
LogCloud: Fast Search of Compressed Logs on Object Storage
Ziheng Wang

Stanford University

zihengw@stanford.edu

Junyu Wei

Tsinghua University

thuweijy@vip.163.com

Alex Aiken

Stanford University

aiken@cs.stanford.edu

Guangyan Zhang

Tsinghua University

gyzh@tsinghua.edu.cn

Jacob O. Tørring

NTNU

jacob.torring@ntnu.no

Rain Jiang

Bytedance

rain.jiang@bytedance.com

Chenyu Jiang

Bytedance

chenyu.jiang@bytedance.com

Wei Xu

Bytedance

wei.xu@bytedance.com

ABSTRACT
Large organizations emit terabytes of logs every day in their cloud

environment. Efficient data science on these logs via text search is

crucial for gleaning operational insights and debugging production

outages. Current log management systems either perform full-text

indexing on a cluster of dedicated servers to provide efficient search

at the expense of high storage cost, or store unindexed compressed

logs on object storage at the expense of high search cost.

We propose LogCloud, a new object-storage based log manage-

ment system that supports both cheap compressed log storage

and efficient search. LogCloud constructs inverted indices on com-

pressed logs using a novel FM-index implementation that supports

efficient querying from object storage directly, removing the need

for dedicated indexing servers. Experiments on five public and five

production log datasets show that LogCloud can achieve both cheap

storage and search, scaling to TB-scale datasets.

PVLDB Reference Format:
Ziheng Wang, Junyu Wei, Alex Aiken, Guangyan Zhang, Jacob O. Tørring,

Rain Jiang, Chenyu Jiang, and Wei Xu. LogCloud: Fast Search of

Compressed Logs on Object Storage. PVLDB, 18(8): 2362 - 2370, 2025.

doi:10.14778/3742728.3742733

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/marsupialtail/rottnest-vldb-repro.

1 INTRODUCTION
Modern organizations’ cloud infrastructure generate terabytes of

logs every day. These logs are typically stored in a log management

system like ElasticSearch, DataDog or Splunk and queried interac-

tively for troubleshooting or cybersecurity use cases [15, 19, 47].

Organizations would like to do both of the following:

• Cheap Retrieval: It must be possible to cheaply and interac-

tively search these logs with wildcard string queries (e.g. *.ama-

zon.*, pod-abcd-*).

• Cheap Storage: The cost of storing the logs and associated index
structures to support cheap search must also be low.

Current approaches to log management represent two extremes

in the trade-off between storage and compute costs. Traditional

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.

doi:10.14778/3742728.3742733

solutions like Splunk, Datadog and OpenSearch maintain dedicated

servers that are always running, coupling compute and storage.

While these systems provide fast query performance through full-

text search indices kept "hot" in memory/disk, they require orga-

nizations to continuously pay for expensive compute resources

regardless of actual query volume, making them cost inefficient in

cases where the logs are less frequently accessed [15, 39, 47, 52].

The alternative approach, adopted by systems like Grafana Loki,

Datadog Flex logs, or simply storing and querying compressed files

on object storage [16, 25, 45, 52], decouples compute and storage by

eliminating always-on servers and storing unindexed compressed

logs. However, without index structures, these systems must re-

sort to brute-force scanning, which becomes expensive at scale -

e.g. Datadog’s new Flex log offering can cost tens of thousands

in reserved compute capacity [49]. While this serverless approach

works for sporadically queried audit logs, the per-scan compute

costs quickly make it more expensive than traditional solutions for

frequently accessed logs.

We show that object storage-native full-text search indices solve

the high query cost problem in compute-storage decoupled log

management systems. Drawing on recent advances in data lake

indexing [41, 54], we build LogCloud, which maintains complete

storage-compute separation through indices optimized for efficient

cold access, eliminating always-on servers while reducing query

costs. This positions LogCloud as the most cost-effective solution

across a large range of intermediate query loads where integrated

systems’ high upfront costs are not justified and disaggregated

systems’ high per-query costs become inefficient.

LogCloud first uses a state-of-the-art log compression system,

LogGrep, to drastically reduce the amount of text that has to be

indexed by breaking logs down into template and variable compo-

nents (e.g. unique resource identifiers (URI) like kube pod names)

[52]. LogCloud then constructs inverted indices on the variables.

The main technical challenge addressed in LogCloud is designing

an inverted index that supports efficient substring search on
object storage with minimal storage overhead. We address

this challenge using an FM-index based on the Burrows Wheeler
Transform (BWT). While FM-indices have been extensively studied

for disk/RAM settings [2, 11, 23, 24, 27], their traditional implemen-

tations are poorly suited for object storage due to its high access

latency. We propose a novel implementation specifically optimized

for object storage that significantly improves search latency while

maintaining high compression ratios.

In summary, this paper makes three key contributions:

2362

https://doi.org/10.14778/3742728.3742733
https://github.com/marsupialtail/rottnest-vldb-repro
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3742728.3742733
https://www.acm.org/publications/policies/artifact-review-and-badging-current

• Propose object-storage-native indices as a solution to the high

query cost problem for compute-storage decoupled log manage-

ment systems by avoiding scanning the entire dataset.

• Address latency and size challenges in the inverted index through

a novel FM index and suffix array optimized for object storage.

• Experimentally demonstrate that LogCloud enables interactive

search over TB-scale compressed logs on object storage in under

10 seconds on a single machine, achieving comparable or better

performance than dedicated log search services like OpenSearch

UltraWarm with less than 10% of the storage footprint on five

public log datasets. This translates to a >10x total cost of owner-
ship (TCO) saving for large log datasets on over four orders of

magnitude of total query load at a 12-months operating horizon.

2 MOTIVATION
A full-text index for compressed logs that supports efficient query-

ing directly from object-storage is key to LogCloud’s goal of low-

ering query cost while maintaining compute-storage decoupling.

While attempting to adapt prior full-text indexing and log compres-

sion techniques to an object storage environment, we encountered

significant challenges due to its high read latency. These challenges

led us to develop novel adaptations of the FM-index and suffix array

specifically optimized for object storage.

2018-06-27 00:00:07,771 DEBUG org.apache.hadoop.hdfs.server.datanode.DataNode:
Sending heartbeat with 1 storage reports from service actor: Block pool
BP-596011733-172.18.0.2-1528179317196 (Datanode Uuid
c3bb40ae-c869-4ea0-ad0a-94f4f39bb5c6) service to master/ 172.18.0.2:8200

Figure 1: Logs are typically made up of fixed templates and
changing variables, which are highlighted in yellow. Logs
that do not fit into common templates are called outliers.

2.1 Background: Inverted Indices after Log
Compression

Recent work like CLP and LogGrep has demonstrated that logs

are highly repetitive and can be effectively compressed by exploit-

ing static and runtime patterns, as shown in Figure 1 [44, 52, 53].

Almost all logs can be decomposed into repeated templates and
variable components (e.g., request IDs or pod names, typically long

pseudo-random alphanumeric URIs). LogCloud uses LogGrep to

first decompose logs and indexes the variable components only.

The templates, typically small in size, can be brute force searched.

To build the index itself, we leverage an inverted index structure

that maps each variable to a posting list - an ordered collection

of document IDs and positions where the token appears. These

tokens are stored in a term dictionary, a collection of all unique

tokens with pointers to their posting lists. The challenge lies in

efficiently managing the secondary index needed to quickly look

up tokens in this term dictionary, which can grow to multiple GBs

when dealing with URI-style variables. Two popular approaches

for this secondary index are finite state transducers (FST), used by

ElasticSearch, OpenSearch, and M3DB [20, 34, 36, 39], and sorted

string tables (SSTables) [40], adopted by systems like Cassandra

and Quickwit [17, 32, 43].

2.2 Challenge: Substring Searches on URIs
While both FSTs and SSTables enable efficient prefix (query∗) and
exact-match string queries on these variable tokens, they lack sup-

port for efficient substring (∗query∗) searches. Some systems (Quick-

wit, Cassandra) simply do not support substring search, while oth-

ers (ElasticSearch) cannot efficiently use the secondary index and

perform expensive scans of the term dictionary [20, 32, 43].

In search engine use cases, a term dictionary scan is acceptable, as

the size of the language vocabulary does not grow linearly with the

amount of text being indexed. However, as shown in Figure 1, the

term dictionary here consists of unique resource identifiers (URIs)

whose number increases linearly with the size of logs being indexed.

We will show in Section 5.2 that scanning this term dictionary can

be very expensive for larger datasets.

Substring searches are critical for observability and cybersecurity

use cases [9, 30, 46]. For example, an engineer troubleshooting a

service outage might search for a partial URI ‘172.18.0.2’ embedded

in a larger URI, as shown in Figure 1, to correlate across log sources.

As a second example, a security analyst investigating potential

threats needs to search for partial IP addresses or domain fragments

in network logs to identify suspicious traffic patterns (e.g., searching

for "10.0.0." to find all matching IPs, or ".xyz" to detect traffic to

suspicious top-level domains). In addition to these practical use

cases, users often rely on substring queries rather than prefix or

exact matches to ensure comprehensive results, particularly when

the logmanagement framework’s tokenization scheme is unfamiliar

and missing matches is unacceptable.

In the authors’ experience operating large-scale distributed sys-

tems in industry, substring queries dominate incident response

workloads to debug failures and detect intrusions. Efficient support

for substring queries is thus a basic requirement for LogCloud.

2.3 Solution: The BWT and FM-index
What object-storage based secondary index would allow efficient

substring searches on the term dictionary? Apart from FSTs and

SSTables, two other full-text indexing approaches have been pro-

posed in literature. The first are grammar-based compression ap-

proaches like Sequitur [10, 12, 38, 55, 56] and the second are suc-

cinct data structures like the Burrows Wheeler Transform (BWT)

[2, 11, 23, 33]. We choose the second approach in LogCloud for two

reasons. First, grammar-based approaches heavily rely on repeated

subwords that occur frequently in natural language text but rarely

occurs in the URIs that we are indexing. Second, while the com-

pression costs of Sequitur-based algorithms can be prohibitively

high, efficient industrial-grade implementations for performing the

BWT exist [33, 37, 55].

LogCloud uses the FM-index based on the BWT, an example

of which is shown in Figure 2. The FM-index is a common data

structure typically used in bioinformatics to perform substring

searches in DNA read mapping. To obtain the BWT of an input text

corpus (the term dictionary in our case), generate a matrix of cyclic

permutations of the corpus, i.e. all the rotations of BANANA in

the example. Then, these permutations are sorted lexicographically.

The last column from the array of suffixes, highlighted in the red

box, is called the BWT [22].

2363

$BANAN A

ANANA$ B

ANA$BA N

A$BANA N

BANANA $

NANA$B A

NA$BAN A

$ A B N

0 0 0 0

0 1 0 0

0 1 1 0

0 1 1 1

0 1 1 2

1 1 1 2

1 2 1 2

BWT:ABNN$AA FM Index

Sorted Suffixes

0 1 0 0

0 0 1 1 0 0

0 1

0 1
A B

N

Root NodeWavelet
Tree FM
Index

Each leaf node corresponds to a character in the alphabet,
where the path to the leaf node corresponds to the character's
binary encoding.

Figure 2: Summary of BWT and FM-index on the input string
BANANA. For a more illustrated reference see [50]. We show
a simple FM Index and a wavelet tree FM-index. To compute
𝑟𝑎𝑛𝑘 (𝐵, 4) with a wavelet tree, we first lookup B’s binary rep-
resentation 01. Since the first digit is 0, we find 𝑟𝑎𝑛𝑘 (0, 4) = 2

in the bitvector at the root node. Then we go down the left
branch and find 𝑟𝑎𝑛𝑘 (1, 2) = 1 as the result.

Algorithm 1 Iterative Substring Search using FM-index with BWT

1: procedure FM_Search(𝑃, 𝐵𝑊𝑇) ⊲ 𝑃 is the substring to search

2: 𝑙 ← 0, 𝑟 ← |𝐵𝑊𝑇 |
3: 𝐶 ← counts of each character in 𝐵𝑊𝑇

4: for 𝑖 ← |𝑃 | down to 1 do
5: 𝑙 ← 𝐶 [𝑃 [𝑖]] + 𝑟𝑎𝑛𝑘 (𝑃 [𝑖], 𝑙)
6: 𝑟 ← 𝐶 [𝑃 [𝑖]] + 𝑟𝑎𝑛𝑘 (𝑃 [𝑖], 𝑟)
7: if 𝑙 ≥ 𝑟 then return "Pattern not found"

8: end if
9: end for
10: return Pattern found between BWT positions 𝑙 and 𝑟

11: end procedure

The BWT is used to construct the FM-index, which allows ef-

ficient substring searches. The FM-index enables efficient com-

putation of 𝑟𝑎𝑛𝑘 (𝑐, 𝑖), defined as how many times character 𝑐 has
appeared up to position 𝑖 in the BWT. Assuming 𝑟𝑎𝑛𝑘 (𝑐, 𝑖) can be effi-

ciently computed for all characters in the alphabet and all positions

in the BWT, Algorithm 1 is commonly used to find all occurrences

of a substring 𝑃 in the input text corpus using the rank operation

repeatedly [23]. Figure 2 shows the simplest FM-index, which just

records this number for all 𝑐 and all positions.

The FM-index is typically implemented with a wavelet tree in
RAM or disk-based used cases [27, 31, 35]. The wavelet tree com-

presses the BWT into a binary tree, where each node contains a

bitvector. To retrieve the rank of a character, the tree is traversed

from the root with rank operations done on the bitvectors at each

node. A tree traversal for the BWT "ABNNAA" is in Figure 2.

The result of Algorithm 1 indicates the query pattern is found

between positions 𝑙 and 𝑟 of the 𝐵𝑊𝑇 , which needs to be mapped

back to locations in the original text corpus. This can be done very

quickly with a list that records the offset in the original corpus that

corresponds to each position in the BWT, called the suffix array.
However, this is a list of integers as long as the original text corpus,

and is in general very poorly compressible. A common technique

used in literature is the sampled suffix array, which stores only

offsets for every 𝐾 positions. If a position 𝑖’s offset is not stored,

the FM-index has to be repeatedly consulted to relate position 𝑖’s

offset to 𝑖 − 1’s offset until a sampled location is hit [2, 23].

2.4 Challenge: Query Latency on Object Storage
To the best of our knowledge, all existing implementations of the

FM-index have targeted disk or in-memory scenarios. This is be-

cause the FM-index is typically used to map short reads against a

reference genome, which rarely exceeds several GBs in size. How-

ever, in our scenario, we would like the index to reside on object

storage, which has a higher read latency of tens of milliseconds

[18]. This raises two critical challenges for the standard wavelet

tree FM-index implementation.

The first challenge is the latency of substring search with
the wavelet tree. In a wavelet tree, each rank operation takes

𝑂 (𝐻𝐶) sequential random reads, where 𝐻𝐶 denotes the entropy of

the alphabet. Since we are constructing the index on pseudorandom

variables like URIs, the entropy is the log of the size of the alphabet.

Thus for alphanumeric variables, around six sequential reads to

object storage are required to compute one rank operation with

the wavelet tree. Algorithm 1 shows that we compute |𝑃 | rank
operations sequentially. Long queries such as ‘nginx-554b9c67f9-

c5cv4‘ can require tens of rank operations, which translates to

hundreds of sequential read requests to the object storage.

The second challenge relates to the latency of accessing
the sampled suffix array used to map BWT positions back to

locations in the input text. While accessing the FM-index up to 𝐾

times for each mapped BWT position can be acceptable when the

FM-index is in memory or on disk, it incurs unacceptable latency

for object storage. This is particularly problematic as hundreds of

positions potentially have to be mapped. Even though querying

each position can be parallelized, making thousands of small con-

current requests to object storage may run into S3 request throttling

[3]. Alternatively, one could opt to store the full suffix array, but it

has a very high storage footprint, which would annul the benefits

we obtain from log compression [23].

3 OBJECT STORE NATIVE INVERTED INDEX
LogCloud effectively tackles the two challenges by focusing on the

IO-bound and latency-bound nature of object storage, where data

retrieval is significantly more expensive compared to processing

the data and retrieving 1 byte and 1 MB have similar latency.

Based on these observations, we introduce two key innova-

tions: (1) a custom object storage-optimized FM-index that re-

duces sequential requests for substring queries from 𝑂 (𝐻𝐶 |𝑃 |) to
𝑂 (|𝑃 |), and (2) a range-reduced full suffix array approach that main-

tains performance while drastically reducing storage requirements

through effective compression. Together, these innovations adapt

the FM-index and suffix array to address the challenges of efficient

log search on object storage.

3.1 Fast Search with Custom FM-Index
We tackle the first challenge through a novel object-storage-
optimized implementation of the FM-index, reducing the se-
quential requests for a substring query of length 𝑃 from𝑂 (𝐻𝐶 |𝑃 |) to
𝑂 (|𝑃 |) versus the standard wavelet tree implementation. The BWT

2364

is divided into fixed-size chunks, and we compress each chunk and

store the rank of every character in the BWT up to the beginning

of the chunk in each chunk. The details are in Algorithm 2. The

built chunks can be stored contiguously on object storage together

with an offsets array that contains the byte range of each chunk.

Algorithm 3 can then be used to compute 𝑟𝑎𝑛𝑘 (𝑐, 𝑖).

Algorithm 2 Build Chunks for Custom FM Index

1: function BuildChunks(𝐵𝑊𝑇, 𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 (𝑐𝑠) = 4𝑀)

2: 𝑐ℎ𝑢𝑛𝑘𝑠 ← [], 𝑟𝑎𝑛𝑘𝑠 ← {𝑐 : 0 for 𝑐 ∈ Σ}
3: for 𝑖 ← 0 to ⌈|𝐵𝑊𝑇 |/𝑐𝑠⌉ − 1 do
4: 𝑐ℎ𝑢𝑛𝑘 ← (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (𝐵𝑊𝑇 [𝑖 · 𝑐𝑠 : (𝑖 + 1) · 𝑐𝑠]), 𝑟𝑎𝑛𝑘𝑠)
5: 𝑟𝑎𝑛𝑘𝑠 [𝑐] ← 𝑟𝑎𝑛𝑘𝑠 [𝑐] + 𝑐𝑜𝑢𝑛𝑡 (𝑐, 𝐵𝑊𝑇 [𝑖 · 𝑐𝑠 : (𝑖 + 1) ·
𝑐𝑠]) for 𝑐 ∈ Σ ⊲ Update global ranks with counts in this chunk.

6: 𝑐ℎ𝑢𝑛𝑘𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐ℎ𝑢𝑛𝑘)
7: end for
8: return 𝑐ℎ𝑢𝑛𝑘𝑠
9: end function

Algorithm 3 Rank Computation using Custom FM Index

1: function Rank(𝑐, 𝑖, chunks, chunk_size (cs))

2: 𝑐ℎ𝑢𝑛𝑘 ← 𝑐ℎ𝑢𝑛𝑘𝑠 [⌊𝑖/𝑐𝑠⌋] ⊲ Locate chunk containing pos i

3: 𝑡𝑒𝑥𝑡, 𝑟𝑎𝑛𝑘𝑠 ← 𝑐ℎ𝑢𝑛𝑘 ⊲ Chunk contains compressed BWT

and the ranks of each character up to the start of the chunk

4: 𝑙𝑜𝑐𝑎𝑙_𝑝𝑜𝑠 ← 𝑖 mod 𝑐𝑠

5: 𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 ← decompress(𝑡𝑒𝑥𝑡)
6: 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑢𝑛𝑡 ← 0 ⊲ Compute rank of 𝑐 in this chunk.

7: for 𝑗 ← 0 to 𝑙𝑜𝑐𝑎𝑙_𝑝𝑜𝑠 do
8: if 𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 [𝑗] = 𝑐 then
9: 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑢𝑛𝑡 ← 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑢𝑛𝑡 + 1
10: end if
11: end for
12: return 𝑟𝑎𝑛𝑘𝑠 [𝑐] + 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑢𝑛𝑡 ⊲ Final rank = rank up to

this chunk + local rank.

13: end function

This approach requires reading just one chunk to compute the

rank and is much simpler than the wavelet tree design. This im-

plementation, inspired by the original FM-index implementation

based on the occurrences matrix and Jacobson’s rank [22, 29], is

not popular for typical disk/RAM-based FM-index implementa-

tions because the rank calculation within the chunk is now done

on characters, which is much more compute-intensive than rank

calculations on bits that have hardware acceleration like popcnt

instructions. However, in our IO-bound scenario this computation

cost is easily eclipsed by the read cost.

Another reason why this approach is not typically preferred

is because uncompressed, it takes around the same space as the

input corpus. The wavelet tree representation comes with native

compression as the storage footprint of each character is the size of

its binary encoding (e.g. Huffman code). However, we can compress

each character chunk in our FM-index using generic compression

like Zstd [21] and decompress the chunk upon reading. Decompres-

sion adds too much overhead for disk/RAM-based FM-indices since

Chunk 1
12824, 5948,
10000, 24 …

Chunk 2
28364, 100, 5400,
13232 …

Chunk 1
3, 1, 2, 1 …

Chunk 2
2, 1, 3 …

term 1: posting list

term 2: posting list

term 3: posting list

Chunk 1
term 1: ...
term 2: …
…
term 420: …

Chunk 2
term 421: …
term 422: …
…
term 1000: …

Suffix Array

term 1000: …

Term Dictionary Suffix Array Term Dictionary

Term dictionary
chunk number
-> byte offset

. . .

a b

Figure 3: Range reduction to compress the suffix array.

reading is fast, but again acceptable in our IO-bound case: decom-

pressing a chunk in memory is much faster than downloading the

chunk from object storage. For example, downloading 512 300KB

Zstd compressed chunks from S3 in parallel is only 5% slower than

downloading and decompressing them concurrently, compared to

70% slower from NVMe SSD on an r6id.2xlarge instance on AWS.

3.2 Full Suffix Array with Range Reduction
We resolve the second challenge by storing a heavily com-
pressed full suffix array instead of a sampled suffix array.
The FM-index points us to positions 𝑙 and 𝑟 in the BWT. We rely on

the suffix array to map these positions back to offsets in the term

dictionary. As discussed in Section 2.3, the suffix array contains as

many 64 bit integers as characters in the term dictionary, whose

massive size can negate any of our log compression benefits.

Similar to the FM-index, we store the full suffix array in chunks,

and compress each chunk. To fetch positions 𝑙 to 𝑟 , the chunks

containing those positions are downloaded and filtered for these

positions. However, if the chunks contain byte offsets of the posting

lists in the term dictionary (Figure 3a), they are still very poorly

compressible because they would contain a wide range of large

integers with minimal patterns or repetition, making standard com-

pression algorithms like Zstd ineffective at reducing their size.

In LogCloud, instead of storing offsets into the original term

dictionary, we break the term dictionary into chunks, and only

record the chunk number in the suffix array (Figure 3b). Even

though we still have to store the same number of integers as the

naive approach, the dynamic range of each integer is reduced by

several orders of magnitude. Subsequent positions in the suffix

array are also now more likely to be identical. This makes generic

compression like Zstd very effective on the suffix array. We call

this optimization technique range reduction.
This optimization is motivated by the observation that byte-

range GET requests on object storage up to around 1MB are all

latency bound and have roughly the same speed. As a result, it

is unnecessary for the secondary index to point us to the exact

20-byte term in the term dictionary. It is sufficient to point to the

1MB chunk that contains the term, then download and scan the

chunk exhaustively to locate the term. The scan cost is usually

insignificant compared to the download.

4 LOGCLOUD ARCHITECTURE
We now discuss how the novel object-storage native inverted index

fits in the overall architecture of LogCloud. LogCloud consists of

two key components, indexing and querying, shown in Figure 4.

2365

LogCloud
Index

Parquet

Parquet

Parquet

Parquet

Parquet

Parquet

Parquet

Parquet

Object Storage

LogCloud
Index

Indexing
Service

Reads Parquet files

Constructs index
and uploads to
object storage

Ingestion
Service

Grafana Server

LogCloud
Search
Client

Write latest data to
Parquet files

Figure 4: LogCloud’s architecture.

4.1 Indexing
Similar to other compute-storage decoupled log management sys-

tems, LogCloud runs an ingestion pipeline that dumps logs in Par-

quet format on object storage. What sets LogCloud apart from

other such systems is that it also runs an indexing service. Once a

configurable amount of new logs have been collected, a LogCloud

inverted index is built on the new data. We select Parquet to store

the raw logs due to its mature support for compression and other

analytics engines like SparkSQL, which can be used to supplement

LogCloud. LogCloud can also directly index logs in Parquet ingested

by another system, e.g. AWS Security Lake [6, 13, 45].

During indexing, we first use LogGrep [52] to break down in-

gested logs into template and variable components, categorizing

variables into 64 types based on their character composition (e.g.

only numeric, alphanumeric etc) [52]. For each type, LogCloud

builds an inverted index with a term dictionary divided into 1MB

chunks, as described in Section 3.2. The posting list points to Par-

quet pages, which are chunks of a few hundred KBs of compressed

data. We find that we can download and search hundreds of Parquet

pages in parallel in hundreds of milliseconds from an EC2 instance

with a heavily optimized custom Parquet reader in Rust.

If the compressed term dictionary exceeds 5MB, we construct

the secondary FM index and suffix array described in Section 3.1

to efficiently look up term dictionary chunk numbers from sub-

string queries. Otherwise, we simply scan the term dictionary. Alto-

gether, a LogCloud index file contains the templates, term dictionary

chunks, and optionally the FM index and suffix array.

4.2 Searching
LogCloud provides an embedded client library to search its index

and Parquet files on object storage. This offers flexible deployment

options anywhere that can access the object storage bucket con-

taining these files, such as on a Grafana server or on a serverless

function. The search functionality operates completely indepen-

dently from indexing and requires no always-on servers.

The search process for a top-K substring query is illustrated in

Figure 5. The latest unindexed data is scanned in Parquet directly.

LogCloud queries all the built LogCloud indices in parallel. To query

each index, the following steps occur:

Common tokens, templates

Type 1
variables

Type 53 variables

Inverted
Index

Top K search *nginx-554b9c6*

FM Index

Suffix Array

Term
Dictionary
Chunks

Search indices
of all matching
variables types

Index 0

Index 1

Search
different

indices in
parallel

Search newest
unindexed data directly

Parquet Files

Figure 5: Searchingworkflow in LogCloud. All data structures
shown in boxes are stored on object storage.

• The extracted templates are downloaded from object storage and

searched exhaustively. If the substring query matches here, the

searcher will simply abort using the index and brute force search

all the Parquet files since the target substring occurs frequently.

• URI substring searches, e.g. “∗55493∗”, will not match common

templates, leading the searcher to search the inverted indices for

the variables, described in Section 3. The LogGrep type of the

query is determined and the inverted indices for all “compatible”

types are searched in parallel. A compatible type is a type that

could contain the type of the query. For example, if the query

contains only numbers (type 1 in LogGrep), the type containing

all alphanumerics also must be searched (type 53).

• The search client first queries our custom FM-index to find posi-

tions 𝑙 and 𝑟 in the suffix array as described in Algorithm 1, then

retrieves term dictionary chunk numbers from the suffix array

between these positions. The chunks are downloaded and regex

searched for matches, with any matches leading to retrieval and

search of the referenced Parquet file pages.

Certain parts of the index, like the templates and FM-index

metadata, are small and accessed repeatedly across queries. While

these characteristics make them ideal candidates for client-side disk

caching, we do not explore this in our evaluation to maintain a

straightforward comparison with other systems due to the high

variability in cache-hit rates across various log analytics use cases.

5 RESULTS
We compare LogCloud against two representative baseline systems:

OpenSearch UltraWarm, which exemplifies compute-storage inte-

grated indices, and LogGrep, which represents the compute-storage

disaggregated approach of downloading and scanning compressed

logs [5, 52]. For the LogGrep baseline, we compress the logs us-

ing LogGrep and store them in object storage. During search, the

compressed logs are downloaded and searched on NVMe SSD.

We use four LogHub datasets, HDFS (1.5GB), Thunderbird (30GB),

Hadoop (17GB),Windows (26GB) [52, 57], as well as a 429GB dataset

named Cluster from [44]. For each dataset, we test three search

queries: common keyword, exact-match URI, and substring URI,

returning top 1000 results. For example, on the Hadoop dataset, we

search for ‘blk_1076115144∗’, ‘∗1076115144∗’ and ERROR.

2366

2367

2368

2369

REFERENCES
[1] 2024. Apache Iceberg. https://iceberg.apache.org/. Accessed: 2024-01-23.

[2] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. 2015. Succinct: Enabling

queries on compressed data. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15). 337–350.

[3] Amazon Web Services. 2023. Optimizing S3 Performance. https://docs.aws.

amazon.com/AmazonS3/latest/userguide/optimizing-performance.html.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-

performance.html

[4] Amazon Web Services. 2024. Amazon Athena. https://aws.amazon.com/athena/

Accessed: 2024-06-29.

[5] Amazon Web Services. 2024. Amazon OpenSearch Service Pricing. Amazon

Web Services. https://aws.amazon.com/opensearch-service/pricing/ Accessed:

2024-12-09.

[6] Amazon Web Services. 2024. Orca Security’s Journey to a Petabyte-Scale

Data Lake with Apache Iceberg and AWS Analytics. AWS Big Data

Blog. https://aws.amazon.com/blogs/big-data/orca-securitys-journey-to-a-

petabyte-scale-data-lake-with-apache-iceberg-and-aws-analytics/ Accessed:

December 2024.

[7] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul

Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak,

et al. 2020. Delta lake: high-performance ACID table storage over cloud object

stores. Proceedings of the VLDB Endowment 13, 12 (2020), 3411–3424.
[8] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. 2021. Lakehouse:

a new generation of open platforms that unify data warehousing and advanced

analytics. In Proceedings of CIDR, Vol. 8. 28.
[9] Mark Atkins. 2021. Find strings within strings faster with the new Elasticsearch

wildcard field. Elastic Blog. https://www.elastic.co/blog/find-strings-within-

strings-faster-with-the-new-elasticsearch-wildcard-field

[10] Philip Bille, Anders Roy Christiansen, Patrick Hagge Cording, and Inge Li

Gørtz. 2015. Finger search in grammar-compressed strings. arXiv preprint
arXiv:1507.02853 (2015).

[11] Michael Burrows. 1994. A block-sorting lossless data compression algorithm.

SRS Research Report 124 (1994).
[12] Francisco Claude and Gonzalo Navarro. 2011. Self-indexed grammar-based

compression. Fundamenta Informaticae 111, 3 (2011), 313–337.
[13] Cribl. 2024. Parquet Schemas - Cribl Stream Documentation. https://docs.cribl.

io/stream/4.3/parquet-schemas/ Accessed: December 2024.

[14] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin

Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,

Jiansheng Huang, et al. 2016. The snowflake elastic data warehouse. In Proceed-
ings of the 2016 International Conference on Management of Data. 215–226.

[15] DataDog. 2023. DataDog. https://www.datadoghq.com/

[16] Datadog. 2024. Datadog Flex Logs. Datadog Documentation. https://docs.

datadoghq.com/logs/log_configuration/flex_logs/ Accessed: 2024-02-23.

[17] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor,

and Michael Strum. 2017. Optimizing Space Amplification in RocksDB.. In CIDR,
Vol. 3. 3.

[18] Dominik Durner, Viktor Leis, and Thomas Neumann. 2023. Exploiting Cloud Ob-

ject Storage for High-Performance Analytics. Proceedings of the VLDB Endowment
16, 11 (2023), 2769–2782.

[19] Elastic. 2023. Elastic Kibana. https://www.elastic.co/kibana

[20] Elastic. 2023. Elasticsearch Platform — Find real-time answers at scale. https:

//www.elastic.co/

[21] Facebook. 2023. Zstandard - Fast real-time compression algorithm.

https://github.com/facebook/zstd. Original-source code available at

https://github.com/facebook/zstd.

[22] Paolo Ferragina and Giovanni Manzini. 2000. Opportunistic data structures with

applications. In Proceedings 41st annual symposium on foundations of computer
science. IEEE, 390–398.

[23] Paolo Ferragina and Giovanni Manzini. 2005. Indexing compressed text. J. ACM
52, 4 (2005), 552–581.

[24] Simon Gog, Juha Kärkkäinen, Dominik Kempa, Matthias Petri, and Simon J

Puglisi. 2019. Fixed block compression boosting in FM-indexes: Theory and

practice. Algorithmica 81 (2019), 1370–1391.
[25] Grafana. 2023. Grafana Loki OSS | Log aggregation system. https://grafana.com/

oss/loki/

[26] Grafana Labs. 2024. Understanding Grafana Cloud Logs Billing. Grafana Cloud

Documentation. https://grafana.com/docs/grafana-cloud/cost-management-

and-billing/understand-your-invoice/logs-invoice/ Accessed: 2024-02-23.

[27] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. 2003. High-order entropy-

compressed text indexes. (2003).

[28] Roberto Grossi, Jeffrey Scott Vitter, and Bojian Xu. 2011. Wavelet trees: From

theory to practice. In 2011 First International Conference on Data Compression,

Communications and Processing. IEEE, 210–221.
[29] Guy Joseph Jacobson. 1988. Succinct static data structures. Carnegie Mellon

University.

[30] Suman Karumuri, Franco Solleza, Stan Zdonik, and Nesime Tatbul. 2021. Towards

observability data management at scale. ACM SIGMODRecord 49, 4 (2021), 18–23.
[31] Julian Labeit, Julian Shun, and Guy E Blelloch. 2017. Parallel lightweight wavelet

tree, suffix array and FM-index construction. Journal of Discrete Algorithms 43
(2017), 2–17.

[32] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized struc-

tured storage system. ACM SIGOPS operating systems review 44, 2 (2010), 35–40.

[33] Heng Li and Richard Durbin. 2009. Fast and accurate short read alignment with

Burrows–Wheeler transform. bioinformatics 25, 14 (2009), 1754–1760.
[34] M3DB. 2023. M3: Open Source Metrics Engine. https://m3db.io/

[35] Christos Makris. 2012. Wavelet trees: A survey. Computer Science and Information
Systems 9, 2 (2012), 585–625.

[36] Mehryar Mohri. 2004. Weighted finite-state transducer algorithms. an overview.

Formal Languages and Applications (2004), 551–563.
[37] Yuta Mori. [n.d.]. libdivsufsort: A lightweight suffix sorting library. https:

//github.com/y-256/libdivsufsort. Accessed: 2024-06-22.

[38] Craig G Nevill-Manning and Ian H Witten. 1997. Identifying hierarchical struc-

ture in sequences: A linear-time algorithm. Journal of Artificial Intelligence
Research 7 (1997), 67–82.

[39] OpenSearch. 2023. OpenSearch. https://www.opensearch.org/

[40] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The

log-structured merge-tree (LSM-tree). Acta Informatica 33 (1996), 351–385.
[41] Rahul Potharaju, Terry Kim, Eunjin Song, WentaoWu, Lev Novik, Apoorve Dave,

Andrew Fogarty, Pouria Pirzadeh, Vidip Acharya, Gurleen Dhody, et al. 2021.

Hyperspace: The indexing subsystem of azure synapse. Proceedings of the VLDB
Endowment 14, 12 (2021), 3043–3055.

[42] Rahul Potharaju, Terry Kim, Wentao Wu, Vidip Acharya, Steve Suh, Andrew

Fogarty, Apoorve Dave, Sinduja Ramanujam, Tomas Talius, Lev Novik, et al.

2020. Helios: hyperscale indexing for the cloud & edge. Proceedings of the VLDB
Endowment 13, 12 (2020), 3231–3244.

[43] Quickwit. 2023. Quickwit. https://quickwit.io/

[44] Kirk Rodrigues, Yu Luo, and Ding Yuan. 2021. {CLP}: Efficient and Scalable

Search on Compressed Text Logs. In 15th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 21). 183–198.

[45] Amazon Web Services. 2021. Security Data Management - Amazon Security Lake.
https://aws.amazon.com/security-lake/

[46] Splunk. 2022. How to extract bunch of UUIDs from a string using regex. Splunk
Community. https://community.splunk.com/t5/Splunk-Search/How-to-extract-

bunch-of-UUIDs-from-a-string-using-regex/m-p/622971

[47] Splunk. 2023. Splunk. https://www.splunk.com/

[48] Splunk Inc. 2024. Indexing and search architecture. https:

//lantern.splunk.com/Splunk_Success_Framework/Platform_Management/

Indexing_and_search_architecture Accessed: 2024-07-03.

[49] Sumo Logic. 2023. What You Should Know About Datadog Flex Logs and

Pricing. Sumo Logic Blog. https://www.sumologic.com/blog/should-know-

about-datadog-flex-logs/ Accessed: 2024-02-23.

[50] Joris van der Walker. 2023. The Burrows-Wheeler Transform. https://

curiouscoding.nl/posts/bwt/. https://curiouscoding.nl/posts/bwt/ Accessed

on 2024-10-20.

[51] Vantage. 2024. AWS EC2 r6i.xlarge On-Demand Instance Pricing. https:

//instances.vantage.sh/aws/ec2/r6i.xlarge. https://instances.vantage.sh/aws/

ec2/r6i.xlarge Accessed on [Insert Access Date].

[52] JunyuWei, Guangyan Zhang, Junchao Chen, YangWang,Weimin Zheng, Tingtao

Sun, Jiesheng Wu, and Jiangwei Jiang. 2023. LogGrep: Fast and Cheap Cloud

Log Storage by Exploiting both Static and Runtime Patterns. In Proceedings of
the Eighteenth European Conference on Computer Systems. 452–468.

[53] Junyu Wei, Guangyan Zhang, Yang Wang, Zhiwei Liu, Zhanyang Zhu, Junchao

Chen, Tingtao Sun, and Qi Zhou. 2021. On the Feasibility of Parser-based Log

Compression in {Large-Scale} Cloud Systems. In 19th USENIX Conference on
File and Storage Technologies (FAST 21). 249–262.

[54] Shiyan Xu and Sivabalan Narayanan. 2023. Record Level Index: Hudi’s blazing

fast indexing for large-scale datasets. https://hudi.apache.org/blog/2023/11/01/

record-level-index/. Accessed: 2024-07-05.

[55] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Wenguang Chen. 2018.

Efficient document analytics on compressed data: Method, challenges, algorithms,

insights. Proceedings of the VLDB Endowment 11, 11 (2018), 1522–1535.
[56] Feng Zhang, Jidong Zhai, Xipeng Shen, Dalin Wang, Zheng Chen, Onur Mutlu,

Wenguang Chen, and Xiaoyong Du. 2021. TADOC: Text analytics directly on

compression. The VLDB Journal 30 (2021), 163–188.
[57] Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R Lyu. 2020. Loghub:

A Large Collection of System Log Datasets for AI-driven Log Analytics. arXiv
e-prints (2020), arXiv–2008.

2370

https://iceberg.apache.org/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://aws.amazon.com/athena/
https://aws.amazon.com/opensearch-service/pricing/
https://aws.amazon.com/blogs/big-data/orca-securitys-journey-to-a-petabyte-scale-data-lake-with-apache-iceberg-and-aws-analytics/
https://aws.amazon.com/blogs/big-data/orca-securitys-journey-to-a-petabyte-scale-data-lake-with-apache-iceberg-and-aws-analytics/
https://www.elastic.co/blog/find-strings-within-strings-faster-with-the-new-elasticsearch-wildcard-field
https://www.elastic.co/blog/find-strings-within-strings-faster-with-the-new-elasticsearch-wildcard-field
https://docs.cribl.io/stream/4.3/parquet-schemas/
https://docs.cribl.io/stream/4.3/parquet-schemas/
https://www.datadoghq.com/
https://docs.datadoghq.com/logs/log_configuration/flex_logs/
https://docs.datadoghq.com/logs/log_configuration/flex_logs/
https://www.elastic.co/kibana
https://www.elastic.co/
https://www.elastic.co/
https://github.com/facebook/zstd
https://grafana.com/oss/loki/
https://grafana.com/oss/loki/
https://grafana.com/docs/grafana-cloud/cost-management-and-billing/understand-your-invoice/logs-invoice/
https://grafana.com/docs/grafana-cloud/cost-management-and-billing/understand-your-invoice/logs-invoice/
https://m3db.io/
https://github.com/y-256/libdivsufsort
https://github.com/y-256/libdivsufsort
https://www.opensearch.org/
https://quickwit.io/
https://aws.amazon.com/security-lake/
https://community.splunk.com/t5/Splunk-Search/How-to-extract-bunch-of-UUIDs-from-a-string-using-regex/m-p/622971
https://community.splunk.com/t5/Splunk-Search/How-to-extract-bunch-of-UUIDs-from-a-string-using-regex/m-p/622971
https://www.splunk.com/
https://lantern.splunk.com/Splunk_Success_Framework/Platform_Management/Indexing_and_search_architecture
https://lantern.splunk.com/Splunk_Success_Framework/Platform_Management/Indexing_and_search_architecture
https://lantern.splunk.com/Splunk_Success_Framework/Platform_Management/Indexing_and_search_architecture
https://www.sumologic.com/blog/should-know-about-datadog-flex-logs/
https://www.sumologic.com/blog/should-know-about-datadog-flex-logs/
https://curiouscoding.nl/posts/bwt/
https://curiouscoding.nl/posts/bwt/
https://curiouscoding.nl/posts/bwt/
https://instances.vantage.sh/aws/ec2/r6i.xlarge
https://instances.vantage.sh/aws/ec2/r6i.xlarge
https://instances.vantage.sh/aws/ec2/r6i.xlarge
https://instances.vantage.sh/aws/ec2/r6i.xlarge
https://hudi.apache.org/blog/2023/11/01/record-level-index/
https://hudi.apache.org/blog/2023/11/01/record-level-index/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Background: Inverted Indices after Log Compression
	2.2 Challenge: Substring Searches on URIs
	2.3 Solution: The BWT and FM-index
	2.4 Challenge: Query Latency on Object Storage

	3 Object Store Native Inverted Index
	3.1 Fast Search with Custom FM-Index
	3.2 Full Suffix Array with Range Reduction

	4 LogCloud Architecture
	4.1 Indexing
	4.2 Searching

	5 Results
	5.1 Storage Footprint
	5.2 Search Latency
	5.3 Total Cost of Ownership
	5.4 Ablation Studies
	5.5 Scalability
	5.6 Production Test Case

	6 Related Work and Conclusion
	Acknowledgments
	References

