
TMLKD: Few-shot Trajectory Metric Learning via Knowledge
Distillation

Danling Lai
School of Computer Science and

Technology, Soochow University

Suzhou, China

dllai@stu.suda.edu.cn

Jiajie Xu∗

Key Laboratory of Data Intelligence

and Advanced Computing, Soochow

University

Suzhou, China

xujj@suda.edu.cn

Jianfeng Qu
Key Laboratory of Data Intelligence

and Advanced Computing, Soochow

University

Suzhou, China

jfqu@suda.edu.cn

Pingfu Chao
Key Laboratory of Data Intelligence

and Advanced Computing, Soochow

University

Suzhou, China

pfchao@suda.edu.cn

Junhua Fang
Key Laboratory of Data Intelligence

and Advanced Computing, Soochow

University

Suzhou, China

jhfang@suda.edu.cn

Chengfei Liu
Swinburne University of Technology

Melbourn, Australia

cliu@swin.edu.au

ABSTRACT

Trajectory metric learning, which supports the trajectory similarity

search, is one of the most fundamental tasks in spatial-temporal

data analysis. However, existing trajectory metric learning meth-

ods rely on massive labels of pairwise trajectory distance, and thus

cannot be applied to few-shot scenarios frequently occurring in

real-world applications. Though performance drops caused by in-

su�cient labels can be alleviated by knowledge distillation, we

demonstrate that they cannot be directly applied to few-shot tra-

jectory metric learning due to the domain shift problem. To this

end, this paper proposes invariant and relaxed learning enhanced

knowledge distillation method TMLKD for few-shot trajectory met-

ric learning, such that domain-invariant representation and rank

knowledge can be distilled. Speci�cally, in the representation learn-

ing phase, it �rst employs an adversarial sub-network to distinguish

domain-speci�c and domain-invariant information, so as to distill

transferable representation knowledge from teacher models. To

mitigate the few-shot problem in student model training, we fur-

ther enrich sparse labels of the target domain by utilizing the rank

knowledge revealed in teachers’ predictions. Particularly, TMLKD

employs a list-wise learning-to-rank approach to learn the relaxed

trajectory ranking orders instead of focusing on all the samples inef-

�ciently. Finally, to guide accurate distillation, we adaptively assign

reliability of teacher prediction by utilizing the ground-truth labels,

to avoid misleading the student model with low-quality teacher

predictions. Extensive experiments on three real-world datasets

demonstrate the superiority of our model.

PVLDB Reference Format:

Danling Lai, Jiajie Xu, Jianfeng Qu, Pingfu Chao, Junhua Fang,

and Chengfei Liu. TMLKD: Few-shot Trajectory Metric Learning via

Knowledge Distillation. PVLDB, 18(8): 2308 - 2320, 2025.

doi:10.14778/3742728.3742729

∗Corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/LynnTakesAHint/TMLKD.

1 INTRODUCTION

Fueled by the progress in GPS devices, a large amount of data,

known as trajectories, are generated and bene�t a wide range of

real-life application domains, such as urban computing and behav-

ior study. As the fundamental trajectory analytic problem, trajectory

metric learning is crucial for various spatial-temporal data min-

ing tasks, including trajectory similarity search, trajectory cluster-

ing [13] and trajectory prediction [17]. It aims to predict a similarity

ranking based on the calculated trajectory distance. Classical meth-

ods compute trajectory similarity based on point-oriented matching

with prede�ned measures, such as Dynamic Time Warping (DTW)

distance [3], Fréchet distance [2], and Hausdor� distance [1]. How-

ever, these measures consume large space and su�er from high time

complexity. For e�ciency concerns, recent studies [40, 42–44] use

learning-based approaches to learn measures with corresponding

labels (e.g. pair-wise distance, ranking orders) by mapping trajecto-

ries into low dimensional space with deep learning models. Owing

to the availability of su�cient labels, these methods signi�cantly

accelerate the trajectory similarity computation and achieve high

accuracy.

Every sword has two edges. This reliance underscores the crucial

need for meticulous and accurate data annotation, as the quality

of the labels directly impacts the performance of these methods.

However, it is challenging to obtain su�cient labels in real-world

scenarios due to the high cost of manual annotation. Considering

the data sparsity on the target measure, using prede�ned measures

to enrich labels is also a method worth trying. However, this ap-

proach may su�er from weak generalization issues, because the

focus of di�erent measures di�ers, and the measure that accom-

modates a certain scenario may not be suitable for another. For

licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.
doi:10.14778/3742728.3742729

2308

https://doi.org/10.14778/3742728.3742729
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/LynnTakesAHint/TMLKD
https://doi.org/10.14778/3742728.3742729
https://www.acm.org/publications/policies/artifact-review-and-badging-current

instance, when monitoring airplane routes, we prioritize the over-

all shape of the trajectory to ensure the aircraft follows the planned

route. In contrast, when delivering packages, our emphasis shifts to

local distances to identify more e�cient deliverymethods. Despite

the di�erent emphases of measures in various scenarios, they still

contain some insightful information. Data-sparse scenarios thus

call for a few-shot trajectory metric learning strategy that can not

only quickly learn from insu�cient target measure labels but also

make meaningful use of data-rich trajectory similarity measures in

other domains.

Recently, knowledge distillation (KD) is known as one of the

most successful approaches for few-shot learning [12, 28], with a

basic idea to optimize a model (i.e., student model) by distilling

the knowledge from well-trained models (i.e., teacher model). Two

heads are better than one. Existing KDmethods often adoptmultiple

teacher models, as they can correct the prediction error provided by

a single teacher, thus achieving better performance [37, 41]. Owing

to its generalization ability, KD has been successfully applied in

various domains such as computer vision [35] and natural language

processing [34]. Consequently, it provides great opportunities for

trajectory similarity computation as well. Models on prede�ned

source measures can be regarded as teacher models. These models

come to our aid when training a more generalized student model

with inadequate labels on the target measure. Despite this, directly

applying multi-teacher distillation to trajectory metric learning

tasks still faces some challenges:

• How to obtain domain-invariant representations from

teachers for enhanced representation learning in the

target domain? Existing methods [25, 30] in KD utilize the

output of the last layer or that of the intermediate layers as

representation knowledge to supervise the training of the

student model. However, when applying this strategy to

metric learning, the discrepancy across di�erent measures

necessitates for a selective distillation method to transfer

representation knowledge from richly labeled source do-

mains to the sparsely labeled target domain. Otherwise,

directly transferring the representation knowledge may

lead to sub-optimal results. Consequently, �nding

domain-invariant information is essential to integrate trans-

ferable knowledge from teacher models while bridging do-

main discrepancy. It thus calls for invariant learning-based

feature extraction to discriminate shareable latent informa-

tion for rational representation knowledge transfer [5, 7].

• How to enrich sparse labels in the target domain by

incorporating teacher predictions as soft labels selec-

tively, such that knowledge from inconsistent teach-

ers can be eliminated in sample-wise granularity?

Besides hard labels (i.e., annotated ranking order), the pre-

dictions of teacher models contain rich information, such

as the ranking order of unlabeled trajectories. The inspir-

ing knowledge can be exploited as soft labels. However,

directly fusing this knowledge together is unreasonable,

since di�erent teacher models emphasize di�erent aspects

of the data and o�er diverse results [19, 32]. Not all the

teacher models provide equally valuable insights for every

sample, so learning from various teacher models uniformly

may result in sub-optimal results [41]. Consequently, it

is essential to distinguish between high-quality and low-

quality teachers at a sample-wise granularity, giving more

weight to those teachers that closely align with the tar-

get domain for each speci�c sample. To e�ectively transfer

ranking information from the teacher models, an accurate

sample-wise con�dence assessment of the teacher mod-

els is needed, enabling di�erentiation of their quality and

supporting adaptive knowledge distillation.

• How to employ the relaxed ranking matching strat-

egy to distinguish between di�erent labels and the

varying importance of di�erent trajectories, thereby

ensuring performance and reducing noise? The dif-

�culty in data annotation hinders the training process of

most existing trajectory similarity learners [42, 44], which

requires informative soft labels from teacher models. When

fully utilizing both hard labels and soft labels, their impor-

tance should be di�erentiated, since hard labels originate

from precise annotations in the target domain, while soft

labels are derived from the data transfer from other source

domains. However, traditional methods fail to distinguish

between these labels. Additionally, learning the detailed

ranking of all unlabeled trajectories is both time-consuming

and prone to introducing noise into the training process. To

address this, we should prioritize the ranking of more sim-

ilar trajectories while selectively ignoring the ranking of

dissimilar ones, as they are less critical. Therefore, adopting

a relaxed ranking matching approach would be advanta-

geous, as it allows us to concentrate on the more relevant

trajectories rather than ine�ciently fusing all the samples

with the ground truth.

To address the above challenges, we propose a new framework

to cope with TrajectoryMetric Learning with Knowledge

Distillation, called TMLKD. TMLKD is general and principled to

be naturally compatible with di�erent architectures. Speci�cally,

TMLKD uses multiple teacher models to transfer dual-channel

knowledge from source domains to the student model on the target

domain. To transfer shareable representation knowledge, we design

adversarial sub-networks to capture domain-invariant knowledge,

avoiding misleading the student with straightforward imitation

tasks. Additionally, instead of directly fusing each teacher’s pre-

dicted ranking results, we evaluate each teacher model’s sample-

wise con�dence and use their predictions to enrich sparse labels,

which serve as soft labels for rank knowledge transfer to the stu-

dent model. With these enriched labels, we model correlations

among trajectories and perform relaxed ranking distillation, em-

phasizing closely related trajectories. Our contributions can be

summarized as follows:

• We design a general method for few-shot trajectory metric

learning, which transfers knowledge from data-rich mea-

sures to the data-sparse measure. To the best of our knowl-

edge, TMLKD is the �rst to introduce knowledge distilla-

tion for few-shot trajectory metric learning.

• Wedisentangle domain-invariant representation and domain-

speci�c representation with the adversarial sub-networks

during the teacher model training, to capture shareable rep-

resentation knowledge. A contrastive constraint is further

2309

utilized to prevent the shared and private latent features

from interfering with each other.

• We perform a sample-wise con�dence evaluation on each

teacher, and enrich the sparse labels based on the con�dence-

aware predictions. Relaxed Ranking Distillation is further

utilized to distill rank knowledge from closely related tra-

jectories selectively.

• We conduct extensive experiments on three real-world tra-

jectory datasets in order to demonstrate the e�ectiveness

of our approach.

2 RELATED WORK

In this section, we outline recent research work related to TM-

LKD from two aspects, including trajectory metric learning and

knowledge distillation.

2.1 Trajectory Metric Learning

Trajectory metric learning is a fundamental step in trajectory data

mining, in order to measure the similarity between a pair of trajec-

tories. Traditional heuristic methods [1, 2, 9, 29, 32] aim to �nd opti-

mal point matches. These methods count on hand-crafted rules and

cannot utilize the information in trajectories. What is more, it usu-

ally has a large space and time complexity. There have been various

techniques to accelerate the computation. Most techniques focus

on pruning [16, 31] and designing approximate algorithms [11, 38].

As deep learning advances, trajectory representation learning [6,

14, 23] is developed to extract the spatial, structural, and time infor-

mation of trajectories. Inspired by this, metric learning models are

developed to transform trajectories into a Ě-dimensional embed-

ding representation, simplifying the time complexity of similarity

computation to ċ (Ě). For example, NeuTraj [42] utilizes a spatial-

memory-based LSTM unit to capture the similarity relationship

between trajectories. Traj2SimVec [44] employs the distance in-

formation among sub-trajectories and acquires the most e�cient

matching correlation between points through a point-matching

function. T3S [40] applies a multi-head self-attention network to

capture the structural information of the trajectories, while an

LSTM-based unit is exploited to extract spatial information. Traj-

GAT [43] models each trajectory as a graph and captures long-term

dependency based on graph attention modules.

Although these methods perform well on data-rich measures,

they are incapable of modeling trajectories when labels for the

target domain are insu�cient, which leads to severe performance

drop. It thus calls for an e�ective method to cope with few-shot

metric learning via knowledge distillation.

2.2 Knowledge Distillation

Knowledge Distillation (KD) [18] is one of the most successful

techniques in few-shot learning. The main idea of KD is to �rst

train a high-performance but expensive teacher model, and then

train a shallow student model to imitate the teacher model. The

student model is optimized to learn from hard labels and soft labels.

The hard labels are the ground-truth results, and the soft labels

are the predicted results made by the teacher model. Despite the

predicted results of teacher models, the representations produced

by teacher models can also provide constructive knowledge for the

student model [21, 22, 30].

In spatial-temporal data analysis, [10] proposes a KD model to

solve trajectory-user linking problem, [26] transfers knowledge to

forecast future path according to historic trajectory data, and [36]

distills the knowledge to a mapless student network from a map-

based prediction teacher network with a two-fold knowledge distil-

lation framework, in order to predict the future coordinates of the

given trajectory. Our technique di�ers from theirs, as we use KD

to perform accurate trajectory metric learning when labels on the

target measure are insu�cient.

KD has achieved remarkable improvements when training the

student model, especially with multiple teacher models included.

Using multiple-teacher models helps reduce errors attributed to

a single-teacher model, and enables the acquisition of more com-

prehensive knowledge. Several multi-teacher KD methods are pro-

posed [15, 37, 41], they vary from each other in the way that they

fuse di�erent teacher models. Despite multi-teacher distillation can

act as an e�ective method for few-shot metric learning, it lacks the

consideration of domain shifts when transferring knowledge across

di�erent measures. We thus aim to improve existing methods by

e�ectively distinguishing domain-invariant transferable represen-

tation knowledge and shareable rank knowledge from multiple

teacher models.

3 PRELIMINARY

In this section, before delving into the details of our method, we �rst

introduce the basic notations. Thenwe describe the related concepts

and de�nitions. Finally, we describe the problem statement. Table 1

summarizes the frequent notations in the paper.

3.1 De�nitions

De�nition 3.1 (Trajectory). A trajectory Đ is a trace generated by

a moving object. Usually, a trajectory is described by a sequence

of points ordered by timestamps, i.e.Đ = [Ħ1, Ħ2, ..., ĦĢ], where Ħğ is

the ğ-th location of the object.

De�nition 3.2 (Trajectory Similarity Measure). A trajectory simi-

larity measureĉ (·, ·) quanti�es the similarity between two trajec-

tories by calculating their distance. A smaller distance indicates a

greater degree of similarity, thus in�uencing the relative ranking

order in trajectory metric learning.

De�nition 3.3 (Trajectory Metric Learner). Given labels under tra-

jectory similarity measure ĉ , a trajectory metric learner Ĝĉ (·, ·)

aims to derive generic and informative representations of trajecto-

ries, to guide accurate trajectory metric learning.

It is important to emphasize that labels for trajectory metric

learners can be divided into two categories: list-wise rank labels

(e.g. ranking order of Topć trajectories) and distance labels (e.g. pair-

wise distance for a pair of trajectories). Since the former fails

to quantify the degree of similarity, using the latter can signi�-

cantly improve the model performance. However, it is often time-

consuming to calculate the pair-wise distance for a large-scale

trajectory dataset.

De�nition 3.4 (Source Measures and Target Measure). In our prob-

lem, we refer to a data-sparse measure in the real-world application

2310

Table 1: Descriptions of notations used in this paper.

Notations Description

T A database with trajectories and labels.

Đ A trajectory in T consisting of a coordinate

sequence.

ĉ, Ĝĉ A similarity measure for trajectory pairs

and its metric learner.

Ě (·, ·) Euclidean distance between a pair of trajec-

tory embeddings.

G Base model, such as T3S and NeuTraj.

GĠ (Đ) Derived trajectory embedding via the Ġ-th

base model.

ĩ, Ħ Domain-invariant trajectory representa-

tion.

Ħ Ġ , ℎ Ġ Domain-speci�c trajectory representation

and �nal trajectory representation of the

Ġ-th source domain.

ēĩ ,ēĦ Projection matrices to project ĩ and Ħ .

ÿ Learnable weight for domain-invariant and

speci�c representations.

ēč ,ēć ,ēĬ The query, key and value matrices in self-

attention mechanism for domain-invariant

representation.

Ăĩ , ĂĦ , Ăę Weights for teacher model losses.

Ĩ̂Ī , ÿ
ĝ
Ī Đ -th trajectory’s relevance score and

ground-truth rank.

Nğ
Ġ ,R

ğ
Ġ , ę

ğ
Ġ Ć -th teacher’s nDCG, recall, and con�dence

scores for ğ-th sample.

ĨĦğ , Ā Rank-based similarity of ğ-th trajectory and

top-position emphasis.

Ĉ Threshold for partitioning unlabeled trajec-

tories.

Ĩėÿġ Predicted distance between ġ-th trajectory

and anchor Đė .

ÿė
ć1:ć2

Trajectories ranked between ć1 and ć2 for

query Đė under the speci�c trajectory mea-

sure.

as the target measure. The labels of the target measure are usually

limited and hard to access. Besides, we have several measures with

su�cient labels, which are denoted as source measures. They usu-

ally have explicit formulas, which make the labels easy to calculate.

Besides, they exhibit good generalization and indicate the spatial

and structural information of trajectories. However, source mea-

sures may not perfectly �t the target domain and cannot be directly

used in some scenarios.

3.2 Problem Statement

Given a trajectory database T and a target measure ĉĪ with in-

su�cient labels, we aim at deriving a trajectory distance learner

ĜĪ with the aid of several trajectory metric learner Ĝĉ1
, Ĝĉ2

, ... on

source measuresĉ1, ĉ2, ..., which are mainstream trajectory sim-

ilarity measure and have easily computable labels. ĜĪ should not

only accommodate the limited annotated labels (i.e., the ranking

orders) speci�c to the target domain but also e�ectively capture

the correlation among data-sparse distance measureĉĪ and other

data-rich source measures.

4 METHODOLOGY

4.1 Overview of TMLKD

Based on the learning-based trajectory metric learning framework,

we extend it by incorporating knowledge distillation. Besides the

base loss which is determined by the framework of the learner, we

introduce latent knowledge and rank knowledge from teachers as

guidance for distillation. The overall framework of our proposed

TMLKD is shown in Figure 1. First, we introduce a trajectory simi-

larity learner as our base model. We select di�erent source measures

with rich labels as multiple teacher models. During the training

phase of teacher models, a discriminator-based network is designed

to derive domain-invariant knowledge by learning the representa-

tion of teachers.

After training teacher models, we derive domain-speci�c tra-

jectory representation from source measures, which can provide

extra spatial and structural information when training the student

model on the data-sparse measure. With con�dence evaluation for

each teacher in a sample-wise granularity, TMLKD then utilizes a

con�dence-aware correlation modeling module to enrich soft labels

with the predicted result of teachers, where relaxed ranking loss is

used to learn the rank knowledge from soft labels.

4.2 Case Study: Monitor Airplane Routes

To illustrate the proposed model, consider a real-world example

with a large dataset of airplane routing trajectories. We have trained

several teacher models on a set of airplane routes to learn various

trajectory similarity metrics. TMLKD extracts domain-invariant

representations, capturing shared trends across measures. Com-

bined with domain-speci�c knowledge, these teacher models can

quickly and accurately predict pairwise trajectory distances.

Now we aim to �nd routes with the same start and end points

that closely match the shape of a query trajectory. However, the

main challenge is that existing metrics are not well-suited to this

speci�c scenario, and the di�culty of obtaining annotations causes

the limited availability of labels. Despite having limited labels, Haus-

dor� [1] and Frechet [2] distances are useful for comparing overall

shapes. We use the computed pairwise distances to generate soft

labels for student model training. Additionally, pre-trained domain-

invariant knowledge can be combined with domain-speci�c knowl-

edge to transfer latent knowledge e�ectively.

4.3 Domain-invariant Representation

Knowledge Extraction

Through the representation learning modules, teacher models are

utilized to provide highly abstracted summaries of spatial and struc-

tural information within trajectories as latent knowledge. Tradi-

tional methods for distilling latent knowledge typically align the

representations of teacher models with the student model after

applying necessary projections [30], but they often overlook do-

main shifts when transferring knowledge from data-rich source do-

mains to a data-sparse target domain. Even though teacher models

are trained under di�erent measures from di�erent domains, they

2311

ÿýÿÿÿÿýÿ

ÿýÿýÿିÿýÿýÿÿý ÿýÿ

ý௦௛௔௥௘

ý௣௥௜௩௔௧௘ೕ

ÿÿ ÿÿ

ÿýýÿýÿÿýýÿÿÿ
ÿýýÿÿÿýଵýଶý௡ý௔
ℎ௠௔ ℎ௠ଵℎ௠ଶℎ௠௡

ÿÿÿÿÿÿ
ÿÿÿÿ

ý௣௥௜௩௔௧௘మý௣௥௜௩௔௧௘೘ ý௠ଵý௠ଶý௠௡ýଵ௔
ÿýýÿýÿÿýýÿÿÿÿýýÿýÿÿýýÿÿÿ ÿ௥௘௖ ℎ௠௔ ℎ௠ଵℎ௠ଶℎ௠௡ℎ௠௔ ℎ௠ଵℎ௠ଶℎ௠௡

ÿýÿýÿ
ý௠ଵý௠ଶý௠௡ýଶ௔

ÿ௥௘௖ÿ௥௘௖೘
ý௠ଵý௠ଶý௠௡ý௠௔

ÿଷ ÿସ ÿଶ ÿଵÿଶ ÿଷ ÿସ ÿଵ
ÿଶ ÿସ ÿଷ ÿଵ

ÿýÿÿýÿ
ÿýÿ

ÿýÿÿÿÿýÿÿýÿÿÿÿýÿÿ

ý௣௥௜௩௔௧௘ೞý௦௛௔௥௘ ÿ௥௘௖ೞ

ÿଷ ÿସ ÿଶ ÿଵýýÿ ÿଶ ÿଷ ÿସ ÿଵýýÿ
ÿଶ ÿସ ÿଷ ÿଵýýÿ

ÿଶ ÿଵ ÿସ ÿଷýýý

ÿÿ
ÿÿÿÿ
ÿÿ
ÿÿ

ý௣௥௜௩௔௧௘೘ý௦௛௔௥௘ ÿ௥௘௖೘ý௣௥௜௩௔௧௘೘ý௦௛௔௥௘ ÿ௥௘௖೘ý௣௥௜௩௔௧௘೘ý௦௛௔௥௘ ÿ௥௘௖೘
ÿýýÿýÿÿýýÿÿÿ

Figure 1: Architecture of TMLKD. Part (a) demonstrates the training phase of teachermodels, which aims at deriving transferable

domain-invariant representation for the student model. Part (b) illustrates the training process of the student model, which

utilizes the representation knowledge and rank knowledge from pre-trained teacher models.

can still provide constructive knowledge, as there is common and
domain-invariant information to be extracted and utilized[7, 20]. To
address this, we create two distinct feature spaces in each domain:
one that captures common knowledge applicable across di�erent
domains, and another that records speci�c details relevant to tasks
within each individual domain. Drawing inspiration from [24], we
employ a "shared-private" architecture during training, consisting
of two sub-networks: a shared sub-network āĩℎėĨě and a private
sub-network āĦĨğĬėĪě .

4.3.1 Shared Sub-network. The shared sub-network is utilized to
extract domain-invariant knowledge. Its architecture follows the
network structure of the base model. For instance, when T3S is used
as the base model, the shared sub-network will consist of LSTM
cells for extracting spatial information and attention modules for
extracting structural information. Then, we employ an extra self-
attention-based layer to model the domain-invariant representation.
Speci�cally, we �rst derive the trajectory input ĩ̂ = G(Đ) via base
model G, like T3S or NeuTraj. Then, we compute the domain-
invariant representation ĩ as follows:

(č,ć,Ē) = ĩ̂ × (ēč ,ēć ,ēĒ) (1)

ý = softmax(č × ćT

√
Ě

) (2)

ĩ = ý ×Ē (3)

where č,ć,Ē are the query, key and value matrices,ēč ,ēć ,ēĒ
represents the weight matrices to produceč,ć,Ē . We further com-
pute the attention score matrix ý to derive the domain-invariant
representation ĩ .

When learning measures in di�erent domains, the trajectory
similarity learner uses the same shared sub-network for domain-
invariant knowledge extraction. Hence, it should yield relatively
balanced results across various source measures. We further formu-
late the loss for optimizing the shared sub-network as follows:

ĈĩℎėĨě =

ģ∑

Ġ=1

(Ě (ĩė, ĩĘ) − ĜĉĠ
(Đė,ĐĘ))2 (4)

where ĜĉĠ
denotes the trajectory distance learner on the Ġ-th source

measureĉĠ .

4.3.2 Private Sub-network. For extracting domain-speci�c knowl-
edge, we employ private sub-networks. Each trajectory similarity
learner on each domain, learning a speci�c measure, has a unique
private sub-network to learn domain-speci�c information. It main-
tains consistency with the network structure of the base model as
well. With the Ġ-th private sub-network, we compute the domain-
speci�c representation Ħ Ġ obtained with the private sub-network
as follows:

Ħ Ġ = GĠ (Đ), Ġ ∈ {1, 2, ...,ģ} (5)

where GĠ refers to the base model training with the Ġ − Īℎ source
measure. Since the private sub-network extracts domain-speci�c
knowledge and is supposed to show the most optimal performance
on the correspondingmeasure, we optimize the private sub-network
with ĈĦĨğĬėĪě :

ĈĦĨğĬėĪě =

ģ∑

Ġ=1

(Ě (Ħ Ġ ė, Ħ ĠĘ) − ĜĉĠ
(Đė,ĐĘ))2 (6)

2312

Finally, we use a learning-based combination ĀĨěę to obtain the
�nal trajectory representation:

ℎ Ġ = ÿ · (ēĩ · ĩ) + (1 − ÿ) · (ēĦ · Ħ Ġ) (7)

whereēĩ ,ēĦ are the representation projection matrices. ÿ is a
learnable parameter to balance theweight of domain-speci�c knowl-
edge and domain-invariant knowledge.

4.3.3 Incorporating Adversarial Strategy. While the shared-private
model segregates the feature space into shared and private do-
mains, there’s no assurance that features eligible for sharing cannot
exist within the private feature space, or vice versa. To avoid task-
invariant features appearing in both shared space and private space,
we introduce orthogonality constraints [4] to prevent the shared
sub-network and private ones from storing redundant knowledge:

ĈęĥĤĪĨėĩĪğĬě =

ģ
∑

Ġ=1

| |ďĐ Č Ġ | |2Ă (8)

where | |...| |2
Ĝ
is the squared Frobenius norm,ģ is the size of source

measures. The rows of ď and Č Ġ are the output of the shared sub-
network and that of the Ġ-th private sub-network respectively. By
minimizing ĈęĥĤĪĨėĩĪğĬě , we encourage the domain-invariant repre-
sentation from shared sub-network and domain-speci�c knowledge
from each private sub-network to encode di�erent perspectives of
trajectories, in order to achieve Knowledge Segregation. Eventually,
the �nal loss of the teacher training phase can be written as follows:

Ĉ = Ĉþėĩě + ĂĩĈĩℎėĨě + ĂĦĈĦĨğĬėĪě + ĂęĈęĥĤĪĨėĩĪğĬě (9)

where Ĉþėĩě refers to the loss of teacher model, it depends on the
de�nition of teacher model. For example, ĈĘėĩě will be the pair-wise
distance loss when using Neutraj [42] as base model, and triplet loss
when employing Traj2Simvec [44]. Ăĩ , ĂĦ , Ăę are hyper-parameters.
After the teacher models’ training phase, the shared-private sub-
network architecture on source measures will be further utilized in
the student model training phase to provide representation knowl-
edge and rank knowledge for distillation. However, the parameters
of sub-networks will not be updated when training student models,
which means the domain-invariant representation is not updatable
during student model training.

4.4 Shareable Rank Information Distillation

Given the label sparsity in the target domain, KD modules are
needed to enhance the labels by incorporating the predictions of
teacher models as soft labels. However, directly fusing the output
of teacher models will lead to a performance drop because of the
discrepancy among measures. When dealing with multiple teacher
models from di�erent source domains, it is essential to �rst identify
the higher-quality teachers through accurate con�dence evaluation.
Then, we further utilize a list-wise learning-to-rank method to
transfer relaxed rank knowledge to the student model.

4.4.1 Sample-Wise Confidence-Aware Teacher Selection. Knowl-
edge distillation aims to seek useful information from teacher mod-
els as extra guidance for the student model. However, directly trans-
ferring knowledge may result in sub-optimal results. For one thing,
there may be a signi�cant di�erence in the similarity predictions be-
tween the student measure and the teacher measures. For another,

ÿýÿýÿିÿýÿýÿÿý ÿýÿ
ÿÿÿ ÿÿÿ
ÿ

ÿ

ÿ Ā ÿÿ ÿÿ

Figure 2: The Illustration of Soft Label Enrichment and Re-

laxed Ranking Loss.

the predictions from the teacher measures are not the same either.
Setting equal weights for all the teacher measures may result in
a performance drop. Therefore, it is crucial to accurately measure
the teacher models’ con�dence and conduct biased knowledge dis-
tillation based on the results. During the evaluation, sparse labels
should be fully utilized to derive precise teacher-student measure
con�dence evaluation. However, since labels are insu�cient, ag-
gregating con�dence across multiple samples to form an overall
evaluation result may be inaccurate, as it neglects the diversity
of samples and can lead to over-�tting. It requires to adaptively
assign weight at a sample-wise granularity. Hence, given anchor
trajectoryĐė , we employ teacher models to predict its top-ġ similar
trajectories, where ġ refers to the number of trajectories with sim-
ilarity ranking annotations for Đė . We employ nDCG to evaluate
the quality of the predicted ranking order of each teacher model,
with the relevance score Ĩ̂Ī de�ned as follows:

Ĩ̂Ī =

{

č · (ġ − Ī), ÿ
ĝ
Ī ∈ 1, 2, ..., ġ

0, ÿ
ĝ
Ī ∈ ġ + 1, ġ + 2, ...

(10)

where ÿ
ĝ
Ī refers to the Ī-th trajectory’s ranking order according

to the ground truth. č is a dataset-dependent hyper-parameter,
which is set to 0.01 according to our experiments. Besides nDCG,

we utilize the recall rate ĨěęėĢĢˆ
Ī to evaluate the recovery ability of

teacher models. Speci�cally, we compute the occurrences of the

top-ġ trajectories from the ground truth in the predicted top-ġ̂

trajectories by the teacher model, where ġ̂ is usually larger than ġ
to ensure a certain level of fault tolerance.

To balance the magnitude of nDCG and Recall Rate, we de�ne
Nğ
Ġ = nDCGğĠ/

∑ģ
ġ=1

nDCGğ
ġ
as the �nal nDCG score of Ġ-th teacher

2313

model on the ğ-th trajectory sample. Then we compute the Recall
score RğĠ in a similar way. Eventually, we derive the con�dence

score ęğĠ as follows:

ęğĠ =
Nğ
Ġ · R

ğ
Ġ

∑ģ
ġ=1

Nğ
ġ
· Rğ

ġ

(11)

4.4.2 Confidence-aware So� Label Enrichment. Given an anchor
trajectory and the sparse manual annotation, the trajectories in
the datasets can divided into two categories, namely labeled ones
and unlabeled ones. In order to extract rich information in a large
number of trajectories, we, inspired by [39], introduce enriched soft
labels to learn the knowledge of ranking orders of unlabeled items
while preserving the priority of annotated labels. Hence, they pos-
sess the most vital priority and are supposed to be positioned at the
forefront. However, they su�er from data sparsity and contribute
little to the training of the student model.

In contrast, even though trajectories in the latter categories are
not most closely related to the target measure, they reveal additional
information about the ranking of samples. Teacher models, demon-
strating superior performance, can provide supplementary knowl-
edge to enhance the distillation. Speci�cally, we utilize teacher
models to make predictions as soft labels for a given anchor tra-
jectory. The soft labels enrichment process includes two steps, i.e.
rank-based correlated score generator and correlation-based unlabeled
trajectories sampling.

Rank-based Similarity Correlated Score Generator First, we
assume that unlabeled trajectories predicted by the teacher model
to be at the top positions are more likely to be correlated with the
query trajectory and are more likely to be similar to it. Hence, we
develop the rank-based similarity score as follows:

ĨĦğ =
1

ÿğ
(12)

where ÿğ denotes the ranking order of target trajectoryĐğ . However,
the decay rate of the above-mentioned method is too rapid. As ÿğ
increases, ĨĦğ becomes extremely small. This is not suitable for
certain measures with low discriminative power. Therefore, we
further de�ne ĨĦğ as follows:

ĨĦğ =
∑

ě
−ÿğ
Ā (13)

where Ā is a dataset-dependent hyper-parameter that adjusts the
emphasis on top positions. For example, when Ā is small, the top
positions will be paid more attention, while when Ā gets larger, it
gradually turns into a uniform distribution.

Correlation-based Unlabeled Trajectories Sampling For the
same target trajectory, its ranking position often varies in the pre-
dictions of di�erent teacher models, leading to di�erent similarity
scores. In such cases, it is important to focus on the teacher model
with higher con�dence and lean towards its predictions. In speci�c,
according to the probability of a trajectory Đ predicted by the ğ-th
teacher model to be selected as the ġ-th most similar, we de�ne the
�nal correlation score as follows:

scoreğ =
ģ
∑

Ġ=1

ęğĠ · (ě
−ġ
Ā) (14)

The above probabilities can further di�erentiate unlabeled trajec-
tories by combining teachers’ evaluated con�dence and the trajec-
tory’s rank position in the predictions. Then, we set a threshold
Ĉ and further de�ne: labeled trajectories are strongly correlated
trajectories (SC), trajectories with a selection probability greater
than Ĉ are weakly correlated trajectories (WC), and those with
probabilities less than Ĉ are considered uncorrelated ones (U).

4.4.3 Relaxed Ranking Loss For Learning So� Labels. When com-
puting loss on training pairs for optimization, it is not only inef-
fective but also time-consuming to take all the target trajectories
into consideration. Hence, most learning-based metric learning
methods often focus on the most similar and dissimilar trajectory
pairs [42] since they are more discriminative, or use random sam-
pling methods [44] to reduce the pairs included during the compu-
tation. However, directly adopting traditional loss is impossible in
our problem, as only relative ranking orders on target trajectories
are given, which hinders the utilization of pair-wise distance in-
formation when computing loss of learning-based methods. What
is more, limited by the quality of negative samples in few-shot
learning, a traditional pair-wise loss like triplet loss may lead to
sub-optimal results.

When lacking pair-wise distance labels, list-wise learning-to-
rank tasks can be considered as another viable alternative. In con-
crete, based on the pair-wise distance between trajectory represen-
tations, these tasks represent the likelihood of a ranking order via a
de�ned permutation probability and then train the model, in order
to maximize the probability of matching the ground-truth ranking
order. Inspired by [21], we adopt the relaxed ranking loss (RRD)
to not only learn from limited ranking order information but also
speed up the convergence by focusing on more discriminative tra-
jectory pairs.

Figure 2 illustrates the process of enriching soft labels and per-
forming relaxed ranking loss. The designed RRD module de�nes a
relaxed permutation probability inspired by [21] in order to main-
tain the "SC-WC-U" trajectory order. Speci�cally, strongly corre-
lated trajectories have clear labels and should be placed at the top
positions according to the labels. As for the remaining trajecto-
ries, we only need to ensure that WC comes before U, without
emphasizing their internal relationships. The relaxed permutation
probabilities can be formulated as below:

Ĩėÿġ = Ě (ℎ(Đė), ℎ(Đġ)) (15)

Ħ (ÿė1:ć1
|Ĩ) =

ć1
∏

ġ=1

exp(−Ĩėÿġ)
∑ģ
ğ=ġ

exp(−Ĩėÿğ)
(16)

Ħ (ÿėć1:ć2
|Ĩ) =

ć2
∏

ġ=ć1

exp(−Ĩėÿġ)
∑ģ
ğ=ć2

exp(−Ĩėÿğ)
(17)

whereĚ (,) denotes the Euclidean distance between the embeddings,
and ÿė

1:ć1
denotes the Top ć similar trajectories for the anchor

trajectory. Here, among theģ target trajectories, the top ć1 trajec-
tories are SC ones for the anchor trajectory, and trajectories ranked
between ć1 and ć2 are WC ones. By maximizing the log-likelihood,
we not only maintain the detailed ranking orders among labeled
trajectories but also distill useful knowledge from enriched soft

2314

labels predicted by teacher models, which allows for some tolerance.
During the training of the student model, the pre-trained teacher
will not be updated, and the domain-invariant representation will
remain unchanged as well.

5 EXPERIMENTS

In this section, we brie�y present the datasets used in our exper-
iments. Then we introduce experimental settings and evaluation
metrics in our paper. Then, we give an introduction of the baseline
methods and show the experimental results of all the models in
order to compare our TMLKD with them. Additionally, we analyze
the accuracy and e�ciency of our method and study the in�uence
of the components of our model. Finally, we discuss the impact of
some hyper-parameters used in our model. We report the major
results with the analysis for the following questions:

• RQ1: Does TMLKD mitigate the performance drop on tar-
get measure which is due to insu�cient labels?

• RQ2: What is the performance of TMLKD compared with
other multi-teacher knowledge distillation methods?

• RQ3: What are the impacts of our designed modules on
the model performance? For instance, how do rank knowl-
edge distillation, and representation knowledge transfer
in�uence our model?

• RQ4: What are the advantages of TMLKD in terms of e�-
ciency when performing trajectory similarity computation
and similar trajectory search?

• RQ5: How do the hyper-parameters, such as embedding
dimension Ě , a�ect the e�ectiveness of our model?

5.1 Experiment Setup

5.1.1 Datasets. Our experiments are based on three real-world
public trajectory datasets:

• Porto [27] is a dataset that contains 1.7 million vehicle
trajectories. It is generated from 442 taxis in Porto, Portugal
from 2013 to 2014.

• Rome1 is a dataset made up of 367,052 taxi trajectories in
Rome, Italy. The trajectories cover over 30 days.

• Chengdu contains over 1.4 billion taxi GPS data points
generated by more than 14,000 taxis in Chengdu, China,
which is provided by DiDi GAIA.

Following [40, 42], we choose trajectories in the city center and
partition the whole area into 1100 × 1100 sized grids. Then we
remove the trajectories of less than 10 records.

5.1.2 Experimental Guidance. During training, we evaluate models
trained with di�erent source measures (DTW [3], ERP [8], Haus-
dor� [1], and Fréchet distance [2]) based on their prediction results
on labeled data in the target domain and remove the source mea-
sure with the lowest hitting rate (HR@5). For training purposes,
we focused on DTW, Hausdor�, Fréchet, and SSPD as our target
measures. While training the model for a speci�c target measure,
we select from the remaining provided measures as source mea-
sures. The trainable parameters are optimized by Adam based on

1https://crawdad.org/roma/taxi/20140717/

the training set. When training the teacher model, the sample size
is set to 30. Di�erent base models require di�erent batch sizes and
learning rates, which we have explained in detail in the code.

When training the teacher models, we randomly select 15ġ tra-
jectories as our dataset. Then, we partition the overall dataset into
the training set, validation set and test set following a ratio 3 : 1 : 6.
What is more, all the pair-wise distance of the trajectories in the
training set is available when training teacher models.

When training the student model, we only randomly select 10ġ
trajectories as our dataset, ensuring that the selected data has a
similar distribution to the training data of the teacher model. Given
that users cannot annotate massive amounts of data in batches,
we randomly select 3ġ trajectories as the training set, and the rest
will be used as the test set. We simulate user annotations using
the following steps. First, we randomly divide the training set into
several groups, with each group containing 50 trajectories. Second,
we select one trajectory within each group, then we search for the
top 5 similar trajectories from the remaining unselected trajectories
according to the target measure. The selected trajectory and the
searched ones form a similar cluster In each group. Afterward, we
select 4-5 non-overlapping similar clusters in each group. Finally,
this process yields approximately 240-260 similarity clusters on the
training set.

For users in real-world scenarios, it is hard to annotate the dis-
tance between trajectories, as they can only provide the relative
ranking orders of the search results. Therefore, during the training
stage of the student model, we only provide the ranking order be-
tween anchor (query) trajectory and target trajectories as labels,
while the pair-wise distance is not available. Each experiment was
run on a single NVIDIA P40 GPU (24GB) without sharing.

5.1.3 Evaluation Metrics. As in [40, 42–44], hitting rate and recall
rate are used to evaluate the accuracy of similar trajectory search:

• Hitting Rate@K assesses the percentage of overlap be-
tween the predicted Top ć results and the ground truth,
indicating greater accuracy with a higher ratio.

• Recall K@R assesses the recovery of Top-ć ground-truth
trajectories by the Top-Ď results. Enhanced recall signi�es
an improved ability to recover trajectories.

We report HR@10, HR@50, R10@50 as our evaluation metrics.
Higher values indicate better model performance.

5.2 Baselines

5.2.1 Teacher/Student Base Models. We select our base models
from existing learning-based trajectory similarity computation
methods:

• NeuTraj [42] introduces a spatial memory unit to LSTM
modules in order to capture correlations between trajecto-
ries. A distance-weighted ranking loss is also employed to
support accuracy and fast convergence.

• Traj2SimVec [44] utilizes a point-matching auxiliary task
to leverage distance information between sub-trajectories
and optimally learns point-to-point matching.

• T3S [40] employs vanilla multi-head self-attention network
and LSTM modules to capture spatial and structural char-
acteristics of trajectories.

2315

Table 2: Overall Performance Comparison for Non-KD Methods and Our Method.

Dataset Method
SSPD Hausdor� DTW Discrete-Frechet

HR@10 HR@50 R10@50 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50

Porto

Traj2SimVec 0.2132 0.2475 0.4764 0.1920 0.2362 0.4527 0.3891 0.4925 0.76800 0.4147 0.5167 0.7786
TrajCL 0.2071 0.2749 0.4799 0.1801 0.2517 0.4305 0.2400 0.3043 0.5216 0.2086 0.2702 0.4514
NeuTraj 0.2011 0.2728 0.4755 0.2004 0.2720 0.4847 0.4152 0.4975 0.7681 0.4167 0.5350 0.7331

NT-No-SAM 0.2530 0.2907 0.5365 0.2609 0.3111 0.5944 0.4392 0.5231 0.7899 0.4714 0.5677 0.7729
NNS-TMLKD 0.3675 0.3919 0.7005 0.3221 0.3664 0.6943 0.5116 0.5720 0.8393 0.4442 0.5351 0.8035

Improv. 45.24% 34.82% 30.58% 23.48% 17.79% 16.82% 16.48% 9.34% 6.25% -5.78% -5.75% 3.96%
T3S 0.2609 0.3119 0.5642 0.2294 0.2917 0.5340 0.4411 0.5358 0.8165 0.4327 0.5297 0.7697

T3S-TMLKD 0.4055 0.4638 0.7599 0.3382 0.4214 0.7201 0.5007 0.5661 0.8395 0.5032 0.5769 0.8180
Improv. 55.47% 48.68% 34.70% 47.44% 44.45% 34.85% 13.51% 5.65% 2.82% 16.28% 8.91% 6.28%

Rome

Traj2SimVec 0.2314 0.2817 0.5331 0.1738 0.2271 0.4377 0.3250 0.4041 0.6831 0.2705 0.3531 0.5600
TrajCL 0.3082 0.4014 0.6587 0.2493 0.3256 0.5300 0.3287 0.3772 0.6135 0.2374 0.2739 0.4527
NeuTraj 0.1970 0.2891 0.4672 0.1727 0.2769 0.4464 0.3416 0.4764 0.7250 0.4059 0.5395 0.7587

NT-No-SAM 0.2610 0.3194 0.5714 0.2544 0.3246 0.5922 0.4474 0.5466 0.7958 0.4390 0.5272 0.7632
NNS-TMLKD 0.2774 0.3302 0.5850 0.2824 0.3476 0.6252 0.5106 0.5859 0.8437 0.5057 0.5946 0.8300

Improv. 6.28% 3.38% 2.37% 10.99% 7.07% 5.59% 14.14% 7.19% 6.01% 15.21% 12.78% 8.75%
T3S 0.2602 0.3308 0.5796 0.2342 0.3137 0.5643 0.4463 0.5478 0.8092 0.4041 0.5067 0.7304

T3S-TMLKD 0.3596 0.4287 0.7090 0.2915 0.3865 0.6461 0.5057 0.5795 0.8389 0.4943 0.5735 0.7959
Improv. 38.20% 29.57% 22.32% 24.46% 23.24% 14.50% 13.32% 5.78% 3.67% 22.32% 13.18% 8.96%

Chengdu

Traj2SimVec 0.1161 0.1778 0.3223 0.1330 0.2103 0.3873 0.1427 0.2034 0.3403 0.2836 0.3838 0.6071
TrajCL 0.1574 0.2542 0.4196 0.1322 0.2125 0.3404 0.1596 0.2293 0.3832 0.1106 0.1631 0.2583
NeuTraj 0.1244 0.2188 0.3458 0.1349 0.2433 0.3794 0.2635 0.3785 0.6047 0.2780 0.4205 0.6143

NT-No-SAM 0.1559 0.2419 0.3947 0.1799 0.2856 0.4703 0.2814 0.3862 0.6206 0.3846 0.5017 0.6654
NNS-TMLKD 0.1996 0.2784 0.4851 0.2252 0.3140 0.5610 0.3503 0.4400 0.6903 0.4319 0.5295 0.7993

Improv. 28.02% 15.12% 22.91% 25.18% 9.95% 19.30% 24.50% 13.95% 11.23% 12.28% 5.55% 20.13%
T3S 0.2126 0.3264 0.5368 0.2388 0.3634 0.5763 0.3051 0.4153 0.6527 0.3358 0.4294 0.6865

T3S-TMLKD 0.2602 0.3509 0.5942 0.2488 0.3634 0.6049 0.4136 0.4757 0.7299 0.4100 0.4982 0.7193
Improv. 22.35% 7.51% 10.69% 4.19% 0% 4.95% 35.57% 14.54% 11.83% 22.08% 16.04% 4.78%

• TrajCL [6] uses a dual-feature self-attention-based trajec-
tory encoder. We follow the paper to �ne-tune the encoder
with a two-layer MLP.

Besides, we implement the variants of NeuTraj: NT-No-SAM,
which only removes the SAM module of NeuTraj. The embedding
procedure of LSTM and weighted sampling strategies remain uti-
lized during the training. We replace the LSTM cell with GRU cell.

The source code of NeuTraj and TrajCL is available online, so
we directly use it. For other methods, we follow the settings in
the paper and implement these methods on our own. Based on
the performance of the base model under data sparsity, we select
the strongest-performing T3S and NT-No-SAM as base models to
further investigate the e�ectiveness of the TMLKD framework.

5.2.2 KD Strategy.

• Single-Teacher [18, 30] is referred to as Vanilla KD. The
student only learns from one teacher [33]. Here, we choose
the teacher model with the highest score as our teacher.

• Random-Teacher Ensemble [15] randomly selects one
teacher from several teachers in everymini-batch to provide
guidance. It is di�erent from our method as we select the
teacher based on the con�dence score.

• Equal-Weight Ensemble [41] assigns equal weight to each
teacher and learns from the average output of teachers.

• Fixed-Weight Ensemble [37] enables the student to learn
from the aggregation result of teacher models. The weights
are �xed during training based on the priority calculated
by our con�dence evaluation module.

5.3 Performance Comparison (RQ1-RQ3)

5.3.1 Accuracy Evaluation (RQ1-RQ2). In this section, we validate
the superiority of TMLKD on three datasets. Table 2 demonstrates
the results of our method, where NNS-TMLKD and T3S-TMLKD

mean TMLKDmethod with NT-No-SAM and T3S as the base model,
respectively. According to the result, we note the following key
observations. First, existing methods require pair-wise distance
labels for training. Hence, insu�cient rank labels on the target
measure lead to a severe performance drop on all the datasets. For
example, for the dataset Chengdu, when using NeuTraj under SSPD
measure, the recall rate drops to 0.3458, which is unsatisfactory.

Second, it can be concluded from the table that TMLKD miti-
gates the performance drop to a certain extent. We further demon-
strates in the table the improvements of TMLKD compared to the
best-performing non-KD model (see in Improv.). Such huge im-
provements demonstrate the e�ectiveness of our model, which is
enhanced by transferring domain-invariant representation knowl-
edge and rank knowledge from source measures with rich labels.

Furthermore, we compare TMLKD with other knowledge distil-
lation strategies in Table 3. Although these methods all introduce
knowledge to the student model, their performance varies. Sin-
gle Teacher introduces knowledge from a single teacher model,
but it is not comprehensive enough compared to multi-teacher ap-
proaches. The �xed-weight strategy performs the worst because it
overlooks sample bias in small-sample scenarios, leading to over-
�tting and subsequent performance degradation. When utilizing
multiple-teacher models, the random-weight strategy enhances the
performance of the student model by incorporating knowledge
from multiple teachers. However, since it arbitrarily selects teacher
models without considering teacher-student consistency, it still suf-
fers from performance loss. Similarly, the average-weight strategy
fuses multiple teacher models without distinguishing high-quality
teachers, resulting in only a slight performance improvement. Given
the unique challenges of few-shot learning, our method does not
achieve the best performance in all cases, but overall it demonstrates
a signi�cant advantage. By dynamically adjusting the weights of
teachermodels and thoroughly considering sample-level con�dence

2316

Table 3: Performance Comparison with Di�erent Teacher Ensemble Strategies, with T3S as the Base Model.

Dataset Method
SSPD Hausdor� DTW Discrete-Frechet Average

HR@10 HR@50 R10@50 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50 Rank

Porto

Single 0.4012 0.4409 0.7449 0.3377 0.4172 0.7143 0.4725 0.5232 0.8073 0.5102 0.5802 0.8196 3
Random 0.4028 0.4572 0.7557 0.3263 0.3911 0.7010 0.5058 0.5697 0.8432 0.4928 0.5625 0.8068 4
Average 0.4087 0.4664 0.7607 0.3327 0.4122 0.7108 0.4493 0.4908 0.7715 0.5072 0.5827 0.8198 2
Fixed 0.4011 0.4529 0.7528 0.3286 0.3976 0.7033 0.4865 0.5537 0.8291 0.4941 0.5660 0.8148 5

TMLKD 0.4055 0.4638 0.7599 0.3382 0.4214 0.7201 0.5007 0.5661 0.8395 0.5032 0.5769 0.8180 1

Rome

Single 0.3644 0.4334 0.7174 0.2886 0.3819 0.6364 0.5063 0.5790 0.8361 0.4831 0.5563 0.7750 3
Random 0.3560 0.4224 0.7055 0.2906 0.3826 0.6439 0.4896 0.5679 0.83000 0.4852 0.5637 0.7885 4
Average 0.3556 0.4234 0.7036 0.2904 0.3875 0.6388 0.4989 0.5754 0.8357 0.4965 0.5790 0.7994 2
Fixed 0.3529 0.4227 0.7043 0.2826 0.3705 0.6288 0.5037 0.5783 0.8387 0.4902 0.5711 0.7946 4

TMLKD 0.3596 0.4287 0.7090 0.2915 0.3865 0.6461 0.5057 0.5795 0.8389 0.4943 0.5735 0.7959 1

Chengdu

Single 0.2429 0.3230 0.5623 0.2454 0.35500 0.5975 0.4084 0.4677 0.7235 0.4119 0.4962 0.7164 3
Random 0.2612 0.3493 0.5928 0.2374 0.3402 0.5891 0.3330 0.4051 0.6611 0.4087 0.4945 0.7200 4
Average 0.2485 0.3323 0.5715 0.2445 0.3558 0.6002 0.3328 0.4074 0.6628 0.4119 0.4999 0.7201 2
Fixed 0.2423 0.3212 0.5623 0.2381 0.3444 0.5888 0.3336 0.4084 0.6624 0.4126 0.5003 0.7177 5

TMLKD 0.2602 0.3509 0.5942 0.2488 0.3634 0.6049 0.4136 0.4757 0.7299 0.4100 0.4982 0.7193 1

Table 4: Results for Ablation Experiments for Di�erent Methods, with T3S as the Base Model.

Dataset Method
SSPD Hausdor� DTW Discrete-Frechet

HR@10 HR@50 R10@50 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50

Porto

TMLKD w/o RK 0.3967 0.4267 0.7349 0.3250 0.3845 0.7022 0.4789 0.5138 0.7916 0.5053 0.5053 0.8184
TMLKD w/o ĩ 0.2473 0.2923 0.5371 0.2306 0.2878 0.5387 0.4544 0.5488 0.8329 0.4268 0.5251 0.7585

TMLKD w/o Lcon 0.3988 0.4626 0.7519 0.3428 0.3874 0.7221 0.4612 0.5306 0.8078 0.5099 0.5804 0.8245
TMLKD w/o Attn 0.3719 0.4087 0.7238 0.3340 0.4001 0.7103 0.4567 0.5337 0.8101 0.4937 0.5654 0.8117

TMLKD 0.4055 0.4638 0.7599 0.3382 0.4214 0.7201 0.5007 0.5661 0.8395 0.5032 0.5769 0.8180

Rome

TMLKD w/o RK 0.3569 0.4250 0.7044 0.2899 0.3750 0.6412 0.4773 0.5563 0.8210 0.4978 0.5796 0.7882
TMLKD w/o ĩ 0.2621 0.3342 0.5848 0.2379 0.3249 0.5624 0.4341 0.5382 0.8012 0.4240 0.5315 0.7640

TMLKD w/o Lcon 0.3479 0.4168 0.6933 0.3432 0.4430 0.6980 0.4933 0.5463 0.7987 0.4224 0.4999 0.7468
TMLKD w/o Attn 0.3225 0.3784 0.6570 0.3198 0.4133 0.6931 0.4911 0.5541 0.8039 0.4348 0.5259 0.7677

TMLKD 0.3596 0.4287 0.7090 0.2915 0.3865 0.6461 0.5057 0.5795 0.8389 0.4943 0.5735 0.7959

Chengdu

TMLKD w/o RK 0.2408 0.3094 0.5515 0.2453 0.3553 0.5997 0.3355 0.4068 0.6633 0.4053 0.4899 0.7122
TMLKD w/o ĩ 0.1846 0.2760 0.4690 0.1879 0.2908 0.4972 0.3074 0.4136 0.6552 0.3783 0.4887 0.7116

TMLKD w/o Lcon 0.2408 0.3094 0.5515 0.2585 0.3653 0.6007 0.4165 0.4796 0.7389 0.4113 0.4991 0.7093
TMLKD w/o Attn 0.2199 0.2913 0.5270 0.2275 0.3130 0.5838 0.3577 0.4351 0.7043 0.4036 0.4895 0.7025

TMLKD 0.2602 0.3509 0.5942 0.2488 0.3634 0.6049 0.4136 0.4757 0.7299 0.4100 0.4982 0.7193

evaluation, TMLKD e�ectively avoids over�tting, thereby deliver-
ing more stable and superior performance in few-shot scenarios.
To conclude, the possible reasons for the improved accuracy are as
follows:

• TMLKD considers the domain shifts between di�erent mea-
sures and transfers shareable representation knowledge.
Besides, it distills transferable rank knowledge from teacher
models. Hence, it mitigates the performance drop caused
by sparse labels on the target measure compared to non-KD
methods.

• TMLKD pays enough attention to the teacher-student con-
sistency. When transferring knowledge from teacher mod-
els, TMLKD uses a sample-wise con�dence evaluation to
e�ectively di�erentiate high-quality teachers and attach
more importance to it during the distillation.With the above
improvements, TMLKD achieves the best performance.

5.3.2 Ablation Study (RQ3). We further perform ablation experi-
ments to investigate the e�ect of the components of our method.
Table 4 reports the results of all variant models.

E�ect of Rank Knowledge. To investigate the e�ect of trans-
ferring rank knowledge from data-rich source measures, we design
the variant TMLKD w/o RK by removing the rank knowledge distil-
lation modules (including soft label enrichment and relaxed ranking
loss). From the table, we can conclude that it is bene�cial to con-
duct rank distillation, as it provides useful rank information for the
student model and increases the accuracy.

E�ect of Representation Knowledge. To investigate the ef-
fect of transferring domain-invariant representation to the student
model, we design the following variants:

• TMLKD w/o ĩ .We remove the domain-invariant represen-
tation provided by the teacher model and only use domain-
speci�c trajectory representations.

• TMLKD w/o ĈęĥĤ.We remove the orthogonality constraints
and corresponding ĈęĥĤĪĨėĩĪğĬě .

By integrating the shareable representation knowledge, TMLKD
achieves a remarkable performance increase. For example, for the
recall rate on the Porto dataset, TMLKD increases recall rate by 0.22
points under the SSPD measure. What is more, domain-speci�c rep-
resentation, which is designed to extract scenario-oriented features,
should be distinguished from domain-invariant representation. with
the contrastive loss which prevents storing redundant knowledge.
TMLKD further improves the model performance in most cases,
which means that domain-speci�c representation preserves unique
knowledge on the target measure e�ectively.

E�ect of Attention Module. To investigate the impact of the
attention module for domain-invariant representation knowledge
extraction, we design the variant TMLKD w/o Attn, which removes
the attention module during the training phase of teacher models.
The performance of TMLKD w/o Attn falls behind that of TMLKD
in most cases, indicating that the attention module assists the share-
able knowledge transferring.

2317

Table 5: Time Cost for O�line Model Training under SSPD

distance on the Porto dataset.

Methods ĤěĦĥęℎ ĪěĦĥęℎ ĪĪĥĪėĢ
NNS-SL 26.67 ± 2.31 88.43 ± 2.63s 2359.99 ± 243.37s

NNS-Non KD 77.67 ± 8.02 2.82 ± 0.29s 219.54 ± 36.02s

NNS-TMLKD 10.33 ± 1.15 8.13 ± 0.96s 83.56 ± 8.68s

T3S-SL 22 ± 7 190.64 ± 4.55s 2044.56 ± 3212.08s

T3S-Non KD 56.67 ± 2.89 8.2 ± 0.56s 464.21 ± 28.37s

T3S-TMLKD 63.67 ± 40.5 31.96 ± 3.4s 1943.89 ± 1127.77s

• ĪěĦĥęℎ refers to the average training time of each epoch. ĤěĦĥęℎ refers

to the training epoch at which the model achieves the best performance

on the validation set. ĪĪĥĪėĢ denotes the total training time. ± indicates

the �uctuation of the evaluation metric across multiple tests.

Table 6: Time Cost for Similarity Computation of Di�erent

Methods on the Porto dataset (Unit: s).

Method 5k(5,000) 15k(15,000) 100k(100,000)

SSPD

Brute-Force 1897.2 ± 8.28 17142.09 ± 108.35 N/A
NNS-Non KD 6.26 ± 0.27 59.39 ± 1.70 5899.26 ± 24.09
NNS-TMLKD 6.24 ± 0.08 56.68 ± 1.35 5902.54 ± 21.42
T3S-Non KD 7.62 ± 0.21 69.67 ± 4.04 5928.54 ± 6.33
T3S-TMLKD 8.10 ± 0.42 63.54 ± 1.79 5940.82 ± 23.35

Hausdor�

Brute-Force 1884.8 ± 33.73 17051.82 ± 322.75 N/A
NNS-Non KD 6.12 ± 0.16 57.85 ± 0.28 5912.62 ± 24.99
NNS-TMLKD 5.98 ± 0.07 58.31 ± 4.71 5912.21 ± 21.31
T3S-Non KD 7.00 ± 0.12 57.84 ± 1.29 5901.24 ± 27.42
T3S-TMLKD 7.76 ± 0.18 61.99 ± 0.55 5906.70 ± 16.36

DTW

Brute-Force 2368.18 ± 13.87 21260.91 ± 161.38 N/A
NNS-Non KD 6.22 ± 0.18 58.64 ± 3.22 5914.22 ± 22.38
NNS-TMLKD 6.14 ± 0.19 55.61 ± 0.49 5884.45 ± 7.74
T3S-Non KD 6.88 ± 0.11 60.25 ± 1.99 5910.56 ± 35.9
T3S-TMLKD 7.64 ± 0.12 64.64 ± 0.52 5951.03 ± 49.17

Discrete-Frechet

Brute-Force 1864.27 ± 22.08 16801.09 ± 193.65 N/A
NNS-Non KD 6.00 ± 0.02 57.13 ± 1.29 5887.40 ± 27.13
NNS-TMLKD 6.17 ± 0.18 58.50 ± 4.89 5893.99 ± 29.45
T3S-Non KD 6.96 ± 0.12 59.44 ± 2.94 5882.61 ± 6.12
T3S-TMLKD 7.71 ± 0.11 63.14 ± 2.30 5946.91 ± 14.73
• N/A means the computation cannot be �nished in a week

5.4 E�ciency Study (RQ4)

5.4.1 Time Cost of O�line Training. We �rst evaluate the training-
time costs on Discrete-Frechet distance on the Porto dataset. The
experiments are performed with three types of methods:

• Model-SL: We implement the base model with su�cient
pair-wise distance labels.

• Model-Non KD: We implement the base model with insuf-
�cient relative ranking labels.

• Model-TMLKD: We improve the base model in data-sparse
measure with our TMLKD method.

We report the experimental results in Table 5. When training
Model-SL, the training phase involves more trajectories as the train-
ing and validation set, along with more annotations. Hence, each
epoch requires more time. However, it is easy to converge (e.g. it
only takes less than 30 epochs to achieve relatively ideal results).
For the non-KD student model, since labels are insu�cient, we only
need roughly 20 minutes for the total training phase with T3S as
the base model. Even if the training time of non-KD methods is
short, their accuracy performance is not satisfactory.

For our TMLKD method, each epoch requires more time than
non-KD method, since we introduce extra representation knowl-
edge. What is more, non-KD methods only focus on the anchor
trajectory and corresponding labeled trajectories, while TMLKD
pays attention to unlabeled trajectories to enrich the sparse label,
which results in extra time costs. Finally, the total training time of
all the measures is less than 1 hour and roughly 20 minutes with
T3S and NT-NNS as base models respectively, which is tolerable.

5.4.2 Time Cost of Distance Computation. Given several trajecto-
ries, we compare the time cost of similarity computation under dif-
ferent measures on the Porto dataset. The results are demonstrated
in Table 6. During the evaluation, we randomly sample 5k, 15k
and 100k trajectories from the Porto dataset. For the non-learning
method (i.e. the Brute Force Method), we follow the formula of each
measure according to its de�nition and compute the pair-wise tra-
jectory distance. Overall, our method achieves over 200x speedup
over the brute force method.

For learning-based methods, the computation time consists of
two parts: embedding obtaining and pair-wise Euclidean distance
calculation. Besides TMLKD methods, we test on Non-KD methods,
which directly map trajectories into low-dimensional embeddings
without distilling ranking and latent knowledge. According to Ta-
ble 6, the calculation time of our method is a little longer than the
base model. This is due to the utilization of the extra embedding
module which introduces domain-invariant knowledge to the stu-
dent model. However, this gap is tolerable, since the time di�erence
is also within 100 seconds for 100k trajectories.

5.5 Parameter Sensitivity Study (RQ5)

To analyze the Impact of di�erent parameters, we perform parame-
ter sensitivity experiments on each dataset.

5.5.1 Impact of Embedding Dimension. We explore the impact of
the embedding dimension Ě . It determines the performance of met-
ric learning and in�uences the processing time of trajectories. As
exhibited in Figure 3(a) and 4(a), we observe the model perfor-
mances under 32, 64, 128, 256. It can be concluded from the �gure
that a small Ě is incapable of storing su�cient spatial and structural
knowledge of trajectories. However, with a too large Ě , the model
su�ers from over-�tting problems and is unable to learn complex
information from unnecessary dimensions. Finally, we choose 128
as the embedding dimension of our model.

5.5.2 Impact of Top position emphasis. We explore the impact of
the Top Position Emphasis Ā . When Ā is small, the model pays more
attention to trajectories at the top position. When Ā gets larger,
the calculated correlated scores of trajectories at di�erent positions
show little variation. As exhibited in Figure 3(b) and 4(b), we observe
the model performance under 3, 5, 7, 9. The results suggest that the
overall performance is not highly sensitive to the choice of Ā , as all
values yield comparable results. Nevertheless, we set Ā to 7 in our
experiments, as it slightly improves performance by balancing the
emphasis on top-ranked trajectories while still considering those
at lower positions, which may also carry useful information.

5.5.3 Impact of Correlation Threshold. We explore the impact of
the Correlation threshold Ĉ . When Ĉ is small, more trajectories

2318

32 64 128 256
Embedding Dim d

0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50

HR
@

10 Porto
Rome
Chengdu

(a) Impact of Ě .

3 5 7 9
Top Position Emphasis Ã

0.40

0.42

0.44

0.46

0.48

0.50

HR
@

10 Porto
Rome
Chengdu

(b) Impact of Ā .

0.001 0.005 0.01 0.015 0.02
Correlation Threshold ¿

0.33
0.35
0.38
0.40
0.43
0.45
0.48
0.50

HR
@

10

Porto
Rome
Chengdu

(c) Impact of Ĉ .

0.01 0.1 1 10 50
Contrastive Loss Weight ³c

0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50

HR
@

10

Porto
Rome
Chengdu

(d) Impact of Ăę .

Figure 3: HR@10 of T3S-TMLKD under Discrete-Frechet distance on each dataset with varying embedding dimension Ě , top

position emphasis Ā , correlation threshold Ĉ , contrastive loss weight Ăę .

32 64 128 256
Embedding Dim d

0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82

R1
0@

50 Porto
Rome
Chengdu

(a) Impact of Ě .

3 5 7 9
Top Position Emphasis Ã

0.70

0.72

0.74

0.76

0.78

0.80

0.82

R1
0@

50 Porto
Rome
Chengdu

(b) Impact of Ā .

0.001 0.005 0.01 0.015 0.02
Correlation Threshold ¿

0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82

R1
0@

50 Porto
Rome
Chengdu

(c) Impact of Ĉ .

0.01 0.1 1 10 50
Contrastive Loss Weight ³c

0.63
0.65
0.68
0.70
0.73
0.75
0.78
0.80
0.83

R1
0@

50

Porto
Rome
Chengdu

(d) Impact of Ăę .

Figure 4: R10@50 of T3S-TMLKD under Discrete-Frechet distance on each dataset with varying embedding dimension Ě , top

position emphasis Ā , correlation threshold Ĉ , contrastive loss weight Ăę .

will be considered as weakly-correlated trajectories. As exhibited
in Figure 3(c) and 4(c), we observe the model performance under
0.001, 0.005, 0.01.0.015, 0.02. It can be concluded from the �gure that
small Ĉ introduces too many trajectories as weakly correlated ones
for anchor trajectory, which introduces the noisy rank knowledge
at low positions and leads to performance drop. However, a larger
Ĉ results in a small degradation as well, since it neglects similar
trajectories that contain valuable information for the anchor tra-
jectory. During the training procedure of the student model, we
set Ĉ to 0.01 to e�ectively introduce rank knowledge from multiple
teachers while avoiding misleading the student with noise.

5.5.4 Impact of Contrastive Loss Weight. Given a pair of trajecto-
ries, most base models minimize the di�erence of the pair-wise
distance between trajectory embeddings and original trajectories.
They use MSE as ĈĘėĩě in their framework, which is like our ĈĩℎėĨě
and ĈĦĨğĬėĪě . ĈĘėĩě , ĈĩℎėĨěėĤĚĈĦĨğĬėĪě will not di�er signi�cantly in
magnitude. Hence, Ăĩ and ĂĦ are set to 1 in our experiments when
training teacher models. ĈęĥĤĪĨėĩĪğĬě uses orthogonality constraints
to avoid duplicate information extracted by domain-invariant and
domain-speci�c representations. As exhibited in Figure 3(d) and
4(d), we observe the performance of our model with the value of Ăę
set as 0.01, 0.1, 1, 10, 50 respectively. To conclude, an excessively
large Ăę may cause the model to ignore its own representation ca-
pability and metric performance, while an excessively small Ăę may
prevent the model from e�ectively incorporating the adversarial
strategy for knowledge decoupling. Hence, we set Ăę to 1 when
training models.

6 CONCLUSION

In this paper, we present a few-shot trajectory metric learning
model that addresses performance degradation caused by insu�-
cient labels by distilling knowledge from teacher models trained
with extensive annotations. To manage domain shifts when trans-
ferring knowledge across di�erent measures, we employ adversarial
shared-private sub-networks to separate domain-speci�c knowl-
edge from domain-invariant information, enabling the transfer
of shareable representations. This design ensures that the model
adapts e�ectively to diverse data distributions while preserving
critical shared features. To prevent the student model from being
misled by low-quality teachers, we assess each teacher model’s
sample-wise con�dence instead of fusing their outputs. Given the
scarcity of labels in the target measure, we further apply a list-wise
learning-to-rank approach to derive relaxed trajectory ranking or-
ders from teachers’ predictions, serving as soft labels to supplement
limited labels. Extensive experiments on real-world datasets verify
the e�ectiveness and e�ciency of our proposed TMLKD.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their
valuable comments. This work is supported by the National Natu-
ral Science Foundation of China (Grant No.62272334, No.61802273,
No.61872258, No.61872258 and No.62102277), the Natural Science
Foundation of Jiangsu Province (Grant No.BK20210703), the ARC
Discovery Projects (Grant No.DP220102191 and No.DP200103700),
the JiangsuHigher Education Institutions of China (No.23KJA520011),
and the Priority Academic Program Development of Jiangsu higher
education institutions.

2319

REFERENCES
[1] Helmut Alt. 2009. The Computational Geometry of Comparing Shapes. In

E�cient Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion of His
60th Birthday (Lecture Notes in Computer Science), Susanne Albers, Helmut Alt,
and Stefan Näher (Eds.), Vol. 5760. 235–248.

[2] Helmut Alt and Michael Godau. 1995. Computing the Fréchet distance between
two polygonal curves. Int. J. Comput. Geom. Appl. 5 (1995), 75–91.

[3] Donald J. Berndt and James Cli�ord. 1994. Using Dynamic Time Warping to Find
Patterns in Time Series. In AAAI Workshop, Usama M. Fayyad and Ramasamy
Uthurusamy (Eds.). 359–370.

[4] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan,
and Dumitru Erhan. 2016. Domain Separation Networks. In NIPS. 343–351.

[5] Wei-Lun Chang, Hui-Po Wang, Wen-Hsiao Peng, and Wei-Chen Chiu. 2019. All
about structure: Adapting structural information across domains for boosting
semantic segmentation. In CVPR. 1900–1909.

[6] Yanchuan Chang, Jianzhong Qi, Yuxuan Liang, and Egemen Tanin. 2023. Con-
trastive Trajectory Similarity Learning with Dual-Feature Attention. In ICDE.
2933–2945.

[7] Cen Chen, Chengyu Wang, Minghui Qiu, Dehong Gao, Linbo Jin, and Wang Li.
2021. Cross-domain knowledge distillation for retrieval-based question answer-
ing systems. InWWW. 2613–2623.

[8] Lei Chen and Raymond T. Ng. 2004. On The Marriage of Lp-norms and Edit
Distance. In VLDB, Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann,
Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer (Eds.). 792–803.

[9] Lei Chen, M. Tamer Özsu, and Vincent Oria. 2005. Robust and Fast Similarity
Search for Moving Object Trajectories. In SIGMOD, Fatma Özcan (Ed.). 491–502.

[10] Wei Chen, Shuzhe Li, Chao Huang, Yanwei Yu, Yongguo Jiang, and Junyu Dong.
2022. Mutual Distillation Learning Network for Trajectory-User Linking. In
IJCAI. 1973–1979.

[11] Connor Colombe and Kyle Fox. 2021. Approximating the (Continuous) Fréchet
Distance. In SoCG, Vol. 189. 26:1–26:14.

[12] Songlin Dong, Xiaopeng Hong, Xiaoyu Tao, Xinyuan Chang, Xing Wei, and Yi-
hong Gong. 2021. Few-Shot Class-Incremental Learning via Relation Knowledge
Distillation. In AAAI. AAAI Press, 1255–1263.

[13] Ziquan Fang, Yuntao Du, Lu Chen, Yujia Hu, Yunjun Gao, and Gang Chen. 2021.

E2DTC: An End to End Deep Trajectory Clustering Framework via Self-Training.
In ICDE. 696–707.

[14] Ziquan Fang, Yuntao Du, Lu Chen, Yujia Hu, Yunjun Gao, and Gang Chen. 2021.
E2dtc: An end to end deep trajectory clustering framework via self-training. In
ICDE. IEEE, 696–707.

[15] Takashi Fukuda, Masayuki Suzuki, Gakuto Kurata, Samuel Thomas, Jia Cui, and
Bhuvana Ramabhadran. 2017. E�cient Knowledge Distillation from an Ensemble
of Teachers. In INTERSPEECH. 3697–3701.

[16] Xudong Gong, Yan Xiong, Wenchao Huang, Lei Chen, Qiwei Lu, and Yiqing
Hu. 2015. Fast Similarity Search of Multi-Dimensional Time Series via Segment
Rotation. In DASFAA, Vol. 9049. 108–124.

[17] Golnaz Habibi and Jonathan P. How. 2021. Human Trajectory Prediction Using
Similarity-Based Multi-Model Fusion. IEEE Robotics Autom. Lett. 6, 2 (2021),
715–722.

[18] Geo�rey E. Hinton, Oriol Vinyals, and Je�rey Dean. 2015. Distilling the Knowl-
edge in a Neural Network. CoRR abs/1503.02531 (2015).

[19] Danlei Hu, Lu Chen, Hanxi Fang, Ziquan Fang, Tianyi Li, and Yunjun Gao. 2023.
Spatio-Temporal Trajectory Similarity Measures: A Comprehensive Survey and
Quantitative Study. CoRR abs/2303.05012 (2023).

[20] Sang-Yeong Jo and Sung Whan Yoon. 2023. POEM: Polarization of Embeddings
for Domain-Invariant Representations. 37 (2023), 8150–8158.

[21] SeongKu Kang, Junyoung Hwang, Wonbin Kweon, and Hwanjo Yu. 2020. DE-
RRD: A Knowledge Distillation Framework for Recommender System. In CIKM.
605–614.

[22] Jingzhi Li, Zidong Guo, Hui Li, Seungju Han, Ji-Won Baek, Min Yang, Ran Yang,
and Sungjoo Suh. 2023. Rethinking Feature-based Knowledge Distillation for
Face Recognition. In CVPR. 20156–20165.

[23] Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S Jensen, and Wei Wei. 2018. Deep
representation learning for trajectory similarity computation. In ICDE. IEEE,
617–628.

[24] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017. Adversarial Multi-task
Learning for Text Classi�cation. In ACL, Regina Barzilay and Min-Yen Kan (Eds.).
1–10.

[25] Yuang Liu, Wei Zhang, and Jun Wang. 2020. Adaptive multi-teacher multi-level
knowledge distillation. Neurocomputing 415 (2020), 106–113.

[26] Alessio Monti, Angelo Porrello, Simone Calderara, Pasquale Coscia, Lamberto
Ballan, and Rita Cucchiara. 2022. How many Observations are Enough? Knowl-
edge Distillation for Trajectory Forecasting. In CVPR. 6543–6552.

[27] Luís Moreira-Matias, João Gama, Michel Ferreira, João Mendes-Moreira, and
Luis Damas. 2016. Time-evolving OD matrix estimation using high-speed GPS
data streams. Expert systems with Applications 44 (2016), 275–288.

[28] Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
and Mubarak Shah. 2021. Self-supervised Knowledge Distillation for Few-shot
Learning. In BMVC. 179–192.

[29] Sayan Ranu, Padmanabhan Deepak, Aditya D Telang, Prasad Deshpande, and
Sriram Raghavan. 2015. Indexing and matching trajectories under inconsistent
sampling rates. In ICDE. IEEE, 999–1010.

[30] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,
Carlo Gatta, and Yoshua Bengio. 2015. FitNets: Hints for Thin Deep Nets. In
ICLR.

[31] Yasushi Sakurai, Masatoshi Yoshikawa, and Christos Faloutsos. 2005. FTW: fast
similarity search under the time warping distance. In ACM SIGACT-SIGMOD-
SIGART. 326–337.

[32] Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. 2020. A
survey of trajectory distance measures and performance evaluation. VLDB J. 29,
1 (2020), 3–32.

[33] Jiaxi Tang and Ke Wang. 2018. Ranking Distillation: Learning Compact Ranking
Models With High Performance for Recommender System. In SIGKDD. 2289–
2298.

[34] Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin.
2019. Distilling task-speci�c knowledge from bert into simple neural networks.
arXiv preprint arXiv:1903.12136 (2019).

[35] Lin Wang and Kuk-Jin Yoon. 2021. Knowledge distillation and student-teacher
learning for visual intelligence: A review and new outlooks. IEEE Transactions
on Pattern Analysis and Machine Intelligence 44, 6 (2021), 3048–3068.

[36] Yuning Wang, Pu Zhang, Lei Bai, and Jianru Xue. 2023. Enhancing Mapless
Trajectory Prediction through Knowledge Distillation. CoRR abs/2306.14177
(2023).

[37] Meng-Chieh Wu, Ching-Te Chiu, and Kun-Hsuan Wu. 2019. Multi-teacher
Knowledge Distillation for Compressed Video Action Recognition on Deep
Neural Networks. In ICASSP. 2202–2206.

[38] Zoe Xi and William Kuszmaul. 2022. Approximating Dynamic Time Warping
Distance Between Run-Length Encoded Strings. In ESA, Vol. 244. 90:1–90:19.

[39] Chenxiao Yang, Junwei Pan, Xiaofeng Gao, Tingyu Jiang, Dapeng Liu, and Guihai
Chen. 2022. Cross-Task Knowledge Distillation in Multi-Task Recommendation.
In AAAI. 4318–4326.

[40] Peilun Yang, Hanchen Wang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin
Lin. 2021. T3S: E�ective Representation Learning for Trajectory Similarity
Computation. In ICDE. 2183–2188.

[41] Ze Yang, Linjun Shou, Ming Gong, Wutao Lin, and Daxin Jiang. 2020. Model
Compression with Two-stage Multi-teacher Knowledge Distillation for Web
Question Answering System. InWSDM. 690–698.

[42] Di Yao, Gao Cong, Chao Zhang, and Jingping Bi. 2019. Computing Trajectory Sim-
ilarity in Linear Time: A Generic Seed-Guided Neural Metric Learning Approach.
In ICDE. 1358–1369.

[43] Di Yao, Haonan Hu, Lun Du, Gao Cong, Shi Han, and Jingping Bi. 2022. Traj-
GAT: A Graph-based Long-term Dependency Modeling Approach for Trajectory
Similarity Computation. In SIGKDD. 2275–2285.

[44] Hanyuan Zhang, Xinyu Zhang, Qize Jiang, Baihua Zheng, Zhenbang Sun,Weiwei
Sun, and Changhu Wang. 2020. Trajectory Similarity Learning with Auxiliary
Supervision and Optimal Matching. In IJCAI. 3209–3215.

2320

	Abstract
	1 Introduction
	2 Related Work
	2.1 Trajectory Metric Learning
	2.2 Knowledge Distillation

	3 Preliminary
	3.1 Definitions
	3.2 Problem Statement

	4 Methodology
	4.1 Overview of TMLKD
	4.2 Case Study: Monitor Airplane Routes
	4.3 Domain-invariant Representation Knowledge Extraction
	4.4 Shareable Rank Information Distillation

	5 Experiments
	5.1 Experiment Setup
	5.2 Baselines
	5.3 Performance Comparison (RQ1-RQ3)
	5.4 Efficiency Study (RQ4)
	5.5 Parameter Sensitivity Study (RQ5)

	6 Conclusion
	References

