
Hermes: Off-the-Shelf Real-Time Transactional Analytics

Elena Milkai
University of Wisconsin-Madison

milkai@wisc.edu

Xiangyao Yu
University of Wisconsin-Madison

yxy@cs.wisc.edu

Jignesh M. Patel
Carnegie Mellon University

jignesh@cmu.edu

ABSTRACT

Many modern applications require real-time analytics, where ana-
lytical processing (AP) workloads needs access to the latest data up-
dates from a transactional processing (TP) engine. However, manag-
ing separate TP and AP engines across teams complicates achieving
real-time analytics without switching to specialized HTAP systems.
To address this challenge, we introduce off-the-shelf real-time ana-

lytics, a system design that leverages the existing TP and AP engines
to provide (1) the latest transactional updates for analytical queries
and (2) support for efficient transactional analytics–transactions
that combine transactional logic and analytical queries within a
single ACID transaction–at various isolation levels. We demon-
strate this concept with a new service called Hermes, which acts as
a middleware that merges log records with analytical reads without
altering existing engines. Our evaluation utilizes two AP engines,
FlexPushdownDB and DuckDB, withMySQL as the TP engine. Using
the HATtrick benchmark and a new workload called Transactional

Analytics Workload (TAW), we compare Hermes with the leading
HTAP solution, TiDB. Our results indicate that Hermes performs
comparably to current HTAP solutions for real-time analytics and
surpasses them by 3× in transactional analytics performance.

PVLDB Reference Format:

Elena Milkai, Xiangyao Yu, and Jignesh M. Patel. Hermes: Off-the-Shelf
Real-Time Transactional Analytics. PVLDB, 18(8): 2334-2347, 2025.

doi:10.14778/3742728.3742731

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/elenamilkai/Hermes_layer.git.

1 INTRODUCTION

Real-time data analytics is increasingly critical in modern applica-
tions [36, 39, 64] such as fraud detection, dashboarding, healthcare,
and cluster monitoring. These applications require analytical pro-
cessing (AP) to read fresh updates from the transactional processing
(TP) engines in real time. It is commonplace for organizations to
maintain multiple independent and heterogeneous TP and AP en-
gines [57, 66]. These engines, potentially managed by distinct teams,
cater to specific use cases. Providing real-time analytics in such an
architecture is challenging due to the need for synchronization.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.
doi:10.14778/3742728.3742731

The state-of-the-art solution for achieving real-time analytics
over fresh data is through hybrid transactional/analytical process-
ing (HTAP) systems [25, 29, 31, 33, 37, 45, 50, 51, 54, 55, 61, 63, 65].
However, existing HTAP systems face a fundamental limitation:
Compulsory migration. HTAP solutions tightly couple AP and
TP for high performance and fresh queries. Consequently, orga-
nizations must transition from their current TP and AP engines
and migrate all data functions into a new HTAP database. This
incurs significant cost and management overhead [9, 71]. Moreover,
this migration may not be feasible if the HTAP engine fails to sup-
port essential functions provided by the current TP or AP engines.
Supporting all functions from diverse engines into a single HTAP
system is a daunting challenge.

To address this limitation and build a system that achieves real-
time analytics using the existing TP and AP engines already de-
ployed in an organization, we must tackle two key challenges:

• Challenge 1: Support for pluggable engines. We need a
solution that simplifies the integration of most TP and AP en-
gines that meet certain specific requirements, acknowledging
that it is challenging to generalize for all engines. Our goal is to
minimize or, ideally, eliminate the need for modifications within
these engines by creating a solution compatible with founda-
tional principles across TP and AP engines, which we discuss
in Section 3.2. The optimal approach would involve implement-
ing real-time analytics functionality externally, reducing the
need for extensive alterations to individual engines. This ap-
proach enhances adaptability and seeks a solution that can be
generalized across a wide range of engines, while recognizing
the limitations in achieving complete universality.

• Challenge 2: Efficient True HTAP Transactions. True HTAP

transactions [57] are transactions in which transactional logic
and analytical queries are processed within a single ACID trans-
action. This capability simplifies application development [30]
and enables new application scenarios [41, 75], which we dis-
cuss in detail in Section 4.3. In this paper, we refer to this ca-
pability as Transactional Analytics and label such a transaction
an Analytical Transaction. Achieving efficient execution of real-
time transactional analytics within a decoupled architecture
imposes significant challenges. While distinct specialized en-
gines enable effective execution of each component of these
transactions, they complicate the maintenance of data consis-
tency and correctness according to the specified isolation level.

In this paper, we introduce off-the-shelf real-time analytics, a
novel architecture designed to address these challenges as follows:
Solution to Challenge 1: An off-the-shelf real-time analytics sys-

tem is constructed using existing TP and AP engines with no or
minimal modifications to them. The key insight is to introduce a
new system layer between the database engines and the storage,
which merges the transactional logs with the analytical reads for

2334

https://doi.org/10.14778/3742728.3742731
https://github.com/elenamilkai/Hermes_layer.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3742728.3742731
https://www.acm.org/publications/policies/artifact-review-and-badging-current

analytical queries. Unlike existing HTAP databases that conduct
this merging functionality within the database engines, we demon-
strate the feasibility of performing this outside the TP/AP engines
in a non-intrusive manner. This approach avoids the need for com-
pulsory migration, allowing organizations to continue using their
existing TP/AP engines. It also achieves fresh queries and delivers
performance that is competitive with current HTAP systems.
Solution to Challenge 2: An off-the-shelf real-time analytics sys-

tem aims to enable efficient Transactional Analytics. For high perfor-
mance, the analytical components run on the AP engine, while the
transactional components run on the TP engine. In these systems,
achieving transactional analytics at the requested isolation level
involves minimal modifications to the internals of the TP/AP en-
gines. The solution relies on coordination between the off-the-shelf
system and TP/AP engines for achieving various isolation levels.

To validate our architecture, we built Hermes, a prototype real-
time transactional analytics system for the cloud. Hermes acts as a
middle layer between computation and storage, intercepting storage
requests from TP (e.g., logging to AWS EBS) and AP engines (e.g.,
reading from AWS S3). It delivers fresh analytics by merging log
data with analytical reads and coordinating with the TP engine to
maintain the correct isolation level for the AP engine.

We evaluate the performance of Hermes using MySQL [14] as
the TP engine and FlexPushdownDB [73] and DuckDB [60] as the
AP engines. Our results show that Hermes integration adds minimal
overhead to existing engines. We compare Hermes’ performance
with MySQL and TiDB [37] on standard HTAP workloads, demon-
strating a competitive performance and cost trade-off. To evaluate
Hermes on transactional analytics, we developed the Transactional
Analytics Workload (TAW) by enhancing existing HTAP workloads.
Our results show that Hermes outperforms existing solutions (e.g.,
MySQL and TiDB) by 3×, demonstrating the feasibility of off-the-
shelf real-time and transactional analytics.

In summary, this paper makes the following key contributions:

• We introduce the concept of off-the-shelf real-time analytics,
that allows fresh analytics over existing TP and AP engines.

• We introduce and implement transactional analytics, a key fea-
ture for current HTAP systems.

• We develop Hermes, a system that enables off-the-shelf real-
time analytics and transactional analytics.

• Our evaluation indicates that Hermes exhibits comparable per-
formance to MySQL and TiDB on HATtrick, while outperform-
ing both by 4× on TAW.

The remainder of the paper is organized as follows. Section 2
presents our motivation. Section 3 provides an overview of Hermes.
Section 4 delves into how Hermes supports Transactional Analytics.
Section 6 evaluates the performance of Hermes. Finally, Section 7
discusses related work and Section 8 concludes the paper.

2 DESIGN GOALS

This section introduces the two main goals an off-the-shelf real-time

analytics system should achieve and discusses the approach taken
by existing HTAP systems, thereby motivating our solution.
Goal 1: Support for pluggable engines. Most existing HTAP
solutions [22, 25, 25, 29, 31–33, 33, 37, 40, 45–47, 51, 54, 55, 61, 61,

63, 65] require data migration due to tight integration between
their computation and storage engines, making transitions to other
compute engines or cloud storage challenging. Systems like F1-
Lightning [72] and Hudi [4] offer some flexibility with pluggable
TP and AP engines, but only support near real-time analytics, with
updates delayed by ∼10 minutes. This makes them unsuitable for
applications that require high freshness, which is critical in HTAP.
Key idea 1: Real-time analytics with existing TP/AP engines.

An off-the-shelf real-time analytics system achieves real-time an-
alytics on the latest transactional data without requiring engine
migration; instead it uses existing TP/AP engines and storage ser-
vices. This enables users to select optimized engines and storage
for TP and AP, avoiding migration efforts. The trade-off is the need
for efficient synchronization to maintain high or perfect freshness.
A system achieves perfect freshness when each analytical query
can read changes of all transactions that have committed (i.e., lin-
earizability). The challenge lies in achieving fresh analytics without
impacting TP/AP performance or modifying engine internals. In
Section 3, we present our architecture, and our evaluation (Sec-
tions 6.2, 6.3) shows that our design avoids performance overhead
while matching state-of-the-art HTAP systems.
Goal 2: Efficient Transactional Analytics. An analytical trans-
action consists of both transactional logic and analytical queries
that are executed under the same isolation level [57]. The analytical
part contains queries of varying complexity, which are significantly
accelerated when processed in specialized engines (e.g., columnar
databases) ensuring time and cost efficiency. The results of the
queries can then be used to perform more operations on the trans-
actional data (e.g., update a table). The analytical query must see
the correct data based on the enforced isolation level.
Application scenario: In fraud detection, real-time data on users’ re-

cent behavior is analyzed alongside historical data to proactively
prevent or address fraud [20]. This analysis must occur at the same
isolation level as other operations within the analytical transac-
tion. Upon detecting fraud, the database should reliably revert to
a known state by rolling back the transaction or continuing re-
maining operations, ensuring accurate fraud detection and robust
management of potential fraudulent activities.

Efficiently executing transactional analytics is a major challenge
for decoupled HTAP systems. Our evaluation (Section 6.4) shows
that even leading HTAP systems struggle with performance under
such workloads. Additionally, some systems only partially support
this functionality, offloading concurrency control to clients—a com-
plex, error-prone approach that adds engineering overhead [30].
Key idea 2: Efficient transactional analytics in off-the-shelf

systems. An off-the-shelf real-time analytics system enables ef-
ficient transactional analytics by selecting the optimal engine for
each workload component—transactional logic is executed in the
TP engine and analytical in the AP engine. Its decoupled design,
however, challenges consistency and correctness across isolation
levels. To address this, analytical queries must operate on an ac-
curate data snapshot. The system achieves this by retrieving log
statements that match the correct snapshot and coordinating with
the TP engine to enforce it, reducing TP-AP communication. In Sec-
tion 4, we detail these challenges and our solution for supporting
transactional analytics across isolation levels.

2335

3 HERMES OVERVIEW

In this section, we introduce Hermes, an off-the-shelf real-time
analytics prototype system, and discuss its architecture, integration
with existing engines and design details.

3.1 System Architecture

Figure 1 illustrates the architecture of a hypothetical organization
using Hermes. The TP engine handles transactional requests, while
the AP engine serves analytical queries. Data storage is decoupled,
with AP data stored in a cloud storage service. The transactional
log from the TP engine provides fresh data for the AP engine and
is also persisted in a cloud storage service. Hermes acts as the
synchronization hub between the TP and AP engines.

Hermes includes two in-memory caches: the Log Cache and
M-Delta Cache, as well as three services: DeltaPump, Foreground
Merge (FGM), and Background Merge (BGM). The Log Cache holds
the transactional log tail from the TP engine in memory. DeltaPump
processes and forwards the log tail to the M-Delta Cache. FGM
merges the latest updates from the M-Delta Cache with stable data
during analytical reads, while BGM merges asynchronously data
from the M-Delta Cache into storage to prevent cache overflow.
Workflow. The TP engine directs the logs to Hermes (i.e, Log
Cache), which forwards them to cloud storage. When an analyti-
cal query arrives, the AP engine reroutes cloud storage requests
to Hermes. Upon receiving the first request, Hermes triggers the
DeltaPump service to transfer log tail data from the Log Cache to
the M-Delta Cache. Simultaneously, Hermes retrieves stable data
from cloud storage and uses the FGM service to merge it with the
latest updates from the M-Delta Cache. The merged, up-to-date
data is returned to the AP engine in the same stable format (e.g.,
Parquet [6]), enabling the rest of query execution to proceed. In
the background, Hermes runs the BGM service asynchronously to
prevent indefinite M-Delta Cache growth.

Since a transaction is considered committed once the commit
record hits storage, the AP engine can, by definition, observe only
committed transactions. Consequently, Hermes ensures freshness
and snapshot consistencywith the current OLTP copy for all queries.

3.2 Hermes Integration

In this sections we outline key requirements for the TP and AP
engines to support off-the-shelf real-time analytics. In addition,
we discuss the Hermes integration details with MySQL [14] as TP
engine, and FPDB [73] and DuckDB [60] as AP engines.

3.2.1 TP Engine Interface. In Hermes, the TP engine handles
transactional requests, with the transaction log serving as the main
interface between Hermes and the TP engine to maintain data
freshness in AP engine queries. Off-the-shelf real-time analytics
requires the TP engine to provide a row-level log where the updates
can be extracted and merged with analytical reads in real-time.
Log Granularity and Hermes Integration. Systems like My-
SQL [14], SQL Server [32] and IBM Db2 [38] are well suited for
Hermes as they can generate row-level log. In contrast, systems
like PostgreSQL [59] and Oracle [56] generate logs that capture
changes at different levels of granularity such as data pages or













  
















 










































Figure 1: Hermes architecture and main components.

blocks. In this case, integration with Hermes requires post-proces-
sing of the log, which involves three key steps: (1) identifying the
rows that were modified, inserted, or deleted based on the phys-
ical changes recorded at the page/block level, (2) decoding these
changes and translating them into logical operations that accurately
represent the database’s behavior (e.g., update, insertion, deletion),
and (3) converting the row-level changes into a standardized format
(e.g., Avro) to ensure compatibility. Finally, systems that rely on
command-level logging, such as VoltDB [52], are generally incom-
patible with Hermes; integration requires modifications to the TP
engine internals, as post-processing of the log alone is insufficient.
MySQL Integration Details.We integrate Hermes with MySQL
[14], an OLTP-optimized database management system (DBMS),
by directing its row-based binary log to a network-accessible Log
Cache on the Hermes server. For durability, Hermes forwards logs
to AWS EBS. This integration requires only a log path update in
MySQL’s configuration, with no code modifications.
ACID Correctness in Hermes. By preserving TP engine’s transac-
tional integrity and merging only committed logs, Hermes ensures
ACID compliance for transactions and analytical queries.
Preserving ACID in Transactions. Hermes acts as a log forwarding

layer, leaving TP engine’s transaction processing unchanged and
preserving its ACID guarantees. When a transaction commits, the
TP engine writes its log to Hermes’ Log Cache, which forwards it
to persistent storage. Once stored, the storage acknowledges the
Log Cache, which then confirms to the TP engine. Since the TP
engine commits only after this acknowledgment, its logging process
remains unchanged. If log forwarding fails, the TP engine does not
receive the acknowledgment, triggering its standard recovery.
Ensuring ACID in Queries. Hermes guarantees atomicity for qu-

eries by processing only fully committed transactions, preventing
partial writes or exposure of incomplete data to the AP engine. If
log forwarding fails, uncommitted log records are discarded, and
only fully committed ones are replayed upon recovery.

To maintain consistency, Hermes relies on the TP engine’s trans-
action log as the single source of truth, merging only committed
records. This prevents the AP engine from observing inconsistent
intermediate states. Furthermore, isolation is upheld as Hermes
ensures that in-progress transactions remain hidden from the AP

2336

engine. Only fully committed log records are made available, pre-
venting anomalies from concurrent execution.

Finally, durability is preserved since transactions are considered
durable only after being written to the TP engine’s dedicated stor-
age. Hermes adheres to this protocol, making log records accessible
to the AP engine only after they are persistently stored.

3.2.2 AP Engine Interface. In Hermes, AP engines are critical
in serving analytical requests. For real-time analytics, AP engines
should direct their storage engine requests to Hermes. This setup
renders the analytical storage transparent to the AP engine, shifting
the responsibility to Hermes for providing the latest data. Conse-
quently, Hermes necessitates that the AP engine consistently reads
data directly from storage. As such, the AP engine cannot leverage
its local data cache. To address this limitation, we propose offloading
the AP cache to Hermes.
FPDB and DuckDB Integration Details. We integrated Hermes
with two AP engines: FPDB [73], a cloud OLAP DBMS, and Duck-
DB [60], an embeddable OLAP DBMS. For both integrations, we
followed a similar approach. Specifically, we redirected scan opera-
tors’ data requests to Hermes, aligning with each AP engine’s data
access pattern (e.g., reading data frommultiple partitions simultane-
ously). To direct requests to Hermes, we used an RPC protocol like
Apache Thrift [8] for server-client communication. Each request
specifies the data Hermes should provide, and Hermes returns the
updated data to the AP engine for the rest of the query execution.
Overall, we added fewer than 100 lines of code across both engines,
primarily to implement Hermes and AP engines communication.

3.3 Hermes Design Details

This section outlines Hermes design, focusing on the Foreground
and Background Merge algorithms, and its storage organization.

3.3.1 Data Organization. The data in Hermes is organized into
three categories: stable data, transaction logs, and deltas.
Stable Data.Hermes manages multiple segments of data during the
merging process, as shown in Figure 1. The AP data of Hermes are
stored in a distributed cloud storage service; we call them stable data.
Stable data is horizontally partitioned based on the primary key
and sorted by the primary key within each partition. Each partition
is saved as a separate file in the cloud storage and contains all
columns corresponding to the rows within that partition. Currently,
Hermes supports stable data in CSV and Parquet formats [6] and can
handle other industry-standard formats (e.g., XML, JSON, Avro) [5]
without modifying its internal functionality.
Transaction Log. The row-level transaction log records the history
of changes to the TP data as data events. These events capture
table row operations such as insertions (INS), updates (UPD), and
deletions (DEL). In addition to storing the log in persistent storage,
Hermes also maintains it in the Log Cache to enable faster access.
Deltas. Hermes uses DeltaPump to parse the transaction log and
extract the most recent updates from its tail, referred to as tail-deltas
(t-deltas). Each t-delta contains the after-images of row changes
along with the type of change (e.g., INSERT, UPDATE, DELETE).
The t-deltas are sorted by the primary key, and DeltaPump assigns a
timestamp to each t-delta, marking the time the log tail was parsed.

Upon retrieval, t-deltas are stored in the M-Delta Cache along-
side previously fetched deltas; called memory deltas (m-deltas). All
deltas share the same data format, but differing in their timestamps.
The M-Delta Cache is designed to enhance the performance of
foreground merges by keeping the most recent log data in memory.
Older m-deltas are asynchronously written to cloud storage during
background merges, referred to as disk deltas (d-deltas).

3.3.2 Foreground Merge (FGM). For a data partition, FGM pro-
cesses a stable data file, several m-delta files, and a t-delta file, all
sorted by the primary key. FGM merges these files to produce an
output reflecting the latest TP updates. When a key appears in mul-
tiple files, FGM ensures the newest delta overwrites older versions,
including only the latest key version in the output.

The version of a key that participates in the merging process
depends on the analytical query’s isolation level. Before merging,
Hermes identifies the relevant entries from the log that must be
incorporated into the current analytical read. This process ensures
support for repeatable reads, enabling transactions that require
older versions of keys to access the corresponding data. For this
discussion, analytical queries executed outside a transaction follow
the default isolation level, Read Committed.
FGM Algorithm. The FGM algorithm consists of two phases: the
bitMap generation phase and the filtering phase. The bitMap gener-
ation phase uses the k-way merge algorithm to produce �푘 bitMaps,
one per input file, identifying rows to retain. The filtering phase
applies these bitMaps to exclude unwanted entries from each file.

All input files are sorted by the primary key and are processed
in order during the bitMap generation phase. For duplicate keys
across files, bits in older files (by timestamp) are set to 0; otherwise,
they are set to 1. The duration of this step depends on the log tail
size, which remains constant across queries but is affected by the TP
engine’s T-Throughput. To optimize performance, Hermes caches
bitMaps in memory, avoiding regeneration costs for subsequent
FGM calls. Each new call updates bitMaps incrementally, flipping
bits from 1 to 0 as needed. While bitMaps are small, they can be
regenerated for large cold data if caching is infeasible.

After bitmap generation, the filtering phase follows excluding
records marked as 0 in the bitmaps. To optimize filtering, Hermes
uses the Gandiva [3] expression compiler, which generates LLVM-
based native code and leverages the Arrow format and modern
hardware (e.g., SIMD). After filtering, the remaining records from
each input file are concatenated and forwarded to the AP engine.
Hermes enables parallelism by concurrently scanning some data
batches, processing others with FGM, and forwarding others to the
AP engine, thereby reducing end-to-end latency.

Hermes avoids modifying the stable data or creating new ver-
sions through copy-on-write techniques. Instead, it leverages di-
rectly the data from the row-level transaction log that records both
the updated and unchanged columns of each row, enabling the
construction of up-to-date data snapshots for analytical queries.
During analytical reads, Hermes incorporates updated rows into
query results while suppressing outdated rows in stable data using
bitmaps (filtering phase). This approach ensures analytics operate
on the latest data without modifying stable data and resembles
multi-versioning, with deltas accumulating in memory over time,
each tied to a specific timestamp.

2337

request ReadView(S2)

S1. UPDATE TABLE customer
 SET ...
 WHERE ...
S2. SET @min_order_date = (

 SELECT ...
 FROM customer JOIN orders
 GROUP BY ...
 ORDER BY ...
 LIMIT 1

)
S3. DELETE FROM customer
 WHERE order_date < @min_order_date

TP
Engine

Hermes

AP
Engine

Storage Service
execute S1 1 log(S1) 2

Log Cache
persist log(S1) 3

Trx Log
START TAW TRANSACTION

M-Delta Cache

DeltaPump

execute S2 4
request
data(S2) 5

6c

7

request
data(S2) 6a

return
data(S2) 9

Stable
OLAP
Tables

request
log tail6b

return
log tail 8

FGM

return fresh
data(S2) 10COMMIT return result 11

execute S3 12

BGM

log(S3) 13 persist log(S3) 14

Storage Service
return. ReadView(S2)

Figure 2: Execution flow of an analytical transaction in Hermes with Snapshot Isolation (SI). Note that the workflow remains

unchanged whether Hermes is present or not. An additional coordination exists between the TP engine and Hermes, enabling

Hermes to receive the list of visible transactions necessary for achieving SI. This coordination integrates seamlessly

.

3.3.3 BackgroundMerge (BGM). As more queries are executed,
m-deltas will accumulate, occupying more memory capacity. To
mitigate this problem, we design a background process that period-
ically moves the m-deltas to the cloud storage service.
BGM Algorithm. The BGM process is triggered once the size
of the m-delta cache exceeds the threshold �푇�푐�푎�푐ℎ�푒 . Then, each m-
delta whose size exceeds a threshold�푇�푑�푒�푙�푡�푎 is evicted to the storage
engine. To avoid blocking the execution of upcoming queries, a
dedicated thread is responsible for evicting the current m-deltas
from cache and copy them to the cloud storage. This thread is
different from the thread that handles the m-delta and bitMap cache.
Depending on the size of the data that have to be uploaded in the
cloud storage, the BGM process might take longer time to complete.
Each m-delta is uploaded on the cloud storage as a new CSV or
Parquet file with the timestamp of the delta attached in the name of
the file. We call these files disk-deltas (d-deltas). The d-deltas will
be included in the future FGM processes, and they will be treated
similarly to an m-delta with an older timestamp. More specifically,
a separate bitMap will be generated for the d-delta of a partition
that will be cached and updated by the new t-delta entries.

4 TRANSACTIONAL ANALYTICS WITH

HERMES

Hermes not only achieves off-the-shelf real-time analytics but also
enables real-time transactional analytics.

4.1 Design Challenges

We identify the following two key challenges when integrating
transactional analytics into off-the-shelf real-time analytics system.
#1: Efficient Engine Selection. To optimize the execution of trans-
actional analytics within an off-the-shelf real-time analytics system,
it is essential to process transactional statements in the TP engine
and analytical statements in the AP engine. This approach ensures
that each workload type is executed in its respective specialized
engine, thus maximizing efficiency and performance.
#2: Isolation Level Consistency. Efficient engine selection man-
dates that analytical statements within an analytical transaction
executes in the AP engine. Maintaining consistent isolation levels
for both analytical and transactional statements across different

engines is crucial [43, 76]. This synchronization responsibility falls
to the TP engine, ensuring that the AP engine accesses accurate
data based on the selected isolation level. Ideally, transactional
analytics integration should align with TP/AP engines’ inherent
characteristics, avoiding internal logic modifications.

4.2 Hermes’ Isolation Levels Solutions

This section introduces Hermes’ generalized solutions for transac-
tional analytics under Snapshot Isolation, Serializable, and Read
Committed, as well as MySQL-specific implementations.

4.2.1 Snapshot Isolation. Snapshot Isolation (SI) [26] ensures
that each transaction sees a consistent snapshot of the database
as it existed at a specific point in time, typically at the start of the
transaction. In database systems, SI is typically implemented using
Multi-Version Concurrency Control (MVCC) [27]. In this design,
a transaction accessing a table with SI must determine the visible
snapshot and read only the data within that snapshot. Different
systems represent the snapshot in different ways; some use a single
timestamp [28, 32, 49] and others use a compact representation of a
list of transaction IDs [14, 59]. We assume the list of transaction IDs
in the following discussion but the solution apply to both scenarios.

The list of visible transaction IDs determines which versions are
included in a transaction’s snapshot. At the start of a transaction’s
execution, the TP engine gathers this list and shares it with Her-
mes. By the time the first analytical query, within the analytical
transaction, is about to execute in the AP engine, Hermes will have
the list and can use it to retrieve the correct log events.

This solution applies to any TP engine supporting SI with MVCC
and a row-level transaction log, needing only minor code changes
to transmit the transaction ID list to Hermes.
Workflow Example. Figure 2 illustrates the execution flow of
an analytical transaction with Hermes under snapshot isolation,
comprising three statements: (S1) an update, (S2) an analytical
query, and (S3) a delete. The transaction begins with S1 executed
in the TP engine (step 1), generating a log saved in Hermes’s Log
Cache (step 2) and persisted to the Storage Service (step 3). Next, S2
is sent to the AP engine (step 4), which requests data from Hermes
(step 5). Hermes retrieves stable data from the Storage Service (step
6a), fetches the log tail (step 6b), and obtains the ReadView from

2338

the TP engine for snapshot consistency (step 6c). After preparing
the fresh data (steps 7-9), Hermes delivers it to the AP engine (step
10). The query result is returned to the client (step 11) and used in
S3, executed in the TP engine (step 12) and persisted via Hermes
(steps 13-14). With S3 complete, the transaction is ready to commit.

Algorithm 1: Hermes API for enabling Transactional Ana-
lytics with Snapshot Isolation in MySQL, with changes to
the InnoDB storage engine highlighted in gray .

1 Function InnoDB::CreateSnapshot(request)

2 readView ← {active_trxs, l_bound, u_bound}

3 readViewMap ← {}

4 for each trxID in readView do

5 trxLogID← MySQL::getTrxLogID(trxID)

6 readViewMap += {trxID, trxLogID}

7 return readViewMap

8 Function Hermes::ReadFromLog(readViewMap)

9 data ← {}

10 for each trxLogID in LogTail do

11 if trxLogID in readViewMap.active_trxs then

12 continue

13 else if trxLogID > readViewMap.u_bound then

14 continue

15 data += {after image of trxLogID entry}

16 return data

17 Function Hermes::EnableTAW(request)

18 readViewMap ← InnoDB::CreateSnapshot(request)

19 data ← Hermes::ReadFromLog(readViewMap)

20 return data

Implementation Details for MySQL. InnoDB, MySQL’s default
storage engine, uses Undo Logs as part of its MVCC implementation.
Each transaction in InnoDB has a set of undo log records, enabling
access to previous record versions. Every transaction is assigned a
unique ID, and when a consistent read is needed, InnoDB creates a
snapshot, or read view, that includes: (1) IDs of active transactions,
(2) a lower bound of committed transaction IDs, and (3) an upper
bound of future transaction IDs. InnoDB uses this snapshot to access
appropriate data versions from the undo log, ignoring records with
transaction IDs above the upper bound and those between the
bounds if active. This process allows InnoDB to achieve a snapshot
for reads, aligning more closely with SI than the Repeatable Read
isolation level claimed by MySQL.

As shown in Algorithm 1, Hermes requires two pieces of infor-
mation for transactional analytics with SI in MySQL: (1) the read
view from the InnoDB engine (line 2) and (2) a mapping between
InnoDB transaction IDs and those in the transaction log (lines 3-
7). Note that MySQL’s log transaction IDs differ from InnoDB’s
transaction IDs. This mapping, along with the ReadView, allows
Hermes to retrieve the correct data snapshot for analytical queries
(lines 8-16). To provide this data, we made minor modifications to
MySQL (lines 3-7), extending the InnoDB’s read view with MySQL
log transaction IDs and adding code in InnoDB to send the updated

read view to Hermes via Thrift clients. Overall, the modifications
and additions made to MySQL are fewer than 100 lines of code.

4.2.2 Serializable. Serializable (SR) [26] isolation level is the
strictest isolation level, ensuring transactions execute in a man-
ner equivalent to a serialized order of execution. A conventional
method to achieve SR isolation is through a variant of Two-Phase
Locking (2PL) [28]. By using 2PL, the database system maintains
read and write locks, guaranteeing conflicting transactions execute
in a defined sequence, resulting in serializable execution schedules.

To achieve SR transactional analytics in Hermes, the TP engine
should prevent concurrent modifications during the execution of
the analytical queries within the analytical transaction. When a
table needs to be read on the AP side, the entire table should be
locked on the TP engine for the duration of the transaction.

This solution can be applied using any TP engine that offers
SR using 2PL and supports granularity locking. Implementing it
necessitates adjustments to the locking logic within the TP engine—
hold locks even if the data is not accessed in the TP engine.
Workflow Example. In the SR isolation level, the workflow de-
scribed in Figure 2 differs slightly in terms of communication be-
tween the TP engine and Hermes. Specifically, compared to steps
6c and 7 of the SI level, the SR level requires somewhat enhanced
coordination between the two servers. However, the rest of the
workflow remains unchanged.
Implementation Details for MySQL. MySQL’s InnoDB storage
engine ensures serializability through the implementation of 2PL
and granular locking mechanisms. At the SR isolation level, when
a read operation is performed within a transaction, InnoDB em-
ploys granular locks—such as row, range, or next-key locks—on
the necessary data. These locks are acquired at the start of the
transaction and held until its completion, effectively preventing
other transactions from writing to the locked data.

In our system architecture, when Hermes receives a request to
scan data for a specific query, it communicates with MySQL to
acquire exclusive locks on the relevant tables, utilizing the InnoDB
API to manage these locks at the table level. Once MySQL secures
the exclusive locks, it notifies Hermes to proceed with the data
scanning operation. This locking mechanism ensures that during
Hermes’s scanning process, the tables remain isolated from concur-
rent transactions, preventing any updates that could compromise
data integrity. The communication between MySQL and Hermes is
facilitated through RPC (e.g. Apache Thrift). Implementing these
changes in MySQL required adding fewer than 150 lines of code.

4.2.3 Read Commi�ed. In Read Committed (RC) [26] isolation,
transactions view only committed data stored in the transaction log.
Hermes achieves RC for transactional analytics by having analytical
queries read all committed transactions of the relevant table from
the log. This approach applies to any TP engine with row-level
transaction logging.
Workflow Example. For RC isolation level, the workflow de-
scribed in Figure 2 remains unchanged except that steps 6c and
7 are omitted. Hermes achieves RC by reading each committed
transaction directly from the log, without TP engine coordination.
Implementation Details for MySQL. In Hermes, achieving RC
isolation level with MySQL required no code changes or additions.

2339

4.3 Transactional Analytics Workload (TAW)

This section explores the significance of Transactional Analytics,
emphasizing on how existing benchmarks lack generalization com-
pared to TAW and explains the TAW’s design principles and details.

4.3.1 Motivation of Transactional Analytics. Transactional an-
alytics provide real-time insights in HTAP systems by integrating
transactional and analytical operations within a single workflow.
Standard HTAP benchmarks typically assign separate clients for
transactional and analytical workloads, addressing only strictly sep-
arated request types. However, prior research [41, 57, 75] shows that
hybrid workloads often require mixed transactional and analytical
operations within the same transaction. Full HTAP support enables
analytical queries on fresh data both post-commit and within the
same transaction, allowing subsequent actions based on query re-
sults in real-time. This integrated approach supports consistent
isolation, avoiding partial updates or stale reads in workflows need-
ing instant decisions on the latest data.

Transactional analytics are critical for applications like fraud
detection, personalized healthcare, and supply chain optimization.
HyBench [75] uses them for risk control, triggering actions like
transaction rollbacks, while PocketData [41] focuses on data man-
agement, leveraging nested sub-queries for data deletion. Despite
their benefits, existing benchmarks lack a generalized framework
for diverse transactional analytics scenarios.

4.3.2 Generalized Transactional Analytics with TAW. TAW
evaluates HTAP systems under generalized transactional analyt-
ics scenarios and models diverse transactional analytics patterns,
rather than being restricted to a single, predefined workflow such
as HyBench [75]. Specifically, the synthetic nature of TAW pro-
vides fine-grained control over access patterns—allowing updates,
insertions, or deletions to occur before, after, or between analytical
queries within the same transaction.

Our experiments show that varying the sequence of operations
impacts query plans in HTAP systems (see Section 6.4.2), emphasiz-
ing TAW’s ability to test broader scenarios. In general, TAW high-
lights limitations in current approaches and advocates for more
adaptable benchmarks to address diverse TA patterns.

4.3.3 TAW Design Details. To create TAW, we build on HAT-
trick [53], an HTAP benchmark. HATtrick combines an adapted
version of TPC-C [19] for transactional tasks and the Star-Schema
Benchmark (SSB)[58] for analytical queries. Its transactional work-
load (issued by transactional clients T-clients) includes three types
of transactions—NewOrder, Payment, and CountOrders—where New-
Order is an insertion transaction, Payment involves updates and
insertions, and CountOrders is read-only. The analytical workload
(issued by analytical clients A-clients) consists of 13 SSB[58] queries.

For TAW, we take the transactional component of HATtrick and,
within each transaction (NewOrder, Payment, and CountOrders),
append one of the 13 SSB [58] analytical queries either after or
interleaved within the original workload. By adding SSB queries
to each transaction, TAW integrates analytics within the same
transactional request [57]. A random SSB query number is selected
for each transaction to ensure equal probability across all queries.
These adapted requests form one part of the TAW workload, issued

by dedicated transactional analytics clients (TA-clients), while the
original HATtrick transactional requests are issued by T-clients.

5 HERMES POTENTIAL EXTENSIONS

This section explores potential enhancements to the Hermes design,
which are considered for future work.

5.1 Cache Offloading to Hermes

Integrating the AP engine with Hermes prevents it from using its lo-
cal cache, necessitating cache offloading. However, this introduces
challenges. First, remote cache access incurs network latency. Sec-
ond, Hermes must align with the AP engine’s caching mechanisms.
Third, the optimizermay struggle to generate efficient planswithout
direct cache metadata. Finally, offloading may disrupt index-based
query optimizations.

To mitigate latency, co-locating Hermes with the AP engine min-
imizes network overhead, enabling near-native caching. Hermes
bridges remote caching with the AP engine’s optimizer by sharing
metadata—index structures, materialized views, and statistics—faci-
litating efficient execution plans. To maintain consistency, Hermes
periodically synchronizes metadata with the AP engine, ensuring
that query execution reflects the latest cache state. Moreover, Her-
mes supports indexing techniques such as min-max indexing and
range partitioning, dynamically adjusting index boundaries to en-
hance accuracy and efficiency.

5.2 Hermes in a Distributed Setup

In distributed TP/AP environments, Hermes enhances scalability
and resource efficiency, enabling real-time analytics without dis-
rupting TP/AP engine functionality.
Hermes with Distributed TP. Distributed TP systems typically
follow two architectures: (1) a single primary node with multi-
ple read-only replicas [48] and (2) a partitioned shared-nothing
model [67]. We describe how Hermes operates in each.
Primary and Replica. Here, a primary node manages writes while

read-only replicas handle queries. The TP engine ensures consis-
tency via replication consensus algorithms. With the Hermes inte-
gration the storage layer remains the single source of truth. Hermes
guarantees fresh data delivery to the AP engine by verifying trans-
action log durability before merging logs with stable data.
Partitioned Shared-Nothing. In this architecture, data is partitioned

across independent nodes, requiring a global transaction order to
maintain consistency. Existing protocols, such as two-phase com-
mit [28] and timestamp-based mechanisms in Multi-Version Con-
currency Control, ensure a consistent transaction sequence. Hermes
uses these mechanisms to merge log entries with the correct data
partitions while preserving system integrity.
Hermes with Distributed AP. In both distributed and non-distri-
buted AP engines, the interface between an AP node and the storage
engine (e.g., S3) remains consistent and Hermes integrates seam-
lessly without architectural modifications. To meet distributed AP
engines’ I/O demands, Hermes scales by partitioning data across
multiple servers, each responsible for specific table partitions. A
consistent partitioning strategy ensures logs are routed correctly
without altering Hermes’ internal design.

2340

5.3 Hermes Advancing Middle Layers

Hermes acts as an intermediary between database servers and stor-
age services, enhancing cloud database performance. Traditional
middle layers optimize transactions [23], accelerate filtering and ag-
gregation [17, 74], and support caching for query optimization [35].
Hermes enhances these capabilities by supporting real-time and
transactional analytics while preserving compatibility with existing
architectures. It integrates seamlessly by first applying the latest
TP engine updates, then performing pushdown computations to
process relevant data before returning results to the AP engine.

6 EXPERIMENTAL EVALUATION

This section evaluates off-the-shelf real-time analytics against base-
line systems, highlighting three key aspects of Hermes.

• Hermes can seamlessly integrate with existing TP/AP engines
without introducing additional overhead (Section 6.2).

• Hermes’ overall TP/AP performance is competitive to well-
established solutions (Section 6.3).

• Hermes offers superior performance for transactional analytics
compared to existing solutions (Section 6.4).

6.1 Experimental Setup

6.1.1 Cloud Server Configuration. The experiments are con-
ducted on compute-optimized AWS EC2 instances in the US-West-2
region. We use three different instance types: (1) c5.4xlarge ($0.68
per hour) with 16 vCPU, 32 GB memory and 10-Gbps network band-
width, (2) c5.9xlarge ($1.53 per hour) with 36 vCPU, 72 GB memory
and 10Gbps network bandwidth, and (3) c5.12xlarge ($2.14 per hour)
with 48 vCPU, 96 GB memory, and 12Gbps network bandwidth.

6.1.2 Systems Setup Configuration. In this section we present
the different systems setups for Hermes, MySQL, and TiDB.
Hermes Setup.We use three instances, one for each component:
(1) the Hermes server uses a c5.9xlarge, (2) the AP-engine (FPDB
or DuckDB) uses a c5.4xlarge, and (3) MySQL uses a c5.4xlarge.
DeltaPump uses the MySQL binary log connector [62] to parse the
log. Both the TP and AP engines maintain a copy of the database
with the same schema. The AP-engine’s copy is stored in Amazon
S3 in Parquet [6] format, while the TP-engine’s copy is stored on
disk; the TP-engine logs to AWS EBS, through Hermes.

Storage Cost. In our setup, MySQL stores one copy of the data on

AWS EBS, while DuckDB stores another copy in AWS S3. The cost
of a General Purpose SSD (gp3) is $0.08 per GB-month, and MySQL
uses 55GB, resulting in a monthly cost of $4.40. The cost of S3
Standard storage is $0.023 per GB for the first 50 TB per month,
and our data size in S3 is 10GB, leading to a monthly cost of $0.23.
Therefore, the total storage cost for Hermes is $4.63 per month.

Note that, the AP data stored in the storage engine occupies 10GB
in Parquet, whereas the same data requires 55GB in MySQL due to
additional storage overhead. This 55GB consists of the base data,
InnoDB metadata, and default TP indexes, which increase storage
consumption. In contrast, Parquet’s compressed columnar format
optimizes storage for analytics, resulting in a smaller footprint.

Memory consumption. In our Hermes setup, the AP engine cache is

not offloaded to Hermes. DuckDB, by default, avoids caching when
reading from a storage engine, and FPDB’s caching is disabled.
Hermes allocates memory for three caching mechanisms: the Log
Cache, M-Delta Cache, and bitmaps for FGM and BGM, as detailed
in Sections 3.3.1 and 3.3.2, to accelerate merging processes.
MySQL Setup.We setup MySQL with InnoDB storage engine in
a c5.12xlarge instance. Moreover, we created B+ tree indexes to
optimize the analytical workload and fine-tuned several MySQL
parameters to ensure optimal performance.
Storage Cost. MySQL baseline uses AWS EBS for database storage.

Based on actual usage, MySQL stores 115GB of data, resulting in
an estimated storage cost of $9.20 per month.

This storage consists of two main components: (1) TP data (∼
55GB), which includes InnoDB metadata and default TP indexes,
and (2) AP indexes (∼ 60GB), which improve query performance
but significantly increase storage overhead.
TiDB Setup. We deploy twelve c5.4xlarge instances following
TiDB’s recommended configuration [18, 68]: two TiDB servers, six
TiKV servers (three replicas per region), and four TiFlash servers.
Utilizing TiFlash’s disaggregated storage and compute architec-
ture [18], we allocate two write nodes and two compute nodes for
TiFlash. The write nodes handle logs from TiKV, convert them to
columnar format, and periodically upload updated data to cloud
storage. The compute nodes execute queries, accessing the latest
data from the write nodes and remaining data from cloud storage.
Storage Cost. The TiDB setup utilizes six TiKV nodes with three

replicas using a space of ∼ 117GB in total. TiFlash nodes store data
in AWS EBS (∼ 7GB) and in AWS S3 (∼ 8GB). This results in a total
storage cost of $10.10 per month.
Baseline Selection. The selection of these systems is driven by
their established strengths in their respective domains. MySQL,
with its proven transactional processing capabilities andwidespread
use in cloud environments [12, 24, 70], serves as a key baseline for
transactional workloads. DuckDB is a high-performance analyt-
ical engine, aligning with trends in data lakes and cloud-native
analytics, essential to our architecture. Additionally, FPDB is in-
cluded to evaluate Hermes’ adaptability with less conventional
AP engines. FPDB demonstrates Hermes’ flexibility in integrating
with a diverse range of engines providing valuable insights into
the system’s versatility. Finally, TiDB was selected as the state-
of-the-art (SOTA) HTAP system due to its increasing adoption by
major companies [69], which leverage TiDB’s ability to manage
large-scale transactional and analytical workloads concurrently in
real-time. TiDB’s robust support for hybrid workloads makes it an
ideal baseline for evaluating Hermes’ performance in HTAP.

6.1.3 Workloads. We use two workloads for evaluation: the HAT-
trick benchmark [53] and the Transactional Analytics Workload

(TAW), an adapted version of HATtrick. We discuss their charac-
teristics in Section 4.3.3. To test Hermes under more demanding
conditions, we modify HATtrick and TAW to simulate different
update/insertion patterns, ensuring an update to every partition of
the schema tables with a probability of one.

6.1.4 Metrics. HATtrick extracts the following metrics, a through-
put frontier graph and a freshness score for every system under test.

2341

0

5

10

T-T
hr

ou
gh

pu
t

(1
03 t

ps
)

Max-Throughput
Baseline Hermes w/ MySQL

NewOrder Payment CountOrders
0

40

80

La
te

nc
y

(m
se

cs
)Latency

Figure 3: Transactional throughput (T-Throughput) results

in tps (left) and transactions’ latency results in msecs (right)

when executing HATtrick in Hermes w/ MySQL vs. the stan-

dalone MySQL executing transactions.

The throughput frontier graph is a 2D plot with transactional
throughput (T-Throughput) and analytical throughput (A-Through-
put) on the x- and y-axis. It is generated by running various client
mixes, showing the system’s performance across the HTAP spec-
trum and its isolation capabilities. Ideally, the frontier aligns with
the bounding box, defined bymaximumT-Throughput andA-Throug-
hput values, indicating perfect isolation. A frontier close to or below
the proportional line suggests poor HTAP performance. The average
freshness score is measured in seconds. A score of �푓�푎�푣�푔 = �푝 seconds
means that, on average, the data is �푝 seconds out of date.

Similar to HATtrick, TAW generates a throughput frontier for
each database, reflecting comparable insights. Note that, in TAW, the
y-axis represents transactional analytics throughput (TA-Through-
put), measured in analytical transactions per second (taps). In the ex-
periments with HATtrick and TAW, we use scale factor 50 databases,
resulting in data sizes of approximately 10GB in Parquet format.

The TAW clients operate similarly to HATtrick. However while
HATtrick features an A-client, TAW features a TA-client that issues
analytical transactions to extract the throughput frontier results.

6.2 Hermes Evaluation

This section presents the end-to-end results of Hermes integration
with MySQL [14], FPDB [73], and DuckDB [60], demonstrating
that integration does not impact their original performance. It also
provides results on Hermes resource utilization.

6.2.1 Hermes Integration with MySQL. Figure 3 (left) displays
the maximum T-Throughput achieved in MySQL baseline and the
Hermes with MySQL setup for the HATtrick benchmark. In MySQL
baseline, only the transactional portion of HATtrick is executed,
with analytical queries disabled. In contrast, for the Hermes setup,
the results include the concurrent execution of analytical queries by
the AP engine (FPDB or DuckDB). Both configurations use MySQL
under Snapshot Isolation. Additionally, Figure 3 (right) shows the
corresponding transaction latencies.

MySQL baseline achieves a maximum T-Throughput of 9,035 tps,
while Hermes with MySQL reaches 8,700 tps. Latencies are similar
in both setups, with the Hermes integration introducing up to 4%
overhead—a minor trade-off for added functionality.

In the next sections, we discuss the latency results of Figure 4,
focusing on Hermes’ performance with FPDB and DuckDB. These
measurements were taken with Hermes connected to MySQL op-
erating at a fixed T-Throughput of 8,700 tps, as shown in Figure 3.
For all queries, the updates merged with stable data correspond to
this throughput, remaining consistent throughout the experiments.

Q1.1 Q1.2 Q1.3
0

10

20

La
te

nc
y

(s
ec

s)

FPDB Baseline Hermes w/ FPDB

Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3
0

100

200

Q1.1 Q1.2 Q1.3
0

10

20

La
te

nc
y

(s
ec

s)

Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3
0

100

200

(a) FPDB vs. Hermes w/ FPDB.

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3
0

10

20

30

La
te

nc
y

(s
ec

s)

DuckDB Baseline Hermes w/ DuckDB

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3
0

10

20

30

La
te

nc
y

(s
ec

s)

(b) DuckDB vs. Hermes w/ DuckDB.

Figure 4: Latency (secs) of the HATtrick analytical queries in

the Hermes & FPDB setup vs. the case where FPDB executes

the queries without using Hermes.

6.2.2 Hermes Integration with FPDB. Figure 4a illustrates the
latency of the HATtrick queries when integrating Hermes with
FPDB, compared to FPDB baseline. For each query the left bar
corresponds to latency of the original query execution in FPDB
baseline and the right bars correspond to the execution of the same
query in Hermes with FPDB. In general, the closer the latency
results of the Hermes with FPDB setup are to the original FPDB
latency, the better for the overall performance of Hermes.

The results demonstrate an overhead of less than 4% in the la-
tency across the 13 queries executed with Hermes, indicating that
it imposes minimal performance impact on FPDB baseline.

6.2.3 Hermes Integration with DuckDB. Figure 4b shows the
latency of HATtrick queries executed in Hermes with DuckDB,
compared to the DuckDB baseline. For each query, the left bar
represents the latency of the original DuckDB execution, while
the right bar shows the latency in the Hermes with DuckDB setup.
The results indicate that Hermes with DuckDB incurs only about a
2% latency increase compared to the baseline, demonstrating that
even with a high-performance AP engine like DuckDB, Hermes can
deliver real-time analytics with minimal impact on query latency.

Overall, the results in Sections 6.2.1, 6.2.2 and 6.2.3 demonstrate
that the performance of MySQL, FPDB, and DuckDB remain stable
after integration with Hermes. The next section shows the resource
utilization of the Hermes with MySQL and DuckDB setup.

6.2.4 Resource Utilization. Figure 5 presents resource utiliza-
tion for the experiment in Section 6.2.3, focusing on the integration
of Hermes and DuckDB. It displays total CPU usage across all vC-
PUs (%), total network usage (GB) as the sum of received and sent
data, and average memory usage (GB). For the Hermes setup, utiliza-
tion is split into the Hermes and DuckDB nodes, with separate bars
for FGM and BGM. FGM shows usage during Foreground Merges
only, while BGM includes both Foreground and BackgroundMerges.
The DuckDB baseline is included for comparison.
CPU Usage. Figure 5 shows that, compared to the DuckDB base-
line, the DuckDB node’s CPU usage increases from 14% to 21% in

2342

DuckDB
Baseline

Hermes
(FGM)

Hermes
(BGM)

0

20

40

Us
ag

e

Total CPU Usage (%)

DuckDB
Baseline

Hermes
(FGM)

Hermes
(BGM)

0

50

100

150
Total Network Usage (GB)

DuckDB
Baseline

Hermes
(FGM)

Hermes
(BGM)

0

5

10

Avg. Memory Usage (GB)
DuckDB Node Hermes Node

Figure 5: Resource utilization across three configurations:

DuckDB baseline, Hermes with FGM, and Hermes with BGM.

Figure shows Total CPU Usage across all vCPUs (%), Total

Network Usage (GB) and Average Memory Usage (GB) for

both the DuckDB and Hermes nodes.

the Hermes setup, consistently across both FGM and BGM configu-
rations. This rise is attributed to the deserialization process on the
DuckDB node, which incurs additional overhead as data serialized
for network transmission is reconstructed upon receipt.

In the Hermes node, CPU usage increases from 32% to 35% when
BGM is enabled alongside FGM. This is expected, as BGM requires
the Hermes node to handle an additional background task.
Network Usage. Figure 5 indicates that the DuckDB node’s total
network usage remains consistent between the DuckDB baseline
and the Hermes setup. This is expected, as Hermes integration does
not alter the volume of data DuckDB receives from storage.

In the Hermes setup, the Hermes node’s network usage exceeds
the DuckDB node’s due to receiving data from the storage engine
and sending updates to DuckDB, effectively doubling usage. As
expected, network usage rises further when BGM is active.
Memory Usage. Figure 5 shows that the DuckDB node’s average
memory usage remains consistent between the DuckDB baseline
and the Hermes setup. This is expected, as integrating Hermes does
not require additional data caching on the DuckDB node.

In the Hermes setup, the Hermes node utilizes memory mainly
for components such as the Log Cache, M-Delta Cache, and bitmap
caching, which are essential for accelerating FGM and BGM. The
memory usage increases during BGM due to the additional process.

Integrating Hermes with DuckDB slightly increases DuckDB’s
CPU usage, mainly due to deserialization, while memory and net-
work usage remain unchanged compared to the DuckDB baseline.
Estimated Cloud Cost. Hermes runs on one c5.9xlarge instance
($1.53/hour) and two c5.4xlarge instances ($0.68/hour each). Assum-
ing continuous usage over 30 days, the total compute cost amounts
to $2081 per month. For storage, Hermes uses a 64GB EBS volume
for TP data in MySQL and a 10GB volume in S3 for AP data, result-
ing in a total storage cost of $5.53 per month. Thus, the combined
compute and storage cost for Hermes is $2086.53 per month.

DuckDB, running on a single c5.4xlarge instance, incurs a com-
pute cost of $490 per month under the same conditions. It stores
10GB of data in S3, contributing an additional $0.23 per month in
storage costs. As a result, the total compute and storage cost for
DuckDB is $490.23 per month.

6.3 HATtrick Evaluation Across Systems

This experiment compares Hermes, MySQL [14], and TiDB [37]
using the HATtrick [53] benchmark, with MySQL and DuckDB as
Hermes’s TP- and AP-engines. The aim is to show that Hermes
achieves performance comparable to established HTAP systems.

0 2 4 6 8 10 12 14 16 18
Transactional Throughput (103 tps)

0.0
0.1
0.2
0.3
0.4
0.5

An
al

yt
ica

l
 T

hr
ou

gh
pu

t (
qp

s)

fH : 0
fM : 0

fT : 0

Hermes MySQL TiDB

0.1
0.3
0.5

fT : 0

0 2 4 6 8 10 12 14 16 18
0

.03

.06
fM : 0

fH : 0

Transactional Throughput (103 tps)

An
al

yt
ica

l
Th

ro
ug

hp
ut

 (q
ps

)

(a) Throughput frontiers and avg. freshness scores.

0 2 4 6 8 10 12 14 16
Transactional Requests per Dollar (106)

0

1

2

An
al

yt
ica

l Q
ue

rie
s

pe
r D

ol
la

r (
10

2)

(b) Operations per dollar frontiers.

Figure 6: Throughput frontiers, freshness scores (�푓�퐷�퐵) and

operations per dollar frontiers for Hermes (with MySQL and

DuckDB), MySQL, and TiDB when executing HATtrick.

6.3.1 ComparisonResults. The discussionwill focus on through-
put frontier shapes, absolute throughput values, and cost frontiers.
Throughput Frontier Shapes. Figure 6a shows HATtrick results
for each system. The Hermes frontier (blue) aligns closely with its
bounding box, demonstrating excellent performance isolation and
minimal TP and AP workload interference. MySQL’s frontier (pur-
ple) falls between its bounding box and proportional line, indicating
resource contention. TiDB’s frontier (yellow) initially follows its
proportional line, with A-Throughput decreasing as T-clients grow,
but later approaches its bounding box, mitigating this effect.
Absolute Throughput.TiDB hast the highest T- andA-Throughput
values in Figure 6a. This is expected, particularly for T-Throughput,
as TiDB distributes transactional requests across two TiKV servers.
The consistently high A-Throughput is due to TiDB’s ability to
cache frequently accessed data on the local SSDs of TiFlash com-
pute nodes [18]. However, as T-clients increase, A-Throughput
declines since frequent updates make cached data outdated.
Freshness Values.We used HATtrick benchmark to measure the
freshness of the analytical queries in Hermes, MySQL, and TiDB.
Our results show that all the three databases achieve zero freshness,
indicating that all queries are always executed on up-to-date data.
Cost Frontiers. Note that the three curves in Figure 6a are gener-
ated using different hardware settings. For a more fair comparison,
we normalize the monetary cost and report the throughput per
dollar in Figure 6b. The figure highlights that Hermes can exe-
cute more transactional requests per dollar than TiDB. Conversely,
TiDB outperforms Hermes in analytical queries per dollar, but as
the number of T-clients increases, this difference becomes smaller.

Our results in Sections 6.2 and 6.3 show that Hermes inherits the
stability of its underlying TP/AP engines. Specifically: (1) Figures 3
and 4 show that Hermes maintains the original performance of each
engine, and (2) Figure 6 confirms that this stability holds across
varying client combinations. The shape of Hermes’ throughput
frontier highlights its ability to deliver stable HTAP performance,
allowing concurrent transactions and analytics without mutual im-
pact. Hermes achieves this stability while matching leading HTAP
systems in performance and offering a cost-effective solution.

2343

0 2 4 6 8 10 12 14 16 18
Transactional Throughput (103 tps)

0.0
0.1
0.2
0.3
0.4
0.5

An
al

yt
ica

l
 T

hr
ou

gh
pu

t (
qp

s)

fH : 0
fM : 0

fT : 0

Hermes MySQL TiDB

0 2 4 6 8 10 12 14 16 18
Transactional Throughput (103 tps)

0

.02

.04

.06

TA
-T

hr
ou

gh
pu

t
(ta

ps
)

(a) Throughput frontiers in RC.

0 4 8 12 16 20
Transactional Requests per Dollar (106)

0

50

100

TA
 R

eq
ue

st
s

pe
r D

ol
la

r

(b) Operations per dollar frontiers in RC.

0 2 4 6 8 10 12 14 16 18
Transactional Throughput (103 tps)

0

.02

.04

.06

TA
-T

hr
ou

gh
pu

t
(ta

ps
)

(c) Throughput frontiers in SI.

0 4 8 12 16
Transactional Requests per Dollar (106)

0

50

100

TA
 R

eq
ue

st
s

pe
r D

ol
la

r

(d) Operations per dollar frontiers in SI.

0 2 4 6 8
Transactional Throughput (103 tps)

0

.02

.04

.06

TA
-T

hr
ou

gh
pu

t
(ta

ps
)

(e) Throughput frontiers in SR.

0 4 8 12
Transactional Requests per Dollar (106)

0

50

100

TA
 R

eq
ue

st
s

pe
r D

ol
la

r

(f) Operations per dollar frontiers in SR.

Figure 7: Throughput frontiers and operations per dollar frontiers results for Hermes, MySQL, and TiDB when executing TAW

at scale factor 50 under three different isolation levels Read-Committed (RC), Snapshot-Isolation (SI) and Serializable (SR).

6.4 TAW Evaluation Across Systems

In this section we assess the performance of Hermes, MySQL [14],
and TiDB [37] when executing the TAW in three different isolation
levels, Read Committed, Snapshot Isolation and Serializability.

6.4.1 Comparison Results. Figure 7 presents the results of ex-
ecuting the TAW in Hermes (blue), MySQL (purple), and TiDB
(yellow) across three different isolation levels. Each isolation level
includes a graph depicting the throughput frontiers and another
graph showing the corresponding operations per dollar frontiers.
Read Committed (RC) Results. Figure 7a illustrates the through-
put frontiers, while Figure 7b presents the corresponding operations-
per-dollar frontiers in RC. Hermes (blue) demonstrates nearly per-
fect performance isolation, as its throughput frontier closely aligns
with its bounding box, indicating minimal impact from the trans-
actional workload. In contrast, MySQL (purple) and TiDB (yellow)
show frontiers between their proportional lines and bounding boxes,
revealing a significant decline in TA-throughput as the number of
T-clients increases. This decline is evident in the sharp drop towards
the end of their frontiers.

In terms of absolute performance, Hermes achieves the highest
TA-throughput (0.056 taps), followed by MySQL (0.009 taps) and
TiDB (0.004 taps). TiDB leads in T-throughput with 18,000 tps,
compared to Hermes (9,000 tps) and MySQL (10,500 tps). Hermes
outperforms both competitors in transactional analytics per dollar
(Figure 7b) and ranks second in transactional requests per dollar.
Snapshot Isolation (SI) Results. Similar to RC, Figure 7c presents
throughput frontiers, and Figure 7d illustrates operations-per-dollar
frontiers for SI. Hermes (blue) maintains strong performance isola-
tion, with its frontier near the bounding box. In contrast, MySQL
(purple) and TiDB (yellow) exhibit frontiers between their propor-
tional lines and bounding boxes, reflecting a decline in TA-Throug-
hput under higher transactional workloads.

In terms of absolute performance, Hermes once again achieves
the highest TA-Throughput (0.054 taps), followed by TiDB (0.015
taps) and MySQL (0.01 taps). TiDB leads in T-Throughput with
16,500 tps, followed by MySQL at 8,500 tps and Hermes at 8,000 tps.
Hermes maintains its lead in transactional analytics requests per
dollar, while ranking second in transactional requests per dollar.

Serializability (SR) Results. Figure 7e and Figure 7f depict the
throughput and operations-per-dollar frontiers under SR, respec-
tively. TiDB is omitted as it does not support SR. Hermes (blue)
exhibits a distinct frontier with a unique shape compared to RC and
SI cases, reflecting the dependent nature of transactional and ana-
lytical workloads under SR. In both Hermes and MySQL, traditional
and analytical transactions compete for lock access, leading to a
decline in TA-Throughput as T-clients increase. This explains why
Hermes’ frontier deviates from its bounding box, even though ana-
lytical queries are executed on the DuckDB side. MySQL (purple)
follows a similar pattern but achieves lower TA-Throughput.

Hermes leads with the highest TA-Throughput (0.057 taps), fol-
lowed by MySQL (0.01 taps). Both achieve a T-Throughput near
6,000 tps. Hermes excels in transactional analytics per dollar and
ranks second in transactional requests per dollar.

Overall, Hermes surpasses MySQL and TiDB in TAW across all
isolation levels, in absolute performance and performance isolation.

6.4.2 TiDB Analysis. This section explores TiDB’s results in de-
tail, highlighting key findings and explaining why TiDB’s perfor-
mance in TAW falls significantly short of HATtrick.
Workload Configurations. We use three workload configura-
tions to analyze TiDB’s performance differences between transac-
tional analytics in TAW and traditional analytics in HATtrick. First,
Analytics-Only runs only the analytical component of the HATtrick
benchmark, measuring TiDB’s performance on traditional analytics
without transactional interference. Next, TA-X workloads (where
X is NewOrder or Payment) execute TA-X analytical transactions
alone, isolating the impact of transactional analytics. Finally, TA-
X & Trxs includes both TA-X analytical transactions and regular
transactions, revealing TiDB’s limitations under mixed workloads.
Comparison Results. Figure 8a shows TiDB latency results for
selected SSB queries across different workload configurations, omit-
ting other queries with similar performance patterns (e.g., Queries
1.1 and 1.3 resemble 1.2). Figure 8b displays the total data transferred
from TiFlash nodes to the TiDB server node during execution.

Figure 8a shows that the lowest latency occurs in the Analytics-
Only workload, where queries run on TiFlash nodes optimized for
analytics, aligning with HATtrick results (see Figure 6a) showing

2344

1.2 2.2 3.2 4.2
Query Involved

10−1

100

101

La
te

nc
y

Lo
g

Sc
al

e
(s

ec
)

Analytics Only
TA-NewOrder Only

TA-NewOrder & Trxs
TA-Payment Only

TA-Payment & Trxs

1.2 2.2 3.2 4.2
Query Involved

10−1

100

101

La
te

nc
y

Lo
g

Sc
al

e
(s

ec
)

(a) Latency measured in seconds (secs) for the involved queries.

1.2 2.2 3.2 4.2
Query Involved

10−2

100

Da
ta

 M
ov

ed

Lo
g

Sc
al

e
(G

B)

(b) Total data moved measured in gigabytes (GB).

Figure 8: Figure 8a and 8b display data from experiments

conducted on TiDB, featuring various workloads: Analytics

Only (no Trxs), TAWwith TA-NewOrder Only (no Trxs), TAW

with TA-NewOrder and Trxs, TAW with TA-Payment Only,

and TAW with TA-Payment and Trxs. Figure 8a show query

latency and Figure 8b total data transferred during execution.

the highest A-Throughput for TiDB. The figure also reveals sig-
nificantly higher latencies for TA-NewOrder (Only/& Trxs) and
TA-Payment (Only/& Trxs) workloads compared to Analytics-Only,
consistent with TiDB results under TAW (see Figures 7a, 7c, 7e).

Additionally, Figure 8a illustrates that the execution time for TA-
NewOrder & Trxs and TA-Payment & Trxs consistently surpasses
that of TA-NewOrder Only and TA-Payment Only, respectively.
This emphasizes the influence of concurrent transaction execution
on the latency of transactional analytics in TiDB.
Query Plan Analysis. In the Analytics-Only workload, queries
run entirely on TiFlash compute nodes optimized for analytics. In
contrast, TA-NewOrder and TA-Payment query processing extends
beyond TiFlash. Data from updated tables—LINEORDER for TA-
NewOrder and SUPPLIER and CUSTOMER for TA-Payment—are
first retrieved from TiFlash nodes, then transferred to TiDB server
nodes for processing by the UnionScan operator. This operator
likely ensures isolation by merging recent data from TiFlash write
nodes with S3-accessed data. Parts of the query then run across
both TiFlash nodes and the TiDB server, causing data transfers
(see Figure 8b). The extent of data movement depends on compu-
tation level in TiFlash, and larger tables like LINEORDER require
more merging time, explaining the higher latency for TA-NewOrder
(Only/& Trxs) compared to TA-Payment (Only/& Trxs).

TiDB’s TAW performance is hindered by query plan changes in-
troduced by transactional analytics. In contrast, Hermes maintains
consistent query plans, making it well-suited for both workloads.

7 RELATED WORK

This section reviews current solutions for (near) real-time analytics.
HTAP Systems. HTAP systems unify TP and AP to enable real-
time analytics. Single-system architectures often employ shared [21]
or optimized [32, 33, 40, 45–47, 55, 63, 65] data structures for the two
workloads, ensuring immediate availability of transactional data
for analytical queries. This approach eliminates replication latency
but may increase contention. Other HTAP systems separate TP and
AP engines, either sharing the same storage layer [31, 34, 45, 54]
for immediate data visibility or using decoupled storage [37, 72]

to isolate resources and allow independent scaling. In decoupled
setups, transactional changes are periodically propagated to the
AP layer via Change Data Capture (CDC) or log-based replication,
with minimal latency. Most HTAP systems tightly couple compute
and storage components, though exceptions like F1 Lightning [72]
theoretically support pluggable engines, albeit without verification.
Change Data Capture (CDC) Tools. CDC tools are designed
to monitor and replicate changes—such as inserts, updates, and
deletions—in source databases to maintain data consistency across
systems. They typically analyze transaction logs (e.g., PostgreSQL’s
WAL or MySQL’s binary logs) to detect modifications and then
stream these changes in standardized formats (e.g., JSON, Avro) to
target systems. While CDC tools are essential for data replication,
migration, and synchronization between systems, they generally
do not perform complex data processing. Their primary focus is
to ensure that target systems accurately reflect the latest changes
from source systems in real time. Notable CDC tools include Debez-
ium [10], GoldenGate [15], pg_logical [16], and StreamSets [13].
StreamingData Platforms (SDP). SDPs are designed for real-time
ingestion, transportation, and processing of data streams from vari-
ous sources. Unlike CDC tools, which primarily replicate database
changes, SDPs offer advanced data processing capabilities such as
windowing, aggregations, and joins, essential for real-time analytics
and event-driven architectures.While SDPs can integrate CDC tools
to capture and stream database changes in real-time, their primary
function is to facilitate the flow of diverse data types—including
logs, metrics, sensor data, and other event streams—across systems.
They enable low-latency, high-throughput data movement and sup-
port robust integration options for real-time data pipelines across
different systems. Examples of SDPs include Apache Kafka [1, 44],
Apache Pulsar [7], Amazon Kinesis [2], and Google Pub/Sub [11].
Cloud-Based Storage Services. Storage services such as Delta
Lake [22] and Hudi [4] are designed to add transactional capabilities
over cloud-based object storage, enabling reliable data management
for large-scale analytical and transactional processing. These ser-
vices implement structured data formats (e.g., Parquet, ORC) and
define access protocols, supporting transactions on data stored in
distributed object storage. For example, Delta Lake utilizes ver-
sioned metadata and transaction logs to track changes, ensuring
data consistency. However, Delta Lake typically requires modifica-
tions when integrated with various TP engines. In contrast, Hudi
emphasizes flexibility, providing native support for multiple TP
and AP engines. Hudi benefits from CDC tools for capturing data
changes and SDPs for efficiently processing data streams, thereby
enhancing its ability to manage evolving datasets in real-time. Both
Hudi and Delta Lake follow principles of Lambda and Kappa ar-
chitectures [42], with real-time and batch processing layers that
support the continuous integration and historical accuracy of data.

8 CONCLUSION

In this paper, we introduce off-the-shelf real-time transactional
analytics — a design that leverages existing TP and AP engines to
deliver fresh analytics. We implement this as Hermes, an interme-
diate layer between computation and storage. Evaluation shows
that Hermes outperforms current HTAP systems by up to 3× in
transactional analytics.

2345

REFERENCES
[1] 2024. Amazon Kafka. https://kafka.apache.org.
[2] 2024. Amazon Kinesis Streams Developer Guide. https://docs.aws.amazon.com/

kinesis/.
[3] 2024. Apache Gandiva. https://arrow.apache.org/blog/2018/12/05/gandiva-

donation/.
[4] 2024. Apache Hudi. https://hudi.apache.org.
[5] 2024. Apache Iceberg: The open table format for analytic datasets. https://

iceberg.apache.org.
[6] 2024. Apache Parquet. https://parquet.apache.org.
[7] 2024. Apache Pulsar: Cloud-Native, Distributed Messaging and Streaming. https:

//pulsar.apache.org.
[8] 2024. Apache Thrift. https://thrift.apache.org/about.
[9] 2024. Databricks Migration Strategy: Lessons Learned. https://www.databricks.

com/blog/databricks-migration-strategy-lessons-learned.
[10] 2024. Debezium: Stream changes from your database. https://debezium.io.
[11] 2024. Google Cloud Pub/Sub: A Google-Scale Messaging Service. https://cloud.

google.com/pubsub/docs/overview.
[12] 2024. Google Cloud SQL for MySQL. https://cloud.google.com/sql/docs/mysql.
[13] 2024. IBM StreamSets: Seamless hybrid and multicloud data integration. https:

//www.ibm.com/products/streamsets.
[14] 2024. MySQL. https://dev.mysql.com/doc/refman/8.0/en/.
[15] 2024. Oracle GoldenGate: Replicate and Transform Data. https://www.oracle.

com/integration/goldengate/.
[16] 2024. pglogical: Logical replication for PostgreSQL. https://www.2ndquadrant.

com/en/resources/pglogical/.
[17] 2024. S3 Select and Glacier Select. https://aws.amazon.com/blogs/aws/s3-glacier-

select/.
[18] 2024. TiFlash Disaggregated Storage and Compute Architecture and S3 Support.

https://docs.pingcap.com/tidb/stable/tiflash-disaggregated-and-s3.
[19] Revision 5.11. 2009. TPC BENCHMARK™ C.
[20] Aisha Abdallah, Mohd Aizaini Maarof, and Anazida Zainal. 2016. Fraud detection

system: A survey. Journal of Network and Computer Applications 68 (2016), 90–
113.

[21] Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anastasia Aila-
maki. 2017. The case for heterogeneous HTAP. In 8th Biennial Conference on
Innovative Data Systems Research.

[22] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul
Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak,
et al. 2020. Delta lake: high-performance ACID table storage over cloud object
stores. Proceedings of the VLDB Endowment 13, 12 (2020), 3411–3424.

[23] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. 2021. Lakehouse:
a new generation of open platforms that unify data warehousing and advanced
analytics. In Proceedings of CIDR, Vol. 8. 28.

[24] Microsoft Azure. 2024. Azure Database for MySQL. https://learn.microsoft.com/
en-us/azure/mysql.

[25] Ronald Barber, Christian Garcia-Arellano, Ronen Grosman, Rene Mueller, Vi-
jayshankar Raman, Richard Sidle, Matt Spilchen, Adam J Storm, Yuanyuan Tian,
Pinar Tözün, et al. 2017. Evolving Databases for New-Gen Big Data Applications..
In CIDR.

[26] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. 1995. A critique of ANSI SQL isolation levels. ACM SIGMOD Record 24,
2 (1995), 1–10.

[27] Philip A Bernstein and Nathan Goodman. 1983. Multiversion concurrency
control—theory and algorithms. ACM Transactions on Database Systems (TODS)
8, 4 (1983), 465–483.

[28] Philip A Bernstein, Vassos Hadzilacos, Nathan Goodman, et al. 1987. Concurrency
control and recovery in database systems. Vol. 370. Addison-wesley Reading.

[29] Jianjun Chen, Yonghua Ding, Ye Liu, Fangshi Li, Li Zhang, Mingyi Zhang, Kui
Wei, Lixun Cao, Dan Zou, Yang Liu, et al. [n.d.]. ByteHTAP: ByteDance’s HTAP
System with High Data Freshness and Strong Data Consistency. ([n. d.]).

[30] Chaoyi Cheng, Mingzhe Han, Nuo Xu, Spyros Blanas, Michael D Bond, and Yang
Wang. 2023. Developer’s Responsibility or Database’s Responsibility? Rethinking
Concurrency Control in Databases. In 13th Annual Conference on Innovative Data
Systems Research (CIDR’23). January 8-11, 2023, Amsterdam, The Netherlands.

[31] Google Cloud. 2024. AlloyDB: A fully managed PostgreSQL database service.
https://cloud.google.com/products/alloydb?hl=en.

[32] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s
memory-optimized OLTP engine. In Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data. 1243–1254.

[33] Franz Färber, NormanMay,Wolfgang Lehner, Philipp Große, IngoMüller, Hannes
Rauhe, and Jonathan Dees. 2012. The SAP HANA Database–An Architecture
Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28–33.

[34] Christian Garcia-Arellano, Hamdi Roumani, Richard Sidle, Josh Tiefenbach,
Kostas Rakopoulos, Imran Sayyid, Adam Storm, Ronald Barber, Fatma Ozcan,
Daniel Zilio, et al. 2020. Db2 event store: a purpose-built IoT database engine.

Proceedings of the VLDB Endowment 13, 12 (2020), 3299–3312.
[35] AnuragGupta, DeepakAgarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano

Stefani, and Vidhya Srinivasan. 2015. Amazon redshift and the case for simpler
data warehouses. In Proceedings of the 2015 ACM SIGMOD international conference
on management of data. 1917–1923.

[36] Riyaz Ahamed Ariyaluran Habeeb, Fariza Nasaruddin, Abdullah Gani, Ibrahim
Abaker Targio Hashem, Ejaz Ahmed, and Muhammad Imran. 2019. Real-time
big data processing for anomaly detection: A survey. International Journal of
Information Management 45 (2019), 289–307.

[37] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[38] IBM Corporation. 2024. IBM DB2 Database. IBM Corporation. https://www.ibm.
com/products/db2-database Version 11.5.8.

[39] Arun Kejariwal, Sanjeev Kulkarni, and Karthik Ramasamy. 2017. Real time
analytics: algorithms and systems. arXiv preprint arXiv:1708.02621 (2017).

[40] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In 2011 IEEE
27th International Conference on Data Engineering. IEEE, 195–206.

[41] Oliver Kennedy, Jerry Ajay, Geoffrey Challen, and Lukasz Ziarek. 2016. Pocket
data: The need for TPC-MOBILE. In Performance Evaluation and Benchmarking:
Traditional to Big Data to Internet of Things: 7th TPC Technology Conference,
TPCTC 2015, Kohala Coast, HI, USA, August 31–September 4, 2015. Revised Selected
Papers 7. Springer, 8–25.

[42] Martin Kleppmann. 2019. Designing data-intensive applications.
[43] Peter Kraft, Qian Li, Xinjing Zhou, Peter Bailis, Michael Stonebraker, Matei

Zaharia, and Xiangyao Yu. 2023. Epoxy: ACID Transactions across Diverse Data
Stores. Proceedings of the VLDB Endowment 16, 11 (2023), 2742–2754.

[44] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging
system for log processing. In Proceedings of the NetDB, Vol. 11. Athens, Greece,
1–7.

[45] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh,
Mike Gleeson, Sanket Hase, Allison Holloway, Jesse Kamp, Teck-Hua Lee, et al.
2015. Oracle database in-memory: A dual format in-memory database. In 2015
IEEE 31st International Conference on Data Engineering. IEEE, 1253–1258.

[46] Per-Åke Larson, Adrian Birka, Eric N Hanson, Weiyun Huang, Michal
Nowakiewicz, and Vassilis Papadimos. 2015. Real-time analytical processing
with SQL server. Proceedings of the VLDB Endowment 8, 12 (2015), 1740–1751.

[47] Juchang Lee, SeungHyun Moon, Kyu Hwan Kim, Deok Hoe Kim, Sang Kyun Cha,
and Wook-Shin Han. 2017. Parallel replication across formats in SAP HANA for
scaling out mixed OLTP/OLAP workloads. Proceedings of the VLDB Endowment
10, 12 (2017), 1598–1609.

[48] Feifei Li. 2023. Modernization of databases in the cloud era: Building databases
that run like Legos. Proceedings of the VLDB Endowment 16, 12 (2023), 4140–4151.

[49] Hyeontaek Lim, Michael Kaminsky, and David G Andersen. 2017. Cicada: De-
pendably fast multi-core in-memory transactions. In Proceedings of the 2017 ACM
International Conference on Management of Data. 21–35.

[50] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,
Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, AlexandraWang, et al. 2021.
Greenplum: A Hybrid Database for Transactional and Analytical Workloads. In
Proceedings of the 2021 International Conference on Management of Data. 2530–
2542.

[51] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. 2017.
BatchDB: Efficient isolated execution of hybrid OLTP+ OLAP workloads for
interactive applications. In Proceedings of the 2017 ACM International Conference
on Management of Data. 37–50.

[52] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker.
2014. Rethinking main memory OLTP recovery. In 2014 IEEE 30th International
Conference on Data Engineering. IEEE, 604–615.

[53] Elena Milkai, Yannis Chronis, Kevin P Gaffney, Zhihan Guo, Jignesh M Patel,
and Xiangyao Yu. 2022. How Good is My HTAP System?. In Proceedings of the
2022 International Conference on Management of Data. 1810–1824.

[54] Barzan Mozafari, Jags Ramnarayan, Sudhir Menon, Yogesh Mahajan, Soubhik
Chakraborty, Hemant Bhanawat, and Kishor Bachhav. 2017. SnappyData: A
Unified Cluster for Streaming, Transactions and Interactice Analytics.. In CIDR.

[55] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast serializ-
able multi-version concurrency control for main-memory database systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. 677–689.

[56] Oracle Corporation. 2024. Oracle Database. Oracle Corporation. https://docs.
oracle.com/en/database/oracle/oracle-database/23/index.html Version 23c.

[57] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. 2017. Hybrid transac-
tional/analytical processing: A survey. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data. 1771–1775.

[58] O’Neil Pat, O’Neil Betty, and Chen Xuedong. 2009. The Star Schema Benchmark.
[59] PostgreSQL Global Development Group. 2024. PostgreSQL Database. PostgreSQL

Global Development Group. https://www.postgresql.org/ Version 16.

2346

https://docs.aws.amazon.com/kinesis/
https://docs.aws.amazon.com/kinesis/
https://iceberg.apache.org
https://iceberg.apache.org
https://pulsar.apache.org
https://pulsar.apache.org
https://www.databricks.com/blog/databricks-migration-strategy-lessons-learned
https://www.databricks.com/blog/databricks-migration-strategy-lessons-learned
https://debezium.io
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/sql/docs/mysql
https://www.ibm.com/products/streamsets
https://www.ibm.com/products/streamsets
https://www.oracle.com/integration/goldengate/
https://www.oracle.com/integration/goldengate/
https://www.2ndquadrant.com/en/resources/pglogical/
https://www.2ndquadrant.com/en/resources/pglogical/
https://learn.microsoft.com/en-us/azure/mysql
https://learn.microsoft.com/en-us/azure/mysql
https://cloud.google.com/products/alloydb?hl=en
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://docs.oracle.com/en/database/oracle/oracle-database/23/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/index.html
https://www.postgresql.org/

[60] Mark Raasveldt and Hannes Mühleisen. 2023. Duckdb: an embeddable analytical
database. In Proceedings of the 2019 International Conference on Management of
Data. 1981–1984.

[61] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
Guy M Lohman, et al. 2013. DB2 with BLU acceleration: So much more than just
a column store. Proceedings of the VLDB Endowment 6, 11 (2013), 1080–1091.

[62] Stanley Shyiko. 2022. MySQL Binary Log connector. https://github.com/shyiko/
mysql-binlog-connector-java.

[63] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh,
and Christof Bornhövd. 2012. Efficient transaction processing in SAP HANA
database: the end of a column store myth. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. 731–742.

[64] Eugene Siow, Thanassis Tiropanis, and Wendy Hall. 2018. Analytics for the
internet of things: A survey. ACM computing surveys (CSUR) 51, 4 (2018), 1–36.

[65] Alex Skidanov, Anders J. Papito, and Adam Prout. 2016. A column store engine
for real-time streaming analytics. In 2016 IEEE 32nd International Conference on
Data Engineering (ICDE). 1287–1297. https://doi.org/10.1109/ICDE.2016.7498332

[66] Haoze Song, Wenchao Zhou, Heming Cui, Xiang Peng, and Feifei Li. 2024. A
survey on hybrid transactional and analytical processing. The VLDB Journal
(2024), 1–31.

[67] Michael Stonebraker. 1986. The case for shared nothing. IEEE Database Eng. Bull.
9, 1 (1986), 4–9.

[68] PingCAP TiDB. 2024. Deploy a TiDB Cluster Using TiUP. https://docs.pingcap.
com/tidb/stable/production-deployment-using-tiup.

[69] PingCAP TiDB. 2024. TiDB Customers. https://www.pingcap.com/customers/.
[70] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,

Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon aurora: Design considerations
for high throughput cloud-native relational databases. In Proceedings of the 2017
ACM International Conference on Management of Data. 1041–1052.

[71] Reynold S Xin, William McLaren, Patrick Dantressangle, Steve Schormann, Sam
Lightstone, and Maria Schwenger. 2010. MEET DB2: automated database migra-
tion evaluation. Proceedings of the VLDB Endowment 3, 1-2 (2010), 1426–1434.

[72] Jiacheng Yang, Ian Rae, Jun Xu, Jeff Shute, Zhan Yuan, Kelvin Lau, Qiang Zeng,
Xi Zhao, Jun Ma, Ziyang Chen, et al. 2020. F1 Lightning: HTAP as a Service.
Proceedings of the VLDB Endowment 13, 12 (2020), 3313–3325.

[73] Yifei Yang, Matt Youill, MatthewWoicik, Yizhou Liu, Xiangyao Yu, Marco Serafini,
Ashraf Aboulnaga, and Michael Stonebraker. 2021. Flexpushdowndb: Hybrid
pushdown and caching in a cloud DBMS. Proceedings of the VLDB Endowment
14, 11 (2021), 2101–2113.

[74] Xiangyao Yu, Matt Youill, Matthew Woicik, Abdurrahman Ghanem, Marco Ser-
afini, Ashraf Aboulnaga, and Michael Stonebraker. 2020. PushdownDB: Acceler-
ating a DBMS using S3 computation. In 2020 IEEE 36th International Conference
on Data Engineering (ICDE). IEEE, 1802–1805.

[75] Chao Zhang, Guoliang Li, and Tao Lv. 2024. HyBench: A New Benchmark for
HTAP Databases. Proceedings of the VLDB Endowment 17, 5 (2024), 939–951.

[76] Jianqiu Zhang, Kaisong Huang, Tianzheng Wang, and King Lv. 2022. Skeena:
Efficient and consistent cross-engine transactions. In Proceedings of the 2022
International Conference on Management of Data. 34–48.

2347

https://github.com/shyiko/mysql-binlog-connector-java
https://github.com/shyiko/mysql-binlog-connector-java
https://doi.org/10.1109/ICDE.2016.7498332
https://docs.pingcap.com/tidb/stable/production-deployment-using-tiup
https://docs.pingcap.com/tidb/stable/production-deployment-using-tiup
https://www.pingcap.com/customers/

	ABSTRACT
	1 INTRODUCTION
	2 DESIGN GOALS
	3 HERMES OVERVIEW
	3.1 System Architecture
	3.2 Hermes Integration
	3.3 Hermes Design Details

	4 TRANSACTIONAL ANALYTICS WITH HERMES
	4.1 Design Challenges
	4.2 Hermes' Isolation Levels Solutions
	4.3 Transactional Analytics Workload (TAW)

	5 HERMES POTENTIAL EXTENSIONS
	5.1 Cache Offloading to Hermes
	5.2 Hermes in a Distributed Setup
	5.3 Hermes Advancing Middle Layers

	6 EXPERIMENTAL EVALUATION
	6.1 Experimental Setup
	6.2 Hermes Evaluation
	6.3 HATtrick Evaluation Across Systems
	6.4 TAW Evaluation Across Systems

	7 RELATED WORK
	8 CONCLUSION
	REFERENCES

