Weak-to-Strong Prompts with Lightweight-to-Powerful LLMs for
High-Accuracy, Low-Cost, and Explainable Data Transformation

Changlun Li
HKUST(GZ)
Guangzhou, China
cli942@connect.hkust-gz.edu.cn

Ju Fan
Renmin University of China
Beijing, China
fanj@ruc.edu.cn

ABSTRACT

Data transformation poses significant challenges due to the wide
diversity in input data formats and different requirements. Exist-
ing approaches—including human-driven, algorithmic, and large
language model (LLM)-based solutions—each exhibits trade-offs in
terms of cost, accuracy, and the range of supported transformations.
To address these limitations, we propose MegaTran, a novel frame-
work for generating accurate and cost-effective data transformation
code. MegaTran employs a two-stage process: Weak2StrongPrompt,
which converts a user’s weak prompt (a loosely specified user in-
put) into a strong, structured prompt, and Prompt2Code, which
generates transformation code based on this refined prompt. In
Weak2StrongPrompt, a fine-tuned lightweight LLM predicts the
transformation type and generates a detailed task description from
the user’s input. In Prompt2Code, a powerful LLM generates the
corresponding transformation code, guided by two key optimiza-
tions: (1) Sanity-check Reflection with checklist, which iteratively
debugs and refines the code by addressing errors; and (2) Lazy-
RAG, a retrieval-augmented generation technique that retrieves
relevant code snippets or documentation from external resources
(e.g., GitHub, DataPrep) to enhance code quality. Extensive experi-
ments show that MegaTran achieves results varying from +2.2% to
+26.1% accuracy improvement compared with SoTA methods.

PVLDB Reference Format:

Changlun Li, Chenyu Yang, Yuyu Luo, Ju Fan, and Nan Tang*.
Weak-to-Strong Prompts with Lightweight-to-Powerful LLMs for
High-Accuracy, Low-Cost, and Explainable Data Transformation. PVLDB,
18(8): 2371 - 2384, 2025.

d0i:10.14778/3742728.3742734

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/HKUSTDial/megatran.

Nan Tang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.
doi:10.14778/3742728.3742734

Chenyu Yang
HKUST(GZ)
Guangzhou, China
cyang662@connect.hkust-gz.edu.cn

2371

Yuyu Luo
HKUST(GZ)/HKUST
Guangzhou, China
yuyuluo@hkust-gz.edu.cn

Nan Tang*
HKUST(GZ)/HKUST
Guangzhou, China
nantang@hkust-gz.edu.cn

r N
(a) format (b) extract (c) discrete_map
Person name abbreviation Extract top-level Map HEX to RGB

domain from URL
Charles Wooten

(d) continuous_map
Convert central time
to eastern time

#C2DCE9 |

194,220,233

(e) misc_transform
Convert latitude, longitude to
MGRS format

‘ cnn.com.au ‘ ‘

com.au

(f) unit_convert
Convert Celsius
to Fahrenheit

1:47 am CST \ 33°C | [4411,7733 |
12:47 pm EST 91.4%F I8TUP1 353886730

Figure 1: Typical data transformation examples.

1 INTRODUCTION

Data transformation [7, 9, 13, 14, 29, 30, 38, 56, 59, 69], which refers
to the process of converting data into a standardized or normal-
ized format in this paper, is essential for ensuring consistency and
preparing the data for effective analysis or processing.

Data transformation can take various types [31, 38], which in-
cludes but is not limited to (see Figure 1): (a) formatting values, such
as abbreviating a name; (b) extracting substrings, such as extracting
a domain from a URL; (c) discrete value mappings, such as con-
verting HEX values to RGB values; (d) continuous value mappings,
such as converting from CST to EST; (e) unit conversions, such as
changing temperatures from Celsius to Fahrenheit; and (f) other
miscellaneous transformations.

Existing Solutions and Their Limitations. For data transforma-
tion tasks, scientists typically know which columns to transform,
can provide a few example cases, and have a general sense of the
transformation (see Figure 2). Additionally, they often uti-
lize various tools, such as profiling tools like Trifacta or Tableau,
or consult existing code libraries and community resources like
DataPrep [53] and GitHub, as shown in Figure 2 . Based on
this information, existing solutions are categorized as follows.

Experts manually write code (e.g., Python or domain-
specific languages) for data transformation. This incurs high human
costs ($$$) but it offers high accuracy (+++).

@ Various algorithms have been proposed based on input-output
pairs (referred to as Transform-by-Example [1, 23, 30, 32, 36]) or

https://doi.org/10.14778/3742728.3742734
https://github.com/HKUSTDial/megatran
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3742728.3742734
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Input: task specification and available data profiling tools and code libraries

Specification (i) column (i) Few examples

< ER

Charles Wooten -> C.Wooten
Mike Jordan -> M. Jordan

Sam Horton -> S. Horton

(i) Intention Profiling Tools Code Libs
) TRIFACTA O GitHub
“String format” i
Yy tableau dataprep

m Experts need to write code @Experts write profiling algorithms m LLM-based implicit/explicit methods
Expert Code Exper t Algorithm Code LM Prompt-based Code Generation
4 - b3 - >
— —[&= —»> |22 — (—) OrR =
=4 o ~—
Cost $$$ Accuracy Cost $$ Accuracy Cost $ Accuracy

Instruction

Weak-to-Strong Prompts with Lightweight-to-Powerful LLMs

(DVY) uonpiauas) paruaWsnD-[pAILIIRY

Specification Weak

Prompt

Weak2Strong Operator

Column Prompt

Examples

format(), extract(), discrete_map(),
continuous_map(), unit_convert(),
miscellaneous_transform()

~

Strong
Prompt

Prompt2Code

Powerful

) NN
Lightweight
um N4

Intention o
Description

Generate the abbreviation for a
given person's name

®

LIM

Cost $

Accuracy

Figure 2: Different data transformation approaches.

unpaired input and output examples (referred to as Transform-by-
Pattern [37, 79]). They typically incur medium costs ($$), and offer
high accuracy (+++). Note, however, that the experts need to write
different algorithms for different types of transformations, and the
supported transformation types are limited.

Recently, large language models (LLMs) [5, 74] have demon-
strated significant potential across various tasks, such as in-context
learning [20, 54, 73, 78] and code generation [3, 8, 25, 45, 51]. LLMs
can either be directly prompted to transform data (i.e., implicit
transformation) [6, 39, 50, 55, 84] or leveraged for the generative
capabilities to produce transformation code (i.e., explicit transfor-
mation). However, the former approach lacks explainability, making
it difficult to adopt, while the latter tends to be error-prone, with
generated code often overfitting and lacking generalizability. These
methods typically incur low costs ($) with medium accuracy (++).

Our Goals: High-accuracy, Low-cost, and Explainable. High-
accuracy means ensuring that the transformed data closely aligns
with the ground truth, with minimal deviation from the expected
result. Low-cost refers to both minimizing human effort and reduc-
ing the monetary costs associated with prompting LLMs, making
the transformation process more efficient and affordable. Explain-
able means providing transparency into the transformation process,
not only identifying which values have been modified (i.e., the
“what”) but also clarifying the rationale behind each transformation
decision (i.e.,, the “why”).

2372

Challenges. Leveraging LLMs for code generation faces two key
challenges that must be addressed to achieve high accuracy.

(1) Weak Prompts. The first challenge is the loosely specified
user input (i.e., weak prompts), which can lead to LLMs generating
incorrect or overly specific code. In contrast, when users provide
clear, explicit instructions (i.e., strong prompts), it significantly
improves the quality of the generated code by reducing uncertainty
in the interpretation of the task.

ExXAMPLE 1. [Weak Prompts vs. Strong Prompts.] Consider the
example in Figure 3 from a benchmark dataset, which involves con-
verting an Excel serial date into a human-readable format, with three
sample cases shown on the top left.

[Weak Prompt to Bad Code.] A weak prompt, characterized by a
loosely specified instruction, leads to suboptimal results even when
using a powerful LLM such as GPT-4o. In this scenario, the generated
Python code is inadequate—it overfits to the few provided examples
and fails to generalize to all possible cases.

[Strong Prompt to Good Code.] In contrast, a strong prompt includes
a well-specified transformation type and a detailed task description.
With this additional context, LLMs can produce high-quality and
generalizable code that effectively handles a broader range of inputs.

Example 1 highlights the important role of strong prompts in
enabling LLMs to generate robust and reliable transformation code.
However, it is important to acknowledge that providing strong

=" % B B O~
Aignment twumber 2 Cels Ediing
f o —
S et o D E
| s 2‘9\;’;?:; Serial date Human date
= Currency 39938 05/05/2009
(S R 39934 4 05/01/2009 month
g J 05/25/2009 day =

Task: converting the Excel serial
date to a human-readable date

LLMs

Instruction

1Write function to transform the
| input data into the desired
youtput
1

r
1
1

Examples # VWeak prompt

| ### Instruction ##t#

1 continous_map(): Convert a
lgiven Excel date to the
:corresponding datetime format.
1
1
1
Er e IR strong prompt

day_of_year

=0
(]

: def solution(input):

int(input)

days_in_month = [31, 28, 31, 3@, 31, 30, 31, 31, 30, 31, 30, 31]

for i in range(len(days_in_month)):
if day_of_year <= days_in_month[i]:

month = 1 + 1

day = day_of_year
break
day_of_year —-= days_in_month[i]

output = f"{month:02}/{day:02}/2009"
return o

base_date = datetime.datetime(1899, 12, 30)
converted_date = base_date + datetime.timedelta(days=excel_date)
output = converted_date.strftime("%m/%d/%sY")

return output

tput

overfitting

i import datetime
i def solution(input):

excel_date = int(input)

Figure 3: Bad code generation with weak prompts vs. good code generation with strong prompts.

prompts or precise instructions may not always fall within the
user’s expertise or responsibility.

(2) Data Challenges and Knowledge Gaps. Data transformation
tasks are frequently challenged by the inherent complexity of di-
verse data formats, structures, and contextual semantics, as well as
the need for domain-specific knowledge. Even with strong prompts,
code generated by powerful LLMs can still suffer from errors or
suboptimal performance due to these multifaceted challenges.

In response to the above two challenges, we propose a
novel two-stage framework, namely MegaTran, for the generation
of data transformation code, as shown in Figure 2.

Weak2StrongPrompt. The first stage transforms user-provided
weak prompts (Challenge 1) into strong prompts by generating
precise transformation types and detailed task instructions.

Prompt2Code. The second stage focuses on generating transfor-
mation code while addressing data-related challenges (Challenge
2), such as errors arising from data complexity or missing domain
knowledge. To ensure robust code generation, we design an error-
driven reflection mechanism that enables the LLM to self-debug
and iteratively refine its output. To further address domain-specific
knowledge gaps, we introduce a novel Lazy-RAG approach. Un-
like Eager-RAG methods that always retrieve external examples
or documentations [83], Lazy-RAG selectively retrieves relevant
information based on error analysis and task context.

Contributions. We summarize our contributions as follows:

(1) We define the problem of data transformation code generation,
categorize six common transformation operations, and introduce
our MegaTran framework in Section 2.

(2) We develop the Weak2StrongPrompt module by fine-tuning

2373

a lightweight LLM and constructing a task-specific fine-tuning
dataset in Section 3.

(3) We propose two optimization techniques for Prompt2Code: (i) a
Sanity-check Reflection with checklist module to enable error-driven
self-debugging and iterative refinement in Section 4, and (ii) a
Lazy-RAG strategy that selectively retrieves external knowledge to
address domain-specific knowledge gaps in Section 5.

(4) We perform extensive experiments to demonstrate the effective-
ness of MegaTran, which significantly outperforms the state-of-the-
art solutions (varying from +2.2% to +26.1% accuracy improvement
on five distinct datasets), in Section 6.

2 PRELIMINARY AND SOLUTION OVERVIEW
2.1 Preliminary

Data Transformation. Data transformation refers to the process
of modifying or converting the values in a specific column of a rela-
tional table to a predefined format or standardized representation.

Code Generation for Data Transformation. This refers to the
task of automatically generating program code that can perform
data transformation on a given dataset [19, 42, 46]. Given a rela-
tional table and a transformation task specification (such as con-
verting values in a column to a standardized format or mapping
values to a new domain, and a few examples), the goal is to generate
code that accurately implements the required transformation.

2.2 Data Transformation Operators

We categorize data transformation tasks into several common types
based on their function and characteristics. Note that these data

transformation types are aligned with a work from Microsoft [32].
Please refer to Figure 1 for examples.

(1) format: Formatting involves transforming data values into a uni-
fied and consistent format, typically without involving arithmetic
operations or complex transformations.

The primary goal of formatting is to standardize the appearance
or representation of data, such as converting dates into a consistent
format (e.g., MM/DD/YYYY), normalizing text case (e.g., converting
names to title case), or adjusting numeric formats (e.g., formatting
numbers with a fixed number of decimal places).

(2) extract: This process extracts specific parts of a value from a
larger or more complex value.

This process is often achieved using techniques such as regular
expressions, which allow for identifying and isolating substrings
based on patterns. For example, extracting the domain name from a
URL or pulling out the area code from a phone number are typical
extraction tasks.

(3) discrete_map: It involves converting values based on a finite,
predefined mapping relation, similar to a dictionary lookup.

This process is commonly used to map categorical values to cor-
responding output values. For example, converting product codes
to product names or translating country abbreviations to full coun-
try names are typical discrete mapping tasks. The transformation
is deterministic, where each input value is mapped to a specific
output based on the predefined mapping.

(4) continuous_map: This involves converting values through math-
ematical calculations, typically applied to numeric data. This trans-
formation is used to map one set of continuous values to another
based on a defined relationship or formula.

For example, converting timezone is an instance of continuous
mapping. Unlike discrete mapping, which is based on fixed lookups,
continuous mapping often involves arithmetic operations or math-
ematical formulas to transform the values.

(5) unit_convert: Unit conversion refers to the process of convert-
ing a value from one unit of measurement to another.

This transformation is common when dealing with physical
quantities that can be expressed in different units, such as tempera-
ture, length, weight, or volume. For example, converting temper-
atures from Celsius to Fahrenheit, or converting distances from
kilometers to miles, are typical unit conversion tasks.

(6)misc_transform: There are many other types of data trans-

formations that do not fall under the specific categories defined
above. These transformations, which may involve more complex or
context-specific operations, are grouped together as miscellaneous
transformations. This category encompasses any remaining trans-
formation types that do not fit neatly into the predefined categories,
such as aggregations, reshaping, or conditional value adjustments.
All such transformations are classified as miscellaneous due to their
diversity and specialized nature.

2.3 Solution Overview

Recall Figure 2 , starting with a user specification (e.g.,
text, JSON) that describes the column to be transformed, a few ex-
amples, and a loosely specified transformation intent (e.g., “convert

2374

date”, “extract domain”, or “format phone number”), MegaTran em-
ploys a two-stage process, Weak2StrongPrompt and Prompt2Code,
to generate high-quality data transformation code.

Weak2StrongPrompt: Enhancing User Prompts. It begins with
the user specification, treating it as a weak prompt, and refines it by
determining the appropriate transformation type (i.e., Operator) and
generating a more detailed task description (i.e., Description). Such a
novel weak-to-strong paradigm enhances prompting for code gener-
ation and plays a pivotal role in improving the quality of generated
code. By providing a well-defined transformation type and clear
instructions, Weak2StrongPrompt streamlines subsequent steps, as
evidenced by the empirical results in Section 6.

Predicting the transformation type and generating task-specific
instructions is inherently simpler than directly generating code. To
this end, MegaTran employs a lightweight LLM for this purpose.

To train the lightweight LLM, we first construct a fine-tuning
dataset encompassing a diverse set of transformation tasks, each
annotated with its corresponding transformation type. It consists of
two stages: (i) Offline Stage: We employ Supervised Fine-Tuning
(SFT) to adapt a base LLM using curated fine-tuning dataset; (ii)
Online Stage: The fine-tuned LLM is then used to analyze the
user specification, predict the appropriate transformation type, and
generate a precise, task-specific instruction to guide the subsequent
code generation process.

Prompt2Code: Code Generation and Optimization. To produce
accurate and reliable transformation code based on strong prompts,
we employ a powerful LLM (e.g., GPT-4). Powerful LLMs excel at
handling complex tasks, such as generating precise code solutions
tailored to the desired data transformation. To enhance the quality
of the generated code, ensuring it is both syntactically correct and
semantically aligned with the underlying data requirements, we
introduce two key optimization techniques:

(01) Sanity-check Reflection with Checklist. This technique
improves code accuracy by enabling the LLM to review and iter-
atively refine its own outputs. To focus on the reflection process,
we use an error-driven checklist that systematically identifies and
categorizes issues. Whenever the generated code encounters a run-
time error, such as ValueError or SyntaxError in Python, the
reflection mechanism is triggered. Guided by the checklist, the LLM
analyzes the errors, revises the code, and re-evaluates the updated
solution, ensuring continuous improvement.

(02) Lazy-RAG (Retrieval-Augmented Generation). To address
gaps in domain-specific knowledge or missing external context,
Lazy-RAG selectively retrieves relevant information. For example,
if the generated code depends on third-party libraries not explic-
itly mentioned in the user input, Lazy-RAG dynamically fetches
relevant documentation or examples from a knowledge base.
Interleaving Sanity-check Reflection and Lazy-RAG. These
two techniques are seamlessly integrated into the code generation
process of Prompt2Code to ensure accuracy and completeness. As
the workflow illustrated in Figure 4, we break it down into 3 steps:
(i) The strong prompt will guide LLM to generate the intermediate
code. (ii) The intermediate code will be executed to check whether
it can pass all test cases. If passed, it will be returned as the final
code. If not, the code optimization techniques will be connected. (iii)

Prompt2Code | (5 Max Accemps!

. Stron Prompt N
O, g P

Q Fix Suggestion

Sanity-
Check
Reflection

Code
Generator

Final Code

Executor

Intermediate Code

Figure 4: Prompt2Code iterative code generation.

(O1): The Sanity-check Reflection module will analyze the error and
provide a fix suggestion for the next attempt (Section 4); (O2) The
Lazy-RAG module will query the relevant documents and inject
them as additional context (Section 5).

Discussion on Generalizability. The framework demonstrates
strong generalizability through: (1) Extensible support for trans-
formation operators when it comes to adding new operators for a
certain group of transformation tasks; (2) Scalable design where new
error types can be incorporated via checklist updates; (3) Additional
code primitives can be integrated through vector database expan-
sion; (4) Our empirical experiments across five distinct datasets with
hundreds of unseen transformation tasks demonstrate consistent
performance improvements without task-specific tuning.

3 WEAK-TO-STRONG PROMPTS
3.1 Weak Prompts and Strong Prompts

Weak Prompt. A weak prompt, or a user specification, S, typically
provided in natural language format, serves as the primary interface
for interacting with our system. It comprises the three components
S = (G, E, I), representing the column specification, examples, and
intent specification, respectively.

[C: Column Specification.] Indicates the column containing the
values that require transformation.

[E: Examples (a.k.a. Demonstrations).] The user is encouraged
to provide a few examples to guide the transformation. We classify
these examples into two types:

(1) Instance-level examples: These are concrete input-output
pairs that explicitly demonstrate the desired transformation.
They help specify the exact mapping or pattern required
for the task.

Abstract-level examples: These examples provide a broader
context, including metadata and semantic information about
the source column and the transformed column. They might
specify data types, format requirements, or semantic con-
straints without detailing individual value mappings.

—
3
~

To illustrate these example types, we present three examples
corresponding to cases (a), (b), and (c) in Figure 1.

Note that users have the flexibility to provide instance-level
examples, abstract-level examples, or a combination of both, de-
pending on the level of detail and context they could provide.

2375

Table 1: Level of granularity on user-provided examples.

Level Input Output

Instance Charles Wooten C. Wooten

Abstract a person’s full name the abbreviated name

Instance cnn.com.au com.au

Abstract URL top-level domain

Instance #C2DCE9 194,220,233

Abstract hexadecimal representa- rgb values with value
tion range in 0-255

[I: Transformation Intent Specification.] It conveys a general
transformation intent, such as normalizing human names or stan-
dardizing phone numbers.

Instruction. An instruction I, inferred from the lightweight LLM,
acts as a crucial intermediary, enhancing the user-provided chat
input. It is composed of two key elements, I = (O, D):

[O: Transformation Operator.] An operator identifies a specific
type of transformation, ensuring precise alignment between the
user’s intent and the subsequent code generation process.

[D: Description.] The description provides detailed coding direc-
tives to guide the strong LLM effectively.

Experimental findings (see Exp-3: Ablation Study in Section 6)
highlight that directly using weak prompts results in suboptimal
performance, whereas incorporating structured, instruction-guided
strong prompts significantly improves accuracy and reliability.

Strong Prompt. A strong prompt inherits weak prompt with few
examples and generated instruction (operator and task description).
More details of Weak2StrongPrompt are shown in Figure 5.

EXAMPLE 2. |Generated Instructions.] Consider the six examples
in Figure 1, the corresponding instruction outputs are as follows: (a)
format: generate the abbreviation for a person’s name. (b) extract:
extract the top-level domain from the URL. (c) discrete_map: convert
a hexadecimal color code to RGB representation. (d) continuous_map:
convert central time to eastern time. (e) unit_convert: convert Cel-
sius to Fahrenheit. (f) misc_transform: convert a given latitude and
longitude into MGRS format.

Discussion on the Choice of Operators. To address the diverse
range of data transformation tasks, we define a set of functional
operators that encompass the most common transformation sce-
narios, as detailed in Section 2.2. Among these, the unit_convert
operator is designed to handle a broad category of tasks involving
conversions between different data types, such as converting Cel-
sius to Fahrenheit. This design choice is supported by findings from
He et al. [32], who analyzed a wide variety of transformation tasks
and identified the pattern “convert A to B” as a frequently queried
use case in the Bing search engine.

3.2 Offline Fine-Tuning

We fine-tuned a lightweight LLM to acquire the specific knowledge
in data transformation by curated samples [44]. Such a weak model
performs a predictive task to translate user intent into accurate
instructions for code generation. In practice, the expert user can
keep track of the newly occurred transformation, and then update
the predictive model from time to time.

Offline: Fine-tuning
Base LLM

Fine-tuned
LLM

N
\/

Dataset

Expert
Labeling :

Annotated
Fine-tuning

Dataset

Fine-tuned .-~~~
Weak LLM -~ Instruction 1
G ... o
@ L\A Description Prompt ;

Figure 5: The Weak2StrongPrompt module.

Supervised Fine-Tuning. Supervised fine-tuning (SFT) has been
widely used in the field of LLM fine-tuning [16, 48]. It is partic-
ularly well-suited for our framework as it allows us to train the
LLM on paired examples of user inputs and desired instructions.
Through SFT, we create a specialized model that can effectively
bridge the gap between natural language descriptions and struc-
tured transformation instructions. The training process involves
presenting the model with (S : specification,1 : Instruction) pair,
which contains the specification S from user side and the instruction
I that represents the desired structured output (O : Operator, D :
Description). This supervised approach ensures that the model
learns to consistently map user inputs to well-formed instructions
that can guide the subsequent code generation process.

Fine-Tuning Dataset Construction. We constructed a dataset
based on the TDE Benchmark [32], which contains over 200 trans-
formation tasks curated from popular and representative questions.
To adapt this dataset for fine-tuning, we refactored the original
samples in plain-text format into Alpaca-like pairs [70], mapping
the user specifications (S) to corresponding instructions (I). Upon
reviewing the original dataset, we observed that approximately 30%
of the tasks lacked sufficient information, such as vague descrip-
tions, external links without context, or missing textual details. To
address this, we modified the user specifications by supplementing
or refining them based on the provided examples to ensure clar-
ity and completeness. Since the original dataset did not include
detailed instructions, we manually annotated each task with its
corresponding operator (O) and description (D), leveraging domain
expertise to ensure accuracy.

We define information completeness through a systematic ap-
proach. For each data transformation task, we build a fine-tuning
sample following the completeness criteria below:

o Chat: The task briefing of the transformation. We harness
the task description provided in the TDE benchmark. If not
provided, we will create one based on the examples.
Examples (a.k.a. tuples): Typical input-output examples
of the transformation. All examples are collected from the
TDE benchmark.

Context: Context information related to the input and
output of the transformation e.g.,, data type, format, etc.
Instruction: It manifests the instruction I as the expected
output of the fine-tuned LLM, which consists of operator
(O) and description (D) for current task.

2376

Algorithm 1 Sanity-check Reflection with Checklist

Input: a prompt and a checklist
Output: generated code code™, execution log log
1: code” « 0;log « 0;sugg =0;cnt =0; k=3
2: do
3: code < LLM(prompt, sugg);
error « Executor(code)
if error == (then
code® « code
break
else if error € checklist then
sugg < LLM_Reflection(code, error)
else
log < Log(error)
break

13: while (cnt ++ < k)
14: return code®, log

R A AN

> will send to Lazy-RAG module

This systematic approach ensures consistent annotation quality
while maintaining task authenticity, which took 18 hours in total.

3.3 Online Reasoning

During online reasoning, the user can simply feed a specification
S to the fine-tuned lightweight LLM, which will infer a suitable
instruction I [71, 82, 85]. Then, a strong prompt will be constructed
by integrating the weak prompt and the generated instruction.
Consequently, the refined strong prompt will be provided to the
following Prompt2Code module for code generation.

4 SANITY-CHECK REFLECTION WITH
CHECKLIST

Sanity-check. In programming analysis, a sanity-check is a basic
verification step that ensures a program or system behaves accord-
ing to fundamental expectations [22, 68]. It typically involves quick,
simple tests to catch obvious problems before proceeding with more
complex operations [80]. For example, checking if input values are
within reasonable ranges or if essential resources are available. To
mimic this programming practice in an LLM-based manner with
less human overhead, we cooperate with the reflection mechanism
to improve the quality of generated code.

Reflection for Self-Correction. The reflection mechanism has
proven to be effective in enhancing the performance of LLMs, par-
ticularly in the domain of code generation [10, 58, 62]. During
runtime execution, it allows the model to review and revise its own
outputs and errors autonomously. This self-correcting capability is
crucial for automated code generation and reducing the need for
human intervention. By iteratively analyzing the generated code
against expected outcomes and known error patterns, the reflec-
tion mechanism can refine the code, ensuring it meets the desired
specifications.

Inspired by this programming practice and the self-reflection
capabilities of LLMs, we design a Sanity-check Reflection module
to guarantee the correctness of generated code. Similar to how
developers use sanity-check to handle basic errors early, our module

performs error-driven verification of the generated code with the
help of a pre-defined checklist.

Checklist. Inspired by the technique from ACL 2020 best pa-
per [60], we design a checklist to handle common programming
errors, such as syntax/value/import errors, for data transforma-
tion. To clarify, we harness the conceptual idea of which conducts
behavioral testing of NLP models with Checklist, but extend the
technique by introducing an error checklist and novel reflection
mechanisms for the correctness of the code generation.

Checklist Extension. Extending checklist to other programming
languages involves a few simple steps: (i) Error Identification:
Identify common runtime and syntax errors specific to the target
programming language. This involves understanding the typical
error messages and scenarios encountered in that language; (ii)
Checklist Adaptation: Modify the existing checklist to include
these language-specific errors. This can be done by collaborating
with language experts or using existing documentation and re-
sources; (iii) Testing and Iteration: Conduct thorough testing
with sample code snippets in the new language to ensure that
the adapted checklist and reflection mechanism work as intended.
Iteratively refine the approach based on feedback and observed
performance.

Overall, while there is some initial effort required to adapt the
approach to a new programming language, the modular nature of
our system makes this process straightforward. By focusing on the
specific error patterns and leveraging the flexibility of the reflection
mechanism, we can extend our approach to support a wide range
of programming languages.

Algorithm. The algorithm for Sanity-check Reflection with check-
list is shown in Algorithm 1. It takes a prompt and a checklist as
input, and outputs the data transformation code and error logs. It
first initializes all variables (line 1). It then iteratively checks and
fixes the code until the maximum number of attempts is reached
(lines 2-13). During each iteration, it first generates code with LLM
(line 3) and captures error message by executing the code (line 4).
If the code can be successfully executed (line 5), the code will be
returned and the iteration will be terminated (lines 6-7). Otherwise,
if there is an execution error captured by the checklist (line 8), it
will use LLM to generate a fix suggestion (line 9), which will be
used for the next round of iteration. However, if the execution error
cannot be captured by the checklist (line 10), then LLM reflection
cannot solve the problem. It will log the error message (line 11) and
terminate the iteration (line 12). Finally, it will return the code and
error logs (line 14).
Note that, there are three types of outputs of the algorithm:

(1) code® # 0: good code is generated
(2) code* == 0 and log # 0: invoke the Lazy-RAG module
(3) code* == 0 and log == 0: cannot generate good code

EXAMPLE 3. Let’s illustrate with an example, as shown in Figure 6.

(i) [Code Generation.] The powerful LLM will generate an “Intermedi-
ate code” given the “Strong prompt” for converting shoe sizes on the
operator domain_map.

(ii) [Code Execution.] A code executor will execute the “Intermediate
code”. It will terminate if the code can pass all test cases (i.e., a final

domain_map(): Convert a given women's shoe
size to the corresponding men's shoe size.

Examples ### i
Input: 7.5 Output: 6

Input: 14 Output: 12.5

Input: 8 Output: 6.5 Code

Strong prompt

Generator

def solution(input):
women's_size = float(input)
if women's_size < 0:
return "Invalid size"

men's_size = women's_size - 1.5

)
©
o
v
3
&
]
|9
=
-
3]
=}
=

output = str(round(men's_size, 1))

return output

Checklist Executor

.o[]H (S

For Lazy-RAG T

SyntaxError
unterminated string literal

.—Q)

Reflector

SyntaxError: unterminated string literal

The error message indicates a syntax issue
related to the use of single quotes in
variable names. In Python, variable names
cannot contain special characters like
apostrophes.

Fix suggestion

def solution(input):

womens_size = float(input)

if womens_size < 0:
return "Invalid size"

mens_size = womens_size - 1.5

Final code

output = str(round(mens_size, 1))

return output

Figure 6: Sample workflow of Sanity-check Reflection.

code). Otherwise, it will send an error to the checklist. In this case, it
sends an error message.

(iii) [Reflection with Checklist.] If the error is registered in the check-
list, it will send the error to the Reflector to generate concrete fix
suggestion. Otherwise, it will send the log to the Lazy-RAG module.
In this case, the error SyntaxError is captured by the checklist and
the reflector will provide a “Fix suggestion”.

(iv) [Code Refinement.] The code generator will incorporate the “Fix
suggestion” and re-generate the code, and go back to step (i). In this
case, there is no error in the Executor and a good “Final code” is
generated.

5 LAZY-RAG

Retrieval-Augmented Generation (RAG) is a technique that en-
hances language model outputs by incorporating relevant informa-
tion from external knowledge sources during generation [2, 41]. In
the context of code generation, RAG becomes particularly crucial
as it allows the model to access up-to-date documentation, best

(Sanity-check\
Reflection

(1o

No module
named “xxx”

[Offline: Code Libs Vector Database} _________
unified build

embedding [] [] index 00 E
= [=> 8

Execution I_EOnline: Code Libs Retriever

4 1
import "xxx" query A
xxx.method(...) Q => IE

C%J |
PY 1
Last Attempt | :
Figure 7: Lazy-RAG workflow.

practices, and proven code patterns that may not be present in its
training data [66, 77].

The necessity of RAG for code generation stems from several
challenges. First, programming languages, libraries, and APIs con-
stantly evolve, making it difficult for pre-trained models to stay
current. Second, many transformation tasks require specific do-
main knowledge or library-specific implementations that may be
sparsely represented in the model’s training data. By retrieving rel-
evant documentation and code examples during generation, RAG
helps maintain high accuracy and ensures the generated code fol-
lows current best practices and correct function usage.

Therefore, we utilize RAG to enhance our code generation pro-
cess via two components: code libs vector database and code
libs retriever (see Figure 7). This design balances efficiency with
effectiveness, allowing us to maintain a comprehensive knowledge
base while minimizing runtime overhead.

I
1
1
1
I

4 N

Append Docs to |
strong-prompt

I
1
7

Eager-RAG vs Lazy-RAG. Our preliminary experiments reveal a
critical insight about RAG usage in code generation. While tradi-
tional Eager-RAG techniques retrieve relevant code or documen-
tation at every generation step, this approach can be counterpro-
ductive. We observe that constant retrieval often introduces noise
and irrelevant information into the generation process, potentially
degrading code quality rather than improving it.

For instance, when performing “datetime” related transformation,
additional context from external sources may confuse the model
as similar API names exist in different libraries. A concrete ex-
ample is timezone conversion, where multiple libraries datetime,
pytz, dateutil, and pandas all provide similar-sounding meth-
ods like astimezone(), convert_tz(), and tz_convert(). Eager-
RAG might retrieve all these variations simultaneously, leading the
model to mix APIs or suggest incompatible combinations. Our ex-
periments (Refer to Exp-4, Table 5) show that Eager-RAG can lead to
redundant generation attempts for simple tasks, increased inference
time, and token consumption without accuracy improvements.

These observations motivate our Lazy-RAG approach, where
retrieval is triggered only when previously logged packages are
captured. This selective strategy helps maintain the balance be-
tween leveraging external knowledge and preserving the model’s
inherent capabilities.

Code Libs Vector Database. The code libs vector database serves
as a knowledge repository that stores external package information
and documentation, playing a crucial role in addressing Challenge
2 (Data Challenges and Knowledge Gaps). When the Sanity-check
Reflection module encounters missing package errors or function
call issues during code execution, it logs these incidents along with

2378

contextual information. Based on these logs, we manually curate
relevant resources, including PyPI packages (i.e., web pages), mark-
down files, and reStructuredText files from GitHub repositories,
and best practices from developer communities, such as StackOver-
flow. Due to contributions from the open-source community, these
code fragments are executable with detailed comments. Finally,
we prepared a target list of packages with a simple script to help
download locally and process the construction of the offline code
lib vector database.

The vector database operates in offline mode, meaning it can
be pre-built and optimized before the code generation process be-
gins. It takes around 15 hours to complete the above works, in-
cluding the script running time on downloading files and building
the vector database. We employ a unified embedding approach
where both package documentation and code snippets are em-
bedded into the same vector space using a consistent encoder.
This unified representation enables efficient similarity-based re-
trieval during the online generation phase. In terms of the em-
bedding cost, we harness a smaller and highly efficient OpenAl
model text-embedding-3-small to embed the chunks at a price
of $0.00002 per 1K tokens.

Code Libs Expansion. Notably, the target list allows effective
knowledge expansion, i.e., adding a new package then using our
automated ingestion scripts (refer to assets/rag/pkg_info.json and
scripts/build_vector_db.py in artifact materials respectively). Con-
sequently, the end user can refresh the code libs vector database
rapidly.

Code Libs Retriever. This module operates during the online
phase, lining up with the code libs vector database to inject external
knowledge into the Prompt2Code process.

Algorithm. We present the workflow of the code libs retriever in
Algorithm 2. It takes a prompt, a related code, and a list of missing
logs as input, and outputs a new prompt. It first initializes a new
prompt with the input prompt (line 1). Then, a trigger function
checks the content of the input code if imported packages exist in
pre-collected list (line 2). If found, it embeds the context as a query
vector and retrieves the top-n relevant documents from the vector
database (lines 3-4). Next, it combines the retrieved information
with the original prompt (line 5). Finally, it returns the new prompt
(line 6).

Remark. By design, the trigger function makes this retrieval process
“lazy”; it only starts when certain packages or APIs are referred to,
as opposed to trying to retrieve data at every attempt. The retrieved
information is then used to augment the strong-prompt for the
next attempt, providing the model with precise, relevant documen-
tation and knowledge. This approach helps maintain a balance
between leveraging external knowledge and avoiding information
overload that could confuse the model.

6 EXPERIMENTS

The key questions we ask with our evaluation are:

o How is the overall performance of our approach in terms of
accuracy and cost efficiency, compared to other baselines?
(Exp-1, Exp-2)

e How is the ablation study? (Exp-3)

Algorithm 2 Code Libraries Retriever

Input: a prompt, a code, list of missing packages mlist
Output: new prompt prompt*

1: prompt® « prompt; top-n =3

2: if Trigger(code, mlist) then

3 query « LLM_embedding(code)

4 docs « VecDB_retrieve(query, top-n)

5 prompt® < combine(prompt, docs)

6: return prompt*

e What is the cost efficiency of Lazy-RAG compared with
Eager-RAG? (Exp-4)

e How is the overall performance in terms of the number of
coding attempts? (Exp-5)

6.1 Experiment Setup

Benchmark Datasets. Initially, our experiments utilize two chal-
lenging datasets from the Transform-Data-by-Example (TDE) bench-
mark!: StackOverflow and Bing-QueryLogs. Besides, we carefully

curated three new datasets from real-world applications, which are

ETL, CommonSense, and Science, which serve as the testing set

for our proposed approach. Below is a detailed description of each

dataset with the corresponding notation.

(1) StackOverflow (SO): it consists of 49 carefully sampled ques-
tions from “StackOverflow.com” that specifically focus on
data transformation tasks (e.g., “how to get the domain
name from URL”).

Bing-QueryLogs (BQ): it is constructed from 50 frequently
occurring “convert A to B” pattern queries in Bing’s search
logs. Non-data transformation queries such as “convert jpg
to png” are filtered out.

ETL: it is refactored from the DTT paper [12], which con-
tains 46 data transformation tasks related to ETL processes.
CommonSense (COM): it is constructed based on the com-
mon data transformation patterns, with a total of 43 data
transformation tasks.

Science (SCI): it is constructed based on scientific topics,
such as physics and chemistry, which contains 23 data trans-
formation tasks.

®)
4)

()

The above five datasets contain more than 200 transformation
tasks that cover diverse domains and representative challenges. We
follow the same data processing pipeline as baselines [32, 50, 55].
For the example tests in each task, we split them into two groups: the
first 3 tests are used as the training set, which will be combined as
part of the prompt input. The remaining tests will become test cases
during the iterative code generation process. Such an evaluation
setting employs the unseen samples for the final code solution,
which avoids the overfitting issue. Meanwhile, we ensure that all
methods are tested on the same test cases.

Evaluation Metrics. Following the same evaluation metric, we
measure accuracy as the proportion of successfully completed trans-
formation tasks. For LLM-based methods, we additionally track the

Uhttps://github.com/Yeye-He/Transform-Data-by-Example/tree/master/Benchmark

2379

Convert a Military Grid Reference
System (MGRS) coordinate to its
latitude and longitude
representation.

Convert latitude and longitude
coordinates to UTM (Universal
Transverse Mercator) coordinates

Convert a given Hijri date to
Gregorian date.

Input: 19 Rajab 1460
Input: 32.44, 44.1 | Output: Friday 20 August 2038 C.E

Output: 583662mE, 3589556mN Inpuc: 15S WC 80817 51205

Output: 38.40543, -92.07440

(-] [-]

Code Libs Vector Database

from pyproj import Proj

p = Proj(proj="utn
Zzone=10,ellps="1G584",
preserve_units=False)

X,y = p(-120.108, 34.361) import mgrs

latitude = 42.0
longitude = -93.0

Basic Usage
fron hijri_converter import
Hijri, Gregorian

N
IE mgrs.MGRS ()
m. toMGRS (latitude, longitude)

15TWG0000049776

t a Hijri date to

G an
g = Hijri(14e3, 2,
17).to_gregorian()

m. toLatLon(c)

m
c
c
d
d (41.999997, -93.000000)

#

Figure 8: Real-world examples from testing benchmarks. Doc-
uments relevant to the code are retrieved.

inference cost for each transformation task, including execution
time, token consumption, and the frequency of calling LLM API.

Besides, we utilize the Pass@K metric [8], which evaluates the
ability of data transformation solutions to produce at least one
correct code solution for current task within K attempts, where
K can take values of 1, 3, or 5 (see Exp-5, Figure 9). This metric
serves as an additional measure for assessing the performance of
LLMs in example-based code generation. Note, we report accuracy
at Pass@3 for main experiments, where K = 3.

Baselines. We compare our approach against the below baselines:

(1) TDE [32]: it represents a search-based approach for data
transformation from the original benchmark.

Foundation Model (FM) [50]: it prompts naive LLM with
in-context learning to generate the transformation output
directly.

DTT [12]: it proposes a pre-trained language model trained
on 2,000 synthetic training groups of transformation. The
model can directly generate the transformed results based
on provided examples.

UniDM [55]: it is a unified framework for LLM-based data
manipulation, which represents the current LLM-based
SoTA method.

Code LLM [3]: this code generation approach with LLM
can be treated as the “backbone” of our proposed approach.
The prompt guidance is simple and only contains general
instructions (e.g., “Write a function to transform the input
data into the desired output”) and examples.

@

®)

©

®)

Implementation Details. The MegaTran is built entirely in Python,
with all experiments conducted on a computing server equipped
with 8 RTX 4090 GPUs. For all LLM-related reasoning jobs, we
set the model temperature as 0.2, which makes the output more
deterministic and focused on the most probable tokens.

Weak2StrongPrompt. For the offline training, we employ the su-
pervised fine-tuning technique to fine-tune a weak LLM. In our

experiments, the base model is L1ama3-8B-Instruct [18]. We uti-
lize the LoRA technique [33] to speed up the training efficiency.
With the support of LlaMa-Factory [87], we build an easy and effi-
cient fine-tuning pipeline and it takes less than 30 minutes on our
curated fine-tuning dataset with 8 GPUs. The online inference is
supported by vLLM library [40] with a single GPU to ingest the
lightweight fine-tuned model.

Prompt2Code. For code generation, we employ the OpenAI’s GPT-40
and GPT-40-mini [34] as our strong LLM. After parsing the rele-
vant code block from the model completion, we utilize a temporary
Python file that stores the generated code, then calls a sub-process
to execute it in auto-mode via importlib. The Sanity-check Re-
flection is implemented during the code execution. The relevant
running result and errors will be captured based on the pre-defined
checklist. In terms of the Lazy-RAG module, we construct the vector
database offline by leveraging Meta FAISS [17] for efficient vector
similarity search. Based on the missing package logs, we manu-
ally collect relevant online documents, such as web pages, Github
repositories, or the library homepage, to build the code libs vector
database. During the online retrieval, we utilize the OpenAI’s em-
bedding model (text-embedding-3-small?) to create embedding
based on the code snippet. Then, we perform a similarity search
on the vector database to return top-3 documents as the retrieval
results. Overall, we adapt LangChain library for Lazy-RAG.

LLM API cost. We report the module-level cost in terms of API
calls and token consumption in Exp-2, Table 3. The main expense
comes from three parts: (1) Embedding Generation. The online and
offline stages in Lazy-RAG both require vector embedding for the
knowledge retrieval in code libs vector database and the construc-
tion of the database itself via unified embedding, respectively; (2)
Fix Suggestion. The Sanity-check Reflection module is to provide the
fix suggestion for the generated code. It is implemented by calling
the LLM API; (3) Code Generation. The cost of code generation is
dominated by the LLM API calls. To control the monetary cost, we
limit the process by setting a maximum number, i.e., K attempts.

6.2 Results and Analysis

Exp-1: End2End Comparison. Table 2 shows the overall re-
sult of different approaches. We evaluate the accuracy of each
approach on five benchmark datasets. As shown in this table, our
approach achieves the highest accuracy on all datasets, outperform-
ing the LLM-based SoTA method UniDM and the search-based SoTA
method TDE. Specifically for experiments backend by GPT-4o0, our
approach obtains 77.6%, 78.0%, 67.4%, 74.4% and 65.2% accuracy
on StackOverflow, Bing-QueryLogs, ETL,CommonSense and Sci-
ence, with huge improvements of 12.0%, 14.0%, 2.2%, 9.3% and 26.1%
respectively relative to the current SOTA method.

Note, however, both UniDM and FM approaches are using GPT-3-
175B parameter model (text-davinci-002). This particular model
is not publicly available at the time we conduct the experiments.
Also, the TDE and UniDM projects are not open-sourced. As the FM
provides its open-source codes, we reproduce its implementation
using OpenAl latest models to conduct a fair comparison.

Zhttps://platform.openai.com/docs/guides/embeddings/

2380

Table 2: Accuracy (%) comparison. * represents the result from
the original paper. We underline the current SoTA method.

Method SO BQ ETL COM SCI
#-Tasks 49 50 46 43 23
TDE [32] 63.0" 32.0" - - -
FM [50] 65.3* 54.0" - - -
UniDM [55] 674" 56.0" - -
DTT [12] 4.1 1.1 26.1 9.3 44
M 75.6 640 565 651 304
Code LLM 673 560 652 558 39.1
MegaTran 77.6 780 674 744 65.2
FM 67.3 540 565 535 217
Code LLM 612 56.0 587 442 348
MegaTran 75.5 74.0 609 69.8 522

Moreover, we reproduced the DTT implementation [12] using
its original pre-trained model and adopted it as a baseline. We feed
the model three examples along with the data to be transformed
following our setting. However, DTT performs poorly compared
to our approach, likely due to two factors: (1) its synthesized data
relies on only five basic transformation units (e.g., substring, split),
significantly limiting its applicability to broader scenarios; (2) DTT
is designed for joinability, where the transformed output is then
matched with the most similar candidate [27]. Thus, transformation
accuracy is not the primary objective of it.

We observed that the overall accuracy of FM is even worse after
upgrading to a more powerful LLM model. This may be due to
the generation preference of the GPT-40 family, which is more
likely to chat with users, instead of generating a simple output.
Consequently, it makes trouble for us to evaluate the performance
of the FM approach. We also observed that the naive code LLM
approach performs poorly on the data transformation task. Recall
the example in Figure 3, the weak prompt-guided LLM is yet unable
to generate a correct code solution.

Finding 1: MegaTran significantly outperforms existing SoTA
methods on all benchmark datasets. The performance gain is
consistent across different LLM backends (GPT-40 and GPT-4o0-
mini) and testing on different datasets.

Exp-2: Cost Efficiency. This experiment is to explore the contribu-
tion of each module in MegaTran. Recalled that the Prompt2Code
relies on Sanity-check Reflection and Lazy-RAG modules, thus we
monitor the API-based cost for fix suggestion and query embedding
respectively. Specifically, we report the inference cost including
the execution time, token consumption per task (prompt tokens,
completion tokens), and the number of API calls. Due to Code LLM
relying on the code generation module only, we report its cost
followed by the code generation phase of MegaTran.

As shown in Table 3, our approach requires fewer API calls for
code generation compared to Code LLM on all datasets, except
for Science, while still achieving superior accuracy. Also, our ap-
proach is more efficient in terms of time cost when evaluating on

https://platform.openai.com/docs/guides/embeddings/

Table 3: API-based LLM usage for each inference phase. GPT-
40 is used as the strong LLM. Be noted that the query embed-
ding does not have any cost on completion tokens.

Inference phase API Prompt Completion
Measure Unit #-Calls #-Tokens #-Tokens
Code LLM (6m20s) 98 184 106
Code Generation 68 250 138
Weak2StrongPrompt 49 77 13
Fix Suggestion 19 177 234
Query Embedding - - -
BQ: 8m51s

Code LLM (13m52s) 94 253 215
Code Generation 76 382 190
Weak2StrongPrompt 50 76 15
Fix Suggestion 26 256 266
Query Embedding 185 0
ETL: 8m23s

Code LLM (8mb54s) 247 172
Code Generation 73 259 60
Weak2StrongPrompt 46 100 14
Fix Suggestion 27 154 178
Query Embedding - -
COM: 11m19s

Code LLM (6m22s) 222 149
Code Generation 66 384 223
Weak2StrongPrompt 43 92 15
Fix Suggestion 23 307 306
Query Embedding 3 158 0
SCI: 7m46s

Code LLM (6m26s) 50 254 153
Code Generation 52 416 171
Weak2StrongPrompt 23 100 15
Fix Suggestion 29 261 266
Query Embedding - - -

StackOverflow, Bing-QueryLogs, ETL. This demonstrates the ef-
ficiency of our framework while maintaining high performance.
The utilization patterns across all modules indicate their essential
contributions to the overall system performance.

Note that the Lazy-RAG online stage is only triggered when
the generated code contains statements and references that were
previously logged from the Sanity-check Reflection module. In
StackOverflow, CommonSense and Science, the Lazy-RAG module
remained unused (zero cost of query embedding) since none of the
generated codes required external knowledge.

Finding 2: MegaTran achieves a competitive inference cost com-
pared to the SoTA methods. Our framework demonstrates effi-
cient resource utilization through its modular design. The varying
costs between datasets reflect the adaptive nature of our system
to different task complexities.

Exp-3: Ablation study. This experiment is to justify the effec-
tiveness of each module in MegaTran. We compare the accuracy
decrease by removing each module out of the whole system. As

2381

Table 4: Ablation study of our approach on each module,
evaluated on accuracy (%).

SO BQ ETL COM SCI
776 780 674 744 652
- w/o Weak2StrongPrompt -8.2 -140 -22 -139 -13.0
- w/o Sanity-check Reflection -2.1 -4.0 0 -93 -304

- w/o Lazy-RAG - -2.0 - -2.3 -
755 740 609 698 522
- w/o Weak2StrongPrompt -12.2 -200 -6.6 -18.6 -17.4
- w/o Sanity-check Reflection -4.1 -8.0 -3.1 -163 -21.8

- w/o Lazy-RAG - -4.0 - -24 -

Table 5: Explore the cost efficiency of Lazy-RAG vs Eager-
RAG. GPT-40-mini is used as the strong LLM.

SO BQ ETL COM SCI

Lazy-RAG

Acc. (%) 75.5 74.0 60.9 69.8 52.2
#-Queries - 6 - 3 -
#-Tokens - 199 - 216 -
Time cost 4ml13s 6m24s 5m9s 7m52s 4m33s
Acc. (%) 75.5 72.0 60.9 67.4 47.8
#-Queries 25 30 35 31 29
#-Tokens 147 157 64 366 155
Time cost 4m57s 7m32s 8m31ls 8m2ls 6mls

shown in Table 4, all components in our framework contribute posi-
tively to the overall performance. The Weak2StrongPrompt module
proves to be the most critical component, where its removal leads
to significant performance drops across all datasets. Specifically,
the accuracy decreases by 14.0% and 13.9% on Bing-QueryLogs
and CommonSense respectively when using GPT-4o. The impact is
even more pronounced with GPT-40-mini, showing drops of 20.0%
and 18.6% respectively. This substantial degradation demonstrates
that the quality of the strong prompt is crucial for code generation.

The Sanity-check Reflection module also presents meaningful
contribution, with its removal causing accuracy drops varying from
9.3% to 16.3% on CommonSense and surprisingly from 21.8% to
30.4% on Science across backend LLMs. The Lazy-RAG component,
while not activated for all datasets, contributes to a 2-4% accuracy
improvement on Bing-QueryLogs and CommonSense, suggesting
its utility for more complex transformation tasks.

Finding 3: Weak2StrongPrompt module is the most critical com-
ponent of our framework, with its removal causing the largest
performance degradation (up to 20% drop in accuracy). Both the
Sanity-check Reflection and Lazy-RAG optimizations contribute
meaningfully to the overall system performance.

Exp-4: Lazy-RAG vs Eager-RAG. This experiment discussed the
cost efficiency of Lazy-RAG vs Eager-RAG. We report the accuracy,
number of queries, average token cost per task, and time cost for
both RAG strategies. Normally, the Lazy-RAG retrieval will take
place only if triggered by code content, while Eager-RAG requires
processing all retrieved documents for every query. As presented in
Table 5, it makes our Lazy-RAG particularly cost-efficient compared
to Eager-RAG. The latter one results in substantial but redundant

85

79.6
755 _ain 53
ﬂ | _-———‘:2: —————————— 476
A 694 ¢--=""" -~ w4 68
> - |
S 8 628 gz 69.8
: 60 % e 0o 77T +60.9
O et
< 9 [543 ¢ o e
.= 522
< i -
< -
391 4~
n . I |
oM
K=1 K=3 K=5
SO 4-BQ --ETL 2COM sl

Figure 9: Pass@K (K = 1, 3,5) accuracy, which measures our
framework to generate at least one correct code within K
attempt. GPT-40-mini is used as the powerful LLM.

query, i.e., approximately 5x higher on Bing-QueryLogs and Com-
monSense. The results also reveal GPT-40-mini’s strong capability
in handling potentially noisy RAG results. Despite receiving ir-
relevant documents, GPT-40-mini can effectively filter them out,
maintaining fairly good performance compared to Lazy-RAG.

Finding 4: Our Lazy-RAG strategy achieves favorable cost-
efficiency by triggering context-aware retrieval behaviour, re-
sulting in 5x lower query frequency compared to Eager-RAG.

Exp-5: Pass@K. This experiment is to explore the performance
of our framework when scaling up the number of attempts. We
evaluate our framework’s ability to generate correct code within
multiple attempts using Pass@K metric, where K = 1,3, 5.

As shown in Figure 9, the framework demonstrates strong per-
formance improvement as K increases. In StackOverflow, the task
accuracy increases from 69.4% (K = 1) to 75. 5% (K = 3) and reaches
79. 6% (K = 5), showing a consistent upward trend. The substan-
tial jump in accuracy between K = 1 and K = 3, particularly for
14% and 13.1% improvement for Bing-QueryLogs and Science re-
spectively, suggests that allowing multiple generation attempts
effectively mitigates the inherent randomness in LLM output.

We also notice that the overall accuracy remains unchanged
from K = 3 to K = 5 on ETL and CommonSense, which indicates
that these two datasets are relatively harder to handle.

Finding 5: In Prompt2Code, increasing the number of generation
attempts significantly improves code transformation accuracy.

7 RELATED WORK

Human-based. Commercial tools like Trifacta [72] and Tableau [67]
provide domain-specific language (DSL) for data transformation
tasks. There are also open-sourced tools [49] integrated with data
transformation, such as Potter’s wheel [57], Wrangler [38], Falx [75],
and many others [11, 26, 52, 81, 86]. Moreover, domain-specific pack-
ages and platforms, such as Tidyverse [28] and GitHub, offer plug-in
code solutions. While these approaches achieve high accuracy, they
incur significant learning curves w.r.t. expertise requirements.

2382

Algorithm-based. Several algorithmic for automated data trans-
formation [76] are through programming-by-example (PBE) [21,
24, 43, 64, 65]. FlashFill [30] generates transformation rules from
spreadsheet examples. Following this paradigm, Foofar [36], DataX-
former [1], Trinity [47] and Transform-Data-by-Examples (TDE)
approaches [32] generate transformation rules or scripts based on
user-provided input-output pairs. Particularly, enumeration-based
PBE frameworks [4, 15] can be embedded with high-level skills
and information. However, they often suffer from scalability issues
due to the exponential growth of the search space. More advanced
approaches have been explored, such as Auto-Transform [37] and
Explain-Data-by-Visual [63]. While these algorithmic solutions
offer medium cost and high accuracy, they suffer from limited
transformation type support and require separate algorithms for
different transformation scenarios.

LLM-based. Recent work has explored using Large Language Mod-
els (LLMs) for data transformation in two main ways. Implicit
transformation approaches [39, 50, 55, 84, 88] directly utilize foun-
dation models to transform data values. Although such a method
is straightforward, it lacks explainability and makes it difficult for
users to verify or modify the transformation process. More explain-
able approaches leverage LLMs to generate a particular script (8, 35]
or DSL [61] to perform the data transformation. However, Code
LLMs often struggle to generate non-executable or non-scalable
code (e.g., over-fitting to specific examples), which limits the code’s
applicability in real-world scenarios. These limitations can lead to
increased manual intervention and debugging efforts, ultimately
reducing the efficiency and increasing the monetary cost.

8 CONCLUSION AND FUTURE WORK

We have presented MegaTran, a novel two-stage framework that
addresses the critical challenges of data transformation through
cost-effective and accurate code generation. Our system combines
a fine-tuned lightweight LLM for converting weak prompts into
strong, structured instructions, with a powerful LLM for generating
high-quality transformation code. We conduct extensive experi-
ments to validate the effectiveness of our approach.

For future work, we plan to explore multivariate transformations
where multiple attributes may influence the transformation process.
Furthermore, we plan to extend our framework to support complex
and nested transformations, including those involving relational
joins and cross-table enhancements. We are also considering the au-
tomatic generation of error checklists using LLMs to improve adapt-
ability across different programming languages. Another promising
future direction is the integration of LLMs with traditional program
synthesis and satisfiability theory for data transformation tasks.

ACKNOWLEDGMENTS

This work is partly supported by NSF of China (62402409, 62436010,
and 62441230), Guangdong Basic and Applied Basic Research Foun-
dation (2023A1515110545), Guangzhou-HKUST (GZ) Joint Funding
Program (2025A03]J3714), Guangzhou Basic and Applied Basic Re-
search Foundation (2025A04J3935), Guangzhou Municipality Big
Data Intelligence Key Lab (2023A03J0012), and Guangdong provin-
cial project 2023CX10X008.

REFERENCES

(1]

(1]

[12]

[13]

[14]

[15]

[16

[17

(18]

[19

[20]

[21]

[22]

[23

[24]

Ziawasch Abedjan, John Morcos, Thab F Ilyas, Mourad Ouzzani, Paolo Papotti,
and Michael Stonebraker. 2016. Dataxformer: A robust transformation discovery
system. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE).
IEEE, 1134-1145.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. 2023.
Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.
ArXiv abs/2310.11511 (2023).

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
et al. 2021. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732 (2021).

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and
Daniel Tarlow. 2016. Deepcoder: Learning to write programs. arXiv preprint
arXiv:1611.01989 (2016).

Tom B Brown. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

Chengliang Chai, Nan Tang, Ju Fan, and Yuyu Luo. 2023. Demystifying Artificial
Intelligence for Data Preparation. In SIGMOD.

Chengliang Chai, Jiayi Wang, Yuyu Luo, Zeping Niu, and Guoliang Li. 2023. Data
Management for Machine Learning: A Survey. IEEE Trans. Knowl. Data Eng. 35,
5(2023), 4646—4667.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

Pierre-Olivier Coté, Amin Nikanjam, Nafisa Ahmed, Dmytro Humeniuk, and
Foutse Khomh. 2023. Data Cleaning and Machine Learning: A Systematic Litera-
ture Review. https://doi.org/10.48550/arXiv.2310.01765 arXiv:2310.01765 [cs]
Fan Cui, Chenyang Yin, Kexing Zhou, You lin Xiao, Guangyu Sun, Qiang Xu,
Qipeng Guo, Demin Song, Dahua Lin, Xingcheng Zhang, and Yun Liang. 2024.
OriGen:Enhancing RTL Code Generation with Code-to-Code Augmentation and
Self-Reflection. ArXiv abs/2407.16237 (2024).

Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed K. Elmagarmid, Ihab F.
Ilyas, Mourad Ouzzani, and Nan Tang. 2013. NADEEF: a commodity data cleaning
system. In SIGMOD. ACM, 541-552.

Arash Dargahi Nobari and Davood Rafiei. 2024. DTT: An Example-Driven
Tabular Transformer for Joinability by Leveraging Large Language Models. Proc.
ACM Manag. Data 2, 1, Article 24 (March 2024), 24 pages. https://doi.org/10.
1145/3639279

Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael
Stonebraker, Ahmed K. Elmagarmid, Thab F. Ilyas, Samuel Madden, Mourad
Ouzzani, and Nan Tang. 2017. The Data Civilizer System. In CIDR.

Dong Deng, Wenbo Tao, Ziawasch Abedjan, Ahmed K. Elmagarmid, Thab F. Ilyas,
Guoliang Li, Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and Nan
Tang. 2019. Unsupervised String Transformation Learning for Entity Consolida-
tion. In ICDE. IEEE, 196-207.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman
Mohamed, and Pushmeet Kohli. 2017. Robustfill: Neural program learning under
noisy i/o. In International conference on machine learning. PMLR, 990-998.
Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayi-
heng Liu, Wei Wang, Zheng Yuan, Chang Zhou, and Jingren Zhou. 2023. How
Abilities in Large Language Models are Affected by Supervised Fine-tuning Data
Composition. ArXiv abs/2310.05492 (2023).

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.
The Faiss library. (2024). arXiv:2401.08281 [cs.LG]

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).
Ju Fan, Zihui Gu, Songyue Zhang, Yuxin Zhang, Zui Chen, Lei Cao, Guoliang Li,
Samuel Madden, Xiaoyong Du, and Nan Tang. 2024. Combining Small Language
Models and Large Language Models for Zero-Shot NL2SQL. Proc. VLDB Endow.
17, 11 (2024), 2750-2763. https://doi.org/10.14778/3681954.3681960

Meihao Fan, Xiaoyue Han, Ju Fan, Chengliang Chai, Nan Tang, Guoliang Li, and
Xiaoyong Du. 2024. Cost-Effective In-Context Learning for Entity Resolution: A
Design Space Exploration. In IEEE. 3696-3709.

Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie. 2024. The First
Prompt Counts the Most! An Evaluation of Large Language Models on Iterative
Example-based Code Generation. arXiv preprint arXiv:2411.06774 (2024).
Khouloud Gaaloul, Claudio Menghi, Shiva Nejati, Lionel Claude Briand, and
Yago Isasi Parache. 2021. Combining Genetic Programming and Model Checking
to Generate Environment Assumptions. IEEE Transactions on Software Engineer-
ing 48 (2021), 3664-3685.

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-

output examples. ACM Sigplan Notices 46, 1 (2011), 317-330.
Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis.

Foundations and Trends® in Programming Languages 4, 1-2 (2017), 1-119.

2383

[25]

[26

[27

[29

[30

[31

(32]

[34]

(35]

[36]

(37]

&
&,

[39

[40]

(41

[42

[43]

[44

[45]

[46]

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Yu Wu, YK Li, et al. 2024. DeepSeek-Coder: When
the Large Language Model Meets Programming-The Rise of Code Intelligence.
arXiv preprint arXiv:2401.14196 (2024).

Yuxiang Guo, Lu Chen, Zhengjie Zhou, Baihua Zheng, Ziquan Fang, Zhikun
Zhang, Yuren Mao, and Yunjun Gao. 2023. Camper: An effective framework for
privacy-aware deep entity resolution. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 626-637.

Yuxiang Guo, Yuren Mao, Zhonghao Hu, Lu Chen, and Yunjun Gao. 2025. Snoopy:
Effective and Efficient Semantic Join Discovery via Proxy Columns. IEEE Trans-
actions on Knowledge and Data Engineering 37, 5 (2025), 2971-2985.

Hadley Wickham and the RStudio Team. 2024. Tidyverse: Easily Install and Load
the Tidyverse Packages. https://www.tidyverse.org/. Accessed: 2024-12-01.
Mazhar Hameed and Felix Naumann. 2020. Data Preparation: A Survey of
Commercial Tools. SIGMOD Rec. 49, 3 (Dec. 2020), 18-29. https://doi.org/10.
1145/3444831.3444835

William R Harris and Sumit Gulwani. 2011. Spreadsheet table transformations
from examples. ACM SIGPLAN Notices 46, 6 (2011), 317-328.

Michael Hausenblas, Boris Villazon-Terrazas, and Richard Cyganiak. 2012. Data
Shapes and Data Transformations. ArXiv abs/1211.1565 (2012).

Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek Narasayya, and Surajit
Chaudhuri. 2018. Transform-data-by-example (TDE) an extensible search engine
for data transformations. Proceedings of the VLDB Endowment 11, 10 (2018),
1165-1177.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh,
Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. 2024.
Gpt-4o system card. arXiv preprint arXiv:2410.21276 (2024).

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram Rajamani, and Rahul Sharma. 2022. Jigsaw: Large lan-
guage models meet program synthesis. In Proceedings of the 44th International
Conference on Software Engineering. 1219-1231.

Zhongjun Jin, Michael R Anderson, Michael Cafarella, and HV Jagadish. 2017.
Foofah: Transforming data by example. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data. 683-698.

Zhongjun Jin, Yeye He, and Surajit Chauduri. 2020. Auto-transform: learning-
to-transform by patterns. Proceedings of the VLDB Endowment 13, 12 (2020),
2368-2381.

Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: Interactive visual specification of data transformation scripts. In Proceedings
of the sigchi conference on human factors in computing systems. 3363-3372.

Moe Kayali, Anton Lykov, Ilias Fountalis, Nikolaos Vasiloglou, Dan Olteanu, and
Dan Suciu. 2023. CHORUS: foundation models for unified data discovery and
exploration. arXiv preprint arXiv:2306.09610 (2023).

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
Memory Management for Large Language Model Serving with PagedAtten-
tion. In Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems 33 (2020), 9459-9474.
Boyan Li, Jiayi Zhang, Ju Fan, Yanwei Xu, Chong Chen, Nan Tang, and Yuyu
Luo. 2025. Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search. In
Forty-Second International Conference on Machine Learning, ICML 2025, Vancouver,
Canada, July 13-19, 2025. OpenReview.net.

Henry Lieberman. 2001. Your wish is my command: Programming by example.
Morgan Kaufmann.

Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang
Liu, Shaokun Zhang, Kaitao Song, Kunlun Zhu, Yuheng Cheng, Suyuchen Wang,
Xiaogiang Wang, Yuyu Luo, Haibo Jin, Peiyan Zhang, Ollie Liu, Jiagi Chen,
Huan Zhang, Zhaoyang Yu, Haochen Shi, Boyan Li, Dekun Wu, Fengwei Teng,
Xiaojun Jia, Jiawei Xu, Jinyu Xiang, Yizhang Lin, Tianming Liu, Tongliang
Liu, Yu Su, Huan Sun, Glen Berseth, Jianyun Nie, Ian Foster, Logan Ward,
Qingyun Wu, Yu Gu, Mingchen Zhuge, Xiangru Tang, Haohan Wang, Jiax-
uan You, Chi Wang, Jian Pei, Qiang Yang, Xiaoliang Qi, and Chenglin Wu. 2025.
Advances and Challenges in Foundation Agents: From Brain-Inspired Intelli-
gence to Evolutionary, Collaborative, and Safe Systems. arXiv:2504.01990 [cs.AI]
https://arxiv.org/abs/2504.01990

Jiawei Liu, Chun Xia, Yuyao Wang, and Lingming Zhang. 2023. Is Your Code
Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language
Models for Code Generation. ArXiv abs/2305.01210 (2023).

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuxin Zhang, Ju Fan,
Guoliang Li, Nan Tang, and Yuyu Luo. 2025. A Survey of NL2SQL with Large Lan-
guage Models: Where are we, and where are we going? arXiv:2408.05109 [cs.DB]

https://doi.org/10.48550/arXiv.2310.01765
https://arxiv.org/abs/2310.01765
https://doi.org/10.1145/3639279
https://doi.org/10.1145/3639279
https://arxiv.org/abs/2401.08281
https://doi.org/10.14778/3681954.3681960
https://www.tidyverse.org/
https://doi.org/10.1145/3444831.3444835
https://doi.org/10.1145/3444831.3444835
https://arxiv.org/abs/2504.01990
https://arxiv.org/abs/2504.01990
https://arxiv.org/abs/2408.05109

[47]

[48

[49

[50]

[51

[52]

[53

[54

[55]

[56]

[60]

[61]

[62]

[63]

[64

[65]

[66]

[67

https://arxiv.org/abs/2408.05109

Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig. 2019. Trinity:
An extensible synthesis framework for data science. Proceedings of the VLDB
Endowment 12, 12 (2019), 1914-1917.

Nick Mecklenburg, Yiyou Lin, Xiaoxiao Li, Daniel Holstein, Leonardo Nunes,
Sara Malvar, Bruno Leonardo Barros Silva, Ranveer Chandra, Vijay Aski, Pavan
Kumar Reddy Yannam, Tolga Aktas, and Todd Hendry. 2024. Injecting New
Knowledge into Large Language Models via Supervised Fine-Tuning. ArXiv
abs/2404.00213 (2024).

Mashaal Musleh, Mourad Ouzzani, Nan Tang, and AnHai Doan. 2020. CoClean:
Collaborative Data Cleaning. In SIGMOD. ACM, 2757-2760.

Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora, and Christopher Ré.
2022. Can foundation models wrangle your data? arXiv preprint arXiv:2205.09911
(2022).

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Sil-
vio Savarese, and Caiming Xiong. 2022. Codegen: An open large language model
for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

Mourad Ouzzani, Nan Tang, and Raul Castro Fernandez. 2019. Data civilizer:
end-to-end support for data discovery, integration, and cleaning. In Making
Databases Work: the Pragmatic Wisdom of Michael Stonebraker, Michael L. Brodie
(Ed.). ACM Books, Vol. 22. ACM / Morgan & Claypool, 291-300.

Jinglin Peng, Weiyuan Wu, Brandon Lockhart, Song Bian, Jing Nathan Yan,
Linghao Xu, Zhixuan Chi, Jeffrey M. Rzeszotarski, and Jiannan Wang. 2021.
DataPrep.EDA: Task-Centric Exploratory Data Analysis for Statistical Modeling
in Python. In Proceedings of the 2021 International Conference on Management of
Data (SIGMOD °21), June 20-25, 2021, Virtual Event, China.

Fabio Petroni, Tim Rocktdschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
Alexander H Miller, and Sebastian Riedel. 2019. Language models as knowledge
bases? arXiv preprint arXiv:1909.01066 (2019).

Yichen Qian, Yongyi He, Rong Zhu, Jintao Huang, Zhijian Ma, Haibin Wang,
Yaohua Wang, Xiuyu Sun, Defu Lian, Bolin Ding, et al. 2024. UniDM: A Unified
Framework for Data Manipulation with Large Language Models. Proceedings of
Machine Learning and Systems 6 (2024), 465-482.

Xuedi Qin, Yuyu Luo, Nan Tang, and Guoliang Li. 2020. Making data visualization
more efficient and effective: a survey. VLDB J. 29, 1 (2020), 93-117.
Vijayshankar Raman and Joseph M Hellerstein. 2001. Potter’s wheel: An interac-
tive data cleaning system. In VLDB, Vol. 1. 381-390.

Houxing Ren, Mingjie Zhan, Zhongyuan Wu, Aojun Zhou, Junting Pan, and
Hongsheng Li. 2024. ReflectionCoder: Learning from Reflection Sequence for
Enhanced One-off Code Generation. ArXiv abs/2405.17057 (2024).

El Kindi Rezig, Lei Cao, Michael Stonebraker, Giovanni Simonini, Wenbo Tao,
Samuel Madden, Mourad Ouzzani, Nan Tang, and Ahmed K. Elmagarmid. 2019.
Data Civilizer 2.0: A Holistic Framework for Data Preparation and Analytics.
Proc. VLDB Endow. 12, 12 (2019), 1954-1957.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh.
2020. Beyond Accuracy: Behavioral Testing of NLP Models with Check-
List. In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault (Eds.). Association for Computational Linguistics, Online, 4902-4912.
https://doi.org/10.18653/v1/2020.acl-main.442

Yu-Zhe Shi, Haofei Hou, Zhangqian Bi, Fanxu Meng, Xiang Wei, Lecheng Ruan,
and Qining Wang. 2024. AutoDSL: Automated domain-specific language design
for structural representation of procedures with constraints. In Annual Meeting
of the Association for Computational Linguistics.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik
Narasimhan, and Shunyu Yao. 2023. Reflexion: language agents with verbal
reinforcement learning. In Neural Information Processing Systems.

Roee Shraga and Renée J. Miller. 2023. Explaining Dataset Changes for Semantic
Data Versioning with Explain-Da-V (Technical Report). Proc. VLDB Endow. 16
(2023), 1587-1600.

Rishabh Singh. 2016. Blinkfill: Semi-supervised programming by example for
syntactic string transformations. Proceedings of the VLDB Endowment 9, 10 (2016),
816-827.

Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K. Elmagarmid, Samuel
Madden, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and
Nan Tang. 2017. Synthesizing Entity Matching Rules by Examples. Proc. VLDB
Endow. 11, 2 (2017), 189-202

Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu, Boao Shi, Che Liu, Qian
Liu, and Tao Yu. 2024. ARKS: Active Retrieval in Knowledge Soup for Code
Generation. ArXiv abs/2402.12317 (2024).

Tableau Software. 2024. Tableau: Business Intelligence and Analytics. https:
/[www.tableau.com/. Accessed: 2024-12-01.

2384

(68

[69

[70]

(71]

[72

k=
&

[74]

[75

[76]

(7]

[79

[80]

(1]

%0
£,

(83

(84

(85

[86]

(87

Aarne Talman, Marianna Apidianaki, Stergios Chatzikyriakidis, and Jérg Tiede-
mann. 2021. NLI Data Sanity Check: Assessing the Effect of Data Corruption on
Model Performance. In Nordic Conference of Computational Linguistics.

Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Samuel
Madden, and Mourad Ouzzani. 2021. RPT: Relational Pre-trained Transformer
Is Almost All You Need towards Democratizing Data Preparation. Proc. VLDB
Endow. 14, 8 (2021), 1254-1261.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA model.

Fengwei Teng, Zhaoyang Yu, Quan Shi, Jiayi Zhang, Chenglin Wu, and Yuyu Luo.
2025. Atom of Thoughts for Markov LLM Test-Time Scaling. CoRR abs/2502.12018
(2025).

Trifacta, Inc. 2024. Trifacta: Data Wrangling for Machine Learning and Analytics.
https://www.trifacta.com/. Accessed: 2024-12-01.

Jianhong Tu, Ju Fan, Nan Tang, Peng Wang, Guoliang Li, Xiaoyong Du, Xiaofeng
Jia, and Song Gao. 2023. Unicorn: A Unified Multi-tasking Model for Supporting
Matching Tasks in Data Integration. Proc. ACM Manag. Data 1, 1 (2023), 84:1-
84:26. https://doi.org/10.1145/3588938

A Vaswani. 2017. Attention is all you need. Advances in Neural Information
Processing Systems (2017).

Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Cheung, and Amy J.
Ko. 2021. Falx: Synthesis-Powered Visualization Authoring. Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (2021).

Jiannan Wang and Nan Tang. 2014. Towards dependable data repairing with
fixing rules. In SIGMOD, Curtis E. Dyreson, Feifei Li, and M. Tamer Ozsu (Eds.).
ACM, 457-468.

Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu, Frank F. Xu, Yiging Xie, Gra-
ham Neubig, and Daniel Fried. 2024. CodeRAG-Bench: Can Retrieval Augment
Code Generation? ArXiv abs/2406.14497 (2024).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, F. Xia,
Quoc Le, and Denny Zhou. 2022. Chain of Thought Prompting Elicits Reasoning
in Large Language Models. ArXiv abs/2201.11903 (2022).

Yeming Wen, Pengcheng Yin, Kensen Shi, Henryk Michalewski, Swarat Chaud-
huri, and Alex Polozov. 2024. Grounding Data Science Code Generation with
Input-Output Specifications. arXiv preprint arXiv:2402.08073 (2024).

Danny Weyns, Nelly Bencomo, Radu Calinescu, Javier Camara, Carlo Ghezzi,
Vincenzo Grassi, Lars Grunske, Paola Inverardi, Jean-Marc Jézéquel, Sam Malek,
Raffaela Mirandola, Marco Mori, and Giordano Tamburrelli. 2019. Perpetual
Assurances for Self-Adaptive Systems. In Software Engineering for Self-Adaptive
Systems.

Yifan Wu, Lutao Yan, Leixian Shen, Yunhai Wang, Nan Tang, and Yuyu Luo. 2024.
Chartinsights: Evaluating multimodal large language models for low-level chart
question answering. arXiv preprint arXiv:2405.07001 (2024).

Jinyu Xiang, Jiayi Zhang, Zhaoyang Yu, Fengwei Teng, Jinhao Tu, Xinbing
Liang, Sirui Hong, Chenglin Wu, and Yuyu Luo. 2025. Self-Supervised Prompt
Optimization. CoRR abs/2502.06855 (2025).

Xiao Yang, Kai Sun, Hao Xin, Yushi Sun, Nikita Bhalla, Xiangsen Chen, Sajal
Choudhary, Rongze Daniel Gui, Ziran Will Jiang, Ziyu Jiang, Lingkun Kong,
Brian Moran, Jiaqi Wang, Yifan Xu, An Yan, Chenyu Yang, Eting Yuan, Hanwen
Zha, Nan Tang, Lei Chen, Nicolas Scheffer, Yue Liu, Nirav Shah, Rakesh Wanga,
Anuj Kumar, Scott Yih, and Xin Dong. 2024. CRAG - Comprehensive RAG
Benchmark. In NeurIPS.

Haochen Zhang, Yuyang Dong, Chuan Xiao, and Masafumi Oyamada. 2023.
Large language models as data preprocessors. arXiv preprint arXiv:2308.16361
(2023).

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi
Chen, Mingchen Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng,
Bang Liu, Yuyu Luo, and Chenglin Wu. 2024. AFlow: Automating Agentic
Workflow Generation. CoRR abs/2410.10762 (2024).

Zhengxuan Zhang, Yin Wu, Yuyu Luo, and Nan Tang. 2024. MAR: Matching-
Augmented Reasoning for Enhancing Visual-based Entity Question Answer-
ing. In Proceedings of the 2024 Conference on Empirical Methods in Natural Lan-
guage Processing, Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (Eds.).
Association for Computational Linguistics, Miami, Florida, USA, 1520-1530.
https://doi.org/10.18653/v1/2024.emnlp-main.91

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi
Feng, and Yonggiang Ma. 2024. LlamaFactory: Unified Efficient Fine-Tuning
of 100+ Language Models. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 3: System Demonstrations).
Association for Computational Linguistics, Bangkok, Thailand. http://arxiv.org/
abs/2403.13372

Yizhang Zhu, Shiyin Du, Boyan Li, Yuyu Luo, and Nan Tang. 2024. Are Large
Language Models Good Statisticians?. In NeurIPS.

https://arxiv.org/abs/2408.05109
https://doi.org/10.18653/v1/2020.acl-main.442
https://www.tableau.com/
https://www.tableau.com/
https://www.trifacta.com/
https://doi.org/10.1145/3588938
https://doi.org/10.18653/v1/2024.emnlp-main.91
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

	Abstract
	1 Introduction
	2 Preliminary and Solution Overview
	2.1 Preliminary
	2.2 Data Transformation Operators
	2.3 Solution Overview

	3 Weak-to-Strong Prompts
	3.1 Weak Prompts and Strong Prompts
	3.2 Offline Fine-Tuning
	3.3 Online Reasoning

	4 Sanity-check Reflection with CheckList
	5 Lazy-RAG
	6 Experiments
	6.1 Experiment Setup
	6.2 Results and Analysis

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

