overhead.
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Eager-RAG vs Lazy-RAG. Our preliminary experiments reveal a
critical insight about RAG usage in code generation. While tradi-
tional Eager-RAG techniques retrieve relevant code or documen-
tation at every generation step, this approach can be counterpro-
ductive. We observe that constant retrieval often introduces noise
and irrelevant information into the generation process, potentially
degrading code quality rather than improving it.

For instance, when performing “datetime” related transformation,
additional context from external sources may confuse the model
as similar API names exist in different libraries. A concrete ex-
ample is timezone conversion, where multiple libraries datetime,
pytz, dateutil, and pandas all provide similar-sounding meth-
ods like astimezone(), convert_tz(), and tz_convert(). Eager-
RAG might retrieve all these variations simultaneously, leading the
model to mix APIs or suggest incompatible combinations. Our ex-
periments (Refer to Exp-4, Table 5) show that Eager-RAG can lead to
redundant generation attempts for simple tasks, increased inference
time, and token consumption without accuracy improvements.

These observations motivate our Lazy-RAG approach, where
retrieval is triggered only when previously logged packages are
captured. This selective strategy helps maintain the balance be-
tween leveraging external knowledge and preserving the model’s
inherent capabilities.

Code Libs Vector Database. The code libs vector database serves
as a knowledge repository that stores external package information
and documentation, playing a crucial role in addressing Challenge
2 (Data Challenges and Knowledge Gaps). When the Sanity-check
Reflection module encounters missing package errors or function
call issues during code execution, it logs these incidents along with
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contextual information. Based on these logs, we manually curate
relevant resources, including PyPI packages (i.e., web pages), mark-
down files, and reStructuredText files from GitHub repositories,
and best practices from developer communities, such as StackOver-
flow. Due to contributions from the open-source community, these
code fragments are executable with detailed comments. Finally,
we prepared a target list of packages with a simple script to help
download locally and process the construction of the offline code
lib vector database.

The vector database operates in offline mode, meaning it can
be pre-built and optimized before the code generation process be-
gins. It takes around 15 hours to complete the above works, in-
cluding the script running time on downloading files and building
the vector database. We employ a unified embedding approach
where both package documentation and code snippets are em-
bedded into the same vector space using a consistent encoder.
This unified representation enables efficient similarity-based re-
trieval during the online generation phase. In terms of the em-
bedding cost, we harness a smaller and highly efficient OpenAl
model text-embedding-3-small to embed the chunks at a price
of $0.00002 per 1K tokens.

Code Libs Expansion. Notably, the target list allows effective
knowledge expansion, i.e., adding a new package then using our
automated ingestion scripts (refer to assets/rag/pkg_info.json and
scripts/build_vector_db.py in artifact materials respectively). Con-
sequently, the end user can refresh the code libs vector database
rapidly.

Code Libs Retriever. This module operates during the online
phase, lining up with the code libs vector database to inject external
knowledge into the Prompt2Code process.

Algorithm. We present the workflow of the code libs retriever in
Algorithm 2. It takes a prompt, a related code, and a list of missing
logs as input, and outputs a new prompt. It first initializes a new
prompt with the input prompt (line 1). Then, a trigger function
checks the content of the input code if imported packages exist in
pre-collected list (line 2). If found, it embeds the context as a query
vector and retrieves the top-n relevant documents from the vector
database (lines 3-4). Next, it combines the retrieved information
with the original prompt (line 5). Finally, it returns the new prompt
(line 6).

Remark. By design, the trigger function makes this retrieval process
“lazy”; it only starts when certain packages or APIs are referred to,
as opposed to trying to retrieve data at every attempt. The retrieved
information is then used to augment the strong-prompt for the
next attempt, providing the model with precise, relevant documen-
tation and knowledge. This approach helps maintain a balance
between leveraging external knowledge and avoiding information
overload that could confuse the model.

6 EXPERIMENTS

The key questions we ask with our evaluation are:

o How is the overall performance of our approach in terms of
accuracy and cost efficiency, compared to other baselines?
(Exp-1, Exp-2)

e How is the ablation study? (Exp-3)



Algorithm 2 Code Libraries Retriever

Input: a prompt, a code, list of missing packages mlist
Output: new prompt prompt*

1: prompt® « prompt; top-n =3

2: if Trigger(code, mlist) then

3 query « LLM_embedding(code)

4 docs « VecDB_retrieve(query, top-n)

5 prompt® < combine(prompt, docs)

6: return prompt*

e What is the cost efficiency of Lazy-RAG compared with
Eager-RAG? (Exp-4)

e How is the overall performance in terms of the number of
coding attempts? (Exp-5)

6.1 Experiment Setup

Benchmark Datasets. Initially, our experiments utilize two chal-
lenging datasets from the Transform-Data-by-Example (TDE) bench-
mark!: StackOverflow and Bing-QueryLogs. Besides, we carefully

curated three new datasets from real-world applications, which are

ETL, CommonSense, and Science, which serve as the testing set

for our proposed approach. Below is a detailed description of each

dataset with the corresponding notation.

(1) StackOverflow (SO): it consists of 49 carefully sampled ques-
tions from “StackOverflow.com” that specifically focus on
data transformation tasks (e.g., “how to get the domain
name from URL”).

Bing-QueryLogs (BQ): it is constructed from 50 frequently
occurring “convert A to B” pattern queries in Bing’s search
logs. Non-data transformation queries such as “convert jpg
to png” are filtered out.

ETL: it is refactored from the DTT paper [12], which con-
tains 46 data transformation tasks related to ETL processes.
CommonSense (COM): it is constructed based on the com-
mon data transformation patterns, with a total of 43 data
transformation tasks.

Science (SCI): it is constructed based on scientific topics,
such as physics and chemistry, which contains 23 data trans-
formation tasks.

®)
4)

()

The above five datasets contain more than 200 transformation
tasks that cover diverse domains and representative challenges. We
follow the same data processing pipeline as baselines [32, 50, 55].
For the example tests in each task, we split them into two groups: the
first 3 tests are used as the training set, which will be combined as
part of the prompt input. The remaining tests will become test cases
during the iterative code generation process. Such an evaluation
setting employs the unseen samples for the final code solution,
which avoids the overfitting issue. Meanwhile, we ensure that all
methods are tested on the same test cases.

Evaluation Metrics. Following the same evaluation metric, we
measure accuracy as the proportion of successfully completed trans-
formation tasks. For LLM-based methods, we additionally track the

Uhttps://github.com/Yeye-He/Transform-Data-by-Example/tree/master/Benchmark
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Convert a Military Grid Reference
System (MGRS) coordinate to its
latitude and longitude
representation.

Convert latitude and longitude
coordinates to UTM (Universal
Transverse Mercator) coordinates

Convert a given Hijri date to
Gregorian date.

Input: 19 Rajab 1460
Input: 32.44, 44.1 | Output: Friday 20 August 2038 C.E

Output: 583662mE, 3589556mN Inpuc: 15S WC 80817 51205

Output: 38.40543, -92.07440

(-] [ -]

Code Libs Vector Database

from pyproj import Proj

p = Proj(proj="utn
Zzone=10,ellps="1G584",
preserve_units=False)

X,y = p(-120.108, 34.361) import mgrs

latitude = 42.0
longitude = -93.0

# Basic Usage
fron hijri_converter import
Hijri, Gregorian

N
IE mgrs.MGRS ()
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m
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d
d (41.999997, -93.000000)

#

Figure 8: Real-world examples from testing benchmarks. Doc-
uments relevant to the code are retrieved.

inference cost for each transformation task, including execution
time, token consumption, and the frequency of calling LLM API.

Besides, we utilize the Pass@K metric [8], which evaluates the
ability of data transformation solutions to produce at least one
correct code solution for current task within K attempts, where
K can take values of 1, 3, or 5 (see Exp-5, Figure 9). This metric
serves as an additional measure for assessing the performance of
LLMs in example-based code generation. Note, we report accuracy
at Pass@3 for main experiments, where K = 3.

Baselines. We compare our approach against the below baselines:

(1) TDE [32]: it represents a search-based approach for data
transformation from the original benchmark.

Foundation Model (FM) [50]: it prompts naive LLM with
in-context learning to generate the transformation output
directly.

DTT [12]: it proposes a pre-trained language model trained
on 2,000 synthetic training groups of transformation. The
model can directly generate the transformed results based
on provided examples.

UniDM [55]: it is a unified framework for LLM-based data
manipulation, which represents the current LLM-based
SoTA method.

Code LLM [3]: this code generation approach with LLM
can be treated as the “backbone” of our proposed approach.
The prompt guidance is simple and only contains general
instructions (e.g., “Write a function to transform the input
data into the desired output”) and examples.

@
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Implementation Details. The MegaTran is built entirely in Python,
with all experiments conducted on a computing server equipped
with 8 RTX 4090 GPUs. For all LLM-related reasoning jobs, we
set the model temperature as 0.2, which makes the output more
deterministic and focused on the most probable tokens.

Weak2StrongPrompt. For the offline training, we employ the su-
pervised fine-tuning technique to fine-tune a weak LLM. In our




experiments, the base model is L1ama3-8B-Instruct [18]. We uti-
lize the LoRA technique [33] to speed up the training efficiency.
With the support of LlaMa-Factory [87], we build an easy and effi-
cient fine-tuning pipeline and it takes less than 30 minutes on our
curated fine-tuning dataset with 8 GPUs. The online inference is
supported by vLLM library [40] with a single GPU to ingest the
lightweight fine-tuned model.

Prompt2Code. For code generation, we employ the OpenAI’s GPT-40
and GPT-40-mini [34] as our strong LLM. After parsing the rele-
vant code block from the model completion, we utilize a temporary
Python file that stores the generated code, then calls a sub-process
to execute it in auto-mode via importlib. The Sanity-check Re-
flection is implemented during the code execution. The relevant
running result and errors will be captured based on the pre-defined
checklist. In terms of the Lazy-RAG module, we construct the vector
database offline by leveraging Meta FAISS [17] for efficient vector
similarity search. Based on the missing package logs, we manu-
ally collect relevant online documents, such as web pages, Github
repositories, or the library homepage, to build the code libs vector
database. During the online retrieval, we utilize the OpenAI’s em-
bedding model (text-embedding-3-small?) to create embedding
based on the code snippet. Then, we perform a similarity search
on the vector database to return top-3 documents as the retrieval
results. Overall, we adapt LangChain library for Lazy-RAG.

LLM API cost. We report the module-level cost in terms of API
calls and token consumption in Exp-2, Table 3. The main expense
comes from three parts: (1) Embedding Generation. The online and
offline stages in Lazy-RAG both require vector embedding for the
knowledge retrieval in code libs vector database and the construc-
tion of the database itself via unified embedding, respectively; (2)
Fix Suggestion. The Sanity-check Reflection module is to provide the
fix suggestion for the generated code. It is implemented by calling
the LLM API; (3) Code Generation. The cost of code generation is
dominated by the LLM API calls. To control the monetary cost, we
limit the process by setting a maximum number, i.e., K attempts.

6.2 Results and Analysis

Exp-1: End2End Comparison. Table 2 shows the overall re-
sult of different approaches. We evaluate the accuracy of each
approach on five benchmark datasets. As shown in this table, our
approach achieves the highest accuracy on all datasets, outperform-
ing the LLM-based SoTA method UniDM and the search-based SoTA
method TDE. Specifically for experiments backend by GPT-4o0, our
approach obtains 77.6%, 78.0%, 67.4%, 74.4% and 65.2% accuracy
on StackOverflow, Bing-QueryLogs, ETL,CommonSense and Sci-
ence, with huge improvements of 12.0%, 14.0%, 2.2%, 9.3% and 26.1%
respectively relative to the current SOTA method.

Note, however, both UniDM and FM approaches are using GPT-3-
175B parameter model (text-davinci-002). This particular model
is not publicly available at the time we conduct the experiments.
Also, the TDE and UniDM projects are not open-sourced. As the FM
provides its open-source codes, we reproduce its implementation
using OpenAl latest models to conduct a fair comparison.

Zhttps://platform.openai.com/docs/guides/embeddings/
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Table 2: Accuracy (%) comparison. * represents the result from
the original paper. We underline the current SoTA method.

Method SO BQ ETL COM SCI
#-Tasks 49 50 46 43 23
TDE [32] 63.0" 32.0" - - -
FM [50] 65.3*  54.0" - - -
UniDM [55] 674" 56.0" - -
DTT [12] 4.1 1.1 26.1 9.3 44
M 75.6 640 565 651 304
Code LLM 673 560 652 558 39.1
MegaTran 77.6 780 674 744 65.2
FM 67.3 540 565 535 217
Code LLM 612 56.0 587 442 348
MegaTran 75.5 74.0 609 69.8 522

Moreover, we reproduced the DTT implementation [12] using
its original pre-trained model and adopted it as a baseline. We feed
the model three examples along with the data to be transformed
following our setting. However, DTT performs poorly compared
to our approach, likely due to two factors: (1) its synthesized data
relies on only five basic transformation units (e.g., substring, split),
significantly limiting its applicability to broader scenarios; (2) DTT
is designed for joinability, where the transformed output is then
matched with the most similar candidate [27]. Thus, transformation
accuracy is not the primary objective of it.

We observed that the overall accuracy of FM is even worse after
upgrading to a more powerful LLM model. This may be due to
the generation preference of the GPT-40 family, which is more
likely to chat with users, instead of generating a simple output.
Consequently, it makes trouble for us to evaluate the performance
of the FM approach. We also observed that the naive code LLM
approach performs poorly on the data transformation task. Recall
the example in Figure 3, the weak prompt-guided LLM is yet unable
to generate a correct code solution.

Finding 1: MegaTran significantly outperforms existing SoTA
methods on all benchmark datasets. The performance gain is
consistent across different LLM backends (GPT-40 and GPT-4o0-
mini) and testing on different datasets.

Exp-2: Cost Efficiency. This experiment is to explore the contribu-
tion of each module in MegaTran. Recalled that the Prompt2Code
relies on Sanity-check Reflection and Lazy-RAG modules, thus we
monitor the API-based cost for fix suggestion and query embedding
respectively. Specifically, we report the inference cost including
the execution time, token consumption per task (prompt tokens,
completion tokens), and the number of API calls. Due to Code LLM
relying on the code generation module only, we report its cost
followed by the code generation phase of MegaTran.

As shown in Table 3, our approach requires fewer API calls for
code generation compared to Code LLM on all datasets, except
for Science, while still achieving superior accuracy. Also, our ap-
proach is more efficient in terms of time cost when evaluating on


https://platform.openai.com/docs/guides/embeddings/

Table 3: API-based LLM usage for each inference phase. GPT-
40 is used as the strong LLM. Be noted that the query embed-
ding does not have any cost on completion tokens.

Inference phase API Prompt  Completion
Measure Unit #-Calls #-Tokens #-Tokens
Code LLM (6m20s) 98 184 106
Code Generation 68 250 138
Weak2StrongPrompt 49 77 13
Fix Suggestion 19 177 234
Query Embedding - - -
BQ: 8m51s

Code LLM (13m52s) 94 253 215
Code Generation 76 382 190
Weak2StrongPrompt 50 76 15
Fix Suggestion 26 256 266
Query Embedding 185 0
ETL: 8m23s

Code LLM (8mb54s) 247 172
Code Generation 73 259 60
Weak2StrongPrompt 46 100 14
Fix Suggestion 27 154 178
Query Embedding - -
COM: 11m19s

Code LLM (6m22s) 222 149
Code Generation 66 384 223
Weak2StrongPrompt 43 92 15
Fix Suggestion 23 307 306
Query Embedding 3 158 0
SCI: 7m46s

Code LLM (6m26s) 50 254 153
Code Generation 52 416 171
Weak2StrongPrompt 23 100 15
Fix Suggestion 29 261 266
Query Embedding - - -

StackOverflow, Bing-QueryLogs, ETL. This demonstrates the ef-
ficiency of our framework while maintaining high performance.
The utilization patterns across all modules indicate their essential
contributions to the overall system performance.

Note that the Lazy-RAG online stage is only triggered when
the generated code contains statements and references that were
previously logged from the Sanity-check Reflection module. In
StackOverflow, CommonSense and Science, the Lazy-RAG module
remained unused (zero cost of query embedding) since none of the
generated codes required external knowledge.

Finding 2: MegaTran achieves a competitive inference cost com-
pared to the SoTA methods. Our framework demonstrates effi-
cient resource utilization through its modular design. The varying
costs between datasets reflect the adaptive nature of our system
to different task complexities.

Exp-3: Ablation study. This experiment is to justify the effec-
tiveness of each module in MegaTran. We compare the accuracy
decrease by removing each module out of the whole system. As
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Table 4: Ablation study of our approach on each module,
evaluated on accuracy (%).

SO BQ ETL COM SCI
776 780 674 744 652
- w/o Weak2StrongPrompt -8.2  -140 -22 -139 -13.0
- w/o Sanity-check Reflection -2.1  -4.0 0 -93  -304

- w/o Lazy-RAG - -2.0 - -2.3 -
755 740 609 698 522
- w/o Weak2StrongPrompt -12.2 -200 -6.6 -18.6 -17.4
- w/o Sanity-check Reflection  -4.1 -8.0 -3.1 -163 -21.8

- w/o Lazy-RAG - -4.0 - -24 -

Table 5: Explore the cost efficiency of Lazy-RAG vs Eager-
RAG. GPT-40-mini is used as the strong LLM.

SO BQ ETL COM SCI

Lazy-RAG

Acc. (%) 75.5 74.0 60.9 69.8 52.2
#-Queries - 6 - 3 -
#-Tokens - 199 - 216 -
Time cost 4ml13s 6m24s 5m9s 7m52s 4m33s
Acc. (%) 75.5 72.0 60.9 67.4 47.8
#-Queries 25 30 35 31 29
#-Tokens 147 157 64 366 155
Time cost 4m57s 7m32s 8m31ls 8m2ls 6mls

shown in Table 4, all components in our framework contribute posi-
tively to the overall performance. The Weak2StrongPrompt module
proves to be the most critical component, where its removal leads
to significant performance drops across all datasets. Specifically,
the accuracy decreases by 14.0% and 13.9% on Bing-QueryLogs
and CommonSense respectively when using GPT-4o. The impact is
even more pronounced with GPT-40-mini, showing drops of 20.0%
and 18.6% respectively. This substantial degradation demonstrates
that the quality of the strong prompt is crucial for code generation.

The Sanity-check Reflection module also presents meaningful
contribution, with its removal causing accuracy drops varying from
9.3% to 16.3% on CommonSense and surprisingly from 21.8% to
30.4% on Science across backend LLMs. The Lazy-RAG component,
while not activated for all datasets, contributes to a 2-4% accuracy
improvement on Bing-QueryLogs and CommonSense, suggesting
its utility for more complex transformation tasks.

Finding 3: Weak2StrongPrompt module is the most critical com-
ponent of our framework, with its removal causing the largest
performance degradation (up to 20% drop in accuracy). Both the
Sanity-check Reflection and Lazy-RAG optimizations contribute
meaningfully to the overall system performance.

Exp-4: Lazy-RAG vs Eager-RAG. This experiment discussed the
cost efficiency of Lazy-RAG vs Eager-RAG. We report the accuracy,
number of queries, average token cost per task, and time cost for
both RAG strategies. Normally, the Lazy-RAG retrieval will take
place only if triggered by code content, while Eager-RAG requires
processing all retrieved documents for every query. As presented in
Table 5, it makes our Lazy-RAG particularly cost-efficient compared
to Eager-RAG. The latter one results in substantial but redundant
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Figure 9: Pass@K (K = 1, 3,5) accuracy, which measures our
framework to generate at least one correct code within K
attempt. GPT-40-mini is used as the powerful LLM.

query, i.e., approximately 5x higher on Bing-QueryLogs and Com-
monSense. The results also reveal GPT-40-mini’s strong capability
in handling potentially noisy RAG results. Despite receiving ir-
relevant documents, GPT-40-mini can effectively filter them out,
maintaining fairly good performance compared to Lazy-RAG.

Finding 4: Our Lazy-RAG strategy achieves favorable cost-
efficiency by triggering context-aware retrieval behaviour, re-
sulting in 5x lower query frequency compared to Eager-RAG.

Exp-5: Pass@K. This experiment is to explore the performance
of our framework when scaling up the number of attempts. We
evaluate our framework’s ability to generate correct code within
multiple attempts using Pass@K metric, where K = 1,3, 5.

As shown in Figure 9, the framework demonstrates strong per-
formance improvement as K increases. In StackOverflow, the task
accuracy increases from 69.4% (K = 1) to 75. 5% (K = 3) and reaches
79. 6% (K = 5), showing a consistent upward trend. The substan-
tial jump in accuracy between K = 1 and K = 3, particularly for
14% and 13.1% improvement for Bing-QueryLogs and Science re-
spectively, suggests that allowing multiple generation attempts
effectively mitigates the inherent randomness in LLM output.

We also notice that the overall accuracy remains unchanged
from K = 3 to K = 5 on ETL and CommonSense, which indicates
that these two datasets are relatively harder to handle.

Finding 5: In Prompt2Code, increasing the number of generation
attempts significantly improves code transformation accuracy.

7 RELATED WORK

Human-based. Commercial tools like Trifacta [72] and Tableau [67]
provide domain-specific language (DSL) for data transformation
tasks. There are also open-sourced tools [49] integrated with data
transformation, such as Potter’s wheel [57], Wrangler [38], Falx [75],
and many others [11, 26, 52, 81, 86]. Moreover, domain-specific pack-
ages and platforms, such as Tidyverse [28] and GitHub, offer plug-in
code solutions. While these approaches achieve high accuracy, they
incur significant learning curves w.r.t. expertise requirements.
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Algorithm-based. Several algorithmic for automated data trans-
formation [76] are through programming-by-example (PBE) [21,
24, 43, 64, 65]. FlashFill [30] generates transformation rules from
spreadsheet examples. Following this paradigm, Foofar [36], DataX-
former [1], Trinity [47] and Transform-Data-by-Examples (TDE)
approaches [32] generate transformation rules or scripts based on
user-provided input-output pairs. Particularly, enumeration-based
PBE frameworks [4, 15] can be embedded with high-level skills
and information. However, they often suffer from scalability issues
due to the exponential growth of the search space. More advanced
approaches have been explored, such as Auto-Transform [37] and
Explain-Data-by-Visual [63]. While these algorithmic solutions
offer medium cost and high accuracy, they suffer from limited
transformation type support and require separate algorithms for
different transformation scenarios.

LLM-based. Recent work has explored using Large Language Mod-
els (LLMs) for data transformation in two main ways. Implicit
transformation approaches [39, 50, 55, 84, 88] directly utilize foun-
dation models to transform data values. Although such a method
is straightforward, it lacks explainability and makes it difficult for
users to verify or modify the transformation process. More explain-
able approaches leverage LLMs to generate a particular script (8, 35]
or DSL [61] to perform the data transformation. However, Code
LLMs often struggle to generate non-executable or non-scalable
code (e.g., over-fitting to specific examples), which limits the code’s
applicability in real-world scenarios. These limitations can lead to
increased manual intervention and debugging efforts, ultimately
reducing the efficiency and increasing the monetary cost.

8 CONCLUSION AND FUTURE WORK

We have presented MegaTran, a novel two-stage framework that
addresses the critical challenges of data transformation through
cost-effective and accurate code generation. Our system combines
a fine-tuned lightweight LLM for converting weak prompts into
strong, structured instructions, with a powerful LLM for generating
high-quality transformation code. We conduct extensive experi-
ments to validate the effectiveness of our approach.

For future work, we plan to explore multivariate transformations
where multiple attributes may influence the transformation process.
Furthermore, we plan to extend our framework to support complex
and nested transformations, including those involving relational
joins and cross-table enhancements. We are also considering the au-
tomatic generation of error checklists using LLMs to improve adapt-
ability across different programming languages. Another promising
future direction is the integration of LLMs with traditional program
synthesis and satisfiability theory for data transformation tasks.
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