
Detecting Schema-Related Logic Bugs in Relational DBMSs via
Equivalent Database Construction

Jiansen Song∗
Institute of Software at CAS, China
songjiansen20@otcaix.iscas.ac.cn

Wensheng Dou∗†‡
Institute of Software at CAS, China

wsdou@otcaix.iscas.ac.cn

Yingying Zheng∗
Institute of Software at CAS, China
zhengyingying14@otcaix.iscas.ac.cn

Yu Gao∗
Institute of Software at CAS, China

gaoyu15@otcaix.iscas.ac.cn

Ziyu Cui∗
Institute of Software at CAS, China

cuiziyu20@otcaix.iscas.ac.cn

Wei Wang∗†
Jun Wei∗†

Institute of Software at CAS, China
{wangwei,wj}@otcaix.iscas.ac.cn

ABSTRACT
Relational Database Management Systems (DBMSs) provide flexible
DDL (Data Definition Language) statements that enable the cre-
ation, modification, and deletion of database schemas. In addition
to database schemas, relational DBMSs typically manage various
schema-related information internally, e.g., schema changes, ta-
blespace allocation, and block-level data layout. However, incor-
rect implementations related to schema-related information main-
tenance and utilization can introduce schema-related logic bugs.
These bugs can cause DQL (Data Query Language) statements to
return incorrect query results and DML (Data Manipulation Lan-
guage) statements to create incorrect database states. Existing ap-
proaches mainly focus on detecting logic bugs in DQL statements,
but are ineffective in detecting schema-related logic bugs.

In this paper, we propose a novel and general testing approach,
DDLCheck, to effectively detect schema-related logic bugs in rela-
tional DBMSs. We first generate a complex DDL sequence 𝑠𝑒𝑞𝑔𝑒𝑛
that consists of various types of DDL statements, and then synthe-
size a rather simple DDL sequence 𝑠𝑒𝑞𝑠𝑦𝑛 , which utilizes CREATE
statements to create the same database schema as 𝑠𝑒𝑞𝑔𝑒𝑛 . Executing
the same SQL statements on the two databases created by 𝑠𝑒𝑞𝑔𝑒𝑛
and 𝑠𝑒𝑞𝑠𝑦𝑛 should yield the same execution results. Any discrep-
ancy between their execution results indicates a schema-related
logic bug. To improve the testing efficiency of DDLCheck, we fur-
ther design a DDL-sequence-oriented testing optimization strategy,
which can help DDLCheck explore diverse schema-related informa-
tion and detect schema-related logic bugs quickly. We implement
and evaluate DDLCheck on six widely-used relational DBMSs. We
have detected 34 bugs in these DBMSs, of which 29 bugs have been
confirmed as previously unknown bugs and 9 bugs have been fixed.

PVLDB Reference Format:
Jiansen Song,Wensheng Dou, Yingying Zheng, Yu Gao, Ziyu Cui, WeiWang,
and Jun Wei. Detecting Schema-Related Logic Bugs in Relational DBMSs
via Equivalent Database Construction. PVLDB, 18(7): 2281 - 2294, 2025.
doi:10.14778/3734839.3734861
∗Affiliated with Key Lab of System Software at CAS, State Key Lab of Computer Science
at Institute of Software at CAS, and University of CAS, Beijing. CAS is the abbreviation
of Chinese Academy of Sciences.
†Affiliated with Nanjing Institute of Software Technology, University of CAS, Nanjing.
‡Wensheng Dou is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://figshare.com/s/e222bd56c4925375ac34.

1 INTRODUCTION
Relational Database Management Systems (DBMSs) are the most
commonly used DBMSs [2], offering efficient data storage, manip-
ulation, and retrieval for many data-intensive applications, e.g.,
e-commerce and social applications [6]. These applications often
change their database schemas to keep up with the changing re-
quirements [23]. We refer to the process of changing database
schemas as database schema evolution in our paper.

Relational DBMSs provide a variety of DDL (Data Definition
Language) statements, e.g., CREATE TABLE, ALTER TABLE, and DROP
TABLE, which enable DBMS users to flexibly manipulate database
schemas. Database schemas usually consist of various database
objects, including tables, views, columns, indexes, constraints, etc.
For example, ALTER TABLE statements facilitate significant modifi-
cations to existing tables, enabling users to delete columns, change
data types, etc.

In addition to user-visible database schemas, relational DBMSs
internally manage various schema-related information for storing
database schemas, managing database schema changes, managing
physical storage information, and optimizing DBMS execution. For
example, MySQL stores the structure of database schemas into the
system table INFORMATION_SCHEMA. PostgreSQL manages physical
storage information, e.g., tablespace allocation and block-level data
layout. When executing DDL statements to manipulate database
schemas, the database schemas themselves and their associated
schema-related information will be changed accordingly.

Due to the complexity of database schemas and schema-related
DBMS optimizations [29, 36], it becomes a challenging task for rela-
tional DBMSs to correctly maintain and utilize schema-related infor-
mation. Incorrect implementations related to the maintenance and
utilization of schema-related information can introduce schema-
related logic bugs, 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s for short. These logic bugs can

this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 7 ISSN 2150-8097.
doi:10.14778/3734839.3734861

2281

https://doi.org/10.14778/3734839.3734861
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://figshare.com/s/e222bd56c4925375ac34
mailto:info@vldb.org
https://doi.org/10.14778/3734839.3734861
https://www.acm.org/publications/policies/artifact-review-and-badging-current

1. -- Database 𝑑𝑏1
2. CREATE TABLE t1 (c1 INT , c2 BLOB) ROW_FORMAT=REDUNDANT;
3. ALTER TABLE t1 DROP c2;
4. INSERT INTO t1 (c1) VALUES (0); – Throw an error: Row size too large
5. -- 𝑑𝑏1 's state: t1:{} ✘

6. -- Database 𝑑𝑏2
7. CREATE TABLE t1 (c1 INT) ROW_FORMAT=REDUNDANT;
8. INSERT INTO t1 (c1) VALUES (0); -- No errors
9. -- 𝑑𝑏2 's state: t1:{0} ✔

Listing 1: MDEV#35122. The INSERT statement fails due to
the dropped column c2.

silently lead to incorrect query results for DQL (Data Query Lan-
guage) statements or incorrect database states for DML (Data Ma-
nipulation Language) statements.

Listing 1 shows a real-world 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔 MDEV#35122 detected
by our approach in thewidely-usedDBMSMariaDB. This 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔
affects INSERT statements on tables with the option ROW_FORMAT
=REDUNDANT if they contain previously dropped BLOB columns.
Specifically, if a table t1 is created with a BLOB column c2, and
that BLOB column is subsequently dropped (Lines 2−3), MariaDB
does not immediately remove c2 but marks it as a hidden column.
When a user tries to insert data into other columns, e.g., c1 of ta-
ble t1, MariaDB implicitly attempts to insert a NULL value for the
hidden BLOB column, resulting in throwing an error “Row size too
large” (Line 4). We reported this bug to MariaDB developers, who
identified it as a new bug with Critical level and fixed it.

Existing testing approaches for relational DBMSs mainly focus
on detecting logic bugs in the SELECT statements [15, 24, 31, 42, 43,
47, 48, 50, 51, 54]. Differential testing [50] feeds the same SELECT
statement into multiple DBMSs and compares their returned query
results. However, differential testing fails to test SQL features spe-
cific to individual DBMSs. Metamorphic testing [15, 31, 43, 47, 48]
detects logic bugs in individual DBMSs by constructing equivalent
SELECT statements and observing differences among their outputs.
However, the above proposed metamorphic relations are not suit-
able for other SQL statements, since DDL statements and some
DML statements generally do not have WHERE clauses like SELECT
statements. Thus, existing approaches cannot be effectively applied
to detect 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s.

In relational DBMSs, different DDL sequences can create equiva-
lent databases, which share the same user-visible database schema.
DBMSs should return the same execution results for the same SQL
statements executed on the equivalent databases. However, differ-
ent DDL sequences adopt different execution logic to create the
equivalent databases, which may result in the creation of different
schema-related information, ultimately leading to inconsistent exe-
cution results of subsequent SQL statements. For example, databases
𝑑𝑏1 and 𝑑𝑏2 created by different DDL sequences (Lines 2−3 and
Line 7) should store the same data after executing the same INSERT
statement (Line 4 and Line 8) in Listing 1. However, MariaDB stores
different data in 𝑑𝑏1 and 𝑑𝑏2, which indicates a 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔.

Inspired by the above key observations, we propose a novel
approach DDLCheck to effectively detect 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s in relational
DBMSs with regard to database schema evolution. Specifically, we
first generate a complex DDL sequence 𝑠𝑒𝑞𝑔𝑒𝑛 that consists of vari-
ous types of DDL statements, e.g., CREATE TABLE, ALTER TABLE, and

DROP TABLE. In suchway, wemodel a complex database schema evo-
lution process. We then synthesize a simple DDL sequence 𝑠𝑒𝑞𝑠𝑦𝑛 ,
which utilizes CREATE TABLE and CREATE VIEW statements, by
contrast, creating the same database schema as 𝑠𝑒𝑞𝑔𝑒𝑛 in a straight-
forward process. Next, we execute the DDL sequences 𝑠𝑒𝑞𝑔𝑒𝑛 and
𝑠𝑒𝑞𝑠𝑦𝑛 to create two equivalent databases 𝑑𝑏𝑔𝑒𝑛 and 𝑑𝑏𝑠𝑦𝑛 , respec-
tively. We execute the same generated DML and DQL statements on
these two databases and expect that they return the same execution
results, i.e., storing the same data for DML statements and returning
the same query results for DQL statements. If the same SQL state-
ment executed on databases 𝑑𝑏𝑔𝑒𝑛 and 𝑑𝑏𝑠𝑦𝑛 returns inconsistent
execution results, DDLCheck reports a 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔.

Different DDL sequences may produce very similar schema-
related information, which can reduce the testing efficiency of
DDLCheck. For example, DDL sequences CREATE TABLE t0 (c1 INT);
RENAME TABLE t0 TO t1 and CREATE TABLE t2 (c1 INT); RENAME
TABLE t2 TO t3 can produce two different database schemas. How-
ever, they share similar schema-related information except the final
table names. To solve this problem, we propose a DDL-sequence-
oriented testing optimization strategy to avoid testing the same or
similar schema-related information. We analyze the table structure
change history made by DDL sequences, and filter out similar DDL
sequences, allowing DDLCheck to focus on diverse DDL sequences.

To evaluate the effectiveness of DDLCheck, we implement and
evaluate DDLCheck on sixwidely-used relational DBMSs, i.e., MySQL
[7], PostgreSQL [8], SQLite [10], MariaDB [5], CockroachDB [1],
and TiDB [12]. In total, we have detected 34 bugs, of which 29 bugs
have been confirmed as new bugs and 9 bugs have been fixed by
DBMS developers. Moreover, our experimental results demonstrate
that our proposed DDL-sequence-oriented testing optimization
strategy can help DDLCheck test more unique DDL sequences and
detect 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s more quickly. We further compare DDLCheck
with three state-of-the-art relational DBMS testing approaches, i.e.,
NoREC [47], DQP [15], and Radar [52], with respect to their bug
detection capabilities. The comparison result shows that none of
𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s in DDL and DML statements can be detected by these
approaches. The above experimental results show that DDLCheck
is effective in detecting 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s in relational DBMSs.

In summary, we make the following contributions.

• We propose the first DBMS testing approach DDLCheck with
regard to database schema evolution.We detect schema-related
logic bugs in relational DBMSs by constructing equivalent
databases using different DDL sequences.

• We design a DDL-sequence-oriented testing optimization
strategy to improve the testing efficiency of DDLCheck, thus
testing diverse DDL sequences and detecting schema-related
logic bugs quickly.

• We implement and evaluate DDLCheck on six widely-used
relational DBMSs. DDLCheck has detected 34 bugs, of which
29 bugs have been confirmed as previously unknown bugs.

2 PRELIMINARIES
We first introduce relational DBMSs and our target DBMSs (Sec-
tion 2.1). Then, we explain SQL statements in our target DBMSs
(Section 2.2). Finally, we present schema-related information in our
target DBMSs (Section 2.3).

2282

https://jira.mariadb.org/browse/MDEV-35122

Table 1: Target relational DBMSs

DBMS DB-Engines Ranking GitHub Stars Type
MySQL 2 10.8K Traditional
PostgreSQL 4 16.1K Traditional
SQLite 10 7.1k Embedded
MariaDB 15 5.6K Traditional
CockroachDB 64 30.1K NewSQL
TiDB 77 37.2K NewSQL

2.1 Relational Database Management Systems
Relational Database Management Systems (DBMSs) are used to
create, manage, and interact with relational databases. In a rela-
tional DBMS, data is organized into structured tables (relations)
with predefined columns and rows, allowing for efficient storage,
retrieval, and manipulation of data [19].

Table 1 shows our target DBMSs, including MySQL [7], Post-
greSQL [8], SQLite [10], MariaDB [5], CockroachDB [53], and TiDB
[34]. We select our target relational DBMSs by using the following
criteria. First, the DBMS is open-source and provides convenient
bug tracking systems, allowing us to actively interact with devel-
opers. Second, the DBMS should have been thoroughly tested by
existing approaches [15, 47, 48, 51, 52]. Third, the DBMS can cover
different types of DBMSs, e.g., traditional DBMSs and NewSQL
DBSMs.

Among the 7 relational DBMSs in the top-10 systems on the DB-
Engines Ranking [2], we select MySQL, PostgreSQL, and SQLite as
our target DBMSs, since they are open-source, and we can easily
access their communities and report bugs. We do not select the
remaining four relational DBMSs (i.e., Oracle, Microsoft SQL Server,
Snowflake, and IBM Db2) because they are commercial and closed-
source DBMSs, and it is challenging for us to report and investigate
bugs. We select MariaDB, CockroachDB, and TiDB, because they
have been thoroughly tested by existing approaches [31, 38, 43, 44,
47, 48, 51, 52, 58, 63]. Moreover, our target DBMSs cover different
types of DBMSs. Specifically, MySQL, PostgreSQL, andMariaDB are
traditional DBMSs, TiDB and CockroachDB are NewSQL DBMSs,
and SQLite is an embedded DBMS.

2.2 Structured Query Language
Relational DBMSs provide the powerful query language SQL (Struc-
tured Query Language) [18], enabling users to perform various
operations including defining database schemas, inserting and up-
dating database records, and retrieving data from the database. SQL
statements are typically categorized into three main types based
on their functionalities.

DDL (Data Definition Language) statements are used to define
and modify database schemas. DDL statements include CREATE
TABLE, ALTER TABLE, and DROP TABLE statements, which allow
users to create new database objects, modify existing database
objects, and remove existing database objects. For example, we can
use CREATE TABLE statements to create new tables, ALTER TABLE
statements to modify existing tables, and DROP TABLE statements
to drop existing tables.

DML (Data Manipulation Language) statements are used to
store and manipulate the data stored in a database. For example,

we can use INSERT statements to add new data into a table, UPDATE
statements tomodify existing data in a table, and DELETE statements
to remove data from a table.

DQL (Data Query Language) statements are used to retrieve
data from the database. The most prominent DQL statements are
SELECT statements, allowing users to filter, sort, and aggregate
data from one or more tables based on specific conditions. SELECT
statements contain lots of syntax features, e.g., WHERE clauses, ORDER
BY clauses, aggregate functions, join clauses, and GROUP BY clauses.

2.3 Schema-Related Information
Relational DBMSs use database schemas to describe the data struc-
ture of their managed databases. A database schema consist of
various database objects, including tables, views, columns, indexes,
etc. To effectively store and manage these database objects, rela-
tional DBMSs support various schema-related information.

Relational DBMSs utilize schema-related information to store
the structure of database schemas, accounting for the relation-
ships and dependencies among various database objects. Differ-
ent DBMSs use different methods to store schema structures. For
example, MySQL stores database schemas into the system table
INFORMATION_SCHEMA, while PostgreSQL maintains a comprehen-
sive catalog of system tables, e.g., pg_index, pg_attribute, and
pg_constraint. Specifically, PostgreSQL uses table pg_index to
store index information, including the indexed tables, the indexed
columns, and index-specific attributes (e.g., B-tree, hash, and spa-
tial). Relational DBMSs also utilize schema-related information to
manage database schema changes. For example, PostgreSQL records
DDL statements when enabling log_statement= ’ddl’. Aside from
the above information, relational DBMSs also store physical storage
information about database schemas, e.g., file storage, tablespace
allocation, and block-level data layout. For example, PostgreSQL
organizes tables, views, columns, indexes, and associated data struc-
tures as files within the file system, typically under the pg_data
directory.

Users can manipulate database schemas through various DDL
statements. This not only modifies user-visible database schemas
but also implicitly changes schema-related information. For exam-
ple, when executing ALTER TABLE t1 DROP COLUMN c1 statement
on table t1with the option ROW_FORMAT=REDUNDANT, MariaDB
uses the general log to record the database schema changes [37].
However, column c1 is only hidden without physically rebuilding
table t1. MariaDB still maintains schema-related information about
c1. These schema-related information impact the execution of sub-
sequent SQL statements. For example, MariaDB implicitly stores
NULL values into the hidden column c1 for INSERT statements.

The complexity of maintaining and utilizing schema-related in-
formation in relational DBMSs exposes them to several correctness
threats. First, incorrect schema-related information maintenance
can cause incorrect database schemas. For example, in MariaDB,
ALTER TABLE statements forget to update associated FOREIGN KEY
constraints, leading to incorrect database schemas [3]. Second, in-
correct schema-related information usage can cause incorrect data-
base states or incorrect query results. For example, in MariaDB,
REPLACE statements omit newly added UNIQUE constraints, result-
ing in storing incorrect data [4].

2283

CREATE TABLE t1 (c1 INT, c2 BLOB)

 ROW_FORMAT=REDUNDANT;

ALTER TABLE t1 DROP COLUMN c2;

① DDL Sequence Generation

③ DDL Sequence Synthesis

𝑑𝑏𝑔𝑒𝑛

𝑑𝑏s𝑦𝑛

⑤ Bug Detection

CREATE TABLE t1 (c1 INT)

 ROW_FORMAT=REDUNDANT;

④ SQL Statement

Generation

𝑠𝑒𝑞𝑔𝑒𝑛

𝑠𝑒𝑞𝑠𝑦𝑛

Create new schema-related information?

② DDL-Sequence-Oriented

Testing Optimization

Execute 𝑠𝑒𝑞𝑔𝑒𝑛

Execute 𝑠𝑒𝑞𝑠𝑦𝑛

Execute SQL statements

Execute SQL statements

Yes

No

t1

c1 INT

t1

c1 INT

t1

c1 INT

c2 BLOB

t1

c1 INT

Database state Query result

Database state Query result

SQL statements

(DML & DQL)
≠

INSERT INTO t1 VALUES (0);

SELECT c1 FROM t1;

c1 INT

c1 INT

0

{}

{0}

t1

t1

Figure 1: The architecture of DDLCheck.

3 APPROACH
We propose DDLCheck to effectively detect 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s in relational
DBMSs. The core idea of DDLCheck is that we can construct two dif-
ferent DDL sequences that create databases with the same database
schema but different schema-related information, e.g., different file
storage and different data layout. These databases should return the
same execution results for the same SQL statements. Any discrep-
ancy between their returned execution results indicates a potential
𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔 in the target DBMS. In this paper, we refer to databases
that have the same database schema as equivalent databases.

3.1 DDLCheck’s Architecture
Figure 1 shows the architecture of DDLCheck, which consists of
five components. The DDL sequence generation component (1○)
randomly generates a complex sequence of DDL statements 𝑠𝑒𝑞𝑔𝑒𝑛
consisting of various types of DDL statements (e.g., CREATE TABLE
and ALTER TABLE) to create a database 𝑑𝑏𝑔𝑒𝑛 . The DDL sequence
synthesis component (3○) generates a simple sequence of DDL state-
ments 𝑠𝑒𝑞𝑠𝑦𝑛 , which uses CREATE statements (e.g., CREATE TABLE)
to create a database 𝑑𝑏𝑠𝑦𝑛 with the same database schema as 𝑑𝑏𝑔𝑒𝑛 .
After that, the SQL generation component (4○) randomly gener-
ates a sequence of SQL statements (e.g., DML statements and DQL
statements) to manipulate the databases 𝑑𝑏𝑔𝑒𝑛 and 𝑑𝑏𝑠𝑦𝑛 , where
we expect to obtain the same query results and database states.
The bug detection component (5○) executes the generated SQL
statements against databases 𝑑𝑏𝑔𝑒𝑛 and 𝑑𝑏𝑠𝑦𝑛 , then checks whether
the target DBMS returns the same query results for the same DQL
statements and maintains the same database states for the same
DML statements. If the DBMS returns different execution results
or database states, a 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔 is reported.

Our randomly generated DDL sequences may produce the same
or similar schema-related information, which can reduce the testing
efficiency of DDLCheck. To address this problem, the DDL-sequence-
oriented testing optimization component (2○) filters out DDL se-
quences that create the same or similar schema-related information
as previous generated DDL sequences. We repeat the above testing
process until exhausting a fixed time budget.

𝑔𝑒𝑛𝑆𝑒𝑞 :=< 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑎𝑏𝑙𝑒 >< 𝑑𝑑𝑙𝑆𝑡𝑚𝑡+ >

𝑑𝑑𝑙𝑆𝑡𝑚𝑡 := 𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑡𝑚𝑡 | 𝑎𝑙𝑡𝑒𝑟𝑆𝑡𝑚𝑡 | 𝑑𝑟𝑜𝑝𝑆𝑡𝑚𝑡
𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑡𝑚𝑡 := 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑎𝑏𝑙𝑒 | 𝑐𝑟𝑒𝑎𝑡𝑒𝐼𝑛𝑑𝑒𝑥 | 𝑐𝑟𝑒𝑎𝑡𝑒𝑉𝑖𝑒𝑤
𝑎𝑙𝑡𝑒𝑟𝑆𝑡𝑚𝑡 := 𝑎𝑙𝑡𝑒𝑟𝑇𝑎𝑏𝑙𝑒 | 𝑎𝑙𝑡𝑒𝑟𝑉 𝑖𝑒𝑤
𝑑𝑟𝑜𝑝𝑆𝑡𝑚𝑡 := 𝑑𝑟𝑜𝑝𝑇𝑎𝑏𝑙𝑒 | 𝑑𝑟𝑜𝑝𝐼𝑛𝑑𝑒𝑥 | 𝑑𝑟𝑜𝑝𝑉𝑖𝑒𝑤

Figure 2: A formal description for generated DDL sequences.

3.2 DDL Sequence Generation
Enumerating all the possible database schemas allows for a more
comprehensive test of DBMSs, but the large test space can detract
from the effectiveness of DBMS testing. For example, MySQL sup-
ports 43 data types for a column. If we create two tables with three
columns in a database, and consider two simple constraints (e.g.,
NOT NULL and UNIQUE) for each column, then we need to generate
(43 × 2 × 2)3×2 ≈ 2.59 × 1013 database schemas in MySQL. It is
almost impossible to test all these database schemas in a limited
time budget (e.g., a month). Thus, random statement generation
can be an effective approach to explore more database schemas
within a limited time budget (e.g., 24 hours).

Randomly generating statements is a commonly-used and ef-
fective approach in DBMS testing [31, 47–49, 51, 52]. It can help
to explore more database schemas within the limited time bud-
get. Therefore, we utilize random statement generation to create
valid DDL sequences. However, a completely randomized approach
would hinder test space exploration because of the stateful nature
of DBMSs [38]. For example, we cannot modify a table before it has
been created.

To generate valid DDL sequences, we first build a formal repre-
sentation to describe the legal transformations among DDL state-
ments, as shown in Figure 2. A DDL sequence begins with a CREATE
TABLE statement (i.e., 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑎𝑏𝑙𝑒), followed by some other DDL
statements (i.e., 𝑑𝑑𝑙𝑆𝑡𝑚𝑡). A DDL statement can be a CREATE state-
ment 𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑡𝑚𝑡 (e.g., 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑎𝑏𝑙𝑒), an ALTER statement 𝑎𝑙𝑡𝑒𝑟𝑆𝑡𝑚𝑡
(e.g., 𝑎𝑙𝑡𝑒𝑟𝑇𝑎𝑏𝑙𝑒), or a DROP statement 𝑑𝑟𝑜𝑝𝑆𝑡𝑚𝑡 (e.g., 𝑑𝑟𝑜𝑝𝑇𝑎𝑏𝑙𝑒).

2284

Algorithm 1: Dynamic DDL Sequence Generation
Input: The maximum length of DDL sequences𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ
Output: A DDL sequence 𝑠𝑒𝑞

1 𝑠𝑐ℎ𝑒𝑚𝑎 ← ∅ // Start with an empty database schema

2 𝑠𝑒𝑞 ← [] // Initialize an empty DDL sequence

3 𝑑𝑑𝑙𝑆𝑡𝑚𝑡 ← generateCreateTable()
4 𝑠𝑒𝑞 ← 𝑠𝑒𝑞 ∪ [𝑑𝑑𝑙𝑆𝑡𝑚𝑡]
5 𝑠𝑐ℎ𝑒𝑚𝑎 ← updateSchema(𝑠𝑐ℎ𝑒𝑚𝑎,𝑑𝑑𝑙𝑆𝑡𝑚𝑡)
6 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ ← 𝑟𝑎𝑛𝑑𝑜𝑚(1,𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ)
7 while |𝑠𝑒𝑞 | < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ do
8 𝑑𝑑𝑙𝑆𝑡𝑚𝑡 ← generateDDLstatement(𝑠𝑐ℎ𝑒𝑚𝑎)
9 𝑠𝑒𝑞 ← 𝑠𝑒𝑞 ∪ [𝑑𝑑𝑙𝑆𝑡𝑚𝑡]

10 𝑠𝑐ℎ𝑒𝑚𝑎 ← updateSchema(𝑠𝑐ℎ𝑒𝑚𝑎,𝑑𝑑𝑙𝑆𝑡𝑚𝑡)
11 return 𝑠𝑒𝑞

Based on the formal representation of DDL sequence, we ran-
domly generate a valid DDL sequence consisting of various DDL
statement types (e.g., 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑎𝑏𝑙𝑒 , 𝑎𝑙𝑡𝑒𝑟𝑉 𝑖𝑒𝑤 , and 𝑑𝑟𝑜𝑝𝐼𝑛𝑑𝑒𝑥). Al-
gorithm 1 illustrates the generation of DDL sequence. Starting
with an empty database schema 𝑠𝑐ℎ𝑒𝑚𝑎, we first generate a CREATE
TABLE statement 𝑑𝑑𝑙𝑆𝑡𝑚𝑡 (Lines 1−4), ensuring other DDL state-
ments can operate on existing tables. We then execute statement
𝑑𝑑𝑙𝑆𝑡𝑚𝑡 to update the database schema 𝑠𝑐ℎ𝑒𝑚𝑎 (Line 5), which will
guide the generation of subsequent DDL statements.We continue to
generate additional DDL statements until the total number of DDL
statements reaches a randomly generated length 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ
that is between 1 and 𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ (Lines 6−7). In each iteration,
we randomly select a certain type of DDL statement (e.g., CREATE
INDEX) and then generate a concrete DDL statement for it. When
a DDL statement is generated, the database schema 𝑠𝑐ℎ𝑒𝑚𝑎 is up-
dated accordingly (Line 10). Finally, we can generate a complex
DDL sequence with various types of DDL statements.

In our experiments, we set the maximum length of generated
DDL sequences𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ to 10. We generate concrete DDL state-
ments following the way described in Section 3.6. When generating
a single DDL statement, DDLCheck supports a wide variety of DDL
statements with diverse syntax features. We utilize a grammar-
based approach to generate DDL statements. DDL options are com-
piled into DBMS-specific grammar files. If a DDL statement contains
some options, we randomly generate these options with suitable
values. For example, in MySQL, ALTER TABLE statements have the
ALGORITHM option with the acceptable range of values including
INSTANT, INPLACE, and COPY. We support 26, 23, 11, 24, 19, and
26 types of DDL statements across MySQL, PostgreSQL, SQLite,
MariaDB, CockroachDB, and TiDB, respectively.

3.3 DDL Sequence Synthesis
After generating a complex DDL sequence 𝑠𝑒𝑞𝑔𝑒𝑛 , we first execute
𝑠𝑒𝑞𝑔𝑒𝑛 to obtain the generated database schema 𝑠𝑐ℎ𝑒𝑚𝑎 from the
target DBMS. We use SELECT * FROM INFORMATION_SCHEMA
to obtain the generated database schema in MySQL, MariaDB,
CockroachDB, TiDB. In SQLite, we obtain database schemas from
SQLite_SCHEMA. In PostgreSQL, we separately obtain the database
objects in 𝑠𝑐ℎ𝑒𝑚𝑎 from the corresponding system table. For example,

Algorithm 2: CREATE TABLE Statement Synthesis
1 𝑠𝑡𝑚𝑡 ← ‘CREATE TABLE’
2 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘ ’ + 𝑔𝑒𝑡𝑇𝑎𝑏𝑙𝑒𝑁𝑎𝑚𝑒 () // e.g., t1
3 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘(’
4 while ℎ𝑎𝑠𝑁𝑒𝑥𝑡𝐶𝑜𝑙𝑢𝑚𝑛() do
5 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘ ’ + 𝑔𝑒𝑡𝐶𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒 () // e.g., c1
6 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘ ’ + 𝑔𝑒𝑡𝐷𝑎𝑡𝑎𝑇𝑦𝑝𝑒 () // e.g., int
7 if 𝑔𝑒𝑡𝐶𝑜𝑙𝑢𝑚𝑛𝐾𝑒𝑦 () =𝑈𝑁𝐼 then
8 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘ ’ + ‘UNIQUE’
9 if 𝑔𝑒𝑡𝐶𝑜𝑙𝑢𝑚𝑛𝐾𝑒𝑦 () = 𝑃𝑅𝐼 then
10 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘ ’ + ‘PRIMARY KEY’
11 // handle other column attributes
12 . . .
13 while ℎ𝑎𝑠𝑁𝑒𝑥𝑡𝑅𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑇𝑎𝑏𝑙𝑒 () do
14 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘ ’ + ‘FOREIGN KEY (’ +

𝑔𝑒𝑡𝐶𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒 () + ‘) REFERENCES’ // e.g., c1
15 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘ ’ + 𝑔𝑒𝑡𝑅𝑒 𝑓 𝑒𝑟𝑇𝑎𝑏𝑙𝑒 () + ‘(’ +

𝑔𝑒𝑡𝑅𝑒 𝑓 𝑒𝑟𝐶𝑜𝑙𝑢𝑚𝑛() + ‘)’ // e.g., t0(c2)
16 // handle other table attributes
17 . . .
18 return 𝑠𝑡𝑚𝑡

we obtain the definition of indexes from the pg_index table. Next,
we attempt to synthesize a simple DDL sequence 𝑠𝑒𝑞𝑠𝑦𝑛 to create
the same database schema as 𝑠𝑐ℎ𝑒𝑚𝑎. In 𝑠𝑒𝑞𝑠𝑦𝑛 , all database objects
are created and defined using the CREATE TABLE and CREATE VIEW
statements, without using other DDL statements such as ALTER or
DROP statements.

Algorithm 2 illustrates how to construct a concrete 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑎𝑏𝑙𝑒
statement. Specifically, we initialize a 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑎𝑏𝑙𝑒 statement 𝑠𝑡𝑚𝑡
with the CREATE TABLE syntax terms and append a table name
(Lines 1−3). Next, we iteratively generate each column. In each
iteration, we first append both the column name and data type to
𝑠𝑡𝑚𝑡 (Lines 5−6), and then append column constraints, e.g., UNIQUE
and PRIMARY KEY, according to the column key type, e.g., UNI and
PRI, respectively (Lines 7−10). Furthermore, if there are FOREIGN
KEY constraints, we append the foreign key definition including
the source column and the associated reference table and column
to 𝑠𝑡𝑚𝑡 (Lines 14−15). For other column and table attributes, e.g.,
DEFAULT and TEMPORARY, we apply the same method to append
them. Note that the process of constructing 𝑐𝑟𝑒𝑎𝑡𝑒𝑉𝑖𝑒𝑤 statements
is similar to Algorithm 2.

After generating a sequence of CREATE statements, we order
them based on their dependencies, i.e., FOREIGN KEY constraints.
Specifically, we first create tables that do not have FOREIGN KEY
constraints. Next, given a FOREIGN KEY constraint that contains
a source table 𝑠𝑟𝑐𝑇𝑎𝑏𝑙𝑒 and a reference table 𝑟𝑒 𝑓𝑇𝑎𝑏𝑙𝑒 , 𝑟𝑒 𝑓𝑇𝑎𝑏𝑙𝑒
should be created before 𝑠𝑟𝑐𝑇𝑎𝑏𝑙𝑒 . Finally, we create other kinds of
database objects if necessary, e.g., views.

Circular dependencies occur when two or more tables are
interdependent due to their FOREIGN KEY constraints. If the data-
base schema has circular dependencies, we cannot synthesize the
CREATE TABLE statements by using Algorithm 2, since we cannot

2285

Algorithm 3: 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔 Detection
Input: The generated DDL sequence 𝑠𝑒𝑞𝑔𝑒𝑛 , the synthesized

DDL sequence 𝑠𝑒𝑞𝑠𝑦𝑛
1 Function validateSequence(𝑠𝑒𝑞𝑔𝑒𝑛 , 𝑠𝑒𝑞𝑠𝑦𝑛) do
2 𝑑𝑏𝑔𝑒𝑛 ← execute(𝑠𝑒𝑞𝑔𝑒𝑛)
3 𝑑𝑏𝑠𝑦𝑛, 𝑒𝑟𝑟𝑜𝑟 ← execute(𝑠𝑒𝑞𝑠𝑦𝑛)
4 if 𝑒𝑟𝑟𝑜𝑟 ! = 𝑁𝑈𝐿𝐿 then
5 report 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔

6 for 𝑖 ← 1 to𝑚𝑎𝑥𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 do
7 𝑠𝑡𝑚𝑡 ← generateSQLstatement(𝑑𝑏𝑔𝑒𝑛)
8 𝑒𝑟𝑟𝑜𝑟1, 𝑟𝑒𝑠𝑢𝑙𝑡1 ← execute(𝑑𝑏𝑔𝑒𝑛, 𝑠𝑡𝑚𝑡)
9 𝑒𝑟𝑟𝑜𝑟2, 𝑟𝑒𝑠𝑢𝑙𝑡2 ← execute(𝑑𝑏𝑔𝑒𝑛, 𝑠𝑡𝑚𝑡)

10 if 𝑟𝑒𝑠𝑢𝑙𝑡1 ≠ 𝑟𝑒𝑠𝑢𝑙𝑡2 | | 𝑒𝑟𝑟𝑜𝑟1 ≠ 𝑒𝑟𝑟𝑜𝑟2 then
11 report 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔

reference a non-existing table during table creation. To address
this issue, DDLCheck first constructs CREATE TABLE statements to
create the same database objects except for their FOREIGN KEY con-
straints by using Algorithm 2. Then DDLCheck constructs ALTER
TABLE ADD FOREIGN KEY statements, creating the same FOREIGN
KEY constraints.

3.4 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔 Detection
After generating a complex DDL sequence 𝑠𝑒𝑞𝑔𝑒𝑛 and its corre-
sponding synthesized DDL sequence 𝑠𝑒𝑞𝑠𝑦𝑛 , we detect 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s
through the process shown in Algorithm 3. First, we execute 𝑠𝑒𝑞𝑔𝑒𝑛
and 𝑠𝑒𝑞𝑠𝑦𝑛 to create the equivalent databases 𝑑𝑏𝑔𝑒𝑛 and 𝑑𝑏𝑠𝑦𝑛 (Lines
2−3). The synthesized DDL sequences are expected to execute with-
out errors. If an error is returned, DDLCheck reports a 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔
(Line 5). In such cases, the target DBMS stores incorrect schema-
related information for the generated database (e.g., wrong informa-
tion in the system table innodb_table_stats in MariaDB), which
is then used to generate the synthesized DDL sequence. Otherwise,
we will check whether the equivalent databases 𝑑𝑏𝑔𝑒𝑛 and 𝑑𝑏𝑠𝑦𝑛
return the same execution results and database states for the same
SQL statements.

Based on the type of 𝑠𝑡𝑚𝑡 , we apply different ways to obtain
and validate its execution results (Lines 7−11). Specifically, if 𝑠𝑡𝑚𝑡
is a DML statement, we construct SELECT statements to retrieve
the table data 𝑟𝑒𝑠𝑢𝑙𝑡1 and 𝑟𝑒𝑠𝑢𝑙𝑡2. If 𝑠𝑡𝑚𝑡 is a SELECT statement, we
obtain the returned query results 𝑟𝑒𝑠𝑢𝑙𝑡1 and 𝑟𝑒𝑠𝑢𝑙𝑡2. We also collect
error messages (i.e., 𝑒𝑟𝑟𝑜𝑟1 and 𝑒𝑟𝑟𝑜𝑟2) returned by the target DBMS
during executing 𝑠𝑡𝑚𝑡 (Lines 8−9). If the target DBMS returns
different results or different error messages, DDLCheck reports a
𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔 (Lines 10−11).

DDLCheck continuously generates 𝑚𝑎𝑥𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 statements
to test databases 𝑑𝑏𝑔𝑒𝑛 and 𝑑𝑏𝑠𝑦𝑛 , which is configured to 5, 000 in
our experiments. Once a 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔 is reported, i.e., the equivalent
databases 𝑑𝑏𝑔𝑒𝑛 and 𝑑𝑏𝑠𝑦𝑛 return inconsistent execution results for
a specific statement 𝑠𝑡𝑚𝑡 , DDLCheck stops testing.

Based on the execution results of 𝑠𝑡𝑚𝑡 , we can identify the fol-
lowing three types of 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s:

Algorithm 4: Translating DDL Sequences to Database
Schema Transition Graphs
Input :A DDL sequence 𝑠𝑒𝑞 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}
Output :A database schema transition graph 𝐺

1 𝐺 ← ∅ // Initialize an empty graph

2 𝑠𝑐ℎ𝑒𝑚𝑎 ← ∅ // Start with an empty database schema

3 foreach 𝑠𝑖 ∈ 𝑠𝑒𝑞 do
4 𝑠𝑐ℎ𝑒𝑚𝑎 ← updateSchema(𝑠𝑐ℎ𝑒𝑚𝑎, 𝑠𝑖)
5 𝑑𝑑𝑙𝑇𝑦𝑝𝑒 ← getDDLType(𝑠𝑖)
6 if 𝑑𝑑𝑙𝑇𝑦𝑝𝑒 is CREATE TABLE then
7 𝑟𝑁𝑜𝑑𝑒 ← 𝐺.𝑎𝑑𝑑𝑁𝑜𝑑𝑒 (𝑠𝑖) // A root node

8 𝑛𝑇𝑎𝑏𝑙𝑒 ← getDefinedTable(𝑠𝑐ℎ𝑒𝑚𝑎, 𝑠𝑖)
9 𝑛𝑁𝑜𝑑𝑒 ← 𝐺.addNode(𝑛𝑇𝑎𝑏𝑙𝑒)

10 𝐺.addRelationship(𝑟𝑁𝑜𝑑𝑒, 𝑛𝑁𝑜𝑑𝑒, 𝑠𝑖)
11 else if 𝑑𝑑𝑙𝑇𝑦𝑝𝑒 is DROP TABLE then
12 𝑚𝑁𝑜𝑑𝑒 ← getNode(𝐺, 𝑠𝑖)
13 𝑛𝑁𝑜𝑑𝑒 ← 𝐺.addNode(𝑁𝑈𝐿𝐿)
14 𝐺.addRelationship(𝑚𝑁𝑜𝑑𝑒, 𝑛𝑁𝑜𝑑𝑒, 𝑠𝑖)
15 else
16 𝑐𝑢𝑟𝑇𝑎𝑏𝑙𝑒 ← getModifiedTable(𝑠𝑐ℎ𝑒𝑚𝑎, 𝑠𝑖)
17 𝑛𝑁𝑜𝑑𝑒 ← 𝐺.addNode(𝑐𝑢𝑟𝑇𝑎𝑏𝑙𝑒)
18 𝑚𝑁𝑜𝑑𝑒 ← getNode(𝐺, 𝑠𝑖)
19 𝐺.addRelationship(𝑚𝑁𝑜𝑑𝑒, 𝑛𝑁𝑜𝑑𝑒, 𝑠𝑖)

20 return 𝐺

• Incorrect database schema. This type of 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s occurs
when the execution of the DDL sequence creates incorrect
database schemas or throws unexpected errors.

• Incorrect database state. This type of 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s occurs
when the equivalent databases 𝑑𝑏𝑔𝑒𝑛 and 𝑑𝑏𝑠𝑦𝑛 store different
table content after executing 𝑠𝑡𝑚𝑡 .

• Incorrect query result. This type of 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s occurs
when the equivalent databases 𝑑𝑏𝑔𝑒𝑛 and 𝑑𝑏𝑠𝑦𝑛 return differ-
ent query results for 𝑠𝑡𝑚𝑡 .

3.5 Sequence-Oriented Testing Optimization
Different DDL sequences can create the same or similar schema-
related information. This situation can reduce the testing efficiency
of DDLCheck. Testing on these DDL sequences usually triggers
duplicate 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s, and can hardly reveal new 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s. To
avoid testing these duplicate sequences, we design a sequence-
oriented testing optimization strategy, in which a database schema
transition graph (DSTG) is maintained to record the table structure
change history conducted by the DDL sequence. In the following,
we first illustrate the DSTG translation and then present the process
of selecting interesting DDL sequences.

3.5.1 Database Schema Transition Graph. A database schema tran-
sition graph (DSTG) is used to represent the structure changes of
each table in the generated database schema conducted by a DDL
sequence. We model a DSTG as a graph 𝐺 = (𝑁, 𝑅, 𝜌), where:
• 𝑁 is a finite set of nodes, and each node 𝑛 stores the structure
𝑠𝑡𝑟𝑢𝑐𝑡 of a table (i.e., 𝑛.𝑠𝑡𝑟𝑢𝑐𝑡).

2286

𝑠𝑠1 CREATE TABLE t1 (c1 INT);
𝑠𝑠2 CREATE TABLE t2 (c2 TEXT);
𝑠𝑠3 ALTER TABLE t2
 ADD FOREIGN KEY (c2)
 REFERENCE t1(c1);

𝑠𝑠3

𝑛𝑛1,1 𝑛𝑛2,1

𝑛𝑛2,2

t1
c1 INT

t2
c2 TEXT

t2
c2 TEXT
FK(c2,t1.c1)

𝑛𝑛1,0 𝑛𝑛2,0
𝑠𝑠1 𝑠𝑠2

Figure 3: An example of database schema transition graph.

• 𝑅 is a finite set of relationships, and each relationship 𝑟 con-
tains a DDL statement 𝑑𝑑𝑙𝑆𝑡𝑚𝑡 (i.e., 𝑟 .𝑑𝑑𝑙𝑆𝑡𝑚𝑡).

• 𝜌 : 𝑅 → 𝑁 × 𝑁 is a function that maps a relationship 𝑟
to its incoming node 𝑖𝑛𝑁𝑜𝑑𝑒 and outgoing node 𝑜𝑢𝑡𝑁𝑜𝑑𝑒 ,
in which applying 𝑟 .𝑑𝑑𝑙𝑆𝑡𝑚𝑡 on 𝑖𝑛𝑁𝑜𝑑𝑒.𝑠𝑡𝑟𝑢𝑐𝑡 can generate
𝑜𝑢𝑡𝑁𝑜𝑑𝑒.𝑠𝑡𝑟𝑢𝑐𝑡 .

We use a DSTG to record the evolution of table structure history
conducted by the DDL sequences. Algorithm 4 presents the process
of translating a given DDL sequence into the DSTG. Specifically,
given an input DDL sequence 𝑠𝑒𝑞 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}, we first initialize
an empty graph𝐺 (Line 1). Starting from an empty database schema
𝑠𝑐ℎ𝑒𝑚𝑎 (Line 2), we traverse the sequence 𝑠𝑒𝑞 and update the DSTG
based on the type 𝑑𝑑𝑙𝑇𝑦𝑝𝑒 of each statement 𝑠𝑖 , e.g., CREATE TABLE,
CREATE INDEX, and DROP TABLE (Lines 4−19). If 𝑠𝑖 is a CREATE
TABLE statement, we add a root node and append it with a node
to store the newly created table (Lines 7−10). If 𝑠𝑖 is a DROP TABLE
statement, we retrieve the correspondingmodified node𝑚𝑁𝑜𝑑𝑒 and
link𝑚𝑁𝑜𝑑𝑒 to an empty node 𝑛𝑁𝑜𝑑𝑒 with the value NULL (Lines
12−14). If 𝑠𝑖 is other type of DDL statement, e.g., CREATE INDEX
and ALTER TABLE, we first obtain the table structure 𝑐𝑢𝑟𝑇𝑎𝑏𝑙𝑒 after
executing 𝑠𝑖 and store 𝑐𝑢𝑟𝑇𝑎𝑏𝑙𝑒 into a new node 𝑛𝑁𝑜𝑑𝑒 (Lines
16−17). We then link 𝑛𝑁𝑜𝑑𝑒 to its corresponding modified node
𝑚𝑁𝑜𝑑𝑒 (Lines 18−19).

Note that if the table is created with a FOREIGN KEY constraint or
is modified by adding a FOREIGN KEY constraint, we also store the
reference table structure in the corresponding source table struc-
ture. For example, given a table t1 with a FOREIGN KEY constraint
FOREIGN KEY (c1) REFERENCES t2 (c2), when storing the table
structure t1, we also store the table structure of table t2.

Figure 3 shows an example DSTG that is translated by the DDL
sequence 𝑠𝑒𝑞 = {𝑠1, 𝑠2, 𝑠3}. We first execute the CREATE TABLE state-
ment 𝑠1 and create a node 𝑛1,1 to store the defined table structure
of 𝑡1. Then we execute the CREATE TABLE statement 𝑠2 and create
a node 𝑛2,1 to store the defined table structure of 𝑡2. Next, we exe-
cute the ALTER TABLE statement 𝑠3 to change the table structure
defined in 𝑛2,1, and a node 𝑛2,2 is created to store the updated ta-
ble structure of 𝑡2. Finally, we obtain the DSTG 𝐺 with five nodes
𝑁 = {𝑛1,0, 𝑛1,1, 𝑛2,0, 𝑛2,1, 𝑛2,2} and three relationships.

3.5.2 Choosing Interesting DDL Sequences. We record all the tested
DSTGs in a set 𝑈𝑛𝑖𝑞𝑢𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 . After generating a DDL sequence
𝑠𝑒𝑞𝑔𝑒𝑛 , we apply Algorithm 4 to translate 𝑠𝑒𝑞𝑔𝑒𝑛 into a DSTG 𝐺 . If
the set 𝑈𝑛𝑖𝑞𝑢𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 contains a similar DDL sequence whose
DSTG structure is equivalent to 𝐺 , we do not test the sequence
𝑠𝑒𝑞𝑔𝑒𝑛 but generate a new DDL sequence.

table := ⟨𝑡𝑁𝑎𝑚𝑒, 𝑐𝑜𝑙𝑢𝑚𝑛+, 𝑖𝑛𝑑𝑒𝑥∗, 𝑓 𝑜𝑟𝑒𝑖𝑔𝑛𝐾𝑒𝑦∗⟩
column := ⟨𝑐𝑁𝑎𝑚𝑒, 𝑡𝑦𝑝𝑒, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡∗⟩

constraint := NOT NULL | PRIMARY KEY | UNIQUE | . . .
index := [UNIQUE] (𝑐𝑁𝑎𝑚𝑒+)

foreignKey := FOREIGN KEY(𝑠𝑟𝑐𝐶𝑜𝑙, 𝑡𝑎𝑟𝑔𝑒𝑡𝐶𝑜𝑙)

Figure 4: A formal description of the table structure. 𝑡𝑒𝑟𝑚+
(e.g., 𝑐𝑜𝑙𝑢𝑚𝑛+) denotes one or more terms, and 𝑡𝑒𝑟𝑚∗ (e.g.,
𝑖𝑛𝑑𝑒𝑥∗) denotes zero or more terms.

We define that two DSTGs 𝐺1 = (𝑁1, 𝑅1, 𝜌1) and 𝐺2 = (𝑁2, 𝑅2,

𝜌2) are equivalent (𝑒𝑞𝑢𝑎𝑙 (𝐺1,𝐺2) for short), if they satisfy the fol-
lowing three conditions.

• For each node 𝑛1 ∈ 𝑁1, we can find a corresponding node 𝑛2 ∈
𝑁2 that stores the equivalent table structure (i.e., 𝑒𝑞𝑢𝑎𝑙 (𝑛1 .
𝑠𝑡𝑟𝑢𝑐𝑡, 𝑛2 .𝑠𝑡𝑟𝑢𝑐𝑡)).
• For each relationship 𝑟1 ∈ 𝑅1, we can find a correspond-

ing relationship 𝑟2 ∈ 𝑅2 that has the same DDL type (i.e.,
𝑟1 .𝑑𝑑𝑙𝑆𝑡𝑚𝑡 .𝑑𝑑𝑙𝑇𝑦𝑝𝑒 = 𝑟2 .𝑑𝑑𝑙𝑆𝑡𝑚𝑡 .𝑑𝑑𝑙𝑇𝑦𝑝𝑒). Note that 𝑟1 .𝑑𝑑𝑙
𝑆𝑡𝑚𝑡 and 𝑟2 .𝑑𝑑𝑙𝑆𝑡𝑚𝑡 can be different, since we only check the
equivalence of two table structures. Thus, we only care about
the types of DDL statements.

• For each relationship 𝑟1 ∈ 𝑅1, we can find a corresponding
relationship 𝑟2 ∈ 𝑅2 that contains the equivalent incoming
and outgoing nodes as 𝑟1, i.e., 𝑒𝑞𝑢𝑎𝑙 (𝜌1 (𝑟1) .𝑖𝑛𝑁𝑜𝑑𝑒.𝑠𝑡𝑟𝑢𝑐𝑡, 𝜌2
(𝑟2) .𝑖𝑛𝑁𝑜𝑑𝑒.𝑠𝑡𝑟𝑢𝑐𝑡), and 𝑒𝑞𝑢𝑎𝑙 (𝜌1 (𝑟1) .𝑜𝑢𝑡𝑁𝑜𝑑𝑒.𝑠𝑡𝑟𝑢𝑐𝑡, 𝜌2 (𝑟2) .
𝑜𝑢𝑡𝑁𝑜𝑑𝑒.𝑠𝑡𝑟𝑢𝑐𝑡).

Figure 4 presents a formal description of the table structure. We
define that two tables 𝑡1 and 𝑡2 have the equivalent table structure
if and only if there exists a bijective mapping 𝑓 from the columns
of 𝑡1 to those of 𝑡2, satisfying the following conditions:

• Columns: 𝑡1 and 𝑡2 have the same number of columns. For
each column 𝑐 in 𝑡1, the data type of 𝑐 and the set of constraints
on 𝑐 match those of 𝑓 (𝑐) in 𝑡2.

• Indexes: 𝑡1 and 𝑡2 have the same number of indexes. Each
index in 𝑡1 corresponds to an index in 𝑡2 that has identical
columns as defined by 𝑓 and the same UNIQUE constraint.

• Foreign Keys: 𝑡1 and 𝑡2 have the same set of FOREIGN KEY
constraints. Each FOREIGN KEY constraint in 𝑡1 maps to a
FOREIGN KEY constraint in 𝑡2 such that the source and target
columns correspond according to 𝑓 .

Note that if two tables 𝑡1 and 𝑡2 contain multiple columns that
have the same data type and the same set of constraints, wemaintain
multiple bijective mappings among these columns. If there exists
a mapping that can be used to map indexes and FOREIGN KEY
constraints, we consider that the two tables 𝑡1 and 𝑡2 have the same
table structure.

Figure 5 shows that the two tables 𝑡1 and 𝑡2 have the same
table structure, in which we can find a column mapping where
𝑓 (𝑡1.𝑐1) = 𝑡2.𝑐3, 𝑓 (𝑡1.𝑐2) = 𝑡2.𝑐1, and 𝑓 (𝑡1.𝑐3) = 𝑡2.𝑐2. Since all
columns and indexes can be mapped in this way according to 𝑓 , 𝑡1
and 𝑡2 have the same table structure.

2287

t1

c2 TEXT

INDEX(c1)

t2
c1 TEXT
c2 INT

INDEX(c3)
c3 INT c3 INT

c1 INT

Figure 5: Tables 𝑡1 and 𝑡2 have the same table structure.

3.6 SQL Statement Generation
SQL statement generation has been widely explored in previous
researches [9, 11, 38, 44, 63] and is not a contribution of our work.
We briefly present our SQL statement generation as follows.

We use a grammar-based approach to generate SQL statements,
building a grammar model for each type of SQL statement. We
traverse the grammar model to generate different SQL statements.
Specifically, we define a set of production rules for each type of SQL
statement to capture its syntactic structure and constraints. These
production rules are used to generate a parse tree, representing
a specific SQL statement. By traversing the parse tree, we can
generate the corresponding SQL statement in string format. Since
SQL statement generation is a stateful process, the database schema
is dynamically maintained to provide valid semantic information,
such as table and column names.

DDLCheck supports various types of DML statements, e.g., INSERT,
UPDATE, and DELETE. For UPDATE and DELETE statements, complex
predicates (i.e., WHERE clauses) can be generated. For SELECT state-
ments, most syntax features supported by the target DBMS (e.g.,
joins, sub-queries, window functions, and complex predicates) can
be generated. However, DDLCheck does not support the following
syntax features: (1) non-deterministic and time-related functions,
e.g., the Rand function returns a different value each time it is called;
(2) ambiguous queries that yield different values across executions.

4 EVALUATION
We implement DDLCheck on our target DBMSs with 4, 828 lines of
Java code. DDLCheck primarily consists of five functionalities, in-
cluding generating DDL sequences, DDL-sequence-oriented testing
optimization, synthesizing DDL sequences, generating DML and
DQL statements and detecting 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s.

We evaluate the effectiveness of DDLCheck by investigating the
following three research questions:
• RQ1. What 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s can DDLCheck detect in real-world

relational DBMSs?
• RQ2. How effective is the DDL-sequence-oriented testing

optimization strategy in DDLCheck?
• RQ3. How many bugs detected by DDLCheck can be found by

existing approaches?

4.1 Experimental Setup
Target DBMSs. We select six widely-used relational DBMSs to eval-
uate the effectiveness of DDLCheck. These DBMSs are described
in Table 1. Specifically, during the development of our prototype,
we test the latest release versions available at that time, namely
MySQL 8.0.36, PostgreSQL 16.2, SQLite 3.43.0, MariaDB 11.3.2,
CockroachDB 23.2 and TiDB 8.0.0. To find more unique and new

𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s, we continuously monitor for updates and test newer
versions of these DBMSs.

Experimental infrastructure. We conduct our experiments
on a machine with 8 CPU cores and 32GB RAM. We follow the
official documentation for each DBMS to deploy and configure
them correctly. Specifically, we utilize Docker containers to deploy
MySQL, MariaDB, and PostgreSQL, while CockroachDB and TiDB
are deployed using their official binary files. Since SQLite is an
embedded DBMS, we do not need to independently deploy it.

Testing methodology. We run DDLCheck on each target DBMS
for 24 hours, and then stop it to analyze the generated bug reports.
For the generated DDL sequence 𝑠𝑒𝑞𝑔𝑒𝑛 and its corresponding syn-
thesized DDL sequence 𝑠𝑒𝑞𝑠𝑦𝑛 , DDLCheck continuously generates a
specified number𝑚𝑎𝑥𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 of statements to test their created
databases 𝑑𝑏𝑔𝑒𝑛 and 𝑑𝑏𝑠𝑦𝑛 , which is set to 5, 000 in our experiment1.

If a DBMS returns different execution results for a statement
𝑠𝑡𝑚𝑡 executed on 𝑠𝑒𝑞𝑔𝑒𝑛 and 𝑠𝑒𝑞𝑠𝑦𝑛 , DDLCheck reports a 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔.
We refer to 𝑠𝑡𝑚𝑡 as the bug-revealing statement. The bug report
consists of the sequences 𝑠𝑒𝑞𝑔𝑒𝑛 and 𝑠𝑒𝑞𝑠𝑦𝑛 , along with the test-
ing SQL statements 𝑇 , which we refer to as the collection of SQL
statements generated prior to 𝑠𝑡𝑚𝑡 . Note that we also record the
execution results of 𝑠𝑡𝑚𝑡 , including query results for SELECT state-
ments, database states for DML statements, and any error messages.

For each generated bug report, we first automatically simplify it
and then check whether this bug has been reported previously. For
a crash bug, we check for the existence of another crash bug with
the same stack trace. For a 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔, we check for the existence of
another bug with similar syntactic features. If a similar bug is found,
we do not submit this bug report to avoid reporting duplicates.

We implement two bug report reduction techniques to automat-
ically simplify the bug reports generated in DDLCheck. Our bug
report reduction techniques focus on simplifying the generated
sequence 𝑠𝑒𝑞𝑔𝑒𝑛 , the testing statements 𝑇 , and the bug-revealing
statement 𝑠𝑡𝑚𝑡 . The simplified 𝑠𝑒𝑞𝑠𝑦𝑛 can be synthesized from the
simplified 𝑠𝑒𝑞𝑔𝑒𝑛 .

For the generated sequence 𝑠𝑒𝑞𝑔𝑒𝑛 , we first apply a statement-
based reduction technique by removing unnecessary DDL state-
ments that do not contribute to revealing the bug. Specifically, we
randomly remove some DDL statements and check whether the
bug still occurs. If the bug occurs after removing the statements,
we continue to remove other statements until no statement can be
removed. Otherwise, we keep them and try to remove other state-
ments. After that, we apply a syntax-based reduction technique
to simplify the remaining statements. Specifically, we parse each
statement to get the abstract syntax tree (AST) and traverse the
AST to randomly remove optional attributes and operations. For
each step, we translate the AST into a statement and check whether
the bug still occurs. If so, we continuously remove unnecessary
attributes and operations until no attribute or operation can be
removed. Otherwise, we keep them and remove other attributes
and operations.

1We first investigate the number of statements generated by existing DBMS test-
ing approaches, e.g., 5, 000 in Radar [52], 25, 000 in Pinolo [31], and 100, 000 in
SQLancer [14, 15, 47–49]. Then we run DDLCheck on our target DBMSs with set-
ting𝑚𝑎𝑥𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 as 5, 000, 25, 000, and 100, 000 for 24 hours, respectively. Our
experimental results show that the value 5,000 of𝑚𝑎𝑥𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 is more suitable
for DDLCheck to detect more unique bugs quickly. Therefore, we set𝑚𝑎𝑥𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

to an empirical value 5, 000 in our experiment.

2288

Table 2: Overall detection results for DDLCheck

Bug Status Bug Categories
DBMS Submitted Confirmed Fixed Duplicate False Positive 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔 Crash
MySQL 14 14 2 0 0 13 1
SQLite 0 0 0 0 0 0 0
PostgreSQL 0 0 0 0 0 0 0
MariaDB 11 7 3 3 0 5 2
CockroachDB 2 1 0 1 0 1 0
TiDB 7 7 4 0 0 2 5
Total 34 29 9 4 0 21 8

For the testing statements𝑇 , we apply the same statement-based
and syntax-based reduction techniques as those in simplifying
𝑠𝑒𝑞𝑔𝑒𝑛 . For the bug-revealing statement 𝑠𝑡𝑚𝑡 , we apply the same
syntax-based reduction technique as in simplifying 𝑠𝑒𝑞𝑔𝑒𝑛 .

We also design an object-based reduction technique to simplify
the generated sequence 𝑠𝑒𝑞𝑔𝑒𝑛 and the testing statement 𝑇 , since
complex dependencies among SQL statements hurt the effective-
ness of the statement-based reduction technique. The object-based
reduction technique simplifies the database created by 𝑠𝑒𝑞𝑔𝑒𝑛 and
𝑇 . Specifically, we first construct DROP and ALTER statements to
remove unnecessary database objects (e.g., tables and columns).
Then we export data as INSERT statements and remove unnecessary
INSERT statements. After simplifying the database, we synthesize
the corresponding DDL sequence as described in Section 3.3.

Given a bug report, we first use the statement-based and syntax-
based technique to simplify it. If the bug-revealing statement is a
SELECT statement, we analyze its execution plan to add suitable
query hints [15, 30, 56]. In such way, we can easily reproduce the
bug and use the object-based reduction technique to simplify the
bug report. Otherwise, we only use the former reduction technique
and provide the execution plans of SELECT statements to DBMS
developers for further analysis.

4.2 Overall Detection Results
We investigate RQ1 to evaluate the effectiveness of DDLCheck in
detecting 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s in real-world relational DBMSs. We continu-
ously test our target DBMSs and analyze the generated bug reports
by following the method discussed in Section 4.1. Table 2 shows
the overall bug detection results for DDLCheck. We have submitted
34 bugs to DBMS developers, including 14 bugs in MySQL, 11 bugs
in MariaDB, 2 bugs in CockroachDB, and 7 bugs in TiDB. In our
experiments, we have not yet found new bugs in PostgreSQL and
SQLite.

Bug status. Among the 34 bugs, 29 bugs have been confirmed as
new bugs, and 9 bugs have been fixed by the corresponding DBMS
developers. For the remaining 5 bugs, one bug in MariaDB is open,
and 4 bugs are duplicate to existing bug reports including 3 bugs in
MariaDB and one bug in CockroachDB.

Bug severity. Among the 29 confirmed bugs, 23 bugs have the
bug severity of 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 or 𝑀𝑎𝑗𝑜𝑟 , including 9 bugs in MySQL, 7
bugs in MariaDB, and 7 bugs in TiDB. For the remaining 5 bugs, 4
bugs in MySQL have a bug severity of 𝑁𝑜𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , and 1 bug in
CockroachDB is not labelled with bug severity. The experimental re-
sult shows that most of the bugs found by DDLCheck are considered
critical by the corresponding DBMS developers.

1
1

2

1

1

1
1

2

1

1

12
3

1
7

23

MySQL

MariaDB

CockroachDB

TiDB

Total

CREATE TABLE ALTER TABLE INSERT
REPLACE SELECT

Figure 6: The distribution of bug-revealing statements.

Bug categories. Among the 29 confirmed bugs, 21 bugs are
𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s, including 13 bugs in MySQL, 5 bugs in MariaDB, 1
bug in CockroachDB, and 2 bugs in TiDB. The remaining 8 bugs
are crash bugs, including 1 bug in MySQL, 2 bugs in MariaDB, and
5 bugs in TiDB. Since crash bugs cause explicit errors, DDLCheck
can also detect crash bugs.

Bug consequences. Among the 21 confirmed 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s, 3
bugs cause incorrect database schema, 4 bugs cause incorrect database
state, and 14 bugs cause incorrect query result. The remaining 8 crash
bugs shut down the DBMS server.

4.3 Bug Analysis
In this section, we further analyze the 29 confirmed bugs, including
their bug manifestations and root causes.

4.3.1 Bug Manifestation. We first analyze the bug-revealing state-
ments and DDL options of our 29 confirmed bugs, and then analyze
the complexity of DDL sequences that trigger 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s.

Bug-revealing statements. Figure 6 shows the distribution of
bug-revealing statements in our 29 confirmed bugs. DDL statements
reveal 3 bugs, in which CREATE TABLE statements reveal 2 bugs
and ALTER TABLE statements reveal 1 bug. DML statements reveal
3 bugs, in which INSERT statements reveal 2 bugs and REPLACE
statements reveal 1 bug. SELECT statements reveal the remaining
23 bugs. The experimental result shows that database schema evo-
lution significantly affects the execution of SELECT statements.

DDL options. 5 out of 29 confirmed bugs require specific op-
tions that are used to fine-tune DBMS performance, including
KEY_BLOCK_SIZE, STATS_PERSISTENT, ROW_FORMAT, and AL-
GORITHM. Note that two bugs require the ALGORITHM option.
The remaining 24 confirmed bugs do not require such options.

DDL sequences. In our test oracle, we construct a complex DDL
sequence that consist of various types of DDL statements and a sim-
ple synthesized DDL sequence to evaluate the same SQL statements

2289

in equivalent databases. Among 21 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s, 20 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s are
triggered by complex DDL sequences, while only one 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔
is triggered by the synthesized DDL sequence (i.e., MySQL#114109
in Listing 2). For the remaining 8 crash bugs, both complex DDL
sequences and simple synthesized DDL sequences can trigger all
of them. The experimental results show that both complex DDL se-
quences and simple synthesized sequences can trigger 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s,
and complex DDL sequences are more likely to trigger 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s.

1. -- Sequence 𝑠𝑒𝑞𝑔𝑒𝑛
2. CREATE TABLE t0 (c0 SMALLINT STORAGE DISK UNIQUE) ENGINE=

MyISAM;
3. ALTER TABLE t0 KEY_BLOCK_SIZE =63705;

4. -- Sequence 𝑠𝑒𝑞𝑠𝑦𝑛
5. CREATE TABLE t0 (c0 SMALLINT STORAGE DISK UNIQUE) KEY_BLOCK_SIZE=63705,

ENGINE=MyISAM; – Crash

Listing 2: MySQL#114109. Executing the synthesized CREATE
statement causes the MySQL server to crash down.

Complex DDL sequences are more likely to trigger 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s.
This indicates that the database community should pay more
attention to the quality of database schema evolution.

4.3.2 Root Cause. We further analyze the root causes of our 29
confirmed bugs. For 14 of these bugs, we can clearly identify their
root causes, which can be categorized into three types: (1) incor-
rect maintenance of database schemas, (2) incorrect maintenance
of schema-related information, and (3) incorrect query optimiza-
tion. Specifically, we identified that 1 bug was caused by incorrect
maintenance of database schemas, 4 bugs were caused by incor-
rect maintenance of schema-related information, and 9 bugs were
caused by incorrect query optimization. For the remaining 15 bugs,
we do not have enough information to identify their root causes. In
the following, we present the detailed analysis of five representative
bugs with their identified root causes.

1. -- Sequence 𝑠𝑒𝑞𝑔𝑒𝑛
2. CREATE TABLE t0 (c2 INT , PRIMARY KEY (c2));
3. CREATE TABLE t1 (c1 INT UNIQUE , FOREIGN KEY (c1) REFERENCES

t0(c2));
4. ALTER TABLE t0 RENAME t2, ALGORITHM COPY;
5. -- Sequence 𝑠𝑒𝑞𝑠𝑦𝑛
6. CREATE TABLE t2 (c2 INT , PRIMARY KEY (c2));
7. CREATE TABLE t1 (c1 INT UNIQUE , FOREIGN KEY (c1) REFERENCES

t0(c2)); -- Throw an error: Foreign key constraint is
incorrectly formed

Listing 3: MDEV#34105. MariaDB stores incorrect database
schemas in system tables INFORMATION_SCHEMA.

Incorrect maintenance of database schemas. Listing 3 shows
a 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔 MDEV#34105, which describes an inconsistency in
MariaDB’s system tables, specifically in the INFORMATION_SCHEMA.
The root cause of this 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔 is that MariaDB does not propa-
gate changes in table names to the INFORMATION_SCHEMA system
tables when a table involved in a FOREIGN KEY constraint is re-
named (Lines 2−4). As a result, the stored database schema remains
inconsistent, in which the foreign key constraint in t1 continues
to reference t0, which no longer exists, instead of being updated to
reference t2. When attempting to recreate the schema (as shown
in 𝑠𝑒𝑞𝑠𝑦𝑛), MariaDB returns a “Foreign key constraint is incorrectly
formed” error because it tries to enforce a foreign key constraint
on a non-existent table (Lines 6−7).

1. -- Sequence 𝑠𝑒𝑞𝑔𝑒𝑛
2. CREATE TABLE t0 (c2 INT PRIMARY KEY);
3. CREATE TABLE t1 (c1 INT UNIQUE , FOREIGN KEY (c1) REFERENCES

t0(c2));
4. ALTER TABLE t0 RENAME t2, ALGORITHM COPY;
5. -- Sequence 𝑠𝑒𝑞𝑠𝑦𝑛
6. CREATE TABLE t2 (c2 INT PRIMARY KEY);
7. CREATE TABLE t1 (c1 INT UNIQUE , FOREIGN KEY (c1) REFERENCES

t2(c2));
8. -- Test statements 𝑇
9. INSERT INTO t2 VALUE (1);

10. INSERT INTO t1 VALUE (1);
11. -- 𝑑𝑏𝑔𝑒𝑛 's state: t1:{}, t2:{1} ✘
12. -- 𝑑𝑏𝑠𝑦𝑛 's state: t1:{1}, t2:{1} ✔

Listing 4: MySQL#114904. MySQL does not promptly refresh
schema-related information after renaming a table.

Incorrectmaintenance of schema-related information. List-
ing 4 shows a bug MySQL#114904, in which MySQL does not
promptly refresh schema-related information after renaming a table
that is referenced by a FOREIGN KEY constraint (Lines 2−4). The
system tables and schema-related information still reference t0,
which no longer exists, rather than the new table name t2. This
wrong behavior causes data insertion to fail due to a FOREIGN KEY
constraint violation (Line 11), even though the inserted data log-
ically satisfy the constraint. In the synthesized sequence 𝑠𝑒𝑞𝑠𝑦𝑛 ,
since t1 directly references t2(c2) (Lines 6−7), the FOREIGN KEY
constraint is correct, and subsequent statements proceed without
any issues (Line 12). That is the stored database schema is correct.

1. -- Sequence 𝑠𝑒𝑞𝑔𝑒𝑛
2. CREATE TABLE t1 (c1 INT);
3. CREATE TABLE t2 (c1 INT);
4. ALTER TABLE t1 STATS_PERSISTENT 0;
5. DROP TABLE IF EXISTS t1;
6. ALTER TABLE t2 RENAME t1; -- Throw an error: duplicate key

in table 'innodb_table_stats '
7. -- Sequence 𝑠𝑒𝑞𝑠𝑦𝑛
8. CREATE TABLE t1 (c1 INT) STATS_PERSISTENT =0;
9. CREATE TABLE t2 (c1 INT);

10. DROP TABLE IF EXISTS t1;
11. ALTER TABLE t2 RENAME t1; -- No Errors

Listing 5: MDEV#34207. MariaDB stores incorrect table
statistics in system table innodb_table_stats.

Listing 5 shows another bug MDEV#34207 that is caused by in-
correct maintenance of table statistics. In this bug, MariaDB fails to
properly update entries in the innodb_table_stats system table
after executing the ALTER TABLE t1 STATS_PERSISTENT 0 state-
ment (Lines 2−4). As a result, the lingering entry causes a conflict if
another table is later renamed to the dropped table’s name, because
the statistics system detects a duplicate entry (Lines 5−6). When
the option STATS_PERSISTENT is set to 0 during table creation,
MariaDB properly clears these entries, allowing renaming state-
ments can proceed without encountering duplicate key conflicts
(Lines 8−11).

The bug MDEV#35115 shown in Listing 6 is caused by inconsis-
tent index orders. In this bug, MariaDB stores inconsistent orders
of secondary indexes in the InnoDB structure and the table struc-
ture of t1. This inconsistent index order affects the execution of
REPLACE statements, which rely on UNIQUE constraints to locate
rows for replacement. As a result, MariaDB fails to accurately en-
force the UNIQUE constraints, resulting in unexpected errors and
incorrect database states (Line 10).When the index is defined during

2290

https://bugs.mysql.com/bug.php?id=114109
https://jira.mariadb.org/browse/MDEV-34105
https://bugs.mysql.com/bug.php?id=114904
https://jira.mariadb.org/browse/MDEV-34207
https://jira.mariadb.org/browse/MDEV-35115

table creation (Line 5), MariaDB executes the REPLACE statement
correctly (Line 11).

1. -- Sequence 𝑠𝑒𝑞𝑔𝑒𝑛
2. CREATE TABLE t1 (c1 NUMERIC UNSIGNED NOT NULL , c2 INT3

UNIQUE , c3 BIT(2) PRIMARY KEY) Engine=InnoDB;
3. CREATE UNIQUE INDEX i1 ON t1(c1);
4. -- Sequence 𝑠𝑒𝑞𝑠𝑦𝑛
5. CREATE TABLE t1 (c1 NUMERIC UNSIGNED NOT NULL UNIQUE , c2

INT3 UNIQUE , c3 BIT(2) PRIMARY KEY);

6. -- Test statements 𝑇
7. INSERT INTO t1 (c1,c2,c3) VALUES (0,0,b'01');
8. INSERT INTO t1 (c1,c2,c3) VALUES (1,1,b'10');
9. REPLACE INTO t1 (c1,c2,c3) VALUES (0,1,b'11');

10. -- 𝑑𝑏𝑔𝑒𝑛 's state: t1:{(0,0,b'01'), (1,1,b'10')} ✘
11. -- 𝑑𝑏𝑔𝑒𝑛 's state: t1:{(0,1,b'11')} ✔

Listing 6: MDEV#35115. Inconsistent replace behavior when
multiple unique indexes exist.

Besides the above three 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s that are caused by incor-
rect maintenance of schema-related information, Listing 1 is also
attributed to this root cause. Since we have carefully introduced it
earlier, we do not discuss it here.

1. -- Sequence 𝑠𝑒𝑞𝑔𝑒𝑛
2. CREATE TABLE t1 (c1 BIT);
3. CREATE TABLE t2 (c1 TEXT);
4. CREATE INDEX i1 ON t1(c1 ASC);

5. -- Sequence 𝑠𝑒𝑞𝑠𝑦𝑛
6. CREATE TABLE t1 (c1 BIT , UNIQUE i1 (c1 ASC));
7. CREATE TABLE t2 (c1 TEXT);

8. -- Test statements 𝑇
9. INSERT INTO t1 VALUES (0);
10. INSERT INTO t2 VALUES ('0');
11. SELECT t1.c1 , t2.c1 FROM t1 NATURAL JOIN t2;
12. -- {0} in 𝑑𝑏𝑔𝑒𝑛 ✔
13. -- {} in 𝑑𝑏𝑠𝑦𝑛 ✘

Listing 7: MySQL#114539. The SELECT statement returns
different query results.

Incorrect query optimization. Listing 7 shows a bugMySQL#11
4539, in which the SELECT statement returns different query results
(Lines 11−13). The database 𝑑𝑏𝑔𝑒𝑛 is created by the sequence 𝑠𝑒𝑞𝑔𝑒𝑛 ,
in which we first create two tables t1 and t2 and then build an
index 𝑖1 on table t1 (Lines 2−4). In database 𝑑𝑏𝑠𝑦𝑛 , the index is
created during table creation (Lines 6−7). For databases 𝑑𝑏𝑔𝑒𝑛 and
𝑑𝑏𝑠𝑦𝑛 , MySQL returns inconsistent execution results (Lines 12−13),
in which 𝑑𝑏𝑔𝑒𝑛 returns {0} but 𝑑𝑏𝑠𝑦𝑛 returns {}. We obtain the
execution plans for the SELECT statement, in which 𝑑𝑏𝑔𝑒𝑛 joins
two tables t1 and t2 without the index 𝑖1, but 𝑑𝑏𝑠𝑦𝑛 performs the
same join operation with the index 𝑖1. Note that the optimizer
hint /∗ + 𝑁𝑂_𝐼𝑁𝐷𝐸𝑋 (𝑡1) ∗ / can be used to reproduce the buggy
execution of the SELECT statement.

When storing or updating database schemas, DBMS developers
should take care about the consistency of multiple schema-related
information.

4.4 Effectiveness of DDL-Sequence-Oriented
Testing Optimization Strategy

To evaluate the effectiveness of the DDL-sequence-oriented testing
optimization strategy, we answer RQ2 by designing two variants
of the optimization strategy and comparing them with DDLCheck.
Specifically, DDLCheck𝑟𝑎𝑛𝑑 does not use the DDL-sequence-oriented

testing optimization strategy of DDLCheck and tests all the gener-
ated DDL sequences. DDLCheck𝑠𝑡𝑟𝑖𝑐𝑡 adopts a more strict strategy
than DDLCheck by enforcing the same column order when com-
paring two table structures (Section 3.5.2). We run them on our
target DBMSs for 24 hours. During these experiments, we count
the number of generated DDL sequences, unique DDL sequences,
total bugs, and unique bugs.

Table 3 demonstrates that DDLCheck can generate and test more
unique DDL sequences than DDLCheck𝑟𝑎𝑛𝑑 and DDLCheck𝑠𝑡𝑟𝑖𝑐𝑡 for
the same amount of time. Specifically, for the same amount of
time, DDLCheck generates 8, 338 more DDL sequences and tests
5, 474more unique DDL sequences than DDLCheck𝑟𝑎𝑛𝑑 . Meanwhile,
DDLCheck generates 4, 178 more DDL sequences and tests 2, 501
more unique DDL sequences than DDLCheck𝑠𝑡𝑟𝑖𝑐𝑡 .

Furthermore, DDLCheck can also detect more unique 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s
than DDLCheck𝑟𝑎𝑛𝑑 and DDLCheck𝑠𝑡𝑟𝑖𝑐𝑡 for the same amount of time.
Specifically, for the same amount time, DDLCheck detects 3 more
unique bugs than DDLCheck𝑟𝑎𝑛𝑑 . Meanwhile, DDLCheck detects 4
more unique bugs than DDLCheck𝑠𝑡𝑟𝑖𝑐𝑡 . These experimental results
also indicate that our testing optimization strategy does not exclude
interesting sequences that lead to bugs.

To further investigate whether the excluded sequences (by ignor-
ing column orders) could lead to missing bugs, we investigated our
confirmed 29 bugs by changing their column orders and checking
whether all possible column orders can trigger the same bugs. We
found that all possible column orders can trigger these 29 bugs.
This indicates that ignoring column orders will not miss any of the
29 confirmed bugs.

Our proposed DDL-sequence-oriented testing optimization strategy
can help DDLCheck test more unique DDL sequences and detect
unique 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s more quickly.

4.5 Comparing with Existing Approaches
We answer RQ3 by comparing DDLCheckwith three state-of-the-art
approaches, namely NoREC [47], Radar [52], and DQP [15], since
they are designed to detect optimization bugs in SELECT statements
and have thoroughly tested our target DBMSs. In this experiment,
we investigate whether the 21 confirmed 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s can be de-
tected by these approaches. Since crash bugs are explicit errors, we
assume that these approaches can also detect them. Our conceptual
comparison result demonstrates the effectiveness of DDLCheck in
detecting 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s (as shown in Table 4).

NoREC constructs two equivalent SELECT statements by trans-
forming the WHERE clause for a given SELECT statement. Given a bug
report containing the database 𝑑𝑏 and the bug-revealing statement
𝑠𝑡𝑚𝑡 , if 𝑠𝑡𝑚𝑡 is a DDL or DML statement or a SELECT statement
without WHERE clauses, NoREC cannot perform this transformation
and thus cannot detect the bug. If 𝑠𝑡𝑚𝑡 is a SELECT statement with
a WHERE clause, we perform the transformation and compare their
query results. Although seven bugs contain a SELECT statement
with a WHERE clause, the WHERE clauses in these statements con-
tain sub-queries that NoREC does not support. As a result, NoREC
cannot detect all 21 confirmed 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s.

Radar removes data constraints and indexes from a database
and observes whether this transformation changes the query result

2291

https://bugs.mysql.com/bug.php?id=114539
https://bugs.mysql.com/bug.php?id=114539

Table 3: Comparison of bug detection between DDLCheck (Ori), DDLCheck𝑟𝑎𝑛𝑑 (Rand), and DDLCheck𝑠𝑡𝑟𝑖𝑐𝑡 (Strict)

Generated Sequences Unique Sequences Total Bugs Unique Bugs
DBMS Ori Rand Strict Ori Rand Strict Ori Rand Strict Ori Rand Strict
MySQL 3599 2423 3057 3037 2041 2585 5 4 6 4 3 3
SQLite 6720 4340 5249 4819 3164 3792 0 0 0 0 0 0
PostgreSQL 6385 3640 5031 3657 2418 3236 0 0 0 0 0 0
MariaDB 5010 3659 4697 4222 3114 3986 2 1 3 2 1 1
CockroachDB 3211 2894 2890 2541 2261 2293 1 1 0 1 1 0
TiDB 2664 2395 2487 2198 1996 2075 1 0 0 1 0 0
Total 27589 19251 23411 20468 14994 17967 9 6 9 8 5 4

Table 4: Conceptual comparison with existing approaches

DBMS DDLCheck NoREC Radar DQP
MySQL 13 0 10 8
MariaDB 5 0 1 0
CockroachDB 1 0 1 0
TiDB 2 0 1 1
Total 21 0 13 9

for a given SELECT statement. Given a bug report containing the
database 𝑑𝑏 and the bug-revealing statement 𝑠𝑡𝑚𝑡 , if 𝑠𝑡𝑚𝑡 is a DDL
or DML statement, Radar cannot detect the bug. If 𝑠𝑡𝑚𝑡 is a SELECT
statement, we first check whether 𝑑𝑏 contains data constraints and
indexes. If 𝑑𝑏 contains data constraints and indexes, we remove
them. Otherwise, we add data constraints and indexes and observe
whether 𝑠𝑡𝑚𝑡 returns a different query result. As a result, Radar
detects only 13 of the 21 confirmed 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s.

DQP enumerates possible execution plans for a given SELECT
statement by applying query hints or setting system variables that
affect the query optimizer. Given a bug report containing the data-
base 𝑑𝑏 and the bug-revealing statement 𝑠𝑡𝑚𝑡 , if 𝑠𝑡𝑚𝑡 is a DDL or
DML statement, DQP cannot detect the bug. If 𝑠𝑡𝑚𝑡 is a SELECT
statement, we first check whether the DBMS executes 𝑠𝑡𝑚𝑡 in dif-
ferent execution plans and then attempt to add query hints or set
system variables. If we can add query hints to 𝑠𝑡𝑚𝑡 or set system
variables to reproduce the bug, we assume that DQP can theoret-
ically detect it. As a result, DQP can detect only 9 out of the 21
confirmed 𝑠𝑐ℎ𝑒𝑚𝑎𝐵𝑢𝑔s.

5 RELATED WORK
SQL statement generation. Generating SQL statements is a fun-
damental part of testing DBMSs, in which test cases are a set of SQL
statements. SQL statement generation has been widely explored by
existing works [9, 11, 13, 16, 17, 25, 26, 32, 44, 45, 57, 63]. SQLsmith
[11] and SQLancer [9] internally maintain a grammar model to
randomly generate SQL statements. Squirrel [63] and SQLRight
[44] apply a mutation-based method to generate SQL statements
using a designed intermediate representation. Unlike the above ap-
proaches, which require a precise understanding of SQL grammar,
Griffin [26] maintains semantic relations and shuffles existing test
cases to generate new ones. Our approach can leverage the above
methods to generate SQL statements.

Differential testing in DBMSs. In DBMS testing, differential
testing involves feeding the same SQL statements into multiple

DBMSs and observing discrepancies in their execution results.
Differential testing is often used to detect logic bugs in DBMSs
[20, 28, 50, 62]. Differential testing can also be applied to detect per-
formance bugs in DBMSs [40]. For example, Apollo [40] inputs the
same SELECT statement into different versions of the same DBMS
to detect performance regression bugs. Our approach executes the
same SQL statements on the equivalent databases constructed by
different DDL sequences and can be applied to individual DBMSs
to test their proprietary syntax features.

Metamorphic testing in DBMSs. In DBMS testing, metamor-
phic testing involves constructing metamorphic relations between
the input and output of SQL statements and detecting any vio-
lations of these relations. Some approaches construct databases
that return the same query results for SELECT statements [43, 52].
For example, Mozi [43] and Radar [52] construct databases with
different configurations and data constraints, respectively, for the
same SELECT statement. Other approaches construct equivalent
SELECT statements on the same database [14, 15, 27, 31, 41, 46–
48, 56, 61]. For instance, DQP [15] adds various query hints to a
given SELECT statement, exploring equivalent query executions
on the same database. Researchers further construct metamorphic
relations for transaction bug detection [20–22, 24, 35, 39] and graph
database system bug detection [33, 55, 59–62, 64]. Our approach is a
general method that constructs equivalent databases with the same
database schema, where the DBMS is expected to return identical
execution results for identical SQL statements.

6 CONCLUSION
Relational DBMSs manage user-visible database schemas and vari-
ous schema-related information for storing and managing database
structures. In this paper, we propose DDLCheck, a novel and general
approach to automatically detect schema-related logic bugs in rela-
tional DBMSs. DDLCheck constructs equivalent database schemas
through different DDL sequences and then compares execution
results across these sequences for the same SQL statements. We
implement and evaluate DDLCheck on six widely-used relational
DBMSs, and have detected 34 bugs, of which 29 have been con-
firmed as new, and 9 have been fixed by DBMS developers.

ACKNOWLEDGMENTS
This work was partially supported by National Natural Science
Foundation of China (62302493, 62072444), Major Project of ISCAS
(ISCAS-ZD-202302), Basic Research Project of ISCAS (ISCAS-JCZD-
202403), and Youth Innovation Promotion Association at Chinese
Academy of Sciences (Y2022044).

2292

REFERENCES
[1] 2024. CockroachDB Homepage. https://www.cockroachlabs.com/.
[2] 2024. DB-Engines Ranking. https://db-engines.com/en/ranking.
[3] 2024. Failed to INSERT a proper value when no FOREIGN KEY violation. https:

//jira.mariadb.org/browse/MDEV-34105.
[4] 2024. Inconsistent REPLACE behaviors. https://jira.mariadb.org/browse/MDEV-

35115.
[5] 2024. MariaDB Homepage. https://mariadb.org/.
[6] 2024. MySQL Customers by Industry. https://www.mysql.com/customers/.
[7] 2024. MySQL Homepage. https://www.mysql.com.
[8] 2024. PostgreSQL Homepage. https://www.postgresql.org/.
[9] 2024. SQLancer Homepage. https://github.com/sqlancer/sqlancer.
[10] 2024. SQLite Homepage. https://www.sqlite.org/index.html.
[11] 2024. SQLsmith. https://github.com/anse1/sqlsmith.
[12] 2024. TiDB Homepage. https://www.pingcap.com/?from=en.
[13] Shadi Abdul Khalek, Bassem Elkarablieh, Yai O. Laleye, and Sarfraz Khurshid.

2008. Query-Aware Test Generation Using a Relational Constraint Solver. In
Proceedings of IEEE/ACM International Conference on Automated Software Engi-
neering (ASE). 238–247.

[14] Jinsheng Ba and Manuel Rigger. 2024. CERT: Finding Performance Issues in
Database Systems Through the Lens of Cardinality Estimation. In Proceedings of
International Conference on Software Engineering (ICSE). Article 133, 13 pages.

[15] Jinsheng Ba and Manuel Rigger. 2024. Keep It Simple: Testing Databases via
Differential Query Plans. Proceedings of International Conference on Management
of Data (SIGMOD) (jun 2024).

[16] Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Özsu. 2007. QA-
Gen: Generating Query-Aware Test Databases. In Proceedings of ACM SIGMOD
International Conference on Management of Data (SIGMOD). 341–352.

[17] Nicolas Bruno and Surajit Chaudhuri. 2005. Flexible Database Generators. In
Proceedings of International Conference on Very Large Data Bases (VLDB). 1097–
1107.

[18] Donald D. Chamberlin and Raymond F. Boyce. 1974. SEQUEL: A Structured
English Query Language. In Proceedings of ACM SIGFIDET Workshop on Data
Description, Access and Control (SIGFIDET). 249–264.

[19] Edgar F Codd. 1970. A Relational Model of Data for Large Shared Data Banks.
Commun. ACM 13, 6 (jun 1970), 377–387.

[20] Ziyu Cui, Wensheng Dou, Qianwang Dai, Jiansen Song, Wei Wang, Jun Wei, and
Dan Ye. 2022. Differentially Testing Database Transactions for Fun and Profit.
In Proceedings of IEEE/ACM International Conference on Automated Software
Engineering (ASE). Article 35, 12 pages.

[21] Ziyu Cui, Wensheng Dou, Yu Gao, Dong Wang, Jiansen Song, Yingying Zheng,
Tao Wang, Rui Yang, Kang Xu, Yixin Hu, Jun Wei, and Tao Huang. 2024. Under-
standing Transaction Bugs in Database Systems. In Proceedings of International
Conference on Software Engineering (ICSE). Article 163, 13 pages.

[22] Ziyu Cui, Wensheng Dou Dou, Yu Gao, Rui Yang, Yingying Zheng, Jiansen
Song, Yuan Feng, and Jun Wei. 2025. Simple Testing Can Expose Most Critical
Transaction Bugs: Understanding and Detecting Write-Specific Serializability
Violations in Database Systems. Proceedings of the VLDB Endowment (PVLDB)
18 (2025).

[23] Carlo Curino, Hyun JinMoon, Alin Deutsch, and Carlo Zaniolo. 2013. Automating
the database schema evolution process. The VLDB Journal (VLDBJ) 22, 1 (Feb.
2013), 73–98.

[24] Wensheng Dou, Ziyu Cui, Qianwang Dai, Jiansen Song, Dong Wang, Yu Gao,
Wei Wang, Jun Wei, Lei Chen, Hanmo Wang, Hua Zhong, and Tao Huang. 2023.
Detecting Isolation Bugs via Transaction Oracle Construction. In Proceedings of
International Conference on Software Engineering (ICSE). 1123–1135.

[25] Jingzhou Fu, Jie Liang, Zhiyong Wu, and Yu Jiang. 2024. Sedar: Obtaining High-
Quality Seeds for DBMS Fuzzing via Cross-DBMS SQL Transfer. In Proceedings
of International Conference on Software Engineering (ICSE). Article 146, 12 pages.

[26] Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang. 2023. Grif-
fin: Grammar-Free DBMS Fuzzing. In Proceedings of IEEE/ACM International
Conference on Automated Software Engineering (ASE). Article 49, 12 pages.

[27] Ying Fu, Zhiyong Wu, Yuanliang Zhang, Jie Liang, Jingzhou Fu, Yu Jiang, Shan-
shan Li, and Xiangke Liao. 2025. THANOS: DBMS Bug Detection via Storage
Engine Rotation Based Differential Testing. In Proceedings of IEEE/ACM Interna-
tional Conference on Software Engineering (ICSE). 12.

[28] Bogdan Ghit, Nicolas Poggi, Josh Rosen, Reynold Xin, and Peter Boncz. 2020.
SparkFuzz: searching correctness regressions in modern query engines. In Pro-
ceedings of the International Workshop on Testing Database Systems (DBTest).
Article 1, 6 pages.

[29] Parke Godfrey, Jarek Gryz, and Calisto Zuzarte. 2001. Exploiting Constraint-like
Data Characterizations in Query Optimization. In Proceedings of International
Conference on Management of Data (SIGMOD), Vol. 30. 582–592.

[30] Zhongxian Gu, Mohamed A. Soliman, and Florian M. Waas. 2012. Testing the
accuracy of query optimizers. In Proceedings of the International Workshop on
Testing Database Systems (DBTest). Article 11, 6 pages.

[31] Zongyin Hao, Quanfeng Huang, Chengpeng Wang, Jianfeng Wang, Yushan
Zhang, Rongxin Wu, and Charles Zhang. 2023. Pinolo: Detecting Logical Bugs
in Database Management Systems with Approximate Query Synthesis. In Pro-
ceedings of USENIX Annual Technical Conference (USENIX ATC). 345–358.

[32] Kenneth Houkjær, Kristian Torp, and Rico Wind. 2006. Simple and Realistic Data
Generation. In Proceedings of International Conference on Very Large Data Bases
(VLDB). 1243–1246.

[33] Ziyue Hua, Wei Lin, Luyao Ren, Zongyang Li, Lu Zhang, Wenpin Jiao, and Tao
Xie. 2023. GDsmith: Detecting Bugs in Cypher Graph Database Engines. In
Proceedings of ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). 163–174.

[34] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun
Li, Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas
Cameron, Liquan Pei, and Xin Tang. 2020. TiDB: A Raft-Based HTAP Database.
Proceedings of the VLDB Endowment (PVLDB) 13, 12 (aug 2020), 3072–3084.

[35] Kaile Huang, Si Liu, Zhenge Chen, Hengfeng Wei, David Basin, Haixiang Li,
and Anqun Pan. 2023. Efficient Black-Box Checking of Snapshot Isolation in
Databases. Proceedings of the VLDB Endowment (PVLDB) 16, 6 (feb 2023), 1264–
1276.

[36] Ioana Ileana, Bogdan Cautis, Alin Deutsch, and Yannis Katsis. 2014. Complete
yet Practical Search for Minimal Query Reformulations under Constraints. In
Proceedings of International Conference on Management of Data (SIGMOD). 1015–
1026.

[37] Anant Jhingran and Pratap Khedkar. 1992. Analysis of recovery in a database
system using a write-ahead log protocol. 21, 2 (1992), 175–184.

[38] Zuming Jiang, Jiaju Bai, and Zhendong Su. 2023. DynSQL: Stateful Fuzzing for
Database Management Systems with Complex and Valid SQL Query Generation.
In Proceedings of USENIX Security Symposium (USENIX Security). Article 277,
17 pages.

[39] Zu-Ming Jiang, Si Liu, Manuel Rigger, and Zhendong Su. 2023. Detecting Trans-
actional Bugs in Database Engines via Graph-Based Oracle Construction. In
Proceedings of USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI). 397–417.

[40] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. 2019.
APOLLO: Automatic Detection and Diagnosis of Performance Regressions in
Database Systems. Proceedings of the VLDB Endowment (PVLDB) 13, 1 (sep 2019),
57–70.

[41] Matteo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su. 2023. Testing
Graph Database Engines via Query Partitioning. In Proceedings of ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). 140–149.

[42] Kyle Kingsbury and Peter Alvaro. 2020. Elle: Inferring Isolation Anomalies from
Experimental Observations. Proceedings of the VLDB Endowment (PVLDB) 14, 3
(nov 2020), 268–280.

[43] Jie Liang, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Chengnian Sun, and Yu
Jiang. 2024. Mozi: Discovering DBMS Bugs via Configuration-Based Equiv-
alent Transformation. In Proceedings of International Conference on Software
Engineering (ICSE). Article 135, 12 pages.

[44] Yu Liang, Song Liu, and Hong Hu. 2022. Detecting Logical Bugs of DBMS
with Coverage-based Guidance. In Proceedings of USENIX Security Symposium
(USENIX Security). 4309–4326.

[45] Shuang Liu, Chenglin Tian, Jun Sun, Ruifeng Wang, Wei Lu, Yongxin Zhao,
Yinxing Xue, Junjie Wang, and Xiaoyong Du. 2025. Semantic Conformance
Testing of Relational DBMS. Proceedings of the VLDB Endowment (PVLDB)
(2025).

[46] Xinyu Liu, Qi Zhou, Joy Arulrai, and Alessandro Orso. 2022. Automatic De-
tection of Performance Bugs in Database Systems using Equivalent Queries. In
Proceedings of International Conference on Software Engineering (ICSE). 225–236.

[47] Manuel Rigger and Zhendong Su. 2020. Detecting Optimization Bugs in Database
Engines via Non-Optimizing Reference Engine Construction. In Proceedings of
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). 1140–1152.

[48] Manuel Rigger and Zhendong Su. 2020. Finding Bugs in Database Systems
via Query Partitioning. In Proceedings of ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA), Vol. 4.
Article 211, 30 pages.

[49] Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted
Query Synthesis. In Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI). Article 38, 16 pages.

[50] Donald R. Slutz. 1998. Massive Stochastic Testing of SQL. In Proceedings of
International Conference on Very Large Data Bases (VLDB). 618–622.

[51] Jiansen Song, Wensheng Dou, Ziyu Cui, Qianwang Dai, Wei Wang, Jun Wei, Hua
Zhong, and Tao Huang. 2023. Testing Database Systems via Differential Query
Execution. In Proceedings of IEEE/ACM International Conference on Software
Engineering (ICSE). 2072–2084.

[52] Jiansen Song, Wensheng Dou, Yu Gao, Ziyu Cui, Yingying Zheng, Dong Wang,
Wei Wang, Jun Wei, and Tao Huang. 2024. Detecting Metadata-Related Logic
Bugs in Database Systems via Raw Database Construction. Proceedings of the

2293

https://www.cockroachlabs.com/
https://db-engines.com/en/ranking
https://jira.mariadb.org/browse/MDEV-34105
https://jira.mariadb.org/browse/MDEV-34105
https://jira.mariadb.org/browse/MDEV-35115
https://jira.mariadb.org/browse/MDEV-35115
https://mariadb.org/
https://www.mysql.com/customers/
https://www.mysql.com
https://www.postgresql.org/
https://github.com/sqlancer/sqlancer
https://www.sqlite.org/index.html
https://github.com/anse1/sqlsmith
https://www.pingcap.com/?from=en

VLDB Endowment (PVLDB) 17, 8 (may 2024), 1884–1897.
[53] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,

Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and
Peter Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database.
In Proceedings of ACM SIGMOD International Conference on Management of Data
(SIGMOD). 1493–1509.

[54] Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael Walfish. 2020. COBRA:
making transactional key-value stores verifiably serializable. In Proceedings of
USENIX Symposium on Operating Systems Design and Implementation (OSDI).
Article 4, 18 pages.

[55] Lei Tang, Wensheng Dou, Yingying Zheng, Lijie Xu, Wei Wang, Jun Wei, and
Tao Huang. 2025. Proving Cypher Query Equivalence. In Proceedings of IEEE
International Conference on Data Engineering (ICDE).

[56] Xiu Tang, Sai Wu, Dongxiang Zhang, Feifei Li, and Gang Chen. 2023. Detecting
Logic Bugs of Join Optimizations in DBMS. 1, 1, Article 55 (2023), 26 pages.

[57] Manasi Vartak, Venkatesh Raghavan, and Elke A. Rundensteiner. 2010. QRelX:
Generating Meaningful Queries That Provide Cardinality Assurance. In Proceed-
ings of ACM SIGMOD International Conference on Management of Data (SIGMOD).
1215–1218.

[58] Rui Yang, Ziyu Cui, Wensheng Dou, Yu Gao, Jiansen Song, Xudong Xie, and Jun
Wei. 2025. Detecting Isolation Anomalies in Relational DBMSs. In Proceedings of
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).

[59] Rui Yang, Yingying Zheng, Lei Tang, Wensheng Dou, Wei Wang, and Jun Wei.
2023. Randomized Differential Testing of RDF Stores. In Proceedings of Interna-
tional Conference on Software Engineering (ICSE Demo). 136–140.

[60] Yingying Zheng, Wensheng Dou, Lei Tang, Ziyu Cui, Yu Gao, Jiansen Song,
Liang Xu, Jiaxin Zhu, Wei Wang, Jun Wei, Hua Zhong, and Tao Huang. 2024.
Testing Gremlin-Based Graph Database Systems via Query Disassembling. In
Proceedings of ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). 1695–1707.

[61] Yingying Zheng, Wensheng Dou, Lei Tang, Ziyu Cui, Jiansen Song, Ziyue Cheng,
Wei Wang, Jun Wei, Hua Zhong, and Tao Huang. 2024. Differential Optimiza-
tion Testing of Gremlin-Based Graph Database Systems. Proceedings of IEEE
International Conference on Software Testing, Verification and Validation (ICST),
25–36.

[62] Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao,
Dong Wang, Wei Wang, and Jun Wei. 2022. Finding Bugs in Gremlin-Based
Graph Database Systems via Randomized Differential Testing. In Proceedings of
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
302–313.

[63] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Dinghao
Wu. 2020. SQUIRREL: Testing Database Management Systems with Language
Validity and Coverage Feedback. In Proceedings of ACM SIGSAC Conference on
Computer and Communications Security (CCS). 58–71.

[64] Zeyang Zhuang, Penghui Li, Pingchuan Ma, Wei Meng, and Shuai Wang. 2024.
Testing Graph Database Systems via Graph-Aware Metamorphic Relations. Pro-
ceedings of the VLDB Endowment (PVLDB) 17, 4 (mar 2024), 836–848.

2294

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Relational Database Management Systems
	2.2 Structured Query Language
	2.3 Schema-Related Information

	3 Approach
	3.1 DDLCheck's Architecture
	3.2 DDL Sequence Generation
	3.3 DDL Sequence Synthesis
	3.4 schemaBug Detection
	3.5 Sequence-Oriented Testing Optimization
	3.6 SQL Statement Generation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Overall Detection Results
	4.3 Bug Analysis
	4.4 Effectiveness of DDL-Sequence-Oriented Testing Optimization Strategy
	4.5 Comparing with Existing Approaches

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

