
Wolverine: Highly Efficient Monotonic Search Path Repair for
Graph-based ANN Index Updates

Dawei Liu

Huazhong University of Science and

Technology

Bolong Zheng
∗

Huazhong University of Science and

Technology

Ziyang Yue

Huazhong University of Science and

Technology

Fuhao Ruan

Huazhong University of Science and

Technology

Xiaofang Zhou

Hong Kong University of Science and

Technology

Christian S. Jensen

Aalborg University

ABSTRACT
Approximate nearest neighbor (ANN) search on high-dimensional

vector data is core functionality in an increasing number of real-

world applications. However, most existing methods only focus on

accelerating search by means of indexing that assumes that the

data is static. The few methods capable of contending with dynamic

data often face challenges such as decreased query accuracy follow-

ing updates and low update efficiency. In this study, we propose

Wolverine, the first proposal that, to our knowledge, enables effi-

cient monotonic search path repair, thereby solving the graph-based

ANN index update problem.Wolverine repairs disrupted monotonic

search paths by adding in-edges to the out-neighbors of a point to

be deleted. To improve efficiency,Wolverine+ restricts the search

space to be within the 2-hop neighbors of the point to be deleted. In

addition, Wolverine++ employs a sophisticated candidate selection

policy to find high-quality candidates in the reduced search space,

simultaneously improving accuracy and efficiency. An experimen-

tal study on 9 real-world datasets demonstrates that Wolverine
is capable of accelerating the deletion throughput by up to 11×
and achieving more stable recall during updates compared to the

state-of-the-art dynamic ANN search method.

PVLDB Reference Format:
Dawei Liu, Bolong Zheng, Ziyang Yue, Fuhao Ruan, Xiaofang Zhou,

and Christian S. Jensen. Wolverine: Highly Efficient Monotonic Search

Path Repair for Graph-based ANN Index Updates. PVLDB, 18(7): 2268 -

2280, 2025.

doi:10.14778/3734839.3734860

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/LDW2020/Wolverine.

1 INTRODUCTION
We are witnessing a great breakthrough of Large Language Model

(LLM), which exhibits unprecedented capability in understanding,

generating, and reasoning with human language. This capability is

∗
Bolong Zheng is the corresponding author

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 7 ISSN 2150-8097.

doi:10.14778/3734839.3734860

rooted in the vector representations of knowledge exploited from

multi-modal data. After being embedded into the vector space, the

correlation of cross-domain data can be measured by the distance

between their vector representations. Therefore, approximate near-

est neighbor (ANN) search can be used to search for knowledge

relevant to the user-provided prompts and thus is a fundamental

function in LLM.

ANN search is also a core function ability in applications in-

volving data mining [6], recommendation [8], and information

retrieval [1]. Most existing studies focus on building high-quality

indexes for static datasets [4, 11, 12, 16, 19, 20, 26, 29, 37, 39, 40], with

graph-based ANN search methods emerging as the most promising

direction due to high accuracy and efficiency [34].

However, static ANN search methods cannot adapt to dynamic

scenarios, where data is updated frequently. For example, consider

an e-commerce scenario, such as Amazon and Taobao, where the

system indexes the images and descriptions of products. The index

requires continuous updates to accommodate changes in products,

e.g., product launches or retirements. Assume that the system only

employs static ANN indexes, which support insertions but do not al-

low deletions. To avoid search results containing products that have

been retired, it is inevitable to search more results and filter these re-

tired products from the result set. Furthermore, the accumulation of

data in the index further significantly reduces query and insertion

efficiency, forcing periodic rebuilding of these large-scale indexes,

which can take days or even months. Therefore, dynamic ANN

search, which can accommodate these rapid changes, is becoming

increasingly important and warrants more attention.

A common approach to address the graph-based ANN index up-

date problem is to extend static graph-based indexes with straight-

forward deletion strategies. In addition, FreshDiskAnn [30] modi-

fies the graph structure to enhance the update performance and is

the state-of-the-art dynamic ANN search method. However, these

methods face two significant challenges:

• Decreased accuracy after updates. During updates, the dele-

tion operation destroys so-called monotonic search paths that

are necessary for accurate ANN search in a graph index. How-

ever, existing methods neglect this issue and try to repair the

index without explicitly recovering destroyed monotonic search

paths. As a result, these methods exhibit substantially decreased

accuracies following updates.

• Low update efficiency.When updating the graph index after

deletion operations, existing methods modify the edge lists of a

large number of nodes relevant to a deleted node. Then, these

2268

https://doi.org/10.14778/3734839.3734860
https://github.com/LDW2020/Wolverine
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3734839.3734860
https://www.acm.org/publications/policies/artifact-review-and-badging-current

nodes may go through a time-consuming edge trimming process,

leading to low update efficiency.

We proposeWolverine, a novel graph-based dynamicANN search

method. We choose the nameWolverine because the superhero’s
healing power serves as a fitting analogy to the capabilities of the

proposed algorithm, which is designed to repair and maintain the

robustness of graph-based ANN indexes when subjected to updates.

The idea of Wolverine is universal and can be integrated into other

graph-based ANN indexes to enable accurate and efficient updates.

To the best of our knowledge,Wolverine is the first proposal that
enables monotonic search path repair, thereby solving the graph-

based ANN index update problem. Specifically,Wolverine performs

ANN search by taking each out-neighbor of a node to be deleted as a

query, aiming to repair disrupted monotonic search paths by adding

edges to those out-neighbors. To further enhance efficiency, we

proposeWolverine+ that limits the search space to only the 2-hop

neighbors of the node to be deleted. Finally, we propose Wolver-
ine++, which employs a candidate selection policy that identifies

high-quality candidates in a further reduced search space, thus im-

proving both accuracy and efficiency. Extensive experiments show

thatWolverine++ is capable of efficient deletion while preserving

the accuracy of the graph index. Compared to the SOTA dynamic

ANN search algorithm, FreshDiskAnn, Wolverine++ offers stability

of the updated graph index while also improving accuracy and

achieving an update efficiency that is up to 11× higher than that of

FreshDiskAnn.
We summarize the key contributions as follows.

(1) We propose a novel performance quantification method called

slidingwindow quantification, which simulates dynamic update

scenarios and provides a realistic measure of the performance

of dynamic ANNS algorithms.

(2) We develop the novelWolverine algorithm that considers the

impact of deletion operations from the perspective of repairing

monotonic search paths in graph indexes.

(3) We further propose two optimized algorithms, Wolverine+ and

Wolverine++, with delicately designed candidate set generation

policy to obtain high-quality candidates within small search

space, such that both accuracy and efficiency are improved.

(4) We report on extensive experiments on 9 datasets, showing

thatWolverine++ is able to outperform baselines consistently,

delivering stable index performance with improved accuracy

and up to 11× higher update efficiency.

2 PRELIMINARIES
We proceed to provide the background knowledge of dynamic ANN

search and analyze existing update methods.

2.1 Graph-based ANN Index
The ANN search problem is formally defined as follows, which is

easy to extend to 𝑘ANN search when the context is clear.

Definition 2.1 (ANN Search). Given a set 𝑃 ⊆ E𝑑 of 𝑛 points in

a 𝑑-dimensional Euclidean space, and let 𝑞 ∈ E𝑑 be a query point.

The ANN search aims to construct an index structure that enables

fast retrieval of an approximate nearest neighbor 𝑝′ ∈ 𝑃 for 𝑞, such

that:

𝑑 (𝑝′, 𝑞) ≤ (1 + 𝜖) · 𝑑 (𝑝∗, 𝑞)

where:

• 𝑝∗ is the true nearest neighbor of 𝑞 in the set 𝑃 ,

• 𝜖 ≥ 0 is the approximation factor, and

• 𝑑 (𝑝, 𝑞) is the Euclidean distance between two points 𝑝 and

𝑞.

Multiple index structures [11, 20, 26, 29, 37, 39, 40] have been pro-

posed for ANN search on static datasets. Graph-based ANN indexes

demonstrate potential in terms of query efficiency and accuracy, sur-

passing other indexes [11], primarily because they enable a greedy

search strategy or a variant of it to process queries [11, 16, 26, 30].

Greedy Search Strategy. Let 𝐺 be a graph-based ANN index

built on dataset 𝑃 such that each node represents a point, and

edges between nodes represent proximity relationships between

the points. Let 𝑠 be the search starting node of𝐺 , where the greedy

search algorithm starts from this node. 𝑁out (𝑝) is the set of out-
neighbors of node 𝑝 , and 𝑝out is one such out-neighbor. Similarly,

𝑁in (𝑝) is the set of in-neighbors of node 𝑝 , with 𝑝in being one of

its in-neighbors. The greedy search starts at node 𝑠 and iteratively

moves toward the query node𝑞. At each step, the algorithm explores

the out-neighbors 𝑁out (𝑝) of the current node 𝑝 and selects the

neighbor closest to 𝑞. Then, it moves to this neighbor by updating

the current node to it. The process repeats until no node in 𝑁out (𝑝)
is closer to 𝑞 than 𝑝 .

Monotonic Search Networks. The effectiveness of this greedy
search strategy on proximity graph is due to the monotonic search

property. Indexes with this property are called Monotonic Search

Networks (MSNET) [9], and when performing greedy search on

an MSNET, the query point can be found without backtracking.

Therefore, in this study, we employ graph-based ANN index as the

foundation for developing our update operations. To enable better

understanding, we include the definition as follows.

Definition 2.2 (Monotonic Search Network (MSNET)). We use

𝑃 (𝑣1, 𝑣2, . . . , 𝑣𝑘) to represent a path of the graph𝐺 , i.e.,∀𝑖 = 1, . . . , 𝑘−
1,−−−−−→𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐺 . This path is called a monotonic search path to a node

𝑞 if and only if 𝑑 (𝑣𝑖 , 𝑞) > 𝑑 (𝑣𝑖+1, 𝑞), ∀𝑖 = 1, . . . , 𝑘 − 1, which is de-

noted as MSP(𝑣1, 𝑣𝑘) of 𝑞. In other words, the nodes in MSP(𝑣1, 𝑣𝑘)
gradually approach to 𝑞, so we normally have 𝑣𝑘 = 𝑞.

The graph index 𝐺 built on 𝑃 is called a monotonic search net-

work if and only if there exists at least one monotonic search path

MSP(𝑝, 𝑞) of 𝑞 between any two nodes 𝑝, 𝑞 ∈ 𝑃 .

InsertionOperation. The sparse neighborhood graph (SNG) [2]
is one of the most prominent members of the MSNET family. It

is employed widely in graph-based indexing algorithms, such as

HNSW [26], NSG [11], FANNG [16], and DiskAnn [31]. Although

these algorithms are designed for static data and do not support

deletions, some do support insertions, enabling similar insertion

strategies for incremental index construction. Specifically, when

inserting a point 𝑝 into an index, a 𝑘ANN search is first conducted

to locate 𝑝 , and the search results form a candidate set𝐶 . A so-called

EdgeTrim(𝑝,𝐶, 𝜃𝑑) function is then employed to select 𝑁out (𝑝) from
the candidate set𝐶 , where 𝜃𝑑 is the degree threshold of nodes in the

graph. Finally, bidirectional edges are added between 𝑝 and 𝑁out (𝑝).
The EdgeTrim(·) function is the core of the insertion operation, and

is described as follows.

2269

p

p*
p1

p2

p3

p'1

p'2

(a)

p

p*p1

p2

p3

p'1

p'2

(b)

p

p*
p1

p2

p3

p'1

p'2

(c)

Figure 1: An Example of EdgeTrim(·)

EdgeTrim(·) Function. As shown in Fig. 1, the result set 𝑉 of

EdgeTrim(𝑝,𝐶, 𝜃𝑑) is initialized to𝑉 = ∅. The function first adds the

node 𝑝∗ closest to 𝑝 to 𝑉 . It then removes 𝑝∗ and all nodes 𝑝′ ∈ 𝐶

with 𝑑 (𝑝′, 𝑝∗) < 𝑑 (𝑝′, 𝑝) from 𝐶 . In other words, it eliminates all

nodes 𝑝′ located on the same side as 𝑝∗ of the space, partitioned
by the perpendicular bisector between 𝑝 and 𝑝∗. This process is
repeated until the candidate set is empty or the size of𝑉 reaches 𝜃𝑑 .

Fig. 1 illustrates this process. By trimming the out-edges through

the removal of edges in similar directions, EdgeTrim(·) ensures a
relative even distribution of out-edges in all directions. Additionally,

since the function always selects the node closest to 𝑝 from the

remaining candidates, it prioritizes retaining shorter edges. This is

referred to as the short edge priority principle.

Due to the high time complexity of constructing an exact SNG,

existing proposals employ approximate SNGs as their underlying

structure. While approximate SNGs accelerate index construction,

they no longer guarantee the existence of a monotonic search path

between every pair of nodes. Instead, they maintain monotonic

search paths only from the search starting node to other nodes,

which makes it more challenging to update the structure. Although

many SNG-based indexes perform well in static settings, they do

not support updates or only support insertions, limiting their ap-

plicability in dynamic settings.

2.2 Dynamic ANN Search
Existing static ANN search methods focus on accelerating query

performance without accommodating updates to the data. However,

in real-world applications, the entire dataset 𝑃 is often unavailable

when building an index, and we need to repeatedly add new data

and remove outdated data. Therefore, the index must be updated ac-

cordingly. ANN search on a dynamic dataset thus causes additional

challenges to indexing. In particular, existing indexes designed for

static datasets thus struggle to adapt to dynamic scenarios. In order

for an index to facilitate ANN search on a dynamic dataset, called

dynamic ANN search, it must support three operations [30]:

(1) Querying: Finding the ANN for a given query point;

(2) Insertion: Inserting a new point;

(3) Deletion: Deleting an existing point.

Existing ANN indexes can support querying and the insertion

of new points, but they often struggle to support deletion. Take

HNSW [26] for example. When points must be deleted, HNSW
employs a so-called pseudo-deletion, where points are marked as

deleted so that they can be excluded from query results. However, as

points are not removed physically from the index, “deleted” points

continue to occupy storage and incur computational overhead. As

the amount of pseudo-deleted points increases, queries increas-

ingly traverse “deleted” points, slowing down query processing.

Therefore, having accumulated a certain amount of pseudo-deleted

points, the index must be rebuilt to ensure query efficiency. Unfor-

tunately, for large datasets, the cost of rebuilding an index is high,

often taking days to complete. This motivates us to explore new

index update strategies.

Evaluation Metrics.We employ the following metrics to evalu-

ate dynamic ANN search solutions:

(1) Recall: The query accuracy should remain stable or decrease

at most slightly. For 𝑘NNS, we use k-recall@k [30], which is

defined as
|𝑅∩𝑇 |
𝑘

, where 𝑅 is the query result set, 𝑇 is the query

ground truth, and |𝑅 | = |𝑇 | = 𝑘 .

(2) Query Throughput: The query throughput, or average query

latency, must not increase. We use OPS (operations per second)

to measure the throughput. Specifically, we use Search_OPS to

measure the query throughput.

(3) Update Throughput: The efficiency of update operations,

i.e., insertions and deletions, must be sufficiently high, ide-

ally exceeding that of periodic index rebuilding. Similar to

Search_OPS, we use Delete_OPS and Insert_OPS to measure

deletion throughput and insertion throughput, respectively.

2.3 Update Performance Quantification
Studies on static ANN search focus primarily on evaluating metrics,

such as recall and query throughput, to assess performance. How-

ever, in dynamic scenarios, where a dataset is updated continuously,

new quantification strategies that simulate evolving datasets are

needed to evaluate performance. To enable this, we employ two

quantification strategies to examine the performance of update

operations: (1) Delete-and-Reinsert Quantification (DRQ), and (2)

Sliding Window Quantification (SWQ).

Delete-and-Reinsert Quantification (DRQ). The DRQ strat-

egy follows the method used in FreshDiskAnn [30]. Let UR be the

update rate, which is the percentage of points to update. Initially,

all points in the dataset are inserted into the index. During repeated

rounds of DRQ, we first randomly delete UR ∗ 𝑛 points (in exper-

iments, we set UR to 1%, 5%, 10%, and 20% of the points), and we

then reinsert them back into the index. Since the deleted points are

reinserted, the size and distribution of the dataset remain unaltered.

Therefore, a high-quality index should maintain stable recall and

update throughput, and the update throughput should remain high.

Sliding Window Quantification (SWQ). Although DRQ can

quantify the performance of update operations, it does not reflect

real-world scenarios where deleted data is typically not reinserted

into the index. Thus, while DRQ provides useful insight into the

stability of recall and throughput during updates, its setup is lim-

ited in simulating realistic dynamic scenarios. To address this, we

propose a novel sliding window quantification (SWQ) strategy that

mimics practical update scenarios by replacing deleted data with

new data. We begin by randomly shuffling the points in a dataset

and setting a sliding window over it. The window is initially set

to include the first 𝑤 points, and the index is built using these

points. In each round of SWQ, we slide the window backward by

UR ∗𝑤 points, updating the index to match the points within the

2270

window. Throughout the process, the number of points in the index

remains constant, and since the data originates from the dataset,

its distribution does not change substantially.

3 ANALYSIS OF EXISTING UPDATE METHODS
We proceed to present an analysis of existing methods for up-

dating graph-based ANN indexes. Specifically, we report on pre-

experiments using the SIFT1M dataset, to gain insights into (1)

HNSW extended with three straightforward update operations and

(2) the state-of-the-art dynamic ANN algorithm, FreshDiskAnn [30].
Based on the findings, we identify the reasons for the performance

of these methods, and we highlight the key challenges in maintain-

ing both efficiency and accuracy during updates, particularly on

large-scale, dynamic datasets.

3.1 Baseline Update Operations
We consider HNSW and FreshDiskAnn because they are the most

prevalent static and dynamic graph-based ANN algorithms, respec-

tively. HNSW employs SNGs, while FreshDiskAnn approximates

the𝛼-Relative Neighborhood Graph (𝛼-RNG), an SNG variant. Since

HNSW is an in-memory index, we use the in-memory version of

FreshDiskAnn to enable a fair comparison. We extend HNSW with

the following three update operations:

Pseudo-deletion (Pseudo). Let𝑝 be a node to be deleted, Pseudo
onlymarks it as deleted without actually removing it from the graph

index. The deleted nodes can still be accessed during ANN search,

but are excluded from the results.

Deletion Only (Do). Do directly removes 𝑝 from the graph,

along with all its in-edges and out-edges. After the deletion, no

additional edges are added to repair the connectivity loss resulting

from the removal of 𝑝 .

Deletion with Fully Connections (DwFC). DwFC first per-

forms the Do operation and then inserts edges between the in-

neighbors and out-neighbors of 𝑝 . Specifically, for each pair of

an in-neighbor 𝑝in and an out-neighbor 𝑝out, an edge (𝑝in, 𝑝out)
is inserted. Finally, for 𝑝in whose out-degree exceeds the degree

threshold 𝜃𝑑 , its out-edges is trimmed again by calling EdgeTrim(·)
to ensure that the out-degree of 𝑝in does not exceed 𝜃𝑑 . The deletion

operation in FreshDiskAnn is also based on this idea, with the main

distinction being the strategy of EdgeTrim(·).
Since HNSW uses a hierarchical structure, where a node can

exist in multiple graphs across different levels, we apply the update

operations at all levels containing the nodes to be deleted. To assess

the performance of each deletion operation, we perform delete-and-

reinsert quantification on the SIFT1M dataset with update rate 5%.

To make HNSW and FreshDiskAnn have nearly the same accuracy

before deletions, we set the degree threshold 𝜃𝑑 to 64 and the size

of the dynamic candidate list ef to 200 in HNSW, and we set 𝜃𝑑 to

32 and the insert candidate list size 𝐿 to 200 in FreshDiskAnn. This
is because if the accuracies differ, this may affect the relative diffi-

culty in maintaining query performance after updates. Regarding

search parameters, we set the search candidate list size 𝐿𝑠 to 100

for FreshDiskAnn. HNSW has no search parameters.

Fig. 2 shows that Pseudo achieves the best accuracy at the

beginning. It outperforms Do and DwFC, and only falls behind

FreshDiskANN after 27 rounds. This is because it retains the deleted

FreshDiskAnn HNSW+Do HNSW+DwFC HNSW+Pseudo

0 25 50 75 100

Rounds

0.92

0.94

0.96

10
0-
re
ca
ll
@
1
00

0 25 50 75 100

Rounds

10000

20000

30000

S
ea

rc
h
 O

P
S

0 25 50 75 100

Rounds

5000

10000

15000

In
se

rt
 O

P
S

Figure 2: Performance of Update Operations

nodes and relevant edges in the index, so that it avoids damaging

the monotonic search paths. However, the cost is that the index

cannot shrink. During rounds of insertions and deletions, the index

continuously expands, which increases the difficulty of finding the

correct ANN search results. Therefore, Pseudo also suffers from

the decline in accuracy. Due to the same reason, Search_OPS and

Insert_OPS of Pseudo exhibit an obvious downward trend. After

100 rounds, both Search_OPS and Insert_OPS of Pseudo drop to

about 25% of the values before updates. To handle the performance

decline, periodic rebuilding is required.

For other update operations, bothHNSW+Do andHNSW+DwFC
exhibit notable decreases in accuracy after deletions. Specifically,

the accuracy of HNSW+Do decreases sharply and eventually stabi-

lizes at 0.92, which is lower than a stable accuracy of 0.937 achieved

by HNSW+DwFC. Additionally, we observe a slight increase in

recall of HNSW+DwFC after a sharp decline. Interestingly and

counter-intuitively, while HNSW+DwFC attempts to compensate

for connectivity losses by adding edges, it exhibits a faster accu-

racy decline than HNSW+Do in first few rounds. FreshDiskAnn,
which adopts a similar strategy as HNSW+DwFC, also exhibits this
behavior in the first 5 rounds. This suggests that indiscriminately

adding edges to compensate for connectivity loss does not improve

accuracy; instead, it can degrade performance in high-recall regions.

3.2 Insights into Performance Inefficiencies
We proceed to analyze the reasons why Do and DwFC fail to main-

tain consistent accuracy. Since FreshDiskAnn and DwFC employ

similar approaches, we only have to consider DwFC.
We believe that the primary reason of this drop in accuracy is

that the deletion operation in MSNET disrupts monotonic search

paths. Since deleted nodes are often part of multiple monotonic

search paths, their removal causes the destruction of many such

paths, consequently lowering the quality of the index. Furthermore,

existing graph indexes are constructed using approximate SNGs,

which provide fewer monotonic search paths than exact SNGs do.

Therefore, once a monotonic search path is destroyed, there are

only few, if any, alternative monotonic search paths that lead to the

same region. As a result, some nodes become unreachable during

the greedy search, which renders it more difficult to implement

update operations on the approximate SNG.

Since Do deletes all edges connected to node 𝑝 , it destroys all

monotonic search paths passing through 𝑝 . While DwFC attempts

to repair these paths by creating connections between all pairs of

𝑝in and 𝑝out. Such connections are not always effective, because

there is no guarantee that 𝑝in is close to 𝑝out. In particular, 𝑝in is

usually close to 𝑝 , and in the worst-case scenario, 𝑑 (𝑝in, 𝑝out) =

𝑑 (𝑝in, 𝑝) + 𝑑 (𝑝, 𝑝out). Following the short edge priority principle,

2271

the connection between 𝑝in and 𝑝out is likely to fail due to the use

of EdgeTrim().
Moreover, after adding all edges (𝑝in, 𝑝out), the degree of 𝑝in may

exceed 𝜃𝑑 and EdgeTrim(·) is called. Some edges that originally

contribute to graph connectivity but violate the edge-trimming rule

are removed, further diminishing the connectivity of the graph.

This causes DwFC performing even worse than Do in the first few

rounds. After removing edges, the number of edges in the graph

decreases, making it less likely for adding edges (𝑝in, 𝑝out) to trig-

ger EdgeTrim(·). In this case, DwFC successfully adds the edges

(𝑝in, 𝑝out) and reconnects the monotonic search paths. Therefore,

the accuracy of DwFC slightly increases after rapidly dropping

to low accuracy. Although FreshDiskAnn mitigates this issue by

relaxing the edge trimming criteria—allowing edges (𝑝in, 𝑝out) to be
retained more often—it still cannot fully restore all broken mono-

tonic search paths. As a result, FreshDiskAnn experiences a drop

in accuracy during the initial cycles.

The decrease in accuracy caused by the deletions makes it chal-

lenging to obtain an accurate candidate set during reinsertions. This

implies although deleted nodes are reinserted, they cannot fully re-

store connectivity due to the inaccurate candidate set. Consequently,

updates reduce the index accuracy. However, if a deletion opera-

tion can ensure that the graph’s quality either remains unaffected

or is reduced only slightly, a more accurate candidate set would

result during subsequent insertions. This would help maintain or

minimally affect the accuracy of the graph index after updates.

Therefore, designing a stable deletion algorithm becomes the

crucial challenge for graph-based index update. A well-designed

deletion algorithm must ensure that the index accuracy remains

unaffected by updates. Consequently,Wolverine places emphasis on

optimizing deletion operations, while insertion operations follow

existing methods.

4 THE WOLVERINE ALGORITHMS
Wolverine algorithms can be integrated with existing graph-based

ANN indexes to ensure accurate and efficient updates. The basic

Wolverine algorithm repairs disrupted monotonic search paths by

adding in-edges for the out-neighbors of the point to be deleted.

To enhance efficiency, Wolverine+ restricts the search space to

the 2-hop neighbors of a point to be deleted. Finally,Wolverine++
introduces a candidate selection policy to ensure that there are high-

quality candidates within a reduced search space, thus improving

both accuracy and efficiency.

4.1 Wolverine with ANN Search for all 𝑝out
When a node is deleted, any monotonic search path that passes

through this node is divided into two subpaths. Although the sub-

path following the deleted node remains monotonic, it becomes

unreachable from the search starting node. In order to repair the dis-

rupted monotonic search path, we re-construct monotonic search

paths to the first node of this subpath. In addition, we make this

node reachable from evenly distributed directions to repair as many

disrupted monotonic search paths as possible.

Specifically, for a query node 𝑞, assume that there exists only

one monotonic search pathMSP(𝑠, . . . , 𝑝, . . . , 𝑞) monotonic to𝑞 that

passes 𝑝 that to be deleted. This path is split into two subpaths,

𝑃 (𝑠, . . . , 𝑝in) and 𝑃 (𝑝out, . . . , 𝑞). The nodes on 𝑃 (𝑠, . . . , 𝑝in) remain

reachable from the starting node 𝑠 , while the nodes on 𝑃 (𝑝out, . . . , 𝑞)
become unreachable from 𝑠 due to the disruption in connectivity

at 𝑝out. In such case, we call 𝑞 is affected by the deletion. Therefore,

it is intuitive to deduce the following lemma.

Lemma 4.1. If MSP(𝑠, 𝑝out) of 𝑞 is repaired, the monotonic search
path𝑀𝑆𝑃 (𝑠, 𝑞) is repaired.

Proof. Let MSP(𝑠, 𝑝out) be MSP(𝑣1, . . . , 𝑣𝑘), where 𝑣1 = 𝑠 and

𝑣𝑘 = 𝑝out. As MSP(𝑣1, . . . , 𝑣𝑘) is monotonic to 𝑞, 𝑑 (𝑣1, 𝑞) > · · · >
𝑑 (𝑣𝑘 , 𝑞). Let P(𝑝out, 𝑞) be P(𝑢1, . . . , 𝑢𝑚), where𝑢1 = 𝑝out and𝑢𝑚 = 𝑞.

P(𝑢1, . . . , 𝑢𝑚) is also monotonic to 𝑞, so 𝑑 (𝑢1, 𝑞) > · · · > 𝑑 (𝑢𝑏 , 𝑞).
Note that 𝑣𝑘 = 𝑢1 = 𝑝out, therefore 𝑑 (𝑣1, 𝑞) > · · · > 𝑑 (𝑝out, 𝑞) >

· · · > 𝑑 (𝑢𝑚, 𝑞). According to the definition of the monotonic search

path, the concatenation of MSP(𝑠, 𝑝out) and P(𝑝out, 𝑞) form a mono-

tonic search path MSP(𝑠, 𝑞) of 𝑞. □

Therefore, we believe that the key to repairing damaged mono-

tonic search paths 𝑀𝑆𝑃 (𝑠, 𝑞) lies in repairing the paths from the

search starting node 𝑠 to the nodes in 𝑁out (𝑝) that are monotonic

to 𝑞. Recall that in the insertion operation, the 𝑘ANN search results

are used as in-neighbors of the inserted node to establish monotonic

search paths from the search starting node 𝑠 to the inserted node.

Drawing inspiration from this, we use the nodes in ANN search

path of 𝑞 after deleting 𝑝 to establish MSP(𝑠, 𝑝out) of 𝑞. We denote

the set of these nodes as 𝑆𝑃 (𝑞).

Lemma 4.2. There exists a node sp ∈ 𝑆𝑃 (𝑞) such that 𝑑 (sp, 𝑞) >
𝑑 (𝑝out, 𝑞). Connecting the edge (sp, 𝑝out) repairs MSP(𝑠, 𝑞) of 𝑞.

Proof. We first prove the existence of the node sp ∈ 𝑆𝑃 (𝑞) such
that 𝑑 (sp, 𝑞) > 𝑑 (𝑝out, 𝑞). After deleting p, the ANN search path

includes the subpath 𝑃 (𝑠, 𝑝in). For each node 𝑢 on this subpath, we

have 𝑢 ∈ 𝑆𝑃 (𝑞) and 𝑑 (𝑢, 𝑞) > 𝑑 (𝑝out, 𝑞).
Then, we prove connecting (sp, 𝑝out) repairs themonotonic search

path. To facilitate the analysis, we denote the ANN search path

after deleting 𝑝 as 𝑃 (𝑣1, . . . , 𝑣𝑚). Assume one of its subpath is

𝑝 (𝑣1, . . . , sp), where 𝑣1 = 𝑠 and sp is on 𝑃 (𝑠, 𝑝in), we have 𝑑 (𝑣1, 𝑞) >
· · · > 𝑑 (sp, 𝑞). Since 𝑑 (sp, 𝑞) > 𝑑 (𝑝out, 𝑞), it holds that 𝑑 (𝑣1, 𝑞) >

· · · > 𝑑 (sp, 𝑞) > 𝑑 (𝑝out, 𝑞). Therefore, connecting (sp, 𝑝out) repairs
the monotonic search path 𝑃 (𝑣1, . . . , 𝑝out). According to lemma 4.1,

MSP(𝑠, 𝑞) of 𝑞 is hence repaired. □

According to Lemma 4.2, we can propose a method for repair-

ing the damaged monotonic search paths. For each node 𝑞 with

MSP(𝑠, . . . , 𝑝, 𝑝out, . . . , 𝑞) that passes through the edge (𝑝, 𝑝out) be-
fore deleting 𝑝 , we take the set 𝑆𝑃 (𝑞) as the candidate set for

the new in-neighbors of 𝑝out. Then, for each sp ∈ 𝑆𝑃 (𝑞) that

𝑑 (sp, 𝑞) > 𝑑 (𝑝out, 𝑞), we connect the edge (sp, 𝑝out). During the

process, for nodes whose out-degree exceeds the threshold 𝜃𝑑 , the

EdgeTrim(·) function is applied to enforce the out-degree under 𝜃𝑑 .

This method guarantees that all monotonic search paths are

repaired. However, it is often challenging to determine which nodes

are affected. Identifying these nodes requires checking whether it

is reachable by the ANN search starting from the search starting

node 𝑠 . Since deleting a node may affect multiple nodes, we need to

search all nodes in the graph to identify which nodes are affected.

This approach is undoubtedly highly inefficient. Therefore, based

2272

q1

pout

p
s

q2

(a)

pout

p
s

q1

q2

v1

v2

(b)

pout

p
s

q1

q2

v1

v2

(c)

Figure 3: The process of Wolverine

on this idea, we propose a practical method calledWolverine, which
does not identify these nodes and uses the 𝑘ANN search results of

𝑝out to repair the monotonic search paths of 𝑝out. Additionally, it

tries to repair other MSP(𝑠, 𝑞) as much as possible by diversifying

the directions of the added edges.

Specifically, Wolverine requires setting two parameters, 𝛿in and

𝐶𝑠 , where 𝛿in represents the number of new in-neighbors to 𝑝out,

and 𝐶𝑠 represents the size of the candidate set. Here, 𝐶𝑠 is set to 𝑘 ,

the size of the 𝑘ANN search results. When deleting 𝑝 , Wolverine
first deletes the in-edges and out-edges of 𝑝 . Then, for each 𝑝out, we

perform a 𝑘ANN search for 𝑝out from the search starting node 𝑠 to

obtain𝐶𝑠 nodes (yellow nodes in Fig. 3a). We take the these nodes as

the candidates, denoted as𝐶 , and then employ the EdgeTrim(𝑝out,𝐶\
{𝑝out}, 𝛿in) function, which returns the new in-neighbors set 𝑉

(orange nodes in Fig. 3b). Then, we add an edge pointing to 𝑝out for

each node 𝑣 ∈ 𝑉 . For 𝑣 whose degree exceeds the degree threshold,

the EdgeTrim(𝑣, 𝑁out (𝑣), 𝜃𝑑) function is used again to limit their

out-degree to the degree threshold.

We use 𝑘ANN search results to repair the monotonic search

paths of 𝑝out for two reasons. First, to ensure that the degree of each

node remains below the threshold 𝜃𝑑 , the EdgeTrim(·) function is

applied to trim edges for nodes exceeding 𝜃𝑑 after adding edges.

This function prioritizes shorter edges, making longer edges more

likely to be removed. As a result, in the method derived from Lemma

4.2, the nodes in 𝑆𝑃 (𝑞) that successfully connect to 𝑝out are those

near 𝑝out. Therefore, the ANN search results of 𝑝out can cover these

nodes and replace 𝑆𝑃 (𝑞) as the in-neighbors candidate set. Second,
𝑝out can be directly retrieved from the edge table of 𝑝 , eliminating

the additional searches for identifying and significantly improving

repair efficiency.

Subsequently, we also need to ensure that the added edges mono-

tonic to the affected nodes as much as possible. Intuitively, we as-

sume that the affected nodes are evenly distributed in all directions

around each 𝑝out. To maximize the chances of the repaired edge

being monotonic to as many nodes as possible, we aim for the

newly added in-edges of 𝑝out point to all directions. Therefore, we

need to perform 𝑘ANN search for 𝑝out to obtain a sufficiently large

candidate set that contain nodes from diverse directions. Then, we

select nodes in all directions to add edges pointing to 𝑝out. Since

the EdgeTrim(·) function can select nodes from all directions of 𝑝out
uniformly from the candidate set, we use the EdgeTrim(·) function
to filter the candidate set to obtain nodes connected to 𝑝out.

The study [28] proves that the ANN search time complexity is

at least𝑂 (𝑛
2

𝜃𝑑 ln𝑛) in graph. So, the time complexity of Wolverine

q1

pout

p
s

q2

(a)

pout

p
s

q1

q2

v1

v2

(b)

pout

p
s

q1

q2

v1

v2

(c)

Figure 4: The process of Wolverine+

is 𝑂 (𝜃𝑑 + 𝜃𝑑𝑛
2

𝜃𝑑 ln𝑛 + 𝛿in𝜃𝑑), depending on the number of graph

nodes, which may cause Wolverine inefficient on large datasets.

4.2 Wolverine+ with 2-Hop Neighbors
Wolverine employs ANN search for each out-neighbor of the node

to be deleted to form the candidate set. However, ANN search across

multiple out-neighbors (often dozens) is time-consuming, leading

to inefficient updates. To address this, we introduce Wolverine+,
which obtains the candidate set more efficiently.

Intuitively, we aim to quickly obtain an alternative candidate set

that is similar to the 𝑘ANN search results. In Wolverine, the 𝑘ANN
search results for each 𝑝out are naturally close to 𝑝out. Since 𝑝 is

near 𝑝out, so are 𝑝’s neighbors. Therefore, Wolverine+ considers

directly using 𝑝’s 2-hop neighbors, denoted as Hop
2
(𝑝), to form

the candidate set, allowing for rapid retrieval. Compared toWolver-
ine, this approach significantly reduces the number of nodes to be

checked. We next explain the reasons behind this choice.

First, inspired from Wolverine, the idea of using Hop
2
(𝑝out) as

the candidate set naturally emerges. Note that, bidirectional edges

are added between 𝑁out (𝑝out) and 𝑝out when 𝑝out is inserted into the
graph. Consequently, the nodes in Hop

2
(𝑝out) are already likely to

reach 𝑝out. Therefore, adding edges from the nodes in Hop
2
(𝑝out) to

𝑝out is redundant and does not help to repair MSP(𝑠, 𝑝out). Instead,
we focus on utilizing Hop

2
(𝑝). Second, since Hop

2
(𝑝) is close to all

𝑝out, it can be considered as the candidate set of all 𝑝out. In this way,

we only need to obtain the candidate set once. In contrast,Wolverine
obtains the candidate set multiple times. Therefore, Wolverine+
effectively replaces the 𝑘ANN search results.

Wolverine+ andWolverine use the same parameters 𝛿in and 𝐶𝑠 ,

and a similar deletion process. However, it is worth noting that we

delete the in-edges and retain the out-edges of 𝑝 at first. This is

because we need these out-edges to obtain Hop
2
(𝑝). In addition,

since 𝐶𝑠 may be smaller than |Hop
2
(𝑝) |, we randomly select 𝐶𝑠

nodes as candidates in this case. Then, same as Wolverine does,

we call EdgeTrim(·) for each 𝑝out and each new in-neighbor whose

out-degree exceeds 𝜃𝑑 . At last, the out-edges of 𝑝 and 𝑝 itself are

deleted. Fig. 4 shows an example of Wolverine+.
By limiting the candidate set to 2-hop neighbors, Wolverine+

reduces the number of nodes that need to check considerably. The

time complexity of Wolverine+ is𝑂 (𝜃𝑑 +min(𝜃𝑑 2 +𝜃𝑑 ,𝐶𝑠) +𝛿in𝜃𝑑).
As the time complexity of Wolverine+ is independent of the dataset

size 𝑛, it achieves robust performance even on large datasets.

2273

pout

p

(a)

pout

pc
𝛼

(b)

pout

p

c'
𝛼'

(c)

Figure 5: The region surrounded by the gray line is
{𝑥 |𝑑 (𝑥, 𝑝out) < 𝑑 (𝑝, 𝑝out) ∧ 𝑑 (𝑥, 𝑝) > 𝑑 (𝑝, 𝑝out)}. The hatched
blue region in 5a isMSR(𝑝, 𝑝out). The hatched yellow region in
5b is the overlapping region of MSR(𝑝, 𝑝out) and MSR(𝑐, 𝑝out).
The hatched orange region in 5c is the overlapping region of
MSR(𝑝, 𝑝out) andMSR(𝑐′, 𝑝out).

4.3 Analysis of Candidate Sets
While Wolverine+ reduces the number of nodes to check, it still

examines toomany. For a graphwith𝜃𝑑 = 64,Hop
2
(𝑝) could include

as many as 𝜃𝑑
2 = 4096 nodes, which is excessive for a candidate set.

Furthermore, sinceWolverine+ randomly selects𝐶𝑠 nodes from this

candidate set, it may overlook valuable candidates that could help

repair themonotonic search path. To further refine the candidate set,

the goal is to select high-quality candidates that effectively repair

the monotonic search paths from Hop
2
(𝑝). We define a high-quality

candidate as one that meets three key conditions.

Ensure Successful Connection.We aim for the repaired edges

to be effectively connected. According to the short edge prior-

ity principle, the EdgeTrim(·) function gives priority to retaining

shorter edges. If an edge (𝑐, 𝑝out) is long, it is more likely to be

trimmed. Therefore, we strive for 𝑐 ∈ 𝐶 to be as close to 𝑝out
as possible. To achieve this, we constrain the candidate set to a

sphere centered at 𝑝out with a radius 𝑑 (𝑝, 𝑝out). That is, ∀𝑐 ∈ 𝐶 ,

𝑑 (𝑐, 𝑝out) < 𝑑 (𝑝, 𝑝out).
Stay Untouched in Deletion. We aim for the nodes in the

candidate set to be minimally affected by the deletion. If we select

nodes that are significantly affected by the deletion of 𝑝 as can-

didates, these nodes may not be reachable from 𝑠 . Consequently,

connecting these nodes to 𝑝out may still leave 𝑝out unreachable from

𝑠 . Therefore, we focus on selecting nodes that are less affected by

the deletion of 𝑝 . We posit that nodes farther from 𝑝 are less likely

to be influenced by its deletion. After 𝑝 is deleted, these distant

nodes are more likely to maintain the monotonic search paths orig-

inating from 𝑠 and are also more likely to be discovered by the

greedy search algorithm. By connecting these nodes to 𝑝out, we

increase the probability of 𝑝out being reached, thereby repairing the

monotonic search path MSP(𝑠, 𝑝out). Thus, we require that for all
𝑐 ∈ 𝐶 , 𝑑 (𝑐, 𝑝) > 𝑑 (𝑝, 𝑝out).

One Repair, Multiple Benefits. We aim for the repaired edges

to restore multiple monotonic search paths. When node 𝑝 is deleted,

all monotonic search paths that pass through the edge (𝑝, 𝑝out) are
disrupted due to the removal of this edge. To enable the newly

connected edges to repair these disrupted paths, we seek to ensure

that (𝑐, 𝑝out) is monotonic with respect to the endpoints of these

paths. In previous approaches, we accomplished this by having

(𝑐, 𝑝out) point to all directions. However, we demonstrate that this

goal can be achieved with nodes located within a smaller region.

We aim for the added edge (𝑐, 𝑝out) to repair MSP(𝑠, 𝑞) for as
many affected nodes 𝑞 as possible. However, since 𝑞 may be lo-

cated at an arbitrary position with unknown paths leading to it,

it is complicated to analyze the sufficient conditions, i.e., adding

(𝑐, 𝑝out) ensures the repair of MSP(𝑠, 𝑞). Therefore, we employ the

necessary conditions instead. In other words, we are interested

in that, if an edge (𝑐, 𝑝out) can repair MSP(𝑠, 𝑞) ((𝑐, 𝑝out) belongs
to MSP(𝑠, 𝑞)), in what region 𝑝 necessarily locates in. We call this

region monotonic search region (MSR) w.r.t. (𝑐, 𝑝out), denoted as

MSR(𝑐, 𝑝out). Assume that the nodes are evenly distributed, the area

ofMSR(𝑐, 𝑝out) that contains nodes reflects the posterior probability
of that adding (𝑐, 𝑝out) repairsMSP(𝑠, 𝑞). Sequentially, we hope that
MSR(𝑐, 𝑝out) and MSR(𝑝, 𝑝out) overlap as much as possible, so that

a single (𝑐, 𝑝out) can compensate more for the deletion of (𝑝, 𝑝out).
We formally define MSR as follows.

Definition 4.3 (monotonic search region). Given any directed edge

(𝑝, 𝑝out), the monotonic search region MSR(𝑝, 𝑝out) of the directed
edge is defined as MSR(𝑝, 𝑝out) = {𝑥 |𝑑 (𝑥, 𝑝out) < 𝑑 (𝑥, 𝑝)}.

When MSP(𝑠, 𝑞) contains (𝑝, 𝑝out), according to the nature of

MSP, we have 𝑑 (𝑞, 𝑝out) < 𝑑 (𝑞, 𝑝). Therefore, 𝑞 ∈ MSR(𝑝, 𝑝out) is an
necessary condition. Figs. 5a illustrates an example of MSR in 2D

space. The blue line is the perpendicular bisector of (𝑝, 𝑝𝑜𝑢𝑡), and
MSR(𝑝, 𝑝𝑜𝑢𝑡) is the region above it (represented by hatched blue).

For any node 𝑥 in the region, it holds that 𝑑 (𝑥, 𝑝𝑜𝑢𝑡)) < 𝑑 (𝑥, 𝑝).
Consider Conditions Together. With the three proposed con-

ditions, we proceed to introduce what region simultaneously satis-

fies these conditions. Take Fig. 5 as an example. The gray dashed

outline belongs to two circles that are centered at 𝑝in and 𝑝out with

radii of 𝑑 (𝑝in, 𝑝out), respectively. Therefore, the crescent region rep-

resents {𝑥 |𝑑 (𝑥, 𝑝out) < 𝑑 (𝑝, 𝑝out) ∧ 𝑑 (𝑥, 𝑝) > 𝑑 (𝑝, 𝑝out)}. All nodes
in this crescent region satisfy the first two conditions, i.e., ensure

successful connection and stay untouched in deletion.

Regarding the third condition, we hope that MSR(𝑐, 𝑝out) and
MSR(𝑝, 𝑝out) overlap as much as possible. We divide the crescent

region into two parts by the red line in Fig. 5b, which is parallel to

the perpendicular bisector (blue line) of (𝑝, 𝑝out), and we consider

the nodes in the region below the red line (the highlighted solid

green region in Fig. 5b) to be suitable candidates. Fig. 5b illustrates

the situation where 𝑐 locates in the region. Similarly, we obtain

MSR(𝑐, 𝑝out) and represent MSR(𝑐, 𝑝out) ∩MSR(𝑝, 𝑝out) by hatched

yellow. In this case, since the angle 𝛼 between the perpendicular

bisectors of (𝑐, 𝑝out) and that of (𝑝, 𝑝out) is greater than 90
◦
, the

overlapping region occupies at least 50% of MSR(𝑝, 𝑝out). In turn,

(𝑐, 𝑝out) can compensate for above 50% nodes that are affected by

the deletion of (𝑝, 𝑝out). In contrast, in Fig. 5c where 𝑐 locates in the

upper part (the highlighted solid purple region) and the angle 𝛼 is

less than 90
◦
, the overlapping ratio is lower than 50%. It means that

(𝑐, 𝑝out) can only compensate for fewer affected nodes. Therefore,

we consider nodes in the solid green region in Fig. 5b as high quality

candidates that can satisfy the three conditions simultaneously.

A high quality candidate 𝑐 can be distinguished totally based on

distances. For the first condition, we have 𝑑 (𝑐, 𝑝) > 𝑑 (𝑝, 𝑝out). For
the second condition, we have 𝑑 (𝑐, 𝑝out) < 𝑑 (𝑝, 𝑝out). For the third
condition, we leverage the law of cosines. When 𝑐 locates in the

2274

q1

pout

ps

q2
c1

c2

c3

c4

(a)

pout

p
s

q1

q2

v1

v2

(b)

pout

p
s

q1

q2

v1

v2

(c)

Figure 6: The process of Wolverine++

solid yellow area in 5b, the angle 𝑐𝑝out𝑝 is an acute angle. Therefore,

it holds that 𝑑2 (𝑐, 𝑝out) + 𝑑2 (𝑝, 𝑝out) > 𝑑2 (𝑐, 𝑝). In contrast, when 𝑐

locates in the solid orange area in Fig. 5c, the angle 𝑐𝑝out𝑝 is no more

an acute angle. Although the square of the distance is used here,

the existing algorithm uses the square of the Euclidean distance

instead of the accurate Euclidean distance when implementing

it. Therefore, in Euclidean space, this judgment method does not

generate additional calculations.

Based on the above analysis, we define the candidate region

w.r.t. (𝑝, 𝑝out) that contains high quality candidates as CR(𝑝, 𝑝out) =
{𝑥 |𝑑 (𝑥, 𝑝) > 𝑑 (𝑝, 𝑝out) ∧ 𝑑 (𝑥, 𝑝out) < 𝑑 (𝑝, 𝑝out) ∧ 𝑑2 (𝑥, 𝑝out) +
𝑑2 (𝑝, 𝑝out) > 𝑑2 (𝑥, 𝑝)}. The candidate set 𝐶 should satisfy that

𝐶 ⊂ CR(𝑝, 𝑝out).

4.4 Wolverine++
We propose Wolverine++ based on the above analysis of the candi-

date set. When searching for candidates connected to 𝑝out, Wolver-
ine++ quickly obtains a high-quality candidate set. SinceWolver-
ine++ requires only a few additional edges to maintain accuracy, it

efficiently restores the connectivity of the graph index after dele-

tions, ensuring stable performance.

The deletion operations of Wolverine+ and Wolverine++ are

almost the same except thatWolverine++ further filters out nodes

inHop
2
(𝑝). For each 𝑝out in𝑁out (𝑝), the candidate set𝐶 is initialized

by the nodes from 𝑁out (𝑝) whose distance to 𝑝out is smaller than

𝑑 (𝑝, 𝑝out). In this initialization step, we do not require the nodes

added to 𝐶 to be strictly located in 𝐶𝑅(𝑝, 𝑝out), because there are
only a few nodes in 𝑁out (𝑝) that are located in the region. In order

to obtain enough candidates, we relax the conditions for adding to

the candidate set in this step. Therefore, at least 𝑝out itself can be

added to the candidate set. Next follows the expansion step, where

we expand the nodes in the candidate set 𝐶 . For each node 𝑐 in

𝐶 , we add the nodes in 𝑁out (𝑐) that locate in 𝐶𝑅(𝑝, 𝑝out) to 𝐶 . The
process terminates when the size of the candidate set reaches 𝐶𝑠 .

Fig. 6 shows the process of Wolverine++.
Specially, when𝐶𝑅(𝑝, 𝑝out) contains no nodes,Wolverine++ does

not add in-edges for 𝑝out. Because expanding the candidate region

or searching more nodes to obtain candidates may introduce in-

appropriate edges and reduce efficiency. Since such 𝑝out typically

lies in sparse regions, even if the monotonic search paths are not

repaired, Wolverine++ yields satisfactory performance.

The time complexity of Wolverine++ is 𝑂 (𝜃𝑑 + 𝜃𝑑 ×min(𝜃𝑑 2 +
𝜃𝑑 ,𝐶𝑠) + 𝛿in𝜃𝑑). AlthoughWolverine++ needs to obtain a candidate

set for each 𝑝out and cannot obtain the candidate set by one pass,

Table 1: Dataset Statistics

Dataset Dim. # of points # of queries
SIFT1M 128 1,000,000 10,000

GIST1M 960 1,000,000 1,000

SPACEV1M 100 1,000,000 29,316

DEEP1M 96 1,000,000 10,000

SIFT10M 128 10,000,000 10,000

SPACEV10M 100 10,000,000 29,316

DEEP10M 96 10,000,000 10,000

SIFT100M 128 100,000,000 10,000

DEEP100M 96 100,000,000 10,000

it selects candidate sets from smaller regions. Therefore, Wolver-
ine++ still reduces the time required. Furthermore, compared to

Wolverine+ that is prone to missing useful candidates due to early

termination, Wolverine++ is less likely to encounter this issue due

to its reduced candidate region. This makes it more effective at

identifying and retaining useful candidates.

In scenarios that require high-frequent updates, Wolverine++
needs to perform deletions in batches. Directly employing multiple

threads to perform deletions in parallel leads to competition, be-

cause the edge table of a node may be modified by multiple threads

of different deletions. To achieve efficient multi-thread concurrency

control, Wolverine++ performs batch deletion in three stages. In

the first stage, we remove the in-edges of each node in a batch.

Each node is processed by a single thread, which removes the edges

connected to the deleted nodes. Although this approach involves

checking each edge table, the time spent is minimal due to the

elimination of thread contention. Furthermore, by ensuring that

no multiple threads modify an edge table simultaneously, we avoid

thread competition, making the deletion of in-edges more efficient.

In the second stage, for each deleted node 𝑝 , we use one thread to

repair the monotonic search path MSP(𝑠, 𝑝out) of its out-neighbors
with Wolverine++. In the third stage, we release the memory re-

sources occupied by deleted nodes.

5 EVALUATION
We report on extensive experiments on real-world datasets that

address the following questions:

(Q1): How does Wolverine++ compare with the SOTA baselines?

(Q2): How does the update rate UR affect the performance?

(Q3): How does the value 𝑘 of 𝑘ANN affect the performance?

(Q4): DoesWolverine++ generalize to all SNG-based algorithm?

(Q5): How does Wolverine++ perform compared to the two basic

algorithms,Wolverine andWolverine+?
(Q6): How to properly configureWolverine++?
(Q7): How many repaired edges are visited during query?

5.1 Experimental Setup
Datasets.We use 9 public real-world datasets to evaluateWolver-
ine algorithms, where SIFT1M, SIFT10M, SIFT100M, and GIST1M

[21] are image vector dataset, SPACEV1M and SPACEV10M are

sampled from SPACEV1B [27], released by Microsoft, and DEEP1M,

DEEP10M, and DEEP100M are sampled from DEEP1B [3]. Statistics

of the datasets are shown in Table 1.

2275

FreshDiskAnn HNSW+Wolverine++

0 25 50 75 100

Rounds

0.80

0.82

0.84

1
0-
re
ca
ll
@
1
0

SIFT1M–DRQ

0 25 50 75 100

Rounds

0.68

0.69

0.70

0.71

1
0-
re
ca
ll
@
1
0

SIFT100M–SWQ

0 25 50 75 100

Rounds

0.68

0.69

0.70

1
0-
re
ca
ll
@
1
0

DEEP100M–SWQ

(a) Query Accuracy (10-recall@10)

0 25 50 75 100

Rounds

100K

120K

140K

S
ea

rc
h
 O

P
S

SPACEV1M–DRQ

0 25 50 75 100

Rounds

31K

32K

33K

34K

S
ea

rc
h
 O

P
S

GIST1M–DRQ

0 25 50 75 100

Rounds

200K

250K

S
ea

rc
h
 O

P
S

SIFT100M–SWQ

(b) Query Efficiency (Search_OPS)

0 25 50 75 100

Rounds

5000

10000

15000

20000

In
se

rt
 O

P
S

SPACEV10M–DRQ

0 25 50 75 100

Rounds

10000

20000

In
se

rt
 O

P
S

DEEP10M–DRQ

0 25 50 75 100

Rounds

5000

10000

15000

In
se

rt
 O

P
S

SIFT10M–DRQ

(c) Insert Efficiency (Insert_OPS)

0 25 50 75 100

Rounds

20K

40K

D
el

et
e

O
P

S

DEEP1M–DRQ

0 25 50 75 100

Rounds

10K

20K

30K

40K

D
el

et
e

O
P

S

SIFT100M–SWQ

0 25 50 75 100

Rounds

20K

40K

D
el

et
e

O
P

S

DEEP100M–SWQ

(d) Deletion Efficiency (Delete_OPS)

Figure 7: FreshDiskAnn vs.Wolverine++ under DRQ and SWQ

Machine Configuration. All experiments are conducted on

a machine with an AMD EPYC 7K62 48-Core CPU and 256GB of

memory. We use 64 threads to update the graph index in parallel.

All experiments are performed in-memory.

Baseline.We compareWolverine++with FreshDiskAnn[30], the
SOTA graph-based dynamic indexing algorithm. In experiments,

we use the in-memory version of FreshDiskAnn for fair comparison.

We configure FreshDiskAnn by setting the degree threshold 𝜃𝑑 to 32
and the insert candidate list size 𝐿 to 200. For search, FreshDiskAnn
sets the search candidate list size 𝐿𝑠 to 10 for 10-recall@10.

Update Performance Quantification Strategies. We use the

two quantification strategies presented in Sec. 2.3 to evaluate the

update performance of Wolverine++. Compared to DRQ, we choose

a larger dataset for SWQ to ensure sufficient new data for insertion

in each round. However, we construct the graph index with the

same number of vectors in DRQ and SWQ to avoid the influence

caused by different data scales.

5.2 Performance Overview (Q1)
We compareWolverine++with FreshDiskAnn under DRQ and SWQ

to examine the performance of update operations. For both DRQ

and SWQ, we set UR = 1%, and for SWQ, we set 𝑤 = 10𝑀 . We

observe that Wolverine++ consistently outperforms FreshDiskAnn
across all datasets in terms of the metrics of 10-recall@10, In-

sert_OPS, and Delete_OPS. For Search_OPS,Wolverine++ outper-

forms FreshDiskAnn in most datasets.

5.2.1 Wolverine Implementation. Wolverine++ adopts the inser-

tion operation from HNSW. We refer to the implementation of

Wolverine++ on HNSW as HNSW+Wolverine++. We adjust the

graph construction parameters of HNSW according to different

datasets. With these parameter settings, the recall gap between

FreshDiskAnn and HNSW for the same query is less than 0.01

when no updates have been made. Since the graph is constructed

with insertions, insertions share the same parameters as graph con-

struction. For Wolverine++, we set the threshold number of new

edges 𝛿in to 32, and always set candidate set size 𝐶𝑠 to 2 × 𝛿in.

5.2.2 Query Accuracy and Efficiency. We investigate query accu-

racy and efficiency during updates using both DRQ and SWQ.

High Query Accuracy. Fig. 7a presents the query accuracy

of the methods under DRQ and SWQ performance quantification

strategies. We use 10-recall@10 as the evaluation metric. It is evi-

dent that HNSW+Wolverine++ consistently achieves higher query

accuracy compared to FreshDiskAnn, due to its ability to repair

monotonic search paths disrupted by deletions. In most cases, the

recall of HNSW+Wolverine++ gradually increases as the connec-

tivity of the graph index is less impacted by deletions, allowing

newly inserted points to still be accurately located. Even in the

worst-case scenarios, HNSW+Wolverine++ maintains relatively sta-

ble recall performance. The increase in recall is due to the increase

in the average degree of the graph after Wolverine++ updates. Dur-

ing graph construction, to avoid frequent edge trimming, when a

node’s degree exceeds 𝜃𝑑 , HNSW calls the EdgeTrim(·) function to

reduce a node’s degree to less than 𝜃𝑑/2, which lowers the average

degree of initial graph. In contrast, Wolverine++ only ensures that

the degree remains below 𝜃𝑑 when calling the EdgeTrim(·) function.
As a result, the average degree of the graph increases after updates

withWolverine++, enhancing graph connectivity. The increase in

average degree improves recall but also increases search latency.

However, this trade-off between recall and search efficiency can

be controlled by adjusting the number 𝛿in of new in-neighbors in

Wolverine++. The details of the trade-off analysis are presented

in Sec. 5.7. Although FreshDiskAnn proposes a repair strategy by

fully connecting the in-neighbors and out-neighbors of deleted

points, this approach does not effectively repair the monotonic

search paths.

Stable Query Efficiency. Fig. 7b illustrates the query efficiency

of methods under DRQ and SWQ. We use Search_OPS as the eval-

uation metric. The Search_OPS for HNSW+Wolverine++ remains

2276

UR=1% UR=5% UR=10% UR=20%

0 25 50 75 100

Rounds

0.750

0.775

0.800

0.825

k
-r
ec
a
ll
@
k

0 25 50 75 100

Rounds

180K

190K

200K

210K

S
ea

rc
h
 O

P
S

0 25 50 75 100

Rounds

20000

22000

In
se

rt
 O

P
S

0 25 50 75 100

Rounds

40K

60K

80K

D
el

et
e

O
P

S

Figure 8: Comparison on Different Update Rates

stable in the experiment. Even under SWQ, which closely approxi-

mates real-world update scenarios, Search_OPS stays consistent at

the level before updates. On small datasets, HNSW+Wolverine++
is 1.4 ∼ 1.7× faster than FreshDiskAnn. In constrast, it is slightly

slower on the ultra-high-dimensional dataset GIST1M. On large

datasets, HNSW+Wolverine++ is also slower than FreshDiskAnn.
However, sinceWolverine++ does not optimize the query process-

ing, Search_OPS primarily depends on the index itself, so we only

have to focus on the stability of the query efficiency after updates,

which is sufficiently verified by the experimental results.

5.2.3 Update Efficiency. We investigate insertion and deletion effi-

ciency during updates using both DRQ and SWQ.

Insertion Efficiency. Fig. 7c shows the insertion efficiency of

the methods under DRQ and SWQ. We use Insert_OPS as the eval-

uation metric. Although HNSW+Wolverine++ and FreshDiskAnn
use similar insertion methods, Insert_OPS of HNSW+Wolverine++
is 3.6 ∼ 4.8× greater than that of FreshDiskAnn. This is primar-

ily due to FreshDiskAnn relaxing its edge trimming condition. As

a result, during insertions, FreshDiskAnn needs to connect more

edges between the inserted nodes and their neighbors. This requires

modifying the edge tables of a large number of nodes. Moreover,

modifying a greater number of edge tables introduces more thread

contention, which further degrades FreshDiskAnn’s performance

in multi-threaded processing.

Deletion Efficiency. Fig. 7d shows the deletion efficiency of

the methods under DRQ and SWQ. We use Delete_OPS as the

evaluation metric. We can see that HNSW+Wolverine++ achieves

a significantly higher and more stable deletion throughput, with

Delete_OPS being 2.7 ∼ 11.0× higher than FreshDiskAnn. Addition-
ally, as updates progress, the Delete_OPS of HNSW+Wolverine++
gradually increases. In contrast, the Delete_OPS of FreshDiskAnn
remains consistently lower. This is due to FreshDiskAnn’s approach
of checking all edges, identifying in-neighbors for deleted nodes,

and immediately repairing out-neighbors by connecting in-neighbors

to them. If the out-degree of the in-neighbors exceeds a threshold,

trimming is triggered. Since FreshDiskAnn generally does not limit

the number of in-neighbors, this can lead to excessive trimming,

lowering deletion efficiency. On the other hand, while Wolverine++

k=10 k=100 k=1000

0 25 50 75 100

Rounds

0.8

0.9

1.0

k
-r
ec
a
ll
@
k

0 25 50 75 100

Rounds

0K

50K

100K

150K

S
ea

rc
h
 O

P
S

Figure 9: Impact of 𝑘

also checks all edges, it only deletes and then selects 𝛿in points to re-

pair the out-neighbors of the deleted points, requiring significantly

fewer trimming operations.

5.3 Impact of Update Rate (Q2)
In order to verify the effects of Wolverine++ for different update

rates, we used two quantification methods, DRQ and SWQ, to eval-

uate the performance of HNSW+Wolverine++ on DEEP1M and

DEEP100M. We set the update rates of DRQ and SWQ as 1%, 5%,

10%, and 20%, and we set 𝑤 = 1𝑀 for SWQ. We believe that such

experimental settings can cover most application scenarios. We

set 𝛿𝑖𝑛 to 24 for Wolverine++. Since both quantification methods

exhibit the same trend, we only present the results of SWQ.

Fig. 8 shows the performance of Wolverine++ under different

update rates in terms of recall, Search_OPS, Delete_OPS, and In-

sert_OPS. The recall of Wolverine++ remains stable across all exper-

iments. Search_OPS also remains stable with a slight increase. This

shows that Wolverine++ is able to avoid the deterioration of recall

and Search_OPS with different update rates. For updates efficiency,

Insert_OPS of Wolverine++ increases after updates and stabilizes

at a higher level. For Delete_OPS, higher values are observed under

larger update rates. This is due to the higher throughput of the first

stage of deletion at higher update rates. A larger update rate means

deleting more nodes in the batch. In the first stage, regardless of

the number of deleted nodes, we scan all nodes in graph to remove

the in-edges of the deleted nodes. The time overhead of this stage is

only dependent on the number of nodes in the index. Therefore, for

this stage, the more nodes are deleted in a batch, the same amount

of time is consumed, resulting in higher throughput. Therefore,

Wolverine++ performs better under higher update rates.

5.4 Impact of the Value of 𝑘 (Q3)
To evaluate the performance of Wolverine++ on the 𝑘ANN problem

with different values of 𝑘 , we use DRQ to test the performance

of HNSW+Wolverine++ on SIFT1M. We set 𝑘 to 10, 100, and 1000,

and set 𝛿𝑖𝑛 to 20. We focus on recall and Search_OPS and do not

observe Delete_OPS and Insert_OPS, as these metrics do not exhibit

changes with variations in 𝑘 .

Fig. 9 indicates thatWolverine++ avoids the decline in recall and

Search_OPS for different 𝑘ANN queries. For larger values of 𝑘 , the

accuracy remains stable after updates, as the index accuracy before

update is already very high. Regarding Search_OPS, larger values

of 𝑘 typically require examining more nodes, resulting in lower

Search_OPS for 𝑘 = 100 and 𝑘 = 1000 compared to 𝑘 = 10.

2277

FreshDiskAnn NSW DiskAnn NSG

0 25 50 75 100

Rounds

0.80

0.82

1
0
-r
ec
a
ll
@
1
0

0 25 50 75 100

Rounds

100K

125K

150K

175K

S
ea

rc
h
 O

P
S

0 25 50 75 100

Rounds

20K

40K

D
el

et
e

O
P

S

Figure 10: Other Methods vs. FreshDiskAnn

Wolverine Wolverine+ Wolverine++

0 25 50 75 100

Rounds

0.82

0.84

1
0
-r
ec
a
ll
@
1
0

0 25 50 75 100

Rounds

125K

150K

175K

S
ea

rc
h
 O

P
S

0 25 50 75 100

Rounds

0K

10K

20K

30K

D
el

et
e

O
P

S

Figure 11: Comparison onWolverine Algorithms

5.5 Algorithm Generalization (Q4)
Since Wolverine++ is not optimized for a specific graph index, it

can be applied to any graph index that meets the requirements of

SNG and supports insertion operations. To verify the generalization

of Wolverine, we implement other graph indexs, NSW [25], NSG
[11], and DiskAnn [31], in conjunction withWolverine++. We use

DRQ with update rate of 1% to evaluate the performance of the

three methods and FreshDiskAnn on SIFT1M. Fig. 10 shows the

performance of these methods in terms of query accuracy, query

efficiency, and deletion efficiency with updates. The three methods

with Wolverine++ outperform FreshDiskAnn in all metrics. The

accuracy remains stable or improves after updates, and Search_OPS

remains steady. We observe a slight decline in the Search_OPS

of NSG withWolverine++, dropping to 92% of its initial value by

the 100th round. This is because iterative construction considers

the dataset more comprehensively, resulting in shorter monotonic

search paths constructed by iteration compared to those constructed

by insertions. As more portions inNSG are constructed by insertion

rather than iteration, the ANN search paths become longer.

We remark that Delete_OPS of DiskAnn+Wolverine++ is rela-

tively low, only slightly higher than that of FreshDiskAnn. This is
due to the relaxing edge trimming condition of DiskAnn, resulting
in deleted nodes having more 2-hop neighbors, which leads to more

candidate nodes within the candidate region. This increases the

time overhead for filtering the candidate set and establishing edges.

Nevertheless, the three methods with Wolverine++ achieves per-

formance comparable to that of HNSW+Wolverine++ and outper-

forms FreshDiskAnn across all metrics. This experiment demon-

strates thatWolverine++ exhibits good generalization capabilities

and can be effectively extended to other SNG-based graph indexes.

5.6 Comparison onWolverine Algorithms (Q5)
In this experiment, we employ the DRQ performance quantification

strategy with update rate 1% on the SIFT1M dataset to analyze the

performance differences among the three algorithms we proposed:

Wolverine, Wolverine+, and Wolverine++. All three algorithms are

applied to HNSW using the same construction parameters and

±in =16 ±in =32 ±in =48 ±in =64

0 25 50 75 100

Rounds

0.800

0.825

0.850

0.875

k
-r
ec
al
l@
k

0 25 50 75 100

Rounds

125K

150K

175K

S
ea

rc
h
 O

P
S

0 25 50 75 100

Rounds

20K

40K

D
el

et
e

O
P

S

Figure 12: Parameter Study: 𝛿𝑖𝑛

the same 𝛿𝑖𝑛 of 32. The experimental results indicate that, when

considering all metrics comprehensively,Wolverine++ achieves a

strong balance in performance.

Fig. 11 shows the changes in recall, Search_OPS, and Delete_OPS

of the three proposed algorithms during updates. The accuracy

of HNSW+Wolverine increases rapidly during the first few ex-

periments, slightly declines after about 10 rounds, and stabilizes

above the initial accuracy after about 20 rounds, indicating that

the Wolverine algorithm effectively repairs the graph after dele-

tion. However,Wolverine exhibits the lowest Delete_OPS among

the three algorithms, aligning with our earlier analysis that its

reliance on ANNS results for candidates is too time-consuming.

In contrast,Wolverine+, which uses Hop
2
(𝑝) as the candidate set,

demonstrates a significantly higher Delete_OPS, highlighting that

this approach accelerates candidate selection. However, its accuracy

does not match that of Wolverine. This reflects our previous conclu-
sion that Wolverine+ has an overly broad candidate range and may

miss effective points in Hop
2
(𝑝) for repairing monotonic search

paths. Wolverine++, with its refined candidate selection, avoids

the accuracy decline observed inWolverine+. It shows notable im-

provements in accuracy, even outperformingWolverine. Besides,
Wolverine++ achieves higher Delete_OPS, which shows an upward

trend. As for Search_OPS,Wolverine++ still performs well. In the

first few rounds, the Search_OPS of HNSW+Wolverine++ is higher

than that of HNSW+Wolverine+. This indicates that the monotonic

search paths repaired by Wolverine++ are shorter than those of

Wolverine+, further demonstrating the effectiveness of the candi-

date selection strategy of Wolverine++. The success of Wolverine++
in all metrics verifies the effectiveness of selected candidate regions,

enabling fast graph updates while maintaining precision.

5.7 Parameter Study (Q6)
In this experiment, we investigate the proper parameter configura-

tion forWolverine++ to achieve the best performance. The results

indicate that adjusting the parameter, 𝛿in, enables us to strike a

favorable balance between deletion efficiency and search accuracy.

The parameter 𝛿in represents the threshold number of new edges

allowed, which corresponds to the neighbors that can be added

when repairing the out-neighbors of the deleted points. In this ex-

periment, we employ the DRQ performance quantification strategy

with update rate 1% on SIFT1M, setting the construction param-

eters for HNSW to a degree threshold of 𝜃𝑑 = 64 and a dynamic

candidate list size of ef = 200. In Fig. 12, we examine the impact

of varying 𝛿in on query accuracy and deletion efficiency, ranging

from an upper limit of 16 neighbors to 64 neighbors. When 𝛿in is

low (e.g., 𝛿in = 16), recall diminishes as updates progress, as the

2278

Never Visited Visited

Wolverine Wolverine+ Wolverine++
0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: Proportion of Repaired Edges Visited

limited number of neighbors may insufficiently repair the disrupted

monotonic search paths. Conversely, a higher 𝛿in allows for more

effective repairs of monotonic search paths. While increasing 𝛿in
leads to improved recall after updates, it also results in decreased

deletion efficiency and query efficiency. This is because that, with

higher 𝛿𝑖𝑛 , the more edges are added into the graph. This increases

the average out-degree of the index. It expands the candidate set

for Wolverine++ when repairing monotonic search paths while

also increasing the search time complexity. Notably, at 𝛿in = 32,

recall consistently improves with updates, and deletion efficiency

remains stable. Consequently, we select 32 as the default 𝛿in for

Wolverine++.

5.8 Proportion of Repaired Edges Visited (Q7)
In this experiment, we test the proportion of repaired edges visited

during queries after deletion for the three methods of theWolverine
family. The results indicate that the edges repaired byWolverine
are necessary for maintaining the accuracy of the index. We con-

duct the experiment on NSW built on SIFT1M. In this experiment,

we first randomly delete 1% of the nodes using Wolverine, then
perform the same queries as in the previous experiment, recording

the repaired edges visited in each query. The experimental results

are shown in the Fig. 13. Specifically, the proportions of repaired

edges used in queries for Wolverine, Wolverine+, and Wolverine++
methods are 89.6%, 87.3%, and 95.5%, respectively. This indicates

that the most of repaired edges are necessary, highlighting the effec-

tiveness of Wolverine family. We observe thatWolverine+ has the

lowest proportion, which is due to its broad candidate set obtaining

strategy that connects too many unnecessary edges. In contrast,

Wolverine++ obtains a significantly more accurate candidate set

through candidate region filtering, demonstrating the success of

Wolverine++ candidate obtaining strategy.

6 RELATEDWORK
6.1 Static ANN Search Algorithms
Existing static ANNS algorithms can be mainly divided into 4 cat-

egories, namely tree-based [4, 5, 7, 29, 37], LSH-based [12, 18, 19,

23, 33, 35, 36, 40], quantization-based [13, 14, 17, 20, 22, 39], and

graph-based [10, 11, 15, 16, 24–26, 32] methods. Graph-based meth-

ods are regarded widely as the most promising approach to solving

the ANN search problem [34], with proposals including HNSW
[26], NSG [11], and FANNG [16]. HNSW [26] approximates Delau-

nay Graph (DG) and Relative Neighbor Graph (RNG), employing a

hierarchical structure with exponentially decreasing nodes from

the bottom up. In each layer, a graph is constructed, with edges at

higher levels functioning as shortcuts. NSG [11] proposes a mono-

tonic RNG, relaxing the edge trimming strategy of RNG to create

more monotonic paths. To reduce construction overhead, it utilizes

an approximate 𝑘NN graph to limit the number of in-neighbor can-

didates. FANNG [16] approximates a sparse neighbor graph (SNG)

by initializing a graph with all nodes but no edges, iteratively en-

hancing connectivity. During each iteration, two randomly selected

nodes are connected with an edge if one cannot be reached via

greedy search from the other.

6.2 Dynamic ANN Search Algorithms
Among the studies on the dynamic ANNS problem, FreshDiskAnn
[30] and SPFresh [38] stand out as the most prominent approaches.

FreshDiskAnn [30] is a graph-based method that supports com-

plete update operations, including both insertion and deletion. It

introduces a novel proximity graph known as FreshVamana, which
is constructed by approximating the 𝛼-RNG. This method compen-

sates for connectivity loss in a fully connected manner. Due to its

relaxed edge trimming policy, FreshDiskAnn minimizes the risk of

newly added edges being trimmed, thereby maintaining the accu-

racy of the updated index. However, its accuracy tends to decrease

slightly during the initial updates before stabilizing at a lower level

compared to the original index. Additionally, the update efficiency

of FreshDiskAnn is hindered by its fully connected strategy, as

the in-degree of the deleted node can be unlimited and potentially

comparable to the index size in the worst-case scenario.

SPFresh [38] combines proximity graphs with clustering to con-

struct the index. It partitions vectors through clustering and builds

a proximity graph for the centroids. During searching, it navigates

to multiple nearest centroids via the proximity graph and evaluates

the vectors in the corresponding clusters. For updates, SPFresh
updates the partition as needed, enabling efficient updates. How-

ever, it struggles to achieve high accuracy due to its coarse-grained

partitioning, which requires scanning numerous nearby clusters to

ensure precision. Additionally, since SPFresh is not a graph-based

algorithm, we do not include it in the comparison with Wolverine.

7 CONCLUSION
We propose Wolverine for the dynamic ANN search problem. First,

Wolverine repairs disrupted monotonic search paths by adding

in-edges for the out-neighbors of points to be deleted. Second,

Wolverine+ improves efficiency by restricting the search space to

be within the 2-hop neighbors of the point to be deleted. Third,

Wolverine++ employs a sophisticated candidate selection policy to

ensure high-quality candidates within the reduced search space,

improving both accuracy and efficiency. Extensive experiments

offer evidence that compared to FreshDiskAnn, Wolverine++ is

capable of improving the deletion throughput by up to 11× and

achieves more stable recall during updates.

ACKNOWLEDGMENTS
This work was supported in part by NSFC Grant No. 62372194.

2279

REFERENCES
[1] Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. 2018. HD-

Index: Pushing the Scalability-Accuracy Boundary for Approximate kNN Search

in High-Dimensional Spaces. PVLDB. 11, 8 (2018), 906–919.
[2] Sunil Arya and David M. Mount. 1993. Approximate Nearest Neighbor Queries

in Fixed Dimensions. In SODA. 271–280.
[3] Artem Babenko and Victor S. Lempitsky. 2016. Efficient Indexing of Billion-Scale

Datasets of Deep Descriptors. In CVPR. 2055–2063.
[4] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

1990. The R*-Tree: An Efficient and Robust Access Method for Points and

Rectangles. In SIGMOD. 322–331.
[5] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Asso-

ciative Searching. Commun. ACM 18, 9 (1975), 509–517.

[6] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn J. Keogh. 2010.

iSAX 2.0: Indexing and Mining One Billion Time Series. In ICDM. 58–67.

[7] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An Efficient Access

Method for Similarity Search in Metric Spaces. PVLDB., 426–435.
[8] Kunal Dahiya, Deepak Saini, Anshul Mittal, Ankush Shaw, Kushal Dave, Akshay

Soni, Himanshu Jain, Sumeet Agarwal, and Manik Varma. 2021. DeepXML: A

Deep Extreme Multi-Label Learning Framework Applied to Short Text Docu-

ments. InWSDM. 31–39.

[9] DW Dearholt, N Gonzales, and G Kurup. 1988. Monotonic search networks for

computer vision databases. In Twenty-Second Asilomar Conference on Signals,
Systems and Computers, Vol. 2. 548–553.

[10] Cong Fu, Changxu Wang, and Deng Cai. 2022. High Dimensional Similarity

SearchWith Satellite System Graph: Efficiency, Scalability, and Unindexed Query

Compatibility. IEEE Trans. Pattern Anal. Mach. Intell. 44, 8 (2022), 4139–4150.
[11] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate

Nearest Neighbor Search With The Navigating Spreading-out Graph. PVLDB.
12, 5 (2019), 461–474.

[12] Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. 2012. Locality-sensitive

hashing scheme based on dynamic collision counting. In SIGMOD. 541–552.
[13] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized Product

Quantization for Approximate Nearest Neighbor Search. In CVPR. 2946–2953.
[14] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized Product

Quantization. IEEE Trans. Pattern Anal. Mach. Intell. 36, 4 (2014), 744–755.
[15] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and Hong Zhang. 2011.

Fast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph. In

IJCAI. 1312–1317.
[16] Ben Harwood and Tom Drummond. 2016. FANNG: Fast Approximate Nearest

Neighbour Graphs. In CVPR. 5713–5722.
[17] Jae-Pil Heo, Zhe L. Lin, and Sung-Eui Yoon. 2019. Distance Encoded Product

Quantization for Approximate K-Nearest Neighbor Search in High-Dimensional

Space. IEEE Trans. Pattern Anal. Mach. Intell. 41, 9 (2019), 2084–2097.
[18] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.

Query-Aware Locality-Sensitive Hashing for Approximate Nearest Neighbor

Search. PVLDB. 9, 1 (2015), 1–12.
[19] Piotr Indyk and RajeevMotwani. 1998. Approximate Nearest Neighbors: Towards

Removing the Curse of Dimensionality. In STOC. 604–613.
[20] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization

for Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1 (2011),
117–128.

[21] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011.

Datasets for approximate nearest neighbor search. http://corpus-texmex.irisa.fr/.

[22] Yannis Kalantidis and Yannis Avrithis. 2014. Locally Optimized Product Quanti-

zation for Approximate Nearest Neighbor Search. In CVPR. 2329–2336.
[23] Yifan Lei, Qiang Huang, Mohan S. Kankanhalli, and Anthony K. H. Tung. 2020.

Locality-Sensitive Hashing Scheme based on Longest Circular Co-Substring. In

SIGMOD. 2589–2599.
[24] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and

Xuemin Lin. 2020. Approximate Nearest Neighbor Search on High Dimensional

Data - Experiments, Analyses, and Improvement. IEEE Trans. Knowl. Data Eng.
32, 8 (2020), 1475–1488.

[25] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.

2014. Approximate nearest neighbor algorithm based on navigable small world

graphs. Inf. Syst. 45 (2014), 61–68.
[26] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate

Nearest Neighbor Search Using Hierarchical Navigable SmallWorld Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836.

[27] Microsoft. 2021. SPACEV1B: A billion-Scale vector dataset for text descriptors.

https://github.com/microsoft/SPTAG/tree/main/datasets/SPACEV1B.

[28] Yun Peng, Byron Choi, Tsz Nam Chan, Jianye Yang, and Jianliang Xu. 2023.

Efficient Approximate Nearest Neighbor Search in Multi-dimensional Databases.

SIGMOD 1, 1 (2023), 54:1–54:27.

[29] Chanop Silpa-Anan and Richard I. Hartley. 2008. Optimised KD-trees for fast

image descriptor matching. In CVPR. 1–8.
[30] Aditi Singh, Suhas Jayaram Subramanya, Ravishankar Krishnaswamy, and Har-

sha Vardhan Simhadri. 2021. FreshDiskANN: A Fast and Accurate Graph-Based

ANN Index for Streaming Similarity Search. CoRR abs/2105.09613 (2021).

[31] Suhas Jayaram Subramanya, Devvrit, Rohan Kadekodi, Ravishankar Krish-

naswamy, and Harsha Vardhan Simhadri. 2019. DiskANN: Fast Accurate Billion-

point Nearest Neighbor Search on a Single Node. In NeurIPS 2019. 24–34.
[32] Suhas Jayaram Subramanya, Devvrit, Harsha Vardhan Simhadri, Ravishankar

Krishnaswamy, and Rohan Kadekodi. 2019. Rand-NSG: Fast Accurate Billion-

point Nearest Neighbor Search on a Single Node. In NeurIPS. 13748–13758.
[33] Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. 2014. SRS:

Solving c-Approximate Nearest Neighbor Queries in High Dimensional Euclidean

Space with a Tiny Index. PVLDB. 8, 1 (2014), 1–12.
[34] Yao Tian, Ziyang Yue, Ruiyuan Zhang, Xi Zhao, Bolong Zheng, and Xiaofang

Zhou. 2023. Approximate Nearest Neighbor Search in High Dimensional Vector

Databases: Current Research and Future Directions. IEEE Data Eng. Bull. 46, 3
(2023), 39–54.

[35] Yao Tian, Xi Zhao, and Xiaofang Zhou. 2022. DB-LSH: Locality-Sensitive Hashing

with Query-based Dynamic Bucketing. In ICDE. 2250–2262.
[36] Yao Tian, Xi Zhao, and Xiaofang Zhou. 2024. DB-LSH 2.0: Locality-Sensitive

Hashing With Query-Based Dynamic Bucketing. IEEE Trans. Knowl. Data Eng.
36, 3 (2024), 1000–1015.

[37] Yang Wang, Peng Wang, Jian Pei, Wei Wang, and Sheng Huang. 2013. A Data-

adaptive and Dynamic Segmentation Index for Whole Matching on Time Series.

PVLDB. 6, 10 (2013), 793–804.
[38] Yuming Xu, Hengyu Liang, Jin Li, Shuotao Xu, Qi Chen, Qianxi Zhang, Cheng Li,

Ziyue Yang, Fan Yang, Yuqing Yang, Peng Cheng, and Mao Yang. 2023. SPFresh:

Incremental In-Place Update for Billion-Scale Vector Search. In SOSP. 545–561.
[39] Bolong Zheng, Ziyang Yue, Qi Hu, Xiaomeng Yi, Xiaofan Luan, Charles Xie,

Xiaofang Zhou, and Christian S. Jensen. 2023. Learned Probing Cardinality

Estimation for High-Dimensional Approximate NN Search. In ICDE. 3209–3221.
[40] Bolong Zheng, Xi Zhao, Lianggui Weng, Nguyen Quoc Viet Hung, Hang Liu,

and Christian S. Jensen. 2020. PM-LSH: A Fast and Accurate LSH Framework

for High-Dimensional Approximate NN Search. PVLDB. 13, 5 (2020), 643–655.

2280

http://corpus-texmex.irisa.fr/
https://github.com/microsoft/SPTAG/tree/main/datasets/SPACEV1B

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph-based ANN Index
	2.2 Dynamic ANN Search
	2.3 Update Performance Quantification

	3 Analysis of Existing Update Methods
	3.1 Baseline Update Operations
	3.2 Insights into Performance Inefficiencies

	4 The Wolverine Algorithms
	4.1 Wolverine with ANN Search for all pout
	4.2 Wolverine+ with 2-Hop Neighbors
	4.3 Analysis of Candidate Sets
	4.4 Wolverine++

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance Overview (Q1)
	5.3 Impact of Update Rate (Q2)
	5.4 Impact of the Value of k (Q3)
	5.5 Algorithm Generalization (Q4)
	5.6 Comparison on Wolverine Algorithms (Q5)
	5.7 Parameter Study (Q6)
	5.8 Proportion of Repaired Edges Visited (Q7)

	6 Related Work
	6.1 Static ANN Search Algorithms
	6.2 Dynamic ANN Search Algorithms

	7 Conclusion
	Acknowledgments
	References

