
GraphSparseNet: a Novel Method for Large Scale Traffic Flow
Prediction

Weiyang Kong

Sun Yat-Sen University

Guangzhou, China

kongwy3@mail2.sysu.edu.cn

Kaiqi Wu

Sun Yat-Sen University

Guangzhou, China

wukq5@mail2.sysu.edu.cn

Sen Zhang

Sun Yat-Sen University

Guangzhou, China

zhangs7@mail2.sysu.edu.cn

Yubao Liu

Sun Yat-Sen University

Guangdong Key Laboratory of Big Data Analysis and

Processing

Guangzhou, China

liuyubao@mail.sysu.edu.cn

ABSTRACT
Traffic flow forecasting is a critical spatio-temporal data mining task

with wide-ranging applications in intelligent route planning and

dynamic traffic management. Recent advancements in deep learn-

ing, particularly through Graph Neural Networks (GNNs), have

significantly enhanced the accuracy of these forecasts by captur-

ing complex spatio-temporal dynamics. However, the scalability of

GNNs remains a challenge due to their exponential growth in model

complexity with increasing nodes in the graph. Existing methods

to address this issue, including sparsification, decomposition, and

kernel-based approaches, either do not fully resolve the complexity

issue or risk compromising predictive accuracy. This paper intro-

duces GraphSparseNet (GSNet), a novel framework designed to

improve both the scalability and accuracy of GNN-based traffic

forecasting models. GraphSparseNet is comprised of two core mod-

ules: the Feature Extractor and the Relational Compressor. These

modules operate with linear time and space complexity, thereby

reducing the overall computational complexity of the model to

a linear scale. Our extensive experiments on multiple real-world

datasets demonstrate that GraphSparseNet not only significantly

reduces training time by 3.51x compared to state-of-the-art linear

models but also maintains high predictive performance.

PVLDB Reference Format:
Weiyang Kong, Kaiqi Wu, Sen Zhang, and Yubao Liu. GraphSparseNet: a

Novel Method for Large Scale Traffic Flow Prediction. PVLDB, 18(7): 2295 -

2307, 2025.

doi:10.14778/3734839.3734862

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/PolynomeK/GSNet.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 7 ISSN 2150-8097.

doi:10.14778/3734839.3734862

1 INTRODUCTION
Traffic flow forecasting represents a quintessential spatio-temporal

data mining challenge, with profound utility in a spectrum of real-

world applications, including intelligent route planning, dynamic

traffic management, and smart location-based services [34]. The

objective of this endeavor is to prognosticate future traffic patterns

by leveraging historical traffic data, typically gleaned from the sen-

sors embedded within transportation networks. The advent of deep

learning has revolutionized this domain, with deep learning-based

techniques, particularly those grounded in graph neural networks

(GNNs), emerging as a dominant force. GNNs excel in capturing the

intricate nonlinear dynamics inherent in spatio-temporal datasets,

with their efficacy underpinned by the natural alignment between

traffic data structures and graph-theoretic principles [14, 32]. In

these models, graph nodes correspond to traffic sensors, while edges

delineate the interconnections among these sensors.

Despite the predictive prowess of GNN-based methodologies,

they are not without their drawbacks, most notably the exponen-

tial growth in model complexity. The number of edges in a graph

tends to increase exponentially with the number of nodes, posing a

significant challenge for the scalability of GNNs to larger datasets.

This challenge is exacerbated by the proliferation of sensors within

traffic networks, driven by urban development and the pervasive in-

tegration of Internet of Things (IoT) technologies. The vast amounts

of spatio-temporal data generated by these sensors pose a challenge

in applying higher-accuracy GNN methods to larger-scale datasets.

Several strategies have been proposed to expedite the compu-

tational efficiency of GNNs. For instance, the AGS [5] introduces

a sparsification technique that prunes a trained model, thereby

reducing its complexity during the inference phase. However, this

approach still incurs substantial computational overhead during the

training phase. Other methods, such as GWNet and AGCRN [1, 36],

employ Tucker decomposition to construct graph adjacency matri-

ces with a reduced parameter count. Yet, these techniques merely

curtail the number of trainable parameters in the adjacency ma-

trix, without alleviating the computational burden associated with

graph operations. The computational complexity of adjacency ma-

trix multiplication, for example, remains 𝑂 (𝑁 2), where 𝑁 denotes

the number of nodes. While some methods have successfully sim-

plified GNNs to enhance scalability, they are not without their

2295

https://doi.org/10.14778/3734839.3734862
https://github.com/PolynomeK/GSNet
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3734839.3734862
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(a) (b)

Figure 1: Visualizations correspond to the well-trained adja-
cency matrix obtained from existing graph neural network
method. It can be observed that matrix is highly sparse. Sta-
tistical data on the weighted degree also demonstrates the
sparsity of the adjacency relationships.

limitations. The BigST [9], which employs a kernel-based approach

to simplify GNNs, is susceptible to aberrant gradient values dur-

ing backpropagation, potentially leading to suboptimal training

outcomes and diminished predictive accuracy.

This paper aims to improve the scalability of GNNs for large-scale

traffic spatio-temporal data by designing a high-precision, scalable

model. This is a non-trivial problem because simplifying GNN mod-

els faces two challenges: First, most approaches treat accuracy and

scalability in traffic prediction models as two orthogonal issues.

Accurately capturing all node relationships leads to an exponential

rise in computational demands. As the number of graph nodes in-

creases, generating the adjacency matrix and performing related

operations result in a sharp increase in computational complexity.

Second, existing methods for simplifying GNNs have significant

limitations. Decomposition techniques fail to reduce overall model

complexity, sparsification methods cannot be applied during train-

ing, and kernel-based approaches risk compromising accuracy. This

highlights the need for new strategies to simplify GNNs effectively.

Upon reviewing and observing existing studies, we find that in

well-trained adjacency matrices, the relationships between nodes

tend to be sparse, with only a small subset of nodes being connected.

To support this claim, we visualized a trained adaptive adjacency

matrix [1] and computed the weighted degree of each node, as

shown in Figures 1 (a) and 1 (b). This trend is consistent across

several models based on adaptive matrices [10, 35, 36]. In Figure 1

(a), higher values in the matrix indicate stronger associations be-

tween the corresponding node pairs. It is evident that only a small

fraction of the matrix entries have significant values, suggesting

that the relationships between nodes are highly sparse. In Figure 1

(b), we compute the weighted degree of each node, which reflects

both the number and strength of connections for each node in the

graph. As observed, with the exception of a few nodes with higher

weighted degrees, most nodes maintain relatively low weighted

degrees, indicating that the graph has a low connection density,

with the majority of nodes having small numbers and weights of

adjacent edges. Existing graph methods learn one entire adjacency

matrix to express relationships between nodes, leading to the use

of a large number of parameters and computations to learn a highly

sparse matrix. We believe that the generation of graphs and related

operations can be compressed onto a much smaller space, thereby

"circumventing" the computation of all node relationships in the

complete graph. We theoretically prove the rationality of this mo-

tivation, providing a theoretical derivation to show that learning

one entire adjacency matrix can be replaced by learning two very

small-scale matrices.

Drawing on our comprehensive analysis and key insights, we

introduce a groundbreaking model, GraphSparseNet (GSNet), de-

signed to deliver high predictive accuracy concurrently with scal-

ability to handle large-scale datasets. This innovative model is

comprised of two synergistic modules: the Feature Extractor, which

is tasked with capturing and encoding the characteristics of graph

nodes, and the Relational Compressor, which is responsible for mod-

eling the sparse relationships between nodes. Both modules are

engineered to operate with linear time and space complexity, scal-

ing efficiently with an increase in the number of graph nodes. This

design enables the model to effectively manage and analyze large-

scale data without compromising performance. GraphSparseNet

has reduced the complexity from 𝑂 (𝑁 2) in most existing methods

to 𝑂 (𝑁). Even compared to the state of the art linear models, our

method has improved training time by 3.51×. We evaluated the

effectiveness and scalability of our proposed framework on multi-

ple real-world datasets from different regions. The results of these

experiments consistently demonstrate the superior performance of

GraphSparseNet, achieving commendable results across all datasets

evaluated. The principal contributions of our work are encapsulated

in the following points:

• By conducting a thorough theoretical analysis, we have

identified key factors that restrict existing methods and

propose innovative solutions to address these limitations.

Our approach not only refines the predictive capabilities of

GNNs but also significantly enhances their ability to scale

with the increasing nodes of traffic data.

• We present GraphSparseNet, a novel framework specifically

tailored to address the scalability challenges of large-scale

traffic spatio-temporal data. This framework is underpinned

by two core modules: the Feature Extractor and the Rela-

tional Compressor. The Feature Extractor capture and rep-

resent the features of each node within the graph, while

the Relational Compressor innovatively models the sparse

relationships between nodes. Both modules are designed

to operate with linear time and space complexity.

• We conducted experiments on four real-world datasets from

different regions, and the results demonstrate the effective-

ness and efficiency of our approach.

2 PRELIMINARY
2.1 Traffic Network
Traffic network is represented by a undirected graph 𝐺 = (𝑉 , 𝐸),
where𝑉 is the set of nodes (sensors),𝑁 = |𝑉 | denotes the number of

nodes, and 𝐸 is the set of edges between two nodes. In our problem,

we assume that each node records its traffic flow data as graph

signal. A graph signal is 𝑋 𝑡 ∈ R𝑁
, where 𝑡 denotes the 𝑡-th time

step. The graph signal represents the traffic flow values at the 𝑡-th

time step.

2296

Table 1: Notation

Notation Meaning
𝐺 The undirected graph.

𝑉 The set of nodes (sensors).

𝐸 The set of edges between nods.

𝑁 The number of nodes.

𝐴 The adjacency matrix of graph 𝐺 .

𝑋 The graph signal.

𝑆 The number of historical time step of 𝑋 .

𝑇 The number of predict time step of output.

𝐻 The hidden states in model.

𝐶 The dimension of the compressed space.

𝐾 The adjacency matrix in low-dimensional space.

𝑈 The coefficient matrix in low-dimensional space.

𝑊, 𝐵 The trainable parameter of the pivotal graph con-

volution.

𝑉 The transformation matrix.

2.2 Problem Definition
Given a traffic network 𝐺 and its historical 𝑆 step graph signal ma-

trix 𝑋 1:𝑆 = (𝑋 1, 𝑋 2, ..., 𝑋𝑆) ∈ R𝑁×𝑆
, our problem is to predict its

next𝑇 step graph signals, namely𝑋𝑆+1:𝑆+𝑇 = (𝑋𝑆+1, 𝑋𝑆+2, ..., 𝑋𝑆+𝑇)
∈ R𝑁×𝑇

. We equationte the problem as finding a function F to

forecast the next 𝑇 steps data based on the past 𝑆 steps data:

(𝑋𝑆+1, 𝑋𝑆+2, ..., 𝑋𝑆+𝑇) = F ((𝑋 1, 𝑋 2, ..., 𝑋𝑆)) . (1)

3 ANALYSIS
In this section, we discuss the constraints that hinder the scalability

of graph neural network methods. We also explain our motiva-

tions for simplifying models, supported by theoretical evidence and

empirical findings.

Graph neural network methodologies are highly effective in

traffic prediction, as they adeptly capture node features while facil-

itating the integration of features across different nodes in accor-

dance with the graph’s topology. The most prevalent graph neural

networks can be represented in the following form:

𝐻 = 𝐴𝑔𝑔(𝐴,𝑋,Θ) (2)

Here, 𝐻 represents the hidden state of the model, 𝐴 denotes the

adjacency matrix, 𝑋 represents the input data, and Θ refers to the

trainable parameters. The function 𝐴𝑔𝑔(·) is a specific method for

aggregating elements in 𝑋 based on the relationships defined in

𝐴. A commonly employed approach for this aggregation function

is the use of spatial domain graph convolution operations in the

following form:

𝐻 = 𝜎 (𝐴𝑋𝑊) (3)

Here, 𝜎 (·) represents arbitrary activation function, and𝑊 denotes

the trainable parameters. It leverage matrix multiplication to inte-

grate input data𝑋 in accordance with the relationships specified by

the adjacency matrix 𝐴. In the majority of current research [1, 36],

to achieve superior predictive performance, matrix 𝐴 is often com-

posed of trainable parameters, a practice referred to as the adaptive

adjacency matrix. This approach allows the model to reduce its

reliance on prior knowledge while enhancing its representational

capacity for potential node associations. To prevent over-fitting due

to the extensive use of parameters, this adaptive matrix is typically

factorized into the product of two smaller matrices:

𝐴 = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝐸1𝐸2) (4)

Here, 𝐸1 ∈ R𝑁×𝐶
and 𝐸2 ∈ R𝐶×𝑁 are both trainable parameters,

𝐶 is a hyperparameter. This technique reduces the number of pa-

rameters required to construct the adjacency matrix from 𝑁 2
to

2𝐶𝑁 . Employing this technique, a series of methods have empiri-

cally demonstrated that the effectiveness of the adaptive adjacency

matrix can be maintained even when the parameter 𝐶 is set to a

value significantly smaller than 𝑁 . When 𝑁 is sufficiently large,

employing a decomposition approach can significantly reduce the

number of training parameters needed to construct the adjacency

matrix 𝐴. However, the complexity of the matrix multiplication for

𝐴𝑋 in graph convolution is still 𝑂 (𝑁 2), which greatly limits the

scalability of this operation on large-scale data.

AGS [5] proposed the use of a mask matrix to simplify the adja-

cency matrix𝐴. This approach introduces a Boolean mask matrix 𝛽 ,

which has the same dimensions as the adjacency matrix 𝐴, after 𝐴

has been trained. By performing the Hadamard product of 𝐴 and 𝛽 ,

the final adjacency matrix is determined based on the binary gating

within 𝛽 , deciding whether to retain the connections. However,

this method can only theoretically reduce the operational speed

during the model’s inference phase, as it requires the retraining

of 𝛽 to achieve a sparse adjacency matrix after 𝐴 has been trained.

Simultaneously training 𝐴 and 𝛽 can lead to difficulties in model

convergence, thereby diminishing the model’s predictive accuracy.

BigST [9] designed a graph convolutional model with linear com-

plexity. However, BigST can lead to the generation of anomalous

gradient values during the model’s training process, which affects

the training effectiveness and the ultimate predictive accuracy. For

graph convolution operations under normal circumstances, The

Equation 4 can be rewritten as

𝐴𝑖 𝑗 =
𝑓 (𝑠𝑖 𝑗)∑︁𝑁

𝑘=1
𝑓 (𝑠𝑖𝑘)

(5)

𝑠𝑖 𝑗 = 𝐸1𝑖𝐸2𝑗 , 𝑓 (𝑥) = 𝑒𝑥𝑝 (𝑥) (6)

The gradients of the matrix 𝐴 is derived as [27]:

𝜕𝐴𝑖 𝑗

𝜕𝑠𝑖𝑘
=
𝑓 ′ (𝑠𝑖𝑘)
𝑓 (𝑠𝑖𝑘)

(1𝑗=𝑘𝐴𝑖 𝑗 −𝐴𝑖 𝑗𝐴𝑖𝑘) (7)

If Equation 6 is substituted into Equation 7, we can deduce that:

|
𝜕𝐴𝑖 𝑗

𝜕𝑠𝑖𝑘
| ≤ 1

4

(8)

It is evident that the gradients of the parameters do not exhibit any

significant anomalies. BigST employs a kernel function mapping

approach to simplify the graph convolution operation into a linear

product of multiple matrices, as follows:

𝑠𝑖 𝑗 = 𝜙 (𝐸1𝑖)𝜙 (𝐸2𝑗), 𝑓 (𝑥) = 𝑥 (9)

Here 𝜙 (·) is the kernel function. If Equation 9 is substituted into

Equation 7, we can deduce that:

|
𝜕𝐴𝑖 𝑗

𝜕𝑠𝑖𝑘
| ≤ 1

4|𝑠𝑖𝑘 |
(10)

2297

There is always a probability that the gradients during back prop-

agation will produce anomalous values since 𝑠𝑖 𝑗 is set from 0 to

positive infinity in the BigST.

Our goal is to approximate the graph convolution operation in

Equation 3 with a computational complexity of 𝑂 (𝑁), while main-

taining the model’s accuracy. This is feasible because, as shown in

Figure 1, well-trained adaptivematrices tend to be highly sparse. For

the factorized adjacency matrix 𝐴 = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝐸1𝐸2), we consider
the properties of matrices 𝐸1 and 𝐸2 that:

𝑅𝑎𝑛𝑘 (𝐸1) ≤ 𝐶 (11)

𝑅𝑎𝑛𝑘 (𝐸2) ≤ 𝐶 (12)

𝑅𝑎𝑛𝑘 (𝐸1𝐸2) ≤ 𝑀𝑖𝑛(𝑅𝑎𝑛𝑘 (𝐸1), 𝑅𝑎𝑛𝑘 (𝐸2)) ≤ 𝐶 (13)

This implies that the column (and row) space of the matrix 𝐸1𝐸2
can both be spanned by a set of 𝐶 linearly independent vectors. In

other words, we have the following theorem:

Theorem 3.1. Let 𝑀 ∈ R𝑁×𝑁 be a matrix with rank 𝐶 . There
always exists a non-unique matrix 𝐾 ∈ R𝐶×𝐶 such that matrix 𝑀
can be constructed via some matrix multiplication transformations
involving 𝐾 .

Due to space limitations, the proof of this theorem can be found

in the full version [17].

For the sake of convenience in subsequent descriptions, we as-

sume, based on the aforementioned theorem, that:

𝐸1𝐸
𝑖 𝑗

2
=

𝐶∑︂
𝑚=1

𝐶∑︂
𝑛=1

𝑈
𝑖 𝑗
𝑚𝑛𝐾𝑚𝑛, (14)

here𝑈 represents the coefficient of the linear combination, and𝐾𝑚𝑛

denotes the elements ofmatrix𝐾 with rank𝐶 . Thus, we can consider

that matrix 𝐸1𝐸2 can be derived from matrix 𝐾 and coefficient

matrix𝑈 through a series of linear transformations. In other words,

the process of the model learning matrix 𝐸1𝐸2 is equivalent to

learning matrix 𝐾 and the coefficient matrix𝑈 .

Since the well-trained adjacency matrix 𝐴 is sparse, we propose

that a significant number of values in 𝑈 can be replaced with a

fixed number, meaning that the number of trainable parameters

used to express the combination coefficients in matrix 𝑈 can be

much smaller than its shape. The adjacency matrix 𝐴 used in exist-

ing model is obtained by applying the activation function to 𝐸1𝐸2.

Taking the most commonly used form, 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (), as an example,

we have:

𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝐸1𝐸𝑖 𝑗
2
) =

𝐶∏︂
𝑖=1

𝐶∏︂
𝑗=1

𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝐾𝑖 𝑗)𝑢𝑖 𝑗 (15)

If 𝐴𝑖 𝑗 in the adjacency matrix is zero, we only need to set the cor-

responding coefficient in𝑈 to a fixed negative value (for example,

negative 3) to ensure that the calculated 𝐴𝑖 𝑗 is close to zero. For

a sparse adjacency matrix 𝐴, most elements in 𝑈 would be set to

negative 3, with only a small portion of elements needing to be de-

termined through training. The proportion of trainable parameters

in matrix𝑈 is positively correlated with the sparsity of matrix 𝐴.

Similarly, if other activation functions are chosen, we simply need

to set the corresponding elements in𝑈 to other fixed values since

the computation of the activation function is fixed.

Based on the aforementioned analysis, we can consider that in

the adaptive matrix based methods, the technique of setting 𝐴 as

a trainable parameter can be replaced by allowing the model to

learn matrix 𝐾 and the linear combination coefficient matrix 𝑈 .

Intuitively, the information contained in matrix 𝐴 is equivalent to

the information contained in 𝐾 and𝑈 .

Furthermore, in the graph convolution operation of Equation

3, the intention of the matrix multiplication for 𝐴𝑋 is to perform

feature fusion of the input data 𝑋 according to the adjacency rela-

tionship 𝐴 through linear transformation. The complexity of this

operation is𝑂 (𝑁 2), which limits the scalability of the graph convo-

lution operation. Since we can learn matrix 𝐾 and the combination

coefficients 𝑈 separately, in this paper, we propose a new frame-

work to replace the graph convolution operation in Equation 3. The

following sections will introduce the specific details of our newly

proposed method.

4 PROPOSED MODEL
we commence by elucidating the overarching framework of the

model. Subsequently, we introduce the specific module designs

within the model.

4.1 Framework of the model
As depicted in Figure 2, our model comprises two distinct modules:

Feature Extractor and Relational Compressor. The Feature Extrac-

tor compresses the input data into an low-dimensional space and

subsequently reconstructs it, while simultaneously updating an

embedding that represents the node features. The Relational Com-

pressor transforms the input data into an low-dimensional space,

models the implicit adjacency relationships between different nodes

in the low-dimensional space, and ultimately reconstructs the data

back into its original space. The low-dimensional spaces involved in

the two modules are mutually aligned. Both the Feature Extractor

and Relational Compressor are stacked in a serial manner, and the

outputs from each layer are concatenated with skip connections,

which are then transformed into prediction through an output layer.

In our model, there are two types of embedding matrices. One is

the input embedding 𝑃 ∈ R𝑁×𝑑
, and the other is the node embed-

ding 𝑄 ∈ R𝑁×𝑑
. 𝑑 denotes the number of channel in the embed-

ding. The node embedding is composed of trainable parameters,

the elements of which are updated exclusively during the training

process of the model and do not vary with the input data. In con-

trast, the input embedding is generated from the model’s input data

and automatically adjusts according to different inputs. The pur-

pose of the node embedding is to model the characteristics of each

node in the transportation network during the training process of

the model. The input embedding encompasses not only the node

feature information but also the spatial information (such as the

relationship between nodes) and temporal information present in

the input data. The objectives of transforming the input data into

input embeddings are twofold: first, to obtain a dense representa-

tion for spatio-temporal features, and second, to enable the model

to automatically learn the most salient features of the data.

2298

Input Time Series
Input Layer

Input

Embedding

Node

Embedding

Relational

Compressor
Add & Norm

Feature Extractor Add & Norm

Matmul SoftMax Matmul

Output Layer
Output Time Series

Matrix V Matrix V

Matmul Concat Matmul

Matrix V Matrix KMatrix U

Matmul

Matrix V

(a) The framework of GraphSparseNet

(b) Feature Extractor (FE) (c) Relational Compressor (RC)

Residual

S
k
ip

C
o
n
n
e

c
tio

nResidual

1 2 3 4

2d

N

C

2d

Compression

Decompression

in RC
N

2d

O(dCN)

O(dCN)

2d

2C

Feature Fusion

in RC
O(dC N)2

Model Complexity

D
e
c
o
m

p
re

s
s
io

n

in
 F

E
O

(d
C

N
)

Figure 2: An illustration of the framework.

4.2 Feature Extractor
The advantages of Graph Neural Networks stem from two aspects:

one is their powerful feature learning capability, which can ac-

curately capture the features of each node, and the other is their

ability to handle graph-structured data, allowing node features to

be integrated based on adjacency relationships. By aggregating

information from neighboring nodes to update the representation

of a node, it can capture complex relationships between nodes,

thereby better understanding graph-structured data. In the Feature

Extractor module, our primary goal is to enable the model to learn

the features of different nodes.

In the design of the Feature Extractor, we have two objectives:

one is to update the node embeddings through this module to model

the characteristics of each node in the traffic data, and the other

is to attempt to compress the input embeddings, which contain

spatio-temporal information, to a low-dimensional space, thereby

preparing for subsequent feature fusion in low-dimensional space

within the model.

To achieve both of these objectives, we have designed a mod-

ule that compresses and then decompresses the input information

based on node features. The input embeddings encompass only

the local spatio-temporal characteristics of the input time series,

as the data presented to the model at each instance constitutes a

small slice of the entire dataset. Concurrently, the node embeddings

remain invariant over time, thereby capturing and representing

global information. Therefore, we concatenate the two types of

embeddings as the input to the module.

𝑋𝐹𝐸 = 𝑃 | |𝑄 (16)

Here, 𝑋𝐹𝐸 represents the input of Feature Extractor. The concate-

nated input 𝑋𝐹𝐸 contains both the local spatio-temporal informa-

tion of the input data and the global features of each node. A reason-

able approach to compressing data from an 𝑁 -dimensional space

to a low-dimensional space is to cluster based on node features.

To this end, we use a matrix generated from the node features to

compress the module input, as follows:

𝐻𝐹𝐸 = 𝑉1𝑋𝐹𝐸 (17)

𝑉1 =𝑊1𝑄 + 𝐵1 (18)

Here, 𝐻𝐹𝐸 represents the hidden state, 𝑉1 is the compressing ma-

trix.𝑊1 and 𝐵1 are trainable parameter matrices. Subsequently,

we designed the decompression process, which is similar to the

compression. To introduce non-linear characteristics and control in

the Feature Extractor, we added an activation function between the

compression and decompression processes. We utilize the SoftMax

function to present the hidden layer in the form of a probability

distribution, thereby enhancing the training effectiveness of this

module during the decompression process.

𝑂𝐹𝐸 = 𝑉2𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝐻𝐹𝐸) (19)

𝑉2 =𝑊2𝑄 + 𝐵2 (20)

On one hand, the process of compression and decompression can

update the a node embedding 𝑄 to learn the features of different

nodes. The information contained within this embedding will be

shared with Relational Compressor. On the other hand, the model

is designed to learn a method of compressing the input to a size of

𝐶 dimensions, which serves as an auxiliary function for Relational

Compressor to map the input into a low-dimensional space. This

alignment of the compression ratio in this module with that in

Relational Compressor is crucial for the seamless integration and

effective operation of the overall model.

2299

C

2d

2d

C’

C+C’

()
×

H

() Concatenation() Concatenation ×Matrix Multiplication×Matrix Multiplication

U K H RC

，
RC

C+C’

C+C’

Figure 3: An illustration in Relational Compressor.

4.3 Relational Compressor
As we discussed in the previous analysis, learning the adjacency

matrix 𝐴 can be equivalent to learning matrices 𝐾 and 𝑈 . In the

design of the Relational Compressor, our objective is to learn the

adjacency matrix 𝐾 and the coefficient matrix𝑈 of the traffic graph

in the low-dimensional space, and to achieve the fusion of node

features in the low-dimensional space to avoid the𝑂 (𝑁 2) complex-

ity in spatial graph convolutions. To this end, we also design the

model with a compression and decompression manner, which is

similar to Feature Extractor. Consistent with the concept in the

Feature Extractor, this module also takes the concatenation of node

embeddings and input embeddings as input:

𝐻𝑅𝐶 = 𝑉3 (𝑃 | |𝑄) (21)

Here 𝐻𝑅𝐶 is the hidden state in Relational Compressor. Unlike

the Feature Extractor, in the compression process, to enable the

compression to consider the local spatio-temporal features in the

input embedding 𝑃 , rather than compressing solely based on global

node features, we consider using two embeddings to generate the

compression matrix:

𝑉3 =𝑊3 (𝑃 | |𝑄) + 𝐵3 (22)

After compressing the input into the low-dimensional space, we

let the model learn the coefficient matrix𝑈 in the hidden state by

means of concatenation.

𝐻 ′𝑅𝐶 = 𝐻𝑅𝐶 | |𝑈 (23)

As shown in Figure 3, the shape of the coefficient matrix 𝑈 can

be controlled by 𝐶′. Subsequently, we fuse features according to

the low-dimensional adaptive adjacency matrix 𝐾 through matrix

multiplication in the hidden state, as follows:

𝐻 ′′𝑅𝐶 = 𝐾𝐻 ′𝑅𝐶 (24)

𝐾 is the adaptive adjacency matrix in the𝐶 +𝐶′-dimensional space.

Both 𝐾 and 𝑈 are composed of trainable parameters, and in Sec-

tion 2, we discussed the feasibility of using 𝐾 and 𝑈 to replace the

adaptive matrix 𝐴. Through concatenation and matrix multiplica-

tion, Relational Compressor can achieve the purpose of learning

adjacency relationships and feature fusion in the low-dimensional

space. The number of trainable parameters contained in matrices

𝐾 and 𝑈 is far less than that in 𝐴. Moreover, the computational

complexity of the module is also far less than that of spatial GCN

and its existing improved schemes, which we will analyze in detail

later. Subsequently, we architected the decompression process to

be analogous to the compression process, ensuring a symmetrical

approach to feature representation.

𝑂𝑅𝐶 = 𝑉4𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝐻 ′′𝑅𝐶) (25)

𝑉4 =𝑊4 (𝑃 | |𝑄) + 𝐵4 (26)

The outputs of the two modules are summarized through a skip-

connection approach and the final prediction result is obtained

through the output layer. The final output is:

𝑂 = 𝑂𝐹𝐸 ∥ 𝑂𝑅𝐶 (27)

The output layer consists of an activation function and a fully con-

nected layer. The overall training process of our model is outlined

in Algorithm 1.

4.4 Complexity Analysis
In this section, we analyze the complexity of variousmodules within

the proposed model. For the sake of simplicity, we assume that

𝐶 = 𝐶′ = 𝑑 in the subsequent discussions.

Regarding time complexity: The complexity of converting the in-

put graph signal to input embeddings in the input layer is𝑂 (𝑁𝑆𝐶),
where 𝑁 is the number of nodes, 𝑆 is the number of historical time

steps, and 𝐶 is the dimensionality of the low-dimensional space.

In the Feature Extractor, the complexity of compression and de-

compression is 𝑂 (𝐶2𝑁 +𝐶2𝑁). In the Relational Compressor, the

complexity of compression and decompression is 𝑂 (𝐶2𝑁 +𝐶2𝑁),
and the complexity of feature fusion in the low-dimensional space

is 𝑂 (𝐶3). The complexity of the output layer is 𝑂 (𝑁𝑇𝐶), where 𝑇
is the time step of the output graph signal. Since 𝐶 , 𝑆 , and 𝑇 are

constants, the overall time complexity of the model is 𝑂 (𝑁).
Regarding space complexity: The space complexity for input

embeddings and node embeddings is 𝑂 (𝑆𝑁 +𝐶𝑁). The space com-

plexity for generating the compression and decompression trans-

formation matrices is𝑂 (𝐶𝑁). The space complexity for generating

𝐾 and𝑈 is𝑂 (𝐶𝑁 +𝐶2). The overall space complexity of the model

is 𝑂 (𝑁).
It can be observed that our approach exhibits a space complexity

and time complexity of 𝑂 (𝑁), which endows our method with

superior scalability.

5 EXPERIMENTS
In this section, we evaluated our proposed model by empirically

examining on four real-world datasets with the state-of-the-art

models for traffic forecasting. To support the reproducibility of the

results in this paper, we have released our code on website.
1

5.1 Datasets and Pre-processing
We conduct experiments on four widely used real-world public

traffic datasets from: (1)PEMS
2
(PEMS07 and PEMS08), (2)England

3
,

1
https://github.com/PolynomeK/GSNet

2
http://pems.dot.ca.gov/

3
http://tris.highwaysengland.co.uk/detail/trafficflowdata

2300

Algorithm 1 Training Schema of GraphSparseNet

1: Input: Graph 𝐺 , Graph signal 𝑋

2: Output: Model prediction 𝑋̂

3:

4: 𝑃 ← InputLayer(𝑋) ⊲ Transform 𝑋 to input embedding 𝑃

5: 𝑄 ← NodeEmbedding(𝐺) ⊲ Obtain node embeddings 𝑄

6:

7: 𝑉1,𝑉2 ← GenerateTransformationMatrices(𝑄) ⊲ Generate

transformation matrices

8: 𝑉3,𝑉4 ← GenerateTransformationMatrices(𝑃 | |𝑄) ⊲ Generate

transformation matrices from concatenation

9:

10: Modules: FE (Feature Extractor), RC (Relational Compressor)

11: for 𝑖 ← 1 to L do ⊲ Loop for L layers

12: FE Module:
13: 𝐻𝐹𝐸 ← 𝑉1 · (𝑃 | |𝑄) ⊲ Compress the concatenation with 𝑉1
14: 𝐻𝐹𝐸 ← ActivationFunction(𝐻𝐹𝐸) ⊲ Apply activation

function

15: 𝐻𝐹𝐸 ← 𝑉2 · 𝐻𝐹𝐸 ⊲ Decompress with 𝑉2
16: 𝑂𝐹𝐸 ← ResidualConnection(𝑃 | |𝑄,𝐻𝐹𝐸) ⊲ Residual

connection and normalization

17: RC Module:
18: 𝐻𝑅𝐶 ← 𝑉3 · (𝑃 | |𝑄) ⊲ Compress the concatenation with 𝑉3
19: 𝐻 ′

𝑅𝐶
← 𝐻𝑅𝐶 | |𝑈 ⊲ Concatenate with matrix𝑈

20: 𝐻 ′′
𝑅𝐶
← 𝐾 · 𝐻 ′

𝑅𝐶
⊲ Transform with matrix 𝐾

21: 𝐻 ′′
𝑅𝐶
← ActivationFunction(𝐻 ′′

𝑅𝐶
) ⊲ Apply activation

function

22: 𝐻 ′′
𝑅𝐶
← 𝑉4 · 𝐻 ′′𝑅𝐶 ⊲ Decompress with 𝑉4

23: 𝑂𝑅𝐶 ← ResidualConnection(𝑃 | |𝑄,𝐻 ′′
𝑅𝐶

) ⊲ Residual

connection and normalization

24: 𝑂 ← UpdateInput(𝑂𝐹𝐸 ,𝑂𝑅𝐶) ⊲ Update input for next layer

25: end for
26: 𝑂𝑢𝑡𝑝𝑢𝑡 ← FullyConnectedLayer(𝑂) ⊲ Final fully connected

layer

27: 𝑋̂ ← ActivationFunction(𝑂𝑢𝑡𝑝𝑢𝑡) ⊲ Apply activation function

for prediction

28: Backpropagation: Compare(𝑋̂ , 𝑋true) ⊲ Compare prediction

with true value

and (3)CA [23]. The biggest dataset is California (CA), including a

total number of 8,600 sensors. To the best of our knowledge, CA is

currently the publicly available dataset with the highest number of

nodes recorded by loop detectors. It contain three representative

areas: Greater Los Angeles, Greater Bay Area, and San Diego. A

brief description are given in Table 2.

Z-score normalization is applied to inputs as follows.

𝑋𝑖𝑛𝑝𝑢𝑡 =
𝑋 −𝑚𝑒𝑎𝑛(𝑋)

𝑠𝑡𝑑 (𝑋) (28)

Here𝑚𝑒𝑎𝑛(𝑋) and 𝑠𝑡𝑑 (𝑋) denote the mean and the standard devi-

ation of the historical time series, respectively.

Table 2: Datasets description.

Dataset Node Samples Sample Rate Traffic Record

PEMS08 170 17,856 5min 3,035,520

England 314 17,353 15min 5,448,842

PEMS07 883 28,224 5min 24,921,792

CA 8,600 17,280 5min 148,608,000

5.2 Baselines
We compare the proposed method in this paper with current state-

of-the-art approaches in the field. The selected baselines are catego-

rized into five groups based on theirmodel frameworks. The first cat-

egory includes classical statistical methods, specifically ARIMA [33].

The second category consists of CNN-based approaches, such as

STResNet [41], ACFM [22] and STGCN [39]. The third category

focuses on GNN-based methods, with some incorporating RNN

structures, represented by DCRNN [19], GWNet [36], AGCRN [1],

AGS [5] and BigST [9]. The fourth category includes transformer-

based methods, denoted by PDFormer [13] and Bi-STAT [3]. Lastly,

the fifth category includes large model (pretrained neural networks)

approaches, denoted as GPT-ST [21] and UniST [40].

5.3 Experimental Setup
Our implementation is based on python 3.12.1, torch 2.2.0, and

numpy 1.26.4. tested on Ubuntu 20.04.3 (CPU: Intel(R) Xeon(R) CPU

E5-2620 v4 @ 2.10GHz, GPU: GeForce RTX 3080 10GB). Tests on

PEMS07, PEMS08 and CA, we adopt 60 minutes as the history time

window, a.k.a. 12 observed data points (𝑆 = 12) are used to forecast

traffic in the next 60 minutes (𝑇 = 12). Tests on England, we adopt

180 minutes as the history time window, a.k.a. 12 observed data

points (𝑆 = 12) and forecast the traffic in the next 180 minutes (𝑇 =

12). In our model, both the Feature Extractor and Relational Com-

pressor are implemented as three-layer stacked structures. Adam

optimizer is used for training our model with an initial learning

rate of 0.0001. The best parameters are chosen through a carefully

parameter-tuning process on the validation set. The parameters

used in the baselines are set to the default values from the original

author’s publicly available code. On certain datasets, due to the in-

creased data scale, we adjusted parameters such as the batch size to

ensure the model could run without memory constraints. PEMS07

and PEMS08 are split by ratio of 7:1:2 in chronological order while

England and CA are split by ratio of 6:2:2. For all datasets, the miss-

ing values are filled by the linear interpolation. In our model, the

values for 𝐶 , 𝑑 , and 𝐶′ are set to be equal. The batch size for the

input data is set to 16. Should we encounter issues with insufficient

GPU memory, we will reduce the batch size of the model incre-

mentally until the model can operate without such constraints. We

adopt three evaluation metrics commonly used in the field of traffic

forecasting to evaluate the performance of models: Mean Absolute

Errors (MAE) represents the average absolute value of prediction

errors. Mean Absolute Percentage Errors (MAPE) measures the

percentage of prediction errors. Root Mean Squared Errors (RMSE)

is the square root of the average squared difference between the

actual and predicted values for each data point, providing an overall

measure of prediction error.

2301

Table 3: Performance comparison of different approaches on all the datasets.

Dataset PEMS08 England PEMS07 CA

Metric MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

ARIMA 31.23 19.25 33.47 4.23 5.72 7.68 33.89 17.60 46.38 34.26 21.35 44.68

STResNet 23.25 15.58 32.25 4.03 5.68 7.55 29.36 15.24 42.46 29.25 20.33 40.63

ACFM 15.86 10.13 25.34 3.52 5.28 7.86 25.86 11.83 39.03 26.38 19.24 37.86

STGCN 17.50 11.29 27.03 3.55 5.30 7.38 25.32 11.16 39.27 25.68 18.43 36.44

DCRNN 17.86 11.45 27.83 3.59 4.90 7.42 25.3 11.66 38.58 25.75 18.62 36.91

GWNet 19.13 12.68 31.05 3.53 4.93 7.57 26.85 12.12 42.78 24.73 17.46 35.86

AGCRN 15.95 10.09 25.22 3.32 5.01 7.33 22.37 9.12 36.55 25.03 17.93 36.23

PDFormer 13.58 9.05 23.51 3.46 4.97 7.46 20.42 8.86 32.87 25.22 18.96 35.43

Bi-STAT 13.62 9.43 23.17 3.42 4.89 7.54 21.13 8.98 33.86 25.36 19.03 35.27

GPT-ST 14.85 9.63 24.32 3.43 4.97 7.42 21.43 9.32 34.76 24.93 17.52 35.86

UniST 16.01 10.23 25.37 3.49 4.88 7.51 24.62 11.56 38.21 25.53 18.87 35.46

AGS 15.50 9.71 25.01 3.15 4.56 7.52 21.56 9.03 34.90 24.96 17.88 36.02

BigST 16.35 10.05 24.37 3.63 5.13 7.76 22.86 10.02 34.03 23.36 16.81 34.98

GSNet(Ours) 14.76 9.48 22.52 3.20 4.82 6.60 20.70 8.77 32.66 19.76 14.39 30.99

For each data point, the absolute error between the actual and

predicted values is calculated, and then the average is taken across

all data points.

𝑀𝐴𝐸 =
1

𝑇𝑁

𝑖=𝑇∑︂
𝑖=1

𝑗=𝑁∑︂
𝑗=1

|𝑋̂ (𝑡+𝑖)𝑗 − 𝑋 (𝑡+𝑖)
𝑗
| (29)

Here 𝑋̂ denotes output of models.

Mean Absolute Percentage Errors (MAPE) measures the percent-

age of prediction errors. It calculates the relative error between the

actual and predicted values for each data point, takes the average

across all data points, and expresses the result as a percentage.

𝑀𝐴𝑃𝐸 =
100%

𝑇𝑁

𝑖=𝑇∑︂
𝑖=1

𝑗=𝑁∑︂
𝑗=1

|
𝑋̂
(𝑡+𝑖)
𝑗 − 𝑋 (𝑡+𝑖)

𝑗

𝑋
(𝑡+𝑖)
𝑗

| (30)

Root Mean Squared Errors (RMSE) is the square root of the average

squared difference between the actual and predicted values for each

data point, providing an overall measure of prediction error.

𝑅𝑀𝑆𝐸 =

⌜⃓⃓⎷
1

𝑇𝑁

𝑖=𝑇∑︂
𝑖=1

𝑗=𝑁∑︂
𝑗=1

(𝑋̂ (𝑡+𝑖)𝑗 − 𝑋 (𝑡+𝑖)
𝑗
)2 (31)

5.4 Comparison with Existing Models
Tables 3, 4 and Figure 4 present the effectiveness and efficiency of

multiple models across various datasets.

5.4.1 Performance Comparison. As shown in the table 3, ourmethod

demonstrates strong predictive performance acrossmultiple datasets.

Notably, on larger-scale datasets such as CA, it achieves the best

results across all metrics. On the PEMS07 and England dataset, our

approach consistently achieves either the best or second-best per-

formance across various evaluation metrics. Additionally, On the

PEMS08 dataset, our method outperforms others specifically in the

RMSE metric. Traditional statistical methods such as ARIMA are

not effective in handling complex spatio-temporal data and often

exhibit poor performance, whereas graph convolution methods sig-

nificantly enhance model accuracy. Methods based on CNN, such

as STResNet and ACFM, utilize deep learning techniques. Com-

pared to traditional statistical methods, these approaches capture

nonlinear features and significantly improve the model’s predic-

tion accuracy. However, the design framework of CNNs inherently

limits their ability to consider adjacency relationships in a more

detailed manner. Specifically, CNNs are restricted to using a regular

receptive field, which makes it challenging to account for higher-

order relationships between different nodes in a road network. As

a result, there is still room for improvement in prediction accuracy

for these methods. DCRNN and STGCN improve upon GCN by em-

ploying bidirectional propagation processes, achieving good results

compared to traditional statistical methods. GWNet and AGCRN

optimizes the generation of adaptive adjacency matrices, leading

to better performance than other graph neural network methods.

AGS integrates the advantages of multiple spatio-temporal graph

neural network methods, resulting in improved inference accu-

racy compared to other approaches. This method achieves the best

accuracy on some metrics in the England dataset and performs

slightly less optimally on the PEMS07 and PEMS08 datasets. BigST

is designed with scalability in mind for graph neural networks; its

proposed linear graph convolution offers high scalability, allowing

the model to perform well on larger datasets (e.g., CA), but its pre-

dictive accuracy on smaller datasets is not as competitive as other

methods. Transformer-based methods, as seen in PDFormer and

Bi-STAT, have shown promising performance in prediction tasks.

Compared to other approaches, the attention mechanism in Trans-

formers excels at capturing temporal information within time series

data, leading to significant improvements in prediction accuracy.

However, the complexity of the model design limits its scalability.

As a result, these methods struggle to maintain high prediction

accuracy when applied to large-scale datasets. GPT-ST improves

the training effectiveness through a pretraining strategy. Compared

to other GNN-based methods, it significantly enhances the model’s

prediction accuracy. On the other hand, UniST is designed with a

large model framework that supports training on multiple types

2302

Table 4: Computation cost during training and inference on different models.

Training Time(s/epoch) Inference Time(s/epoch)

Model PEMS08 England PEMS07 CA PEMS08 England PEMS07 CA

STResNet 32.35 48.32 44.17 153.35 5.93 8.21 7.02 23.26

ACFM 35.44 51.32 62.37 172.64 6.53 8.74 6.96 27.64

GWNet 114.23 130.75 235.32 1757.35 10.35 14.86 12.12 437.53

AGCRN 121.35 147.36 264.16 1921.66 11.72 16.74 14.35 463.23

PDFormer 270.25 325.37 446.36 2653.82 23.42 35.28 29.64 653.24

Bi-STAT 160.34 203.25 352.33 2325.24 15.37 20.03 19.86 502.51

GPT-ST 125.32 150.25 242.37 1869.32 12.01 16.07 15.33 467.53

UniST 703.25 859.36 1560.21 6358.25 36.21 40.35 38.39 1036.72

AGS 135.74 153.25 282.37 2135.12 12.13 16.93 14.76 470.03

BigST 27.95 42.52 37.28 95.72 5.86 6.75 3.27 16.37

GSNet(Ours) 10.37 17.62 11.80 27.26 0.99 2.12 1.21 5.50
Improvement 2.70× 2.41× 3.16× 3.51× 5.91× 3.18× 4.84× 2.98×

(a) Memory Usage on PEMS08 (b) Memory Usage on PEMS07

(c) Memory Usage on CA (d) Memory Usage on England

Figure 4: Memory usage on all the datasets.

of data. Its main advantage lies in its ability to perform zero-shot

and few-shot learning. However, in the experiments presented in

this paper, we maintained fairness in comparison by not utilizing

multiple data types for training, which resulted in less favorable

performance.

5.4.2 Efficiency Comparison. Figure 4 illustrates thememory usage

of various methods. It is evident that GSNet and BigST are the

best and second-best performers, respectively. Additionally, as the

number of nodes in the dataset increases, the advantage of the

linear space complexity of GSNet and BigST becomes increasingly

apparent. Apart from GSNet and BigST, all other methods exhibit a

cache occupancy of 10GB on the CA dataset. Furthermore, UniST

consistently consumed 10GB of memory cache across all datasets

except for PEMS08. This uniformity is attributed to the excessive

number of nodes in the dataset, which leads to an ’out of memory’

error when attempting to run the programs normally. Consequently,

we reduced the batch size of them incrementally until it could be

executed under the condition of a 10GB GPU memory constraint.

Table 4 lists the computational efficiency of various graph neu-

ral network models, including training and inference times. Our

method and BigST achieve the best and second-best runtime results

across all datasets. Although AGS performs sparsification on the

adaptive matrices in the model, the original paper and code do

not provide methods for efficient computation using these sparse

matrices, resulting in longer training and inference time compared

to other methods. STResNet and ACFM demonstrate competitive

efficiency, ranking just behind the BigST model. As CNN-based

methods, they do not need to account for adjacency relationships

between all nodes, which contributes to their relatively fast run-

time. GWNet, AGCRN and GPT-ST do not show a significant differ-

ence in runtime compared to our method on smaller datasets (e.g.,

PEMS08), but their computational times increase dramatically as the

number of nodes in the dataset grows. In contrast, PDFormer and

Bi-STAT require significantly longer training and inference times.

This is due to the substantial computational overhead inherent in

transformer-based methods. Similarly, UniST exhibits even greater

computational demands, with both its training and inference times

far exceeding those of other models, primarily due to its complex

framework design.

On the CA dataset, GSNet demonstrates exceptional training

efficiency. Specifically, it achieves a training acceleration that is

64 to 70 × faster compared to GWNet and AGCRN. BigST, despite

designing a graph convolution operationwith a complexity of𝑂 (𝑁),
includes a kernel function based on random mapping, which makes

the overall operational efficiency of the model slightly lower than

ours. On the CA dataset, our method achieves 3.51 × higher training
acceleration. And On the PEMS07 dataset, our method achieves

4.84 × higher inference acceleration.

In summary, among existing graph neural network methods,

some methods, such as GWNet and AGCRN, sacrifice model scala-

bility for higher predictive accuracy, leading to a decline in both

accuracy and efficiency on large-scale datasets. Other methods,

like BigST enhance model scalability at the expense of predictive

accuracy. Our method balances the effectiveness and efficiency of

2303

(a) MAE on PEMS07 (b) MAPE on PEMS07 (c) RMSE on PEMS07 (d) Memory Usage on PEMS07

(e) MAE on CA (f) MAPE on CA (g) RMSE on CA (h) Memory Usage on CA

Figure 5: Prediction performance of different variants on PEMS07 and CA datasets.

(a) Metrics on PEMS07 (b) Metrics on CA

(c) Metrics on England (d) Metrics on PEMS08

Figure 6: Prediction performance of different C value on all
the datasets.

the model, achieving the scalability of high-accuracy graph neural

networks on large-scale datasets.

5.5 Ablation Studies
To further verify effectiveness of the proposed method, we conduct

ablation studies on several datasets. In particular, we design five

variants of our model:

(1) 𝑤/𝑜 𝐹𝐸: This variant eliminates the Feature Extractor from

the model and constructs the model solely with the Rela-

tional Compressor.

(2) 𝑤/𝑜 𝑈 : This variant removes the source concatenation from

Relational Compressor but retains the adjacency matrix

within Relational Compressor. The matrix 𝐾 has also been

appropriately adjusted in terms of its shape to ensure that

the matrix multiplication is well-defined.

(3) 𝑤/𝑜 𝐾 : This variant removes the adjacency matrix from

Relational Compressor while retaining the source concate-

nation. The adjacency matrix 𝐾 has been replaced with an

identity matrix of the same shape.

(4) 𝑤/𝑜 𝑅𝐶: This variant removes Relational Compressor, re-

taining only the Feature Extractor.

(5) 𝑤/𝑜 𝑟𝑒𝑠: This variant removes the residual connections

from both Feature Extractor and Relational Compressor.

As illustrated in Figure 5, we first compared the predictive ac-

curacy of different variants across multiple datasets. It can be ob-

served that removing Relational Compressor or the adjacency ma-

trix within Relational Compressor has the most significant impact

on the model’s accuracy. This indicates that the fusion of graph

node features is a crucial step in enhancing predictive accuracy.

Removing Feature Extractor from the model also greatly affects

accuracy, demonstrating that accurately learning node features is

a prerequisite for accurate prediction. Removing the residual con-

nections from the model significantly reduces its accuracy as well.

This is because Feature Extractor and Relational Compressor are

combined in a sequential manner, and residual connections effec-

tively mitigate the vanishing or exploding gradient issues in the

stacked structure. It is noteworthy that almost all variants result

2304

(c) Training time on CA (d) Memory usage on CA

(a) Training time on PEMS07 (b) Memory usage on PEMS07

Figure 7: Memory usage and training time of different C
value on PEMS07 and CA datasets.

(c) Training time on CA (d) Training time on CA

(a) Memory usage on CA (b) Memory usage on CA

Figure 8:Memory usage and training time of differentmodels
with varying N.

in a substantial decrease in the model’s predictive accuracy, high-

lighting the collaborative relationship between different modules in

our approach and validating the effectiveness of our overall model

framework design.

We also compared the memory usage of different variants. It

can be observed that the variant𝑤/𝑜 𝑅𝐶 has the most significant

reduction in memory usage. This indicates that the Relational Com-

pressor in our model consumes a considerable amount of memory

usage, whereas the Feature Extractor, due to its simpler structure,

uses less memory.

(a) Memory usage on CA (b) Memory usage on CA

(c) Training time on CA (d) Training time on CA

Figure 9: Memory usage and training time of modules in the
GSNet with varying N.

5.6 Parameter Sensitivity
In the model, we compress the input data into a low-dimensional

space to model the implicit associations between nodes, where

the dimension of 𝐾 is also a hyperparameter. As shown in Fig-

ure 6, we conducted a series of experiments to test the model’s

performance under different values of 𝐶 . It can be seen that on the

PEMS08 dataset, the model’s accuracy first increases and then de-

creases with the increase of𝐶 . On the PEMS07 and CA datasets, the

model’s predictive accuracy increases with the increase of 𝐶 . We

speculate that on larger datasets, the model’s performance might

also decrease with the increase of 𝐶 , but due to equipment limita-

tions, we have not tested this hypothesis on larger values of𝐶 . The

experimental results indicate that for large-scale datasets, appropri-

ately increasing the value of 𝐶 can enhance the model’s predictive

accuracy. As illustrated in Figure 7, we also tested the model’s op-

erational efficiency and memory usage under different values of

𝐶 . It can be observed that as the value of 𝐶 increases, the model’s

training time, inference time, and memory usage also increase. The

increase in training and inference time is relatively slow, while

memory usage almost linearly increases with the increase of 𝐶 . In

summary, when using GSNet on larger-scale datasets, the value

of 𝐶 can serve as a trade-off coefficient between effectiveness and

efficiency, adjusting the balance between the model’s predictive

accuracy and operational efficiency.

5.7 Efficiency Analysis
To further assess the computational efficiency of our model across

different data scales, we segmented the CA dataset based on sensor

ID order and compared our method against several baselines on

these varying scales. As shown in Figures 8, both the running

time and memory usage of our method incrementally increase

with the dataset size. Notably, the rate of this increase is more

gradual compared to existing methods, demonstrating our model’s

superior scalability. With GWNet, we observed that as the number

of nodes surpasses 1,000, it consumes the entire memory capacity

2305

of our GPU. To mitigate this, we adapted the model to utilize a

smaller batch size, thereby reducing the volume of data processed

per batch. It is evident that, among methods with linear complexity,

GraphSparseNet (GSNet) significantly outperforms BigST in terms

of storage requirements and training efficiency. This comprehensive

analysis underscores the robustness and adaptability of our model,

offering valuable insights into its performance and efficiency across

a spectrum of data scales and settings.

We further examine the efficiency of the two core modules, the

Feature Extractor and Relational Compressor, as the data scale

increases. To do so, we experiment with two model variants: FE,

which retains only the Feature Extractor module, and RC, which

retains only the Relational Compressor module. As illustrated in the

figure 9, both modules exhibit a roughly linear increase in spatio-

temporal complexity with respect to the number of nodes. It is

worth noting that the Relational Compressor includes an additional

feature fusion process, which leads to higher training time and

increased memory usage.

6 RELATEDWORK
Traffic flow forecasting is a key challenge in spatio-temporal pre-

diction, similar to tasks like forecasting demand for shared bikes,

buses, taxis, and crowd flows [2, 11, 20, 43]. Traditional statisti-

cal approaches such as ARIMA [33] and SVM [4], while prevalent

in time series forecasting, often fall short due to their inability

to account for spatial dimensions, making them less effective for

complex spatio-temporal data sets. The advent of deep learning

has introduced methods adept at handling the intricacies and non-

linearities inherent in traffic data. Convolutional Neural Networks

(CNNs), in particular, have become a staple in traffic flow forecast-

ing [22, 24, 37, 41, 42]. By leveraging techniques originally devel-

oped for image recognition [32], CNNs can effectively model the

spatial relationships between different grid regions. Recurrent Neu-

ral Networks (RNNs) have also been instrumental in the analysis of

sequence data, bringing their sequence memorization capabilities

to bear on traffic flow forecasting [29, 38, 44]. More recent advance-

ments have seenGraphNeural Networks (GNNs) rise to prominence

for their ability to manage the spatio-temporal correlations present

in traffic flow data, achieving state-of-the-art results [8, 26, 28, 31].

GNNs, initially designed for graph structure analysis, have found

widespread application in node embedding [25] and node classifi-

cation [15]. In the realm of transportation systems, DCRNN [19]

employs a bidirectional diffusion process to emulate real-world

road conditions and utilizes gated recurrent units to capture tem-

poral dynamics. ASTGCN [7], on the other hand, utilizes dual at-

tention layers to discern the dynamics of spatial dependencies

and temporal correlations. STGCN, Graph WaveNet, LSGCN, and

AGCRN [1, 12, 36, 39] represent a lineage ofmethods that build upon

Graph Convolutional Networks (GCNs) to extract spatio-temporal

information. Notably, Graph WaveNet introduces a self-adaptive

matrix to factor in the influence between nodes and their neigh-

bors, while LSGCN employs an attention layer to achieve a similar

end. STSGCN, STFGNN, and STGODE [6, 18, 30] propose GCN

methodologies designed to capture spatio-temporal information in

a synchronous manner. MTGNN [35] introduces a graph learning

module that constructs a dynamic graph by calculating the similar-

ity between learnable node embeddings. DMSTGCN [10] captures

spatio-temporal characteristics by forging dynamic associations

between nodes. STPGNN [16] enhances predictive accuracy by tak-

ing into account special nodes within the road network. In addition

to GNN-based methods, several approaches leveraging Transform-

ers [3, 13] and pre-training [21, 40] have also been proposed. How-

ever, both Transformer-based and pre-training approaches, along

with GNNs, still encounter significant computational challenges

when identifying nodes relationships, which limits the scalability of

these models on large-scale datasets. Existing adaptive graph neural

network methods often rely on fully connected graphs to bolster

the model’s learning capabilities. Yet, the exponential growth in

the number of edges with an increase in nodes poses a challenge

for these methods when generalizing to larger-scale datasets. To

counter this, AGS [5] has proposed a method for significantly sim-

plifying the adaptive matrix, thereby reducing the model’s computa-

tional load. However, this approach is limited to the inference stage.

In practical applications, the computational cost during the training

phase often dwarfs that of the inference phase. A method that main-

tains linear complexity during training can significantly enhance

the model’s operational efficiency. BigST [9] introduces a method

that employs kernel functions to linearly approximate graph con-

volution operations, yielding a graph prediction model with linear

complexity. However, kernel-based methods can sometimes result

in anomalous gradient values during training, impacting model

convergence and, by extension, the model’s performance. Amidst

the ever-expanding scale of traffic data, there is an urgent need for

graph neural network methods capable of delivering high-precision

predictions at scale.

7 CONCLUSION
In this paper, we addressed the challenge of enhancing the scalabil-

ity of GNN-based methods for large-scale traffic spatio-temporal

data prediction. We identified that existing methods either do not

fully address the computational complexity of graph operations or

compromise model accuracy when simplifying GNN structures. By

introducing GraphSparseNet (GSNet), we have provided a novel

approach that leverages two module—the Feature Extractor and the

Relational Compressor—to effectively manage and analyze large-

scale traffic data. Our theoretical analysis and empirical evaluations

highlight the significant advantages of GSNet over existing meth-

ods. By reducing model complexity to 𝑂 (𝑁), GSNet addresses the
scalability issue while maintaining high predictive accuracy. Our

extensive experiments on real-world traffic datasets demonstrate

that GSNet not only achieves high predictive accuracy but also

significantly improves training efficiency, outperforming state-of-

the-art methods in both aspects. The model’s efficiency is further

validated by a substantial improvement in training time, outper-

forming current linear models by 3.51x.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their

helpful comments. This work was supported by the NSFC 61572537,

and the CCF-Huawei Populus Grove Challenge Fund 202305. Yubao

Liu is the corresponding author.

2306

REFERENCES
[1] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2017. Adaptive graph

convolutional recurrent network for traffic forecasting. In Proceedings of the
34th International Conference on Neural Information Processing Systems, Vol. 33.
17804–17815.

[2] Di Chai, Leye Wang, and Qiang Yang. 2018. Bike Flow Prediction with Multi-

Graph Convolutional Networks. In Proceedings of the 26th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems. 379–
400.

[3] Changlu Chen, Yanbin Liu, Ling Chen, and Chengqi Zhang. 2023. Bidirectional

Spatial-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting. IEEE
Transactions on Neural Networks and Learning Systems 34, 10 (2023), 6913–6925.

[4] Harris Drucker, Christopher J Burges, Linda Kaufman, Alex Smola, and Vladimir

Vapnik. 1996. Support vector regression machines. In Advances in neural infor-
mation processing systems, Vol. 9.

[5] Wenying Duan, Xiaoxi He, Zimu Zhou, Lothar Thiele, and Hong Rao. 2023.

Localised Adaptive Spatial-Temporal Graph Neural Network. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
448–458.

[6] Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. 2021. Spatial-

Temporal Graph ODE Networks for Traffic Flow Forecasting. (2021), 364–373.

[7] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.

Attention based spatial-temporal graph convolutional networks for traffic flow

forecasting. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33.
922–929.

[8] Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. 2022.

Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for

Traffic Forecasting. IEEE Transactions on Knowledge and Data Engineering 34, 11

(2022), 5415–5428.

[9] Jindong Han, Weijia Zhang, Hao Liu, Tao Tao, Naiqiang Tan, and Hui Xiong.

2024. BigST: Linear Complexity Spatio-Temporal Graph Neural Network for

Traffic Forecasting on Large-Scale Road Networks. In Proceedings of the VLDB
Endowment, Vol. 17. 1081–1090.

[10] Liangzhe Han, Bowen Du, Leilei Sun, Yanjie Fu, Yisheng Lv, and Hui Xiong. 2021.

Dynamic and Multi-Faceted Spatio-Temporal Deep Learning for Traffic Speed

Forecasting. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 547–555.

[11] Qi Hu, Lingfeng Ming, Ruijie Xi, Lu Chen, Christian S. Jensen, and Bolong Zheng.

2021. SOUP: A Fleet Management System for Passenger Demand Prediction

and Competitive Taxi Supply. In 2021 IEEE 37th International Conference on Data
Engineering. 2657–2660.

[12] Rongzhou Huang, Chuyin Huang, Yubao Liu, Genan Dai, and Weiyang Kong.

2020. LSGCN: long short-term traffic prediction with graph convolutional net-

works. In Proceedings of the Twenty-Ninth International Joint Conference on Arti-
ficial Intelligence, Vol. 7. 2355–2361.

[13] Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. 2023.

PDFormer: propagation delay-aware dynamic long-range transformer for traffic

flow prediction. In Proceedings of the AAAI conference on artificial intelligence,
Vol. 37. 4365–4373.

[14] Guangyin Jin, Yuxuan Liang, Yuchen Fang, Jincai Huang, Junbo Zhang, and Yu

Zheng. 2023. Spatio-Temporal Graph Neural Networks for Predictive Learning

in Urban Computing: A Survey. arXiv preprint arXiv:2303.14483 (2023).
[15] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with

graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[16] Weiyang Kong, Ziyu Guo, and Yubao Liu. 2024. Spatio-Temporal Pivotal Graph

Neural Networks for Traffic Flow Forecasting. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, Vol. 38. 8627–8635.

[17] Weiyang Kong, Kaiqi Wu, Sen Zhang, and Yubao Liu. 2025. GraphSparseNet:

a Novel Method for Large Scale Trafffic Flow Prediction. arXiv preprint
arXiv:2502.19823 (2025).

[18] Mengzhang Li and Zhanxing Zhu. 2021. Spatial-temporal fusion graph neural

networks for traffic flow forecasting. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 35. 4189–4196.

[19] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional

Recurrent Neural Network: Data-Driven Traffic Forecasting. In International
Conference on Learning Representations.

[20] Yexin Li, Yu Zheng, Huichu Zhang, and Lei Chen. 2015. Traffic Prediction

in a Bike-Sharing System. In Proceedings of the 23rd SIGSPATIAL international
conference on advances in geographic information systems. 1–10.

[21] Zhonghang Li, Lianghao Xia, Yong Xu, and Chao Huang. 2023. GPT-ST: Genera-

tive Pre-Training of Spatio-Temporal Graph Neural Networks. In Advances in
neural information processing systems, Vol. 36. 70229–70246.

[22] Lingbo Liu, Jiajie Zhen, Guanbin Li, Geng Zhan, and Liang Lin. 2019. ACFM:

A Dynamic Spatial-Temporal Network for Traffic Prediction. arXiv preprint
arXiv:1909.02902 (2019).

[23] Xu Liu, Yutong Xia, Yuxuan Liang, Junfeng Hu, Yiwei Wang, Lei Bai, Chao

Huang, Zhenguang Liu, Bryan Hooi, and Roger Zimmermann. 2023. LargeST: A

Benchmark Dataset for Large-Scale Traffic Forecasting. In Advances in Neural
Information Processing Systems, Vol. 36. 75354–75371.

[24] Kun Ouyang, Yuxuan Liang, Ye Liu, Zekun Tong, Sijie Ruan, Yu Zheng, and

David S. Rosenblum. 2022. Fine-Grained Urban Flow Inference. IEEE Transactions
on Knowledge and Data Engineering 34, 6 (2022), 2755–2770.

[25] Shirui Pan, Ruiqi Hu, Sai-fu Fung, Guodong Long, Jing Jiang, and Chengqi

Zhang. 2019. Learning graph embedding with adversarial training methods.

IEEE transactions on cybernetics 50, 6 (2019), 2475–2487.
[26] Zheyi Pan, Wentao Zhang, Yuxuan Liang, Weinan Zhang, Yong Yu, Junbo Zhang,

and Yu Zheng. 2022. Spatio-Temporal Meta Learning for Urban Traffic Prediction.

IEEE Transactions on Knowledge and Data Engineering 34, 3 (2022), 1462–1476.

[27] Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li, Lingpeng Kong, Nick Barnes,

and Yiran Zhong. 2022. The Devil in Linear Transformer. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing. 7025–7041.

[28] Yibin Shen, Cheqing Jin, Jiaxun Hua, and Dingjiang Huang. 2022. TTPNet: A

Neural Network for Travel Time Prediction Based on Tensor Decomposition and

Graph Embedding. IEEE Transactions on Knowledge and Data Engineering 34, 9

(2022), 4514–4526.

[29] Xingjian Shi, Zhourong Chen, Hao Wang, DitYan Yeung, Waikin Wong, and

Wangchun Woo. 2015. Convolutional LSTM Network: A Machine Learning Ap-

proach for Precipitation Nowcasting. InAdvances in neural information processing
systems, Vol. 28. 802–810.

[30] Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. 2020. Spatial-

temporal synchronous graph convolutional networks: A new framework for

spatial-temporal network data forecasting. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 34. 914–921.

[31] Junkai Sun, Junbo Zhang, Qiaofei Li, Xiuwen Yi, Yuxuan Liang, and Yu Zheng.

2022. Predicting Citywide Crowd Flows in Irregular Regions Using Multi-View

Graph Convolutional Networks. IEEE Transactions on Knowledge and Data
Engineering 34, 5 (2022), 2348–2359.

[32] David Alexander Tedjopurnomo, Zhifeng Bao, Baihua Zheng, Farhana Murtaza

Choudhury, and A. K. Qin. 2022. A Survey on Modern Deep Neural Network

for Traffic Prediction: Trends, Methods and Challenges. IEEE Transactions on
Knowledge and Data Engineering 34, 4 (2022), 1544–1561.

[33] Billy M Williams and Lester A Hoel. 2003. Modeling and forecasting vehicular

traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results.

Journal of transportation engineering 129, 6 (2003), 664–672.

[34] Yuankai Wu and Huachun Tan. 2016. Short-term traffic flow forecasting with

spatial-temporal correlation in a hybrid deep learning framework. arXiv preprint
arXiv:1612.01022 (2016).

[35] ZonghanWu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi

Zhang. 2020. Connecting the Dots: Multivariate Time Series Forecasting with

Graph Neural Networks. In Proceedings of the 26th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 753–763.

[36] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.

Graph wavenet for deep spatial-temporal graph modeling. In Proceedings of the
28th International Joint Conference on Artificial Intelligence. 1907–1913.

[37] Huaxiu Yao, Xianfeng Tang, HuaWei, Guanjie Zheng, Yanwei Yu, and Zhenhui Li.

2018. Modeling spatial-temporal dynamics for traffic prediction. arXiv preprint
arXiv:1803.01254 (2018).

[38] Junchen Ye, Leilei Sun, Bowen Du, Yanjie Fu, Xinran Tong, and Hui Xiong.

2019. Co-Prediction of Multiple Transportation Demands Based on Deep Spatio-

Temporal Neural Network. In Proceedings of the 25th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. 305–313.

[39] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-temporal graph convolu-

tional networks: a deep learning framework for traffic forecasting. In Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence.
3634–3640.

[40] Yuan Yuan, Jingtao Ding, Jie Feng, Depeng Jin, and Yong Li. 2024. Unist: A

prompt-empowered universal model for urban spatio-temporal prediction. In

Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 4095–4106.

[41] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep Spatio-Temporal Residual

Networks for Citywide Crowd Flows Prediction. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 31. 1655–1661.

[42] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, and Xiuwen Yi. 2016. DNN-

Based Prediction Model for Spatio-Temporal Data. In Proceedings of the 24th
ACM SIGSPATIAL international conference on advances in geographic information
systems. 1–4.

[43] Boming Zhao, Pan Xu, Yexuan Shi, Yongxin Tong, Zimu Zhou, and Yuxiang

Zeng. 2019. Preference-aware task assignment in on-demand taxi dispatching:

An online stable matching approach. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 33. 2245–2252.

[44] Ali Zonoozi, Jung-Jae Kim, Xiaoli Li, and Gao Cong. 2018. Periodic-CRN: A

Convolutional Recurrent Model for Crowd Density Prediction with Recurring

Periodic Patterns. In Proceedings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, Vol. 18. 3732–3738.

2307

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Traffic Network
	2.2 Problem Definition

	3 Analysis
	4 Proposed Model
	4.1 Framework of the model
	4.2 Feature Extractor
	4.3 Relational Compressor
	4.4 Complexity Analysis

	5 Experiments
	5.1 Datasets and Pre-processing
	5.2 Baselines
	5.3 Experimental Setup
	5.4 Comparison with Existing Models
	5.5 Ablation Studies
	5.6 Parameter Sensitivity
	5.7 Efficiency Analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

