
Continuous Lifelong Conflict-Aware AGV Routing with
Kinematic Constraints

Ruizhong Wu
DSA Thurst, HKUST(GZ)

rwu601@connect.hkust-gz.edu.cn

Mengxuan Zhang
The Australian National University

mengxuan.zhang@anu.edu.au

Shuxin Wang
Hong Kong Industrial Arti�cial
Intelligence and Robotics Centre

saxonwang@hk�air.org

Frodo Kin Sun Chan
Hong Kong Industrial Arti�cial
Intelligence and Robotics Centre

frodochan@hk�air.org

Yan Nei Law
Hong Kong Industrial Arti�cial
Intelligence and Robotics Centre

ivylaw@hk�air.org

Lei Li
DSA & INTR Thrust, HKUST(HZ)

Department of CSE, HKUST
thorli@ust.hk

ABSTRACT

Automated Guided Vehicles (AGV) are becoming increasingly im-
portant in modern warehouses to cope with the enormous logistic
demands of developing e-commerce and the growing operational
costs. The key component of implementing such a system is plan-
ning the paths of a large horde of AGVs to deliver orders from
shelves to packing locations. The existing solutions regard it as a
Multi Agent PathFinding (MAPF) problem, but they can hardly be
applied in practice because none of them could satisfy the continu-
ous (temporal), lifelong (future task unknown and keeps appear-
ing), kinematic (acceleration/deceleration/rotation), online (fast
response), and scalability (large network, large AGV number, large
task number) at the same time. Therefore, we �rst propose an AGV
routing framework that can satisfy all these properties with its cor-
responding routing algorithm. Then, to improve the e�ciency, we
propose the Multi-Hop Con�ict-Aware Search method (MHCAS)
with action combination, MHSC to reduce the search space, and
OHSMD to decompose motions such that routing time is reduced
by three orders of magnitude. Extensive experimental studies verify
the superiority of our methods compared with the state-of-the-art.

PVLDB Reference Format:

Ruizhong Wu, Mengxuan Zhang, Shuxin Wang, Frodo Kin Sun Chan, Yan
Nei Law, and Lei Li. Continuous Lifelong Con�ict-Aware AGV Routing
with Kinematic Constraints. PVLDB, 18(7): 2254 - 2267, 2025.

doi:10.14778/3734839.3734859

1 INTRODUCTION

With the fast advancement of e-commerce and AI, Automated

Guided Vehicles (AGV) are playing increasingly important roles
in warehouses, where items are transferred from the storage racks
to the packing areas [4, 51]. Such a robotized warehouse can save
human labor signi�cantly, especially when billions of orders could
appear in one single day during the shopping festivals. Although
AGVs have already been widely used in practice, their power is still

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 7 ISSN 2150-8097.
doi:10.14778/3734839.3734859

∗ Lei Li is the corresponding author.

not fully unleashed. This is because to achieve high throughput,
AGVs must avoid con�icts to reduce traveling time. However, due
to the lack of e�ective con�ict-aware routing algorithms, the AGVs
still heavily rely on themselves to avoid collisions during opera-
tion, which leads to the following operation modes: non-cooperative
mode [51] where AGVs decide their routes by themselves, and coop-
erative mode [3, 5, 22, 38, 39, 43, 44, 47] that pre-plan the routes for
the AGVs and let them resolve the con�icts on the �y. Speci�cally,
the �rst mode does not have global information about the other
AGVs’ movements, so the con�icts can hardly be avoided before-
hand. The second mode can reduce the forthcoming con�icts, but
it cannot run as planned because the existing algorithms simplify
restrictions of real-life operations to reduce algorithm running time.

The main di�erence between reality and the simpli�ed environ-
ments is threefold: 1) They assume time is discrete while real-life
time is continuous; 2) Most of them �nd the optimal schedules when
each AGV has only one task to deliver while in real life the tasks
keep appearing continuously (lifelong); 3) They assume AGVs can
appear in the neighboring grid instantaneously while real-life AGVs
have to follow kinematic constraints like acceleration, deceleration,
and turning. If any of these requirements are simpli�ed, the actual
routes would take a longer time as more unforeseen con�icts would
appear. Therefore, in this work, we propose a con�ict-aware AGV
routing algorithm that can satisfy these three requirements.

However, it is non-trivial to achieve them e�ectively and e�-
ciently. The �rst challenge comes from the practical continuous
mode with kinematic constraints. The existing discrete time-step
modes assume the time-space is partitioned into uniform time steps,
and the AGV could move to its neighboring grids instantly between
time steps. However, these simpli�cations ignore the complexity
coming along with the continuous mode in real-life scenarios,
where the searching status is larger and expands more quickly
in routing compared with the discrete mode. Moreover, with kine-
matic constraints, we need to consider the acceleration/deceleration
and turning, i.e., traveling time from one grid to another varies de-
pending on the AGV’s current status. For instance, it takes di�erent
times to turn to neighboring grids in di�erent directions. Even
when an AGV travels in the same direction, it takes di�erent times
to reach its next grid, depending on whether it stops on it or passes
through it. To deal with those challenging scenarios, we propose
a routing model that considers kinematic constraints with a time

2254

https://doi.org/10.14778/3734839.3734859
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3734839.3734859
https://www.acm.org/publications/policies/artifact-review-and-badging-current

interval intersection-based con�ict detection method to meet the
practical requirements for AGV routing.

Subsequently, the second challenge is e�ciency concerns brought
about by the huge search statuses. To ensure that the fastest path
can be accurately found, we propose the General Con�ict-Aware
Search (GCAS) by considering all possible traveling states of move-
ment, but it is computationally expensive because there are more
options available for each action, which leads to a rapid increase in
the search space. In real-world dynamic and time-sensitive environ-
ments like warehouses, the ability to perform timely path planning
is critical. However, GCAS not only fails to respond promptly in
path planning, but the detailed per-step action planning is also
inconsistent with the actual AGV control mechanism. To accelerate
the path search process, we reduce the state number by combin-
ing multiple actions (or steps) along one direction into one action
and propose the corresponding Multi-Hop Con�ict-Aware Search
method (MHCAS). After that, a heuristic strategy named MHSC is
designed to further reduce the search space, and theMotion Decom-

position-based method named OHSMD is put forward to improve
the e�ciency of GCAS by thousands of times.

The last challenge is how to e�ciently organize the continuous
execution of tasks by AGVs. The Con�ict-Based Search (CBS) solu-
tions [5, 23, 30, 32, 38, 39] simply assume the AGVs stay or disappear
at the target after delivery so they only need to consider one batch
of tasks, while in real life the orders keep emerging continuously
and the destinations could not be blocked. The warehouse scenario
solutions [40, 41] assume the AGVs return to their initial position
after delivery, but this rigid strategy would increase the overall
operation time due to the triangle inequality. What is more, the
real-life AGV network has the following characteristics: 1) More
AGVs are used to improve throughput; 2) To reduce the con�ict
possibility, the edges in the network are normally one-way roads;
3) Pickup locations are �xed. We take advantage of these features
and propose a �exible bu�er to reduce the triangle inequality as
much as possible to improve the overall operational e�ciency. Our
contributions can be summarized as follows:

• We propose a realistic AGV routing model and its corresponding
algorithmGCAS that is continuous in time, con�ict-aware during
routing, and considers kinematic constraints;

• We propose MHCAS to match the actual patterns of AGVs, and
MHSC and OHSMD with progressive searching strategies to
improve computational e�ciency;

• We propose a parking location bu�er for e�cient lifelong task
scheduling to improve the makespan of the system;

• We deploy and evaluate our methods with extensive experiments
on various AGV networks. Results show that our approach out-
performs the state-of-the-art.

2 RELATEDWORKS

2.1 Single Agent Path�nding

Depending on the availability of environmental information [29, 54],
this problem can be categorized into local path�nding where the
environment is partially obtained through LiDAR or visual sensors,
and global path�nding where the complete environment is known.
The environment could bemodeled as grid [16] or topological graphs
[7] as used in this work for �exible network, or Voronoi diagrams

[3, 13, 46, 49], probabilistic roadmap methods [12], and geometric

methods [27] that replace the obstacles with indexed geometry. In
terms of the algorithm, Dijkstra’s [10] and �∗ [14] are two base
algorithms when a grid or network is available.�∗ [45], Lifelong �∗

[20],�∗-lite [19] are the dynamic version of�∗ that re-route during
the trip when new obstacles appear. When there is an open area
with no speci�c network, the sampling-based methods like RRT
[21] and RRT∗ [18] generate points randomly to form a search space
incrementally towards the destination. However, they can hardly
deal with multiple agents for the optimal path without con�ict.
Path indexes like CH [11, 36] and HL [2, 8, 35, 55–57] are extremely
fast in �nding the shortest path in a network with both topological
and weight changes, but they are not collision-aware and weights
are not AGV deterministic. Considering the con�ict in the future
can be viewed as an extreme case of the time-dependent routing
[25, 26], but they focus on �nding the fastest path through the �xed
time-dependent function computation, while the speed pro�les and
occupation of AGV network are highly dynamic and unpredictable.
Finally, adapting the existing capacity-aware routing algorithm
[9, 52] directly would result in an explosion of search space.

2.2 Multi-Agent Path�nding MAPF

The simplest solution uses some path algorithms to plan routes for
the AGVs and replan the routes on the �y when con�icts happen
during operation [15, 48, 53]. When it comes to considering other
agents, the problem becomesMulti-Agent Path�nding (MAPF). Clas-
sic optimization algorithms like Ant Colony [28], Particle Swam [33],
and Genetic Algorithm [42] could be used but are too slow to use in
a real-life large warehouse. Con�ict Based Search (CBS) [38] and its
variations [3, 5, 22, 23] are more e�cient than the previous ones
and could achieve near-optimal solutions, but they have to plan
the routes for all AGVs at a time so cannot support real-life online
routing requirement. Besides, they are “one-shot" that do not sup-
port lifelong working scenarios where tasks keep appearing.MAPD

[31, 32] consider lifelong by assigning new tasks for the agents at
their destinations, but it cannot handle our problem where delivery
tasks from the same order share the same destination. RHCR [24]
re-routes every ℎ timesteps and include new tasks. Such a behavior
is to support the CBS-like solutions but requires lots of unnecessary
re-computations. [48] further considers cases where new agents
could appear on the �y. Cooperative �∗ [43] shares a similar pro-
cedure to our approach by planning the routes one by one, but it
only works in the discrete environment without considering kine-
matic and lifelong. [40, 41] are similar and are only e�ective on the
strip-based network. Reinforcement Learning [6, 17, 34, 37] are also
utilized recently, but their e�ciency is still not acceptable to use in
practice. In summary, there is no con�ict-aware solution for MAPF
that supports online, lifelong, and full kinematics at the same time.

3 PRELIMINARY

3.1 General Settings and De�nitions

The whole AGV system runs on a grid network as de�ned below:

De�nition 3.1 (Grid Network). A grid network is made up of
< × = same-size square grids (physical mats) put tightly together,
where< and = are the numbers of rows and columns of the grids.

2255

1 2

3

Figure 1: Grid Network Example. Green Triangle: Pickup

Locations; Blue Triangle: Drop-O� Locations; Orange Circles:

AGV Initial Locations; Yellow Circles: Parking Bu�ers.

Our AGV has a circular shape with a diameter the same as the
grid’s edge length. When it stops or turns, it has to reside exactly
inside one grid; when it moves, it can only go along one row hor-
izontally or one column vertically. Restricting AGVs’ movement
inside grids can reduce the con�icts introduced by arbitrary move-
ments. Therefore, conceptually, a grid network is equivalent to
a graph � (+ , �), where + is the set of vertices denoting the grid
centers and � is the set of edges connecting these centers. Figure
1 shows a directed grid network example with an intersection de-
noting the center of a grid and the directed arrows restricting the
AGV’s moving direction. We will test di�erent settings in the exper-
iments, but use the directed grid as default for easy description in
the remainder of this manuscript. Next, we de�ne the AGV tasks.

De�nition 3.2 (Task). A task is denoted as a triplet g = (B, 3, C),
with B as the origin for item pickup, 3 as the destination for item
dropo�, and C as the pickup time. T = {g8 } is the task set at hand.

There are three types of grids: 1) Pickup (are the task origins;
2) Dropo� � are the task destinations; 3) Initial � park the vacant
AGVs. In a fully automated warehouse, both (and � are �xed and
work in conjunction with speci�c machines for item pickup and
dropo�. In our scenario, these two types of grids are located in the
top row and the bottom row of the warehouse. The initial locations
can be on any other grid. As shown in Figure 1, there are 10 pickups
(green), 10 drop-o�s (blue), and 8 initial parkings (orange).

To ful�ll one task g8 , the system selects one AGV to pick up the
item at B8 from its current location no earlier than C8 and deliver it to
38 as fast as possible. When the AGV reaches B8 or 38 , it will stay to
wait for the item to be placed on the AGV or unloaded to the packing
machines. To support the lifelong routing, the AGV cannot stay at
the drop-o� location as it will block the latter tasks, so we assume it
goes back to its initial location at this stage. Accordingly, we identify
AGV as having the following basic actions: 1) Staying. If we don’t
send commands to the AGV, it will stay where it is, i.e., staying
action; 2) Turning. When we send turning commands to the AGV,
it can change the direction by facing up, down, left, and right; 3)
Moving. When we sendmoving commands to the AGV, it will move
along the current direction. The AGV manufacturers specify the
actual values of these constraints and actions, and we can compute
AGV’s di�erent moving times accordingly. Many research works
assume that the agent moves one step within a �xed time. However,
in real-world conditions, AGV moves with kinematic constraint,
and we model it with the following physical laws:

(1) A constant acceleration and deceleration speed;
(2) A maximum speed limit to move constantly;
(3) A constant rotation speed to change its heading direction

and move only towards the current orientation;
(4) AGV needs to stop before changing the heading direction.

Topology Generalization. It should be noted that our algorithm
can also work in other topologies. Because the underlying data
structure is a graph and all the locations are virtual, we can extend
along the following dimensions: 1) Pickup, Drop-o�, and Parking

Locations: they can be placed in arbitrary places. When the pick-
ups are put on the center shelves, and drop-o�s are placed on the
boundary, we can get another classic warehouse design as used in
[41]; 2) Obstacles: when a location is inaccessible (like a shelf or
pillar), we can remove the edge from it to others. It can also be used
to simulate ad-hoc emergencies; 3) Diagonal Movement: diagonal
edges could be added with each vertex having eight neighbors.

3.2 AGV Movement

Now we de�ne an AGV movement trajectory, i.e., AGV path below:

De�nition 3.3 (AGV Path). AnAGV path is a sequence of actions
along a set of consecutive vertices ? = ï(E0, 020, C0) , . . . , (E: , 02: , C:)ð

where either 1) (E8 , E8+1) ∈ �, or 2) E8 = E8+1, ∀8 ∈ [0, : − 1]. A triple
(E8 , 028 , C8) means AGV takes action 028 at vertex E8 at time C8 .

The �rst condition restricts the movement towards the neighbor-
ing vertex, while the second condition allows one vertex to appear
several times, which occurs when a turning or staying action ap-
pears consecutively. The time C: associated with each vertex is the
time when it takes action at the vertex center, and the following
action’s time should accord with the kinematic constraints.

Considering the shape and size of the AGV and grid, if there is
spatial overlap between the AGV and grid, we say that this grid is
Occupied by this AGV. For example in Figure 2-(a), the AGV 01
occupies grid A and grid B while the AGV 02 occupies grid B and
grid C. Therefore, we say grid B is occupied by two AGVs at time C .
The time interval during which an AGV 0 9 occupies a grid/vertex

E8 is called Occupation Interval (OI), denoted as > 98 = [C1, C2]. For
example in Figure 2-(b), AGV 01 starts to enter B (leaves A’s center)
at C1 and leaves B (arrives at C’s center) at C2, we say 01 occupies grid
B within time interval [C1, C2]. If a grid does not overlap spatially
with any AGV, we regard this grid/vertex as Vacant.

From the perspective of the grid/vertex’s occupation, an AGV
path consists of a set of grids being traversed during its occupa-
tion time. Therefore, an AGV path of 08 can also be represented as
?8 = ï(E0, >

8
0), . . . , (E: , >

8
:
)ð. This format is crucial for con�ict detec-

tion. Next, we discuss the cases when multiple AGVs are moving
simultaneously in the system by starting with two paths:

De�nition 3.4 (AGV Path Conflict). Given any two AGV path

?8 and ? 9 , they have con�ict if ∃(E: , >
8
:
) ∈ ?8 and (E: , >

9

:
) ∈ ? 9

such that >8
:
∩>

9

:
≠ q . Otherwise, we say ?8 and ? 9 are con�ict-free.

At �rst glance, it seems to be conservative because, in some
cases, even if two AGVs occupy the same grid at the same time,
they may not have a collision. For instance, in Figure 2-(a), both 01
and 02 occupy grid B at time C , but they do not collide with each
other. However, as shown in Figure 2-(c), suppose 01 moves to the

2256

A B C

A B Ct1

t2

A B C

(a) (b)

t

A B Ct

D

(c) AGV a1

AGV a2

Figure 2: Gird Occupation and Vacancy Example
right and arrives at A, and 02 moves upward and arrives at B. Then
at the next discrete time C + 1, 01 arrives at B while 02 arrives at D
simultaneously. The classical de�nition of con�ict assumes that no
con�ict occurs in this case, because at moments C and C + 1, the two
AGVs are in di�erent grids. In real scenarios, however, it will cause
collisions. Since AGVs have shape and volume, whenever 01 moves
before 02 fully reaches D, it is bound to hit 02 as their movement
directions are orthogonal. Even if the movement directions are the
same, collisions could still happen. Back to Figure 2-(a), assuming
that 01 and 02 are moving to the right at the same time, they can
both reach grid C at the next discrete time. As AGVs have di�erent
speeds during actual movement, if 01 has a higher speed, it will hit
02. Therefore, our de�nition of con�ict is based on the idea that a
grid can only be occupied by one AGV at any time. As for multiple
paths, the following property is desired:

De�nition 3.5 (Valid Path Set). Given a set of AGV paths % , it
is a valid path set if all its paths are con�ict-free.

For a path set % , we de�ne its makespan " (%), as the time dif-
ference between the last path’s �nish time and the earliest path’s
starting time, to evaluate the performance of the AGV routing
algorithms. Now we can de�ne our problem formally:

Problem De�nition. Given a grid network � (+ , �), a set of
AGVs � = {08 } with kinematic constraints, and a set of # tasks
) = {g 9 }, we aim to �nd a valid path set % such that its makespan
" (%) is minimal.

We call this problem Kinematic Constraints Con�ict-Aware AGV

Routing Problem. It should be noted that the AGV system operates
in an online environment where tasks emerge dynamically and
must collaborate with other machines. For instance, new tasks are
generated only when goods are transported to the pickup location.
Therefore, planning the paths in the task-appearing order is nat-
ural in real life. In addition, system errors caused by mechanical
failures, unexpected task errors, and network delays could incur
collisions from time to time, so online re-routing is necessary for
error handling.

4 CONFLICT-AWARE AGV ROUTING

4.1 Con�ict Detection and Collision Avoidance

In this section, we present how to detect con�icts by time interval
and avoid them by taking con�ict-free actions when planning a
new path in the context of scheduled paths.

As illustrated in Figure 3, we identify four time points during
AGV 08 ’s movement process from grid E 9 ’s perspective:

(1) Entering Time C4 : 08 starts enter the next grid E 9 ;
(2) Arrival Time C0 : 08 arrives at the center of E 9 ;

(3) Leaving Time C; : 08 start to leave E 9 and enter next grid;

(4) Entire Left Time C4; : 08 leaves E 9 completely and arrives at
the center of the next grid.

Accordingly, we can know E 9 ’s occupation interval by 08 is [C4 , C4;].
Since an AGV’s diameter is the same as the grid’s length, the leaving

!"#$

Arrival

Time

Entering

Time

Entire

Left Time

Leaving

Time

Entering Arrive Leaving Entire Left

Waiting / Turning

Occupation Time

%! %" %) %! %" %) %! %" %) %! %" %)

te ta tl tel

Figure 3: Grid Occupation Details Example

time of the previous grid is the same as the entering time of the
following grid. We de�ne C? = C4; − C; as the Travel Time from E 9
to E 9 ’s neighbor, representing the time moving from the center of
E 9 to the center of E 9 ’s neighbor.

Speci�cally, when we have a set of paths, then each grid is as-
sociated with a set of consecutive intervals, whereas each of them
is either Vacant or Occupied. We denote the Occupied Interval

Sequence (OIS) of grid E 9 as $�(E9 = {$�0E9 , . . . ,$�
:
E9 }, where

$�:E9 = [C: , C
′
:
] is E 9 ’s :Cℎ occupied interval. If $�:E9 is occupied by

08 , then we say �($�:E9) = 08 . It should be noted that the grids
are occupied First-In-First-Out. Meanwhile, we denote the Vacant
Interval Sequence (VIS) of grid E 9 as + �(E9 = {+ �0E9 , . . . ,+ �

8
E9 },

where + � 8E9 = [C8 , C
′
8] is E 9 ’s 8

Cℎ vacant interval.
As OIS and VIS are complementary to each other, when we com-

pute one of them, the other one will be generated easily. Therefore,
we only describe how to convert an AGV path into an OIS. Initially,
each grid has one big vacant interval for the whole time domain,
which will be broken into smaller pieces as multiple OIs are inserted
when paths are scheduled. For example in Figure 3, assuming that
the initial VI of grid E 9 is [0, +∞], when a scheduled AGV occupies

E 9 in time interval [C4 , C4;], the VI will be split into two intervals:

[0, C4] and [C4; , +∞].
Next, we use VIS (or OIS) to detect whether the planning path

con�icts with the planned paths. Suppose, with an initial con�ict-
free state, an AGV arrives at E 9 at time C0 , and C f C0 f C ′, [C, C ′] ∈

+ �(E9 , wewill analyze how to keep it con�ict-free by taking Actions:
1) Staying Action: As the vacant interval [C, C ′] is upper bounded

by C ′, the latest time the AGV can stay at E 9 is C ′, beyond which
it will con�ict with other scheduled paths. Therefore, the longest
time period the AGV can stay at E 9 is C ′ − C0 ;

2) Turning Action: The time for the AGV to turn depends on the

turning angle, and we assume that the time it takes to turn is F .
We set C0 +F f C ′ for the AGV to turn without con�ict;

3) Moving Action: This action is needed to ensure that it passes

through all contacting grids without con�ict. Assume that after the
moving action, the AGV moves from E 9 to its neighbor E: , with the
travel time C? depending on the initial state and the actions taken.
From the perspective of E 9 , if C0 + C? f C ′, it can leave E 9 without
con�ict; for E: , if there exists a VI = [C8 , C

′
8] ∈ + �(E: that satis�es

C0 g C8 and C0 + C? f C ′8 , then it can arrive E: without con�ict.
For example in Figure 4, suppose E 9 and E: are E8 ’s out-neighbors.

The blue-shaded areas are the occupied intervals by the scheduled
AGVs. Suppose an AGV 0 enters E8 at C83 (the left end of the orange-

shaded area) and starts to leave E8 at time C
9
3 , which is also the

entering time at E 9 . The exact value of C 93 depends on 0’s actual
movements, such as whether if stops or turns at E8 , how long it

2257

!"#$

!"#$

%!’s Interval

%"’s Interval

!#
!

!$
!
!%
!

!&
!

!'
!

!(
!

!#
"

!$
"
!%
"

!&
"

!'
"

!"#$

%)’s Interval

!#
)

!$
)

!%
)

Figure 4: Con�ict Detection Interval Example (E8 → E 9 and

E8 → E:). Shaded Area: Occupied Intervals; Empty Area: Va-

cant Intervals.

stops or passes through E8 . C84 is the latest staying time at E8 because

if 0 entirely leaves E8 later than C84, it cannot entirely leave E 9 before

C
9
4 , after which E 9 is scheduled to be occupied by another AGV. As
for the other neighbor E: , because its occupation time is longer,
then waiting at E8 is the only option before reaching it. C:2 (the left
end of the green-shaded area) is the earliest possible entering time
to E: , since it is occupied before that; while C85 is the latest staying

time at E8 because another AGV is scheduled to enter E8 at C85.

4.2 Search State

In this section, we adopt a Dijkstra’s-like search strategy to �nd
the fastest route for the current AGV task on top of the previously
scheduled routes. However, unlike the ordinary Dijkstra’s search
where each edge has one �xed weight (denotes distance, travel
time, cost, etc.) and the neighbor’s connectivity is �xed, the edge
weight and connectivity of the AGV routing are both dynamic and
determined by the kinematic constraints. This is because the AGV
routing is stricter than the ordinary routing to avoid con�icts.

In order to �nd a con�ict-free path, an AGV needs to take con�ict-
free actions in each grid. We use a triad (C , E , HD) to store the
searching state, where C is the timestamp arriving at grid E andHD
is the heading directionwith four orthogonal values. Each searching
state can take a con�ict-free action to generate the next state. To
search for the fastest path, an AGV needs to take all con�ict-free
actions to generate all possible states where two problems need to
be addressed. Firstly, given a state, both turning action and moving
action generate a �nite number of states. However, the staying
action can generate an unlimited number of states in a continuous
environment because the staying time is a real number. So the
�rst problem is how to represent all possible staying times? In a
discrete environment, an AGV stays for an integer number of time
units, so it is possible to increase the staying time by 1 unit each
time to generate the next state. Since we can’t enumerate all the
real numbers, we use an interval to represent all possible values of
the staying action in a continuous environment. Even so, di�erent
endpoint values of intervals also produce in�nite states.

Then the second problem is how to determine the endpoint value.
We propose to address it from the perspective of VIS. When the
current grid is reached, the AGV must take a moving action and
generate the state of arriving at the neighboring grid, no matter
how long it stays at the current grid. The AGV’s moving action
must fall into the VIS of the neighboring grid, and there is a limited
number of VI in the VIS. From the VI’s perspective, the AGV has
the earliest timestamp 4C and the latest timestamp ;C to arrive at
the neighboring grid, where 4C and ;C belong to a VI. Therefore, we
can iterate all VIs of the neighboring grid to compute the earliest

and latest timestamp of each VI under the condition that the AGV
can stay for the corresponding time without con�ict.

Based on the above analysis, we transform the in�nite search
state (C , E ,HD) into a �nite search state (4C , ;C , E ,HD). Then, we
claim the correctness of our AGV path search process with the
Theorem below:

Theorem 4.1 (AGV Searching Correctness). Given the

current OIS/VIS, the fastest path for a task can be found if and only if

all the possible search states with smaller entering times at the current

searched grid are considered, and none can result in an earlier arrival

time at its neighboring grid.

Proof. We �rst prove the necessity by contradiction. If any
possible action with a smaller entering time was not considered
when visiting any grid, then this action’s consequential search
spaces would never be ful�lled, and whether their paths’ arrival
times are earlier or later would never be known. Therefore, the
optimality of the current fastest path is not guaranteed. Secondly,
we prove the su�ciency. When all the possible states have been
tested, and none could provide an earlier arrival time, then the
current fastest one is the optimal one. □

4.3 General Con�ict-Aware Search with
Kinematic Constraints

In this section, we �rst model the AGV movement, then we present
the con�ict-aware search with kinematic constraints.

4.3.1 Movement Modeling. We analyze the movements of AGV
towards its neighboring grid and use the following notations to
describe the time of AGV actions:
Moving Time C? : The time spent to move from the current grid to
the neighbor grid with action �<>E , which makes the AGV move
from a grid to its neighbor grid. This time period consists of four
types of sub-action from a kinematic perspective:

(1) C<0 : The time to accelerate uniformly from the current grid
to the neighbor grid with action �<0 ;

(2) C<3 : The time to decelerate uniformly from the current grid
to the neighbor grid with action �<3 ;

(3) C<D : The time to move with uniform speed from the current
grid to the neighbor grid with action �<D ;

(4) C<03 : The time to accelerate uniformly from the current
grid by 1/2 grid length and then decelerate uniformly by
1/2 grid length to the neighbor grid such that it maintains
its original speed, with action �<03 ;

Turning Time. F0°, F90°, F180°, F270° denote the time to turn 0°,
90°, 180°, 270°, respectively.

The AGV has two kinematic states: static (with zero speed) and
moving (with non-zero speed). Speci�cally, when the AGV is static,
it can take staying, turning, or moving actions. It can turn to any
neighbor, but note that di�erent neighbors have di�erent directions
compared with the AGV’s current heading; when it is in the moving
state, it can only take moving action towards its neighbor in the
same direction. Because if the speed of the AGV is not zero, given the
kinematic constraints, the AGV will continue to move forward due
to inertance. Also, when the AGV has reached its maximum speed,
it cannot take an acceleration action �<0 next, which indicates

2258

Static

!!"#

Mov Max
!!"

!!$!!"# !!$

!!"

!!# !!#

Figure 5: States Transition

the speed is also crucial for the next actions. Thus we modify the
search state from (4C , ;C , E , HD) to (4C , ;C , E , B?443 , HD), where
B?443 is the speed when arriving at E . Therefore, we summarize
the AGV states transition as shown in Figure 5.

4.3.2 Search Algorithm. Given the pickup and dropo� grids of
an AGV, we search paths by expanding the search space incre-
mentally, which looks like the same as Dijkstra’s search at �rst
glance. Nevertheless, it is actually di�erent because the movement
is constrained by state transition as analysed in section 4.3.1.

Accordingly, we design the General Con�ict-Aware Search

(GCAS) algorithm as shown in Algorithm 1. Suppose an idle AGV
will execute the current task and has arrived at the pickup location
B at time C with its heading direction HD and zero speed. We
initialize the earliest time 4C to enter the neighbor grid as C and the
latest time ;C (set to ∞). Then the state is inserted into a priority
queue& sorted by 4C (line 1). We iterate the top states of & when it
is not empty (line 3). When the destination 3 with the static state is
reached, the search terminates (line 4). Then we retrieve the actual
path according to the actions taken and update the VIS with the
resulting Path (line 7).

Speci�cally, if the current state is static, neighbors in all direc-
tions can be traversed (line 10), which needs to compare the direc-
tion of AGV and the neighbor grid to determine the turning time
(line 11). Then we compute the earliest and latest time for con�ict-
free leave from E based on C? for each VI of the neighbors (line 14)
with the Collision Avoidance (CA) procedure described in section
4.1. Here, two moving sub-actions �<0 and �<03 are allowed (line
13), with �<03 stopping at the neighbor and �<0 passing through
it. If the state is moving, only the neighbor along the current di-
rection can be visited. The actual possible actions depend on the
current speed. If the AGV has achieved its maximum speed, then it
can either keep the current speed with�<D or decelerate with�<3

(line 19). Otherwise, it can go on accelerating with �<0 , decelerate
with �<3 , stick with the current speed �<D , or take �<03 action
(line 20). Now, we prove the correctness of Algorithm 1 as below.

Theorem 4.2 (GCAS Correctness). Algorithm 1 can �nd the

con�ict-aware fastest path correctly.

Proof. According to Theorem 4.1, we only need to prove Algo-
rithm 1 covers all the possible states. Firstly, depending on whether
the speed is 0 or not, an AGV has only two categories of states, and
they are both covered. Then for the static states, only four actions
could be taken: staying, rotating to one neighbor, moving through
the neighbor, and stopping at it. However, the waiting and the rota-
tion have already been incorporated into the con�ict detection, so
only the two moving actions remain, and their corresponding states
are covered. As for the moving state, all the possible actions are also
covered. Therefore, the search space of Algorithm 1 is complete.
As the states are visited in the increasing order of the arrival time
(and the states’ 4C is always larger than the top’s), the remaining

Algorithm 1: General Con�ict-Aware Search
Input: Graph� (+ , �) ,$�(E ∀E ∈ + , Task g = (B,3, C)
Output: A valid Path set %0Cℎ

1 & ←Insert Initialize BC0C4 (C,∞, B, 0,HD) ;

2 while Q is not empty do
3 BC0C4 ← &.?>? () ;

4 if BC0C4.E = 3 and BC0C4.B?443 = 0 then 1A40: ;

5 if BC0C4.B?443 = 0 then (C0C82 (BC0C4) ;

6 else">C8>= (BC0C4) ;

7 Path Retrieval and*?30C4 (+ �(, %0Cℎ) ;

8 return Path;

9 Function Static(State ():
10 foreachD ∈ (.E’s neighbor grid do
11 HD ← compare (.HD andD;

12 foreach+ � ∈ + �(D do
13 foreach Action ∈ {�<0 ,�<03 } do
14 B?443, 4C, ;C ← CA(Action, VI);

15 & ← Insert =4GC(C0C4 (4C, ;C,D, B?443,HD) ;

16 Function Motion(State ():
17 HD ← (C0C4.HD ;

18 D ← (.E′B neighbor with same HD;

19 if B?443 =<0G_B?443 then�2C8>=!8BC ← {�<D ,�<3 };

20 else�2C8>=!8BC ← {�<0 , �<D , �<3 , �<03 };

21 foreach+ � ∈ + �(D do
22 foreach Action ∈ �2C8>=!8BC do
23 B?443, 4C, ;C ← CA(Action, VI);

24 & ← Insert =4GC(C0C4 (4C, ;C,D, B?443,HD) ;

states all would have larger arrival time to destination, so the �rst
top value is the earliest arrival one, and Algorithm 1 is correct. □

Complexity of Algorithm 1.We start by analyzing the possible
largest number of states. Suppose there are |�| AGVs in the system,
then there are at most |�| − 1 OIs for each grid. When planning
the routes, there are at most |�| − 1 other AGVs running with their
current task scheduled, and in the vast majority of cases, these
AGVs would pass through each grid at most once (because if a grid
is to be passed through more than once by the same AGV, there
is a loop in the AGV’s valid path, which rarely happens). For a
static state, we only need to identify the unique static state with
the direction HD, the grid ID, and VI in the current grid. The
maximum number of directions is 4, the number of grids is |+ |,
and the maximum number of VI is |�|. Therefore, the maximum
number of static states in the queue is 4|�| · |+ |. Then we analyze
how many moving states at most. A moving state can extend up
to 4|�| (line 20 and line 21) states. Since moving states have a
direction, they can only extend in one direction. The maximum
number of grids in this direction is<0G{<,=} steps. Therefore, a
moving action can extend at most (4|�|)<0G {<,=} moving states.
Since any moving state must be obtained by : (: > 0) moving
actions from the static state, any moving state must be traced back
to the static state. We call the moving state obtained from the static
state by 1 moving action the ancestor moving state. Since a static
state extend at most 4|�| (line 10 and line 12) ancestor moving
states and an ancestor moving state extend at most (4|�|)<0G {<,=}

moving states, the maximum number of moving state in the queue
is (4|�| · |+ |) × (4|�|) × (4|�|)<0G {<,=} . We denote # = (4|�| ·

|+ |) + (4|�| · |+ |) × (4|�|) × (4|�|)<0G {<,=}
= (4|�| · |+ |) × (1 +

(4|�|)<0G {<,=}+1). The network needs to store its vertices and their
four edges, requiring $ (|+ | + 4|+ |) space. Additionally, we need
to record the VIs, with each grid having up to $ (|�|) intervals,
requiring $ (|�| · |+ |) space. Therefore, the total space complexity

2259

(a) One-Hop Search

A B C

A B C!!

!"

D

D

(b) Multi-Hop Search

A B C

A B C!!

!"

D

D

A ECB F

(d) Heuristic Search

g2 g3

s g6

g

g8 g9

g1

g4

g7

EDCB FA

A EDC FB

D

A EDCB F!#

!"

!$

!!

(c) Motion Process

Figure 6: Search Strategies

is $ (|+ | + 4|+ | + |�| · |+ | + #) = $ (#). As we use a binary heap
for the priority, the overall time complexity for one task’s general
searching is $ (# log#).

5 OPTIMIZED AGV ROUTING

We �rst propose Multi-Hop Con�ict-Aware Search based on Algo-
rithm 1. Then, we introduce two progressive strategies to further
enhance the search e�ciency.

5.1 Multi-Hop Con�ict-Aware Search

The general search Algorithm1 has a large state number because
of the detailed and less constrained per-step action selection every
time a state is extended to a neighbor. However, it is unnatural in
practice as we do not have control of AGV’s detailed movement
commands for each step. We can only tell the AGV to move from
one grid to another vertically or horizontally. For example, in Fig-
ure 6-(b), when the AGV receives a command for moving to D,
the AGV will move from A to D. There is no separate command
for the intermediate process (passing through B and C). Such an
observation inspires us with a new state generation method: could
we break the constraint of only looking at the direct neighbors
and change the search to a (command-like) destination-oriented
fashion? Therefore, we propose theMulti-Hop Con�ict-Aware

Search (MHCAS) algorithm without intermediate moving states
and only consider when a destination can be reached. In the fol-
lowing, we �rst model the multi-hop search with the movement
analysis, then we present the corresponding search algorithm.

5.1.1 Multi-Hop Movement Modeling. First of all, we general-
ize the neighbors’ concept to the multi-hop neighbors as those grids
that can be reached horizontally or vertically, i.e., all the vertices
from E to the grid network’s boundary along the vertical or hori-
zontal directions are E ’s multi-hop neighbors. In multi-hop search,
the AGV has only one kinematic state pushed into the queue that
is static with zero speed, where each static state corresponds to an
actual AGV moving command. As for the actions, it can take stay-
ing, turning, or moving, with staying and turning incorporated into
the con�ict-aware procedure. Therefore, �<>E is the only con�ict-
aware action. Then the VIS/OIS should also be further extended
for collision avoidance, with Multi-Vacant Interval Sequence

(M-VIS (D, E)) de�ned as the sequence of all vacant time intervals

along the path from D to its multi-hop neighbor E . A path is valid
only if it can pass through all the VIs in the M-VIS.

5.1.2 Multi-hop Neighbor Collision Avoidance. Although we
focus only on the multi-hop neighbors, we need to avoid con�icts
with the passing grids by analyzing the motion of the AGV as
follows:

In the general search model, the moving action contains four
kinds of sub-actions. But in the actual control of the AGV, there is
no separate command for sub-actions. In our scenario, the working
mode of the AGV is to receive the k-step command that drives the
AGV to move k grids in the minimum time and �nally stop at the
command target grid. We analyse how the AGV motion process
is accelerated and decelerated according to the laws of motion in
physics. The fastest moving motion to reach the speci�ed destina-
tion grid after receiving the command is that the AGV �rst accel-
erates uniformly (or at the maximum speed), and then decelerates
uniformly to speed zero to reach the destination grid. For example,
in Figure 6-(c), the AGV is at grid A at time C1, and we assume that
the AGV can reach the maximum speed after accelerating through
two grids. Let’s see how the movement situation would be if we
sent di�erent commands to the AGV. Suppose we send a command
to reach B, and the AGV arrives at C2. Then the action from A to
B corresponds to �<03 , denoted as �2C8>=(�, �) = �<03 . If the
command sent is to D (arriving at C3), then �2C8>=(�, �) = �<0 ,
�2C8>=(�,�) = �<03 and �2C8>=(�, �) = �<3 . If the command is
sent to F (arriving at C4), then �2C8>=(�, �) = �2C8>=(�,�) = �<0 ,
�2C8>=(�, �) = �<D and �2C8>=(�, �) = �2C8>=(�, �) = �<3 .

From the above analysis, each k-hop command (multi-hop neigh-
bor) has a deterministic combination of sub-actions. Therefore, we
can utilize collision avoidance in the general algorithm to imple-
mentMulti-hop neighbor Collision Avoidance (M-CA) proce-
dure that ensures con�ict-free with all passing grids, but now the
sub-actions selection is unique according to hop/step number.

5.1.3 Multi-Hop Search Algorithm. Now we introduce our
Multi-Hop Search Algorithm as shown in Algorithm 2. Because
the speed information is no longer used, we adjust the search state
as (4C , ;C , E ,HD), with 4C and ;C contained in the same VI. Further-
more, each state in the queue is static. The state that reaches E at
the moment of 4C can reach ;C by staying on, which means that
the case of ;C is covered, so we can continue to simplify the state
representation as (4C , E , HD). The main searching organization
(line 1-8) is the same as Algorithm 1, with only one state handling
remaining (line 6). Then inside the Static function, neighbors in
all directions can be traversed (line 10), which needs to compare
the direction of AGV and the neighbor grid (line 11). Then we test
these multi-hop neighbors one by one, each of them calls the M-CA
described in the previous Section 5.1.2 once, generates a new state,
and puts it into & . Now we prove the correctness of Algorithm 2.

Theorem 5.1 (MHCAS Correctness). Algorithm 2 can �nd

the con�ict-aware fastest path correctly.

Proof. Similar to Theorem 4.1, we only need to prove Algo-
rithm 2 covers all the possible states. Firstly, the states in the queue
are static, and our algorithm considers this type of state. During
the search, we extended the state for all possible neighbors, and

2260

Algorithm 2: Multi-Hop Con�ict-Aware Search
Input: Graph� (+ , �) and$�(E ∀E ∈ + , Task g = (B,3, C)
Output: %0Cℎ

1 Initialize BC0C4 ← (C, B,HD) ;

2 &.8=B4AC (BC0C4) ;

3 while Q is not empty do
4 BC0C4 ← &.?>? () ;

5 if BC0C4.E = 3 then 1A40: ;

6 (C0C82 (BC0C4) ;

7 Path Retrieval and*?30C4 (+ �(, %0Cℎ) ;

8 return Path;

9 Function Static(State B):
10 foreachD ∈ (C0C4.E’s Multi-Hop neighbors do
11 HD ← compare (C0C4.HD andD;

12 foreach+ � ∈ + �(D do
13 4C ←M-CA(�<>E , M-VI(E,D));

14 & ← Insert =4GC(C0C4 (4C,D,HD) ;

we considered all the VI of the neighbors. Since all the possible
actions/states are covered, the space of Algorithm 2 is complete. □

Complexity of Algorithm 2. For each M-CA, because it has at
most (<0G{<,=}) multi-hop neighbors and |�| VIs, the complexity
for one multi-hop neighbor is $ (|�| ·<0G{<,=}). If we compute
the multi-neighbors straightly, then complexity becomes $ (|�| ·
<0G{<2, =2}). In terms of the state number, since there are only
static states in the queue, by analysis of the general algorithm, we
know that the the state number is$ (4|�| · |+ |). So the overall time
complexity with & is $ (4|�| · |+ | log(4|�| · |+ |). Therefore, similar
to Algorithm 1, the space complexity for storing the queue states
is $ (4|�| · |+ |), and the overall time complexity of Algorithm 2 is
$ ((4|�| · |+ |) × (|�| ·<0G{<2, =2} + log(4|�| · |+ |)))

Moreover, we propose to improve the e�ciency of Algorithm
2 from two aspects: 1) Shared M-CA. Since the AGVs have the
same mode of movement, there may be common sub-action com-
bination pre�xes for neighbors with di�erent hops, especially for
long-distance multi-neighbors. For example, in Figure 6-(c), for the
move to D and move to F commands, the corresponding sub-actions
from A to B are �<0 . Consequently, we have the opportunity to
reuse the collision-avoidance results of these intermediate grids.
It can reduce the quadratic calling number of the collision-avoid
process to linear, and it is especially e�ective in long-range tasks
as the grid number in a row could be hundreds in real-life ware-
houses; 2) Early Termination. During the M-CA procedure, when
the forward testing phase could not �nd any vacant interval for
some VI, then all the following multi-hop neighbors do not need
testing. This could help reduce the length of each M-CA procedure.

5.2 Progressive Strategies

From the perspective of AGV execution commands, the general
model (GCAS) sends one sub-action at a time that moves only one
step, while the multi-hop model (MHCAS) sends moving actions
that can move one or more steps, which is how AGVs are controlled
in practice. However, the multi-hop model generates a large number
of search states, resulting in poor time e�ciency due to attempting
to search all possible multi-hop neighbors. Meanwhile, the general
model also generates a lot of states because there are a lot of sub-
actions that can be selected. Therefore, we propose two progressive
algorithms that can match the actual mode of controlling AGVs
and improve the computational e�ciency.

5.2.1 Multi-Hop Search with Constrictions (MHSC) Algo-

rithm. The multi-hop search generates the state of all possible
multi-hop neighbors, which is certainly huge. Therefore, we �rst
limit the number of hops to reduce the number of multi-hop neigh-
bors. We restrict the horizontal (vertical) number of search hops to
not exceed the absolute value of the di�erence between the current
column (row) and the destination column (row). For example, in
Figure 6-(d), B is the current grid, 3 is the destination grid since the
distance between 3 and B in the horizontal direction is 3 units, we
limit the hop number to 3 when searching from B , so the multi-hop
neighbor does not include any neighbors right of 6’s column. Simi-
larly, we limit the multi-hop neighbors to 2 in the vertical direction.
Limiting the number of hops is not enough because B may search
to the west, but obviously, 3 is located to the northeast of B . We
continue to restrict the search direction towards the destination
grid. In Figure 6-(d), we limit the search only to the east horizon-
tally and the search only to the north vertically. Although these
constrictions would a�ect the result’s optimality, they could reduce
the search space a lot.

5.2.2 One-Hop SearchwithMotionDecomposition (OHSMD)

Algorithm. The proposed multi-hop search considers all potential
command scenarios, allowing for optimal utilization of AGV per-
formance. However, this approach often leads to the expansion of
a vast number of states, particularly in larger maps.

Inspired by previous AGV movement analysis, we can decom-
pose each k-hop command into a virtual one-hop command (sub-
action) from a motion perspective. Similarly, the virtual one-hop
commands can be merged into the actual k-hop commands. There-
fore, we propose the One-Hop Search to make the general search
model work by introducing sub-actions selection restrictions. Specif-
ically, in general search, each sub-action is independent and has
no dependency. However, according to the decomposed motion
process, the following constraints should be satis�ed: 1) only when
AGV reaches the maximum velocity can �<D be allowed, 2) if
the action corresponding to the extension of the previous state to
the current state has the behavior of deceleration, then when the
current state is extended to the next state, only �<3 is allowed.
Although there are no actual sub-actions, we follow the laws and
constraints of the actual motion process (Section 5.1.2), and after
the search is completed, we can merge multiple sub-actions into a
single action command to control the AGV.

The di�erence between multi-hop and one-hop search is that
multi-hop generates states based on speci�c hop numbers, and
the search space is extended in four orthogonal directions. One-
hop does not determine the corresponding hop number during the
search. Until the search is complete and the path is retraced, the
search space expands outward from the current position.

5.3 Heuristic Search and Action Space Pruning

In this section, we introduce the heuristic function and state pruning
to further improve search e�ciency.

We get the heuristic value ℎ through heuristic functions, and
then, we use E .4C + ℎ for the sorting key of the state of grid E in & .
In the A* algorithm, a simple calculation of the Manhattan distance
yields the ℎ value, but in our search model, we have to take into
account the speed and direction into the state. ℎ needs to be less

2261

than or equal to the time it actually takes to get from the current
state to the destination, and the closer it is, the better. We calculate
the fastest time to reach the destination grid based on the current
state as ℎ under the condition that there is only one AGV in the
grid network with no orientation restrictions.

Suppose �<3 makes the speed decrease by 1 and �<0 makes
the speed increase by 1. We use C5 (:) to denote the fastest time for
AGV to move : grids and C? (:) to denote the time spent to reduce
the speed to 0 after : �<3 from the initial speed of : . Assuming the
input directionHD is upward, the details are shown in Algorithm 3,
and the computation of heuristic value for the other input directions
HD is similar to Algorithm 3.

We discuss it in two cases depending on whether the speed is
0 or not: 1) When the speed is 0, if the row of the destination grid
(3.A>F) is below the current grid (E .A>F), and the AGV needs to
turn 90° twice to reach the target (line 8). For example in Figure
6-(d), this case corresponds to the situation that the input E is the
grid B , input 3 is the grid 67, 68, or 69. If 3.A>F g E .A>F and if the
column of the destination grid (3.2>;) is not the same as the current
grid (E .2>;), the AGV needs to turn 90° once to reach the target (line
10)). This case corresponds to the situation that input 3 is the grid
61, 63, 64, or 66. 2) When the speed is not 0, the situation is complex.
If 3.A>F f E .A>F (line 12), the AGV needs to spend time C? (B?443)
to execute the B?443 step �<3 (line 13) to reach E′, because the
current speed is not 0 and the destination position is in the opposite
direction of the speed. The AGV arrives at E′with a speed of 0, so
the Function Static is called next (line 18). If the 3.A>F > E .A>F

and there is enough distance to stop before reaching 3 (line 15), we
backtrack B?443 steps in the opposite direction to �nd the position
E′, where the speed is zero (line 16). The new position E′ has a larger
ℎ than E , so ℎ needs to minus C? (B?443) (line 16). If the distance
is not enough, the AGV will take time (line 17) to decelerate to
reach E ′ to stop. For the two cases above, the turning time has been
taken into account, and the time to move to the destination (line
4) is added to the �nal value of ℎ. The ℎ value is only related to
the current direction, speed, and destination. Since the direction is
only up, down, left, and right, the value of the speed is limited, and
the destination grid is limited, ℎ can be preprocessed and does not
need to be recalculated every time.

Next, we introduce how to prune the state to further improve
e�ciency. Static states have the potential to generate a large number
of states due to their ability to extend in all directions and to stay
in the current grid. We improve the computation time by pruning
the static states. In the analysis of the multi-hop model, we know
that for the static state, only 4C needs to be recorded, since ;C is
already covered by 4C . Furthermore, we can prune di�erent static
states of the same vertex. For two static state BC0C41 (4C1, E,HD1)

and BC0C42 (4C2, E,HD2), suppose that 4C2 > 4C1 and 4C1 and 4C2
both belong to the same + � of the vertex E . If one of the following
two conditions is satis�ed: 1) HD1 = HD2 2)the turning time
from HD1 to HD2 is less than |4C2 − 4C1 |, BC0C42 can be pruned
directly since 4C2 has been covered by 4C1.

6 LIFELONG TASK SCHEDULING

This section presents the lifelong task scheduling to �nish a set of
tasks continuously. In real life, a complete task is made up of three

Algorithm 3: Heuristic Value Computation
Input: E, B?443 , 3
Output: Heuristic Value

1 ℎ ← 0;

2 if B?443 = 0 then (C0C82 (E,3) ;

3 else">C8>= (E, B?443,3) ;

4 ℎ ← C5 (A>F�85 5) + C5 (2>;�8 5 5) ;

5 return ℎ;

6 Function Static(E, 3):
7 A>F�85 5 ← |E.A>F − 3.A>F | , 2>;�8 5 5 ← |E.2>; − 3.2>; | ;

8 if 3.A>F < E.A>F then ℎ ← ℎ + 2 ∗l90° ;

9 else
10 if E.2>; ≠ 3.2>; then ℎ ← ℎ +l90° ;

11 Function Motion(E, B?443 , 3):
12 if 3.A>F f E.A>F then
13 E′ ← forward B?443 step from E,ℎ ← ℎ + C? (B?443) ;

14 else
15 if |E.A>F − 3.A>F | g B?443 then
16 E′ ← backward B?443 step from E, ℎ ← ℎ − C? (B?443)

17 else E′ ← forward B?443 step from E, ℎ ← ℎ + C? (B?443) ;

18 (C0C82 (E′, 3) ;

trips as illustrated in Figure 1: 1) An AGV travels from its current
location to the pickup location (red), 2) from the pickup location to
the drop-o� location (green), and 3) from the drop-o� location to
somewhere else to make room for the future tasks (orange). In the
following, we discuss where the AGVs should go after delivery and
which AGV should go for a task.

One straightforward solution is to assign each AGV a Fixed

Parking Location such that it has to return to its parking location
after delivery and before being able to be assigned to the next
task. The parking locations are selected from those grids that the
AGVs have to pass through towards the pickup locations to reduce
travel time. However, this �xed strategy is not �exible enough
because it may cause the pickup grid of the next task to be far away
from the parking position, which leads to an increase in makespan.
An improvement over the �xed parking is the Flexible Parking

Location, where the AGVs do not have a �xed parking location
but can go wherever is vacant and nearer to its drop-o� location
when it �nishes delivery. However, when the tasks are not evenly
distributed spatially and temporally, the AGVs might still go to a
faraway location when the nearby ones are all occupied.

To further increase the availability of the parking locations, we
propose the Parking Location Bu�er strategy. Speci�cally, because
a parking location has to take an upward location, the column
that contains a parking location is blocked by it to some extent.
Besides, the AGVs have to go upward towards the pickup locations
eventually, so these “channels" are the ways that must be passed.
Therefore, we could take advantage of this property and add more
bu�er locations (yellow circles in Figure 1) along the column of
the current parking locations such that the parking locations are
multiplied. In this way, when an AGV �nishes delivery, it has a
higher chance to pick a parking location that is nearest to it, such
that detours could be avoided as much as possible. Speci�cally,
when the AGV reaches the drop-o�, it �nds the column with the
smallest horizontal distance from the drop-o� and with unassigned
parking spaces. In this column, it �nds the �rst unassigned parking
space from top to bottom.

In terms of the AGV assignment, we choose the AGV with the
smallest estimated time to reach the pickup of the next task. Specif-
ically, our estimated time is calculated from two parts. The �rst

2262

Table 1: Performance of Di�erent Search Modes

Graph Performance GCAS MHCAS MHSC OHSMD

�1,�

Runtime 114.43 1.94 0.67 0.08

Flowtime 2,173.11 2,176.82 2,176.82 2,174.01
Makespan 40.08 40.23 40.23 40.08

�1,$

Runtime 89.36 1.04 0.33 0.05

Flowtime 2,257.17 2,258.60 2,258.60 2,258.93
Makespan 40.80 40.80 40.80 40.80

part is the time when the AGV arrives at the parking location, and
this time represents the earliest time when the AGV can go to the
next task. The second part is the Manhattan distance of the current
parking space from the pickup location divided by the maximum
speed. Although replacing the current three-part routes could be
reduced to a two-part one where the third coming-back route could
be removed and AGV assignment could start from the drop-o� loca-
tion, it does work in real life. This is because �rstly, going upward
is inevitable, and these channels are taken by the parking locations,
so the two-part one has nearly the same time as the three-part one.
Moreover, it cannot handle cases where the task number becomes
sparse, or the dilemma of where an AGV should go to make room
for the coming delivery tasks. After all, at the end of the day, the
AGVs still need places to park.

7 EXPERIMENT

We implement a series of experiments to evaluate the performance
of our proposed algorithms compared with the state-of-the-art.

7.1 Experimental Settings

All the algorithms are implemented in C++ with -O3 optimization,
and tested on a Ubuntu 20.04 server with two Intel Xeon Platinum
8375C 2.9GHz (each has 32 cores and 64 threads) and 2TB memory.
Networks. 1) Grids: We obtain the grid network �1 from the real
warehouse with size 214 rows × 16 columns. Each grid is 0.25<
long. The top (resp. bottom) row is 100 pickup (resp. drop-o�)
locations, with one grid placed between every two pickups (drop-
o�s). The grid network has no obstacles, and each inner grid has
four connected neighbors. We denote the bidirectional network
as �1,� , and the uni-directed network �1,$, with the direction of
each row and column being set the same and that of neighboring
rows/columns being reversed. We also expand the row and column
number by 2×, 3× and 4× to get larger maps �2 (428 × 32), �3

(642 × 48), and �4 (856 × 64). 2) Diagonal Grids �1,�,�806: This
is a bi-directional network where each grid connects to all its 8
neighbors, including the diagonal ones. 3) Central Shelf �1< :
This is a benchmark warehouse [1] of size 170 × 32, where non-
traversable shelves as pickups are placed in the center and drop-o�s
are on the boundary.
AGV. The maximum speed is 1.5</B , acceleration/deceleration is
a constant value of 1.5</B2, and angular velocity is 1 c A03/B .
Task Sets.We manually generated a task dataset)1 based on �1,
which contains 100 tasks. For each g8 = (B8 , 38 , C8) ∈)1, we randomly
generate C8 and sort the tasks by C8 . For any other g 9 = (B 9 , 3 9 , C 9) ∈
)1 (8 ≠ 9), we set B8 ≠ B 9 , 38 ≠ 3 9 . We also collected three real-life
task datasets)2,)3,)4 used in�1, which all contain 15201 tasks. To
avoid the task start time’s impact on the makespan, the start times
are only used for task ordering, then all the tasks are processed

sequentially and continuously. For the central shelf network, we
generate 1000 tasks randomly.
Parking Bu�er.We test di�erent parking bu�er con�gurations:
�1,�,5 8G has only one parking position per column, so each AGV is
�xed with one parking position; For a more �exible con�guration,
we allocate �ve parking positions per column. �1,�,100 represents
the densest setting with parking positions distributed across 100
columns.�1,�,60 and�1,�,20 are derived from�1,�,100 by removing
the central 40 and 80 columns.
EvaluationMetrics. 1) Runtime: algorithm’s running time; 2) Flow-
time [24]: the sum of the time each agent takes to complete its
journey, which re�ects the throughput of the system; 3) Makespan:
the time required for the entire system to complete all tasks.
Compared algorithms. We will compare the performance of our
four proposed methods General Con�ict-Aware Search (GCAS),
Multi-Hop Con�ict-Aware Search (MHCAS), Multi-Hop Search with
Constrictions (MHSC) and One-Hop Search with Motion Decom-
position (OHSMD) with the existing state-of-the-art baselines SRP
[41], CBS [38], and ECBS [3]. Due to the lengthy computation time
without the absence of heuristics, the experimental results of all
the search algorithms we present incorporate heuristic guidance
(Section 5.3). Speci�cally, CBS/ECBS generates a sequence of ac-
tions for each agent/AGV within each discrete time step, denoted
by (�2C8>=1, �2C8>=2, ..., �2C8>=8). �2C8>=8 either keeps the AGV
stopped on the current grid or moves to a neighboring grid. We
tried two adaptationmethods, the �rst one, denoted asCBSo/ECBSo,
sequentially makes AGVs execute moving actions (searching out
con�ict-free paths to a one-hop neighbour) according to the times-
tamp ordering of the moving actions. This adaptation is rather
natural, because the moving action obtained by CBS just moves one
grid (corresponding to �<03) at a time. This approach, however,
cannot exploit the performance of the AGV. For example, suppose
that�2C8>=8−1,�2C8>=8 and�2C8>=8+1 are moving actions and their
corresponding start positions are in the same column or row, which
means that �2C8>=8−1 and �2C8>=8 can be combined into a single
command. In this way, we will take advantage of the speed of AGV
by sending a 2-step command directly rather than sending two
1-step commands. Therefore, we try the second adaptation method,
denoted as CBSm/ECBSm, which is still based on the moving action
ordering, but lets the AGV execute a longer command each time.

7.2 Experiment Results

7.2.1 Search Comparison. We �rst compared our GCAS, MH-
CAS, MHSC, and OHSMD algorithms with 100 AGVs running)1
on �1. The pickup location is in the same column as each AGV’s
initial location, and they stop at the drop-o�s. As shown in Table 1,
there is not much di�erence in terms of �owtime and makespan,
with GCAS having a slight advantage. However, GCAS, which fol-
lows the conventional routing strategies, has the longest running
time, 1000× of OHSMD. The decrease in runtime demonstrates the
e�ectiveness of our optimized strategies. When we compare the
performance on �1,� and �1,$, the runtime decreases on �1,$ but
with increased �owtime and makespan. This is because the search
space in the �1,� is larger to �nd the fastest paths, whereas �1,$

narrows down the search space. Finally, as OHSMD has the best
performance, we set OHSMD as our representative method.

2263

Table 2: Performance of Di�erent Path Search Algorithms (1 Batch of 100 Tasks)

Graph Performance GCAS MHCAS MHSC OHSMD SRP CBSo CBSm ECBSo ECBSm

�1,$

Runtime 92.84 1.25 0.44 0.07 0.33 5.18 4.96 0.84 0.66
Flowtime 2,039.91 2,041.93 2,041.93 2,042.27 3,057.68 7,473.56 3,110.45 7,480.06 3,169.67
Makespan 38.63 38.63 38.63 38.63 69.52 165.80 66.48 165.80 67.18

Table 3: Lifelong Performance on Synthetic Task Dataset (1000 Tasks)

Graph Performance GCAS MHCAS MHSC OHSMD SRP TP CBS0 CBSm ECBS0 ECBSm

�1,$,5 8G

Runtime 1,867.28 25.01 8.86 1.13 6.21 0.81 52.44 49.91 9.37 7.27
Flowtime 47,219.54 47,222.16 48,585.57 47,100.12 93,445.90 66,504.58 169,595.45 67,866.06 169,601.95 68,560.21
Makespan 527.19 521.62 537.64 524.82 1,006.72 739.69 1,787.02 714.03 1,787.02 721.09
Memory 31 GB 451.2 MB 382.4 MB 135.6 MB 133.4 MB 189.3MB 255.5 MB 262.7 MB 256.9 MB 262.7 MB

Table 4: Lifelong on Industrial Task Dataset (15201 Tasks)

Graph Performance
)2

OHSMD SRP TP

�1,$,5 8G

(Fixed parking)

Runtime 22.71 92.37 308.61
Flowtime 696,687.64 1,405,636.59 1,069,485.37
Makespan 7,023.05 14,131.63 10,741.50

�1,$,100

(100-column
parking)

Runtime 36.57 66.28 308.91
Flowtime 539,582.77 1,137,913.24 1,069,485.37
Makespan 5,427.26 11,437.00 10,741.50

�1,$,60

(60-column
parking)

Runtime 55.21 77.29 314.81
Flowtime 591,206.62 1,078,271.98 1,069,485.37
Makespan 5,943.79 10,844.03 10,741.50

�1,$,20

(20-column
parking)

Runtime 104.71 122.82 314.84
Flowtime 866,606.39 1,211,533.46 1,069,485.37
Makespan 8,702.13 12,180.54 10,741.50

Next, we keep the same experimental setup as above, and shift
the initial positions of AGVs to the pickup positions. Since the
AGV is already in the pickup position, each AGV only needs to
search out a valid path to reach its dropo�s. Therefore, it is a one-
shot MAPF problem, and we compare it with the existing MAPF
solutions SRP [41], CBS [38], and ECBS [3]. As shown in Table 2, SRP
is second only to the OHSMD in terms of runtime, but produces
paths of lower quality. Since SRP �rst determines the sequence
of vertices to pass through, it makes the search directional and
faster. However, SRP causes many tasks to move through the same
vertices sequence, leading to congestion on certain paths, which
increases themakespan and �owtime. The CBS/ECBS is able to solve
con�ict-free actions at each time, but it does not take kinematic
constraints into account, so CBS/ECBS is less e�ective at �owtime
and makespan. ECBS is faster than CBS, but its results are not
guaranteed to be optimal. Compared with the CBS0/ECBS0, since
CBSm/ECBSm considers merging each individual moving action,
both their �owtime and makespan are greatly improved. This also
proves the importance of accounting for kinematics, as it is more
likely to improve the average speed of AGv and the makespan.

Finally, we report OHSMD’s distribution of each task’s comple-
tion time and runtime in Figure 7 using the industrial 15021 tasks.
The tasks are categorized by their pickup and dropo�’s Manhattan
distances. Generally, as the task becomes longer, it takes a longer
time to complete and a longer time to compute. The worst-case
complete time of each category is roughly the same as the next
category’s medium time, which demonstrates the stability of the
result’s quality. In terms of runtime, the worst case increases as
the task becomes longer because it has a larger search space and
con�icts. Nevertheless, the medium runtime increases more slowly,
which explains the higher e�ciency.

[0,32) [32,64) [64,96) [96,128) [128,160)[160,192)
Manhattan Distance

10

15

20

25

30

35

Co
m

pl
et

io
n

Ti
m

e
(s

)

Completion Time Distribution

[0,32) [32,64) [64,96) [96,128) [128,160)[160,192)
Manhattan Distance

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Ru
nt

im
e

(s
)

Runtime Distribution

Figure 7: Distribution of Completion Time and Runtime

7.2.2 Lifelong Strategy. We test the lifelong strategies when
the task set is large. We treat)1 as a batch and copy it 10 times to
get) ′1 . We compared our algorithm with SRP, Token Pass (TP) [32]
and CBS/ECBS. CBS/ECBS regards) ′1 as 10 batch. For each batch,
each AGV moves to the nearest pickup position and then to the
corresponding drop-o� position. So each batch needs to use the
MAPF solver twice. Only after the tasks in each batch are completed
will the next batch be continued. As shown in Table 3, OHSMD
has the best makespan and �owtime, even though we only used
the simplest �xed parking position strategy. The runtime of TP is
slightly better than that of OHSMD, but the quality of the solution
is similar to that of CBS/ECBS. The performance of CBS/ECBS is
positively related to the number of batches and is easy to achieve
lifelong on our synthetic data because every batch is consistent.

The last row shows the memory consumption. As analyzed in
the space complexity, the memory size corresponds to the search
space and action space. Speci�cally, the memory drops fromGCAS’s
31GB to OHSMD’s 135MB, which demonstrates the e�ectiveness
of the reduction in search space and action states and corresponds
to the improved runtime.

As shown in Table 4, compared to �1,$,100, the �xed parking
strategy �1,$,5 8G is faster but has longer makespan. As the central
bu�er number decreases, performance degrades accordingly, with
�1,$,20 deteriorating to a level similar to the �xed parking. Unlike
�1,$,5 8G , the parking spaces in �1,$,20 are located at the edges of
the map. While reducing the central bu�er can reduce congestion
for certain tasks, it also increases the distance for AGVs to reach
their next task. This validates the e�ectiveness of our �exible bu�er
strategy and the importance of setting bu�ers in each column.

7.2.3 Network Structure. We evaluate the impact of network
topologies in Table 5. We �rst compare �1,� with �1,�,3806 , which
further supports diagonal movements. Enabling diagonal move-
ments reduces the makespan of both OHSMD and TP algorithms.
However, as AGVs occupy two adjacent grids simultaneously when
moving diagonally, this negatively a�ects SRP algorithms, which

2264

Table 5: Network Topology

Graph Performance OHSMD SRP TP

�1,�

(cardinal directions)

Runtime 62.92 123.29 898.43
Flowtime 476,036.55 2,234,218.03 1,039,183.99
Makespan 4,792.51 22,475.29 10,449.83

�1,�,�806

(cardinal and
diagonal directions)

Runtime 376.99 164.31 3990.58
Flowtime 452,908.15 3,988,646.84 997,480.41
Makespan 4,556.71 40,021.21 10,038.38

�1<

(Central Shelf)

Runtime 172.92 10.24 63.69
Flowtime 48,744.84 145,735.54 113,178.33
Makespan 534.52 1,563.97 1,190.52

100 200 300 400
(a) AGV Number

0

200

400

600

800

1000

1200

1400

1600

Ru
nt

im
e

(s
)

G1,B Runtime
G2,B Runtime

G1,B Makespan
G2,B Makespan

G3,B G3,O G4,B G4,O
(b) Graph Size

0

2500

5000

7500

10000

12500

15000

17500

Ru
nt

im
e

(s
)

T2 Runtime
T2,Channel+MAD Runtime

T2 Makespan
T2,Channel+MAD Makespan

2000

3000

4000

5000

6000

7000

M
ak

es
pa

n
(s

)

1500

1750

2000

2250

2500

2750

3000

3250

3500

M
ak

es
pa

n
(s

)

Figure 8: Scalability AGV Number and Network Size

1 5 10 15 20 25 30 35 40 45 50 55 60 80 100 120
Number of Threads

0

200

400

600

800

1000

Ru
nt

im
e

(s
)

Runtime Makespan

3350

3400

3450

3500

3550

M
ak

es
pa

n
(s

)

Figure 9: Scalability Thread Number.

�rst determine the grid sequence before resolving con�icts. The
expansion of move directions leads to a larger search space and
additional con�ict resolution for two adjacent grids, so it has a
higher computational cost and longer runtime.

In the central shelf warehouse, OHSMD runs slower than SRP
and TP, and SRP is the fastest as it is optimized for this topology.
Nevertheless, OHSMD achieves the smallest makespan, which is
nearly 1/3 of SRP and 1/2 of TP. This is primarily due to the highly
congested aisles between shelves, and OHSMD still �gures out
higher-quality paths while SRP simply regards the aisle as one
contracted vertex and leaves the con�icts to post-processing.

7.2.4 Scalability Evaluation. We �rst test the scalability with
more AGVs with)2 on �1 and �2. As shown in Figure 8-(a), as the
AGV number grows, the network becomes congested with more
con�icts, thus generating more VIs during path planning, which
results in a runtime. On the other hand, more AGVs can run more
tasks at the same time, so the makespan drops.

In real life, an order$8 consists of multiple tasks {g89 } that share

a common drop-o� location 38 for packing together, so we also
assess the impact of order pickup and drop-o� distributions. 1) We
evaluate the Minimum Average Distance (MAD) strategy [50]. For

an order $8 with pickup locations {B08 , . . . , B
:
8 }, where each B

9
8 is

its column number, the drop-o�’s column number is computed as

38 = argmin3∈�
∑:

9=0"� (3, B
9
8), with � being the set of possible

drop-o� locations and"� the Manhattan distance. 2) We organize
the grids into vertical channels by grouping nearby columns, and
assigning tasks from the same order to pickup locations within

the same channel. Speci�cally, every 10 pickup positions form a
channel, assigned based on task sorting, prioritizing those with
fewer tasks already allocated.

Then, we test the scalability with network size and also the ef-
fectiveness of the Channel+MAD strategy. We set 300 AGVs on
�3 and 400 AGVs on �4. As shown in Figure 8-(b), a larger net-
work takes longer runtime and makespan as the search space is
larger, even with more AGVs. It can also be demonstrated that the
Channel+MAD method provides better �owtime and makespan. In
addition, even though�$ has a longer makespan and �owtime than
�� , its runtime decreased signi�cantly. The reason why runtime
is much larger than makespan is that we set the system/AGV to
work all the time, and there is no waiting for the task to be sent
down to the system. This makes it fairer to compute and compare
the makespan values. The runtime gap is even larger on larger
networks, so a one-way network grid can be used to boost compu-
tational e�ciency for some large warehouses.

7.2.5 Parallel Computation. In �4,$, although the makespan
is around 3000s, its runtime exceeds 1000s. To reduce runtime,
we parallelize path computing with : threads. After all threads
�nish, con�ict-free paths are �nalized, while con�icting ones are
resolved through post-processing. Unlike SRP, which �rst computes
paths without con�ict consideration and adjusts them later, our
method ensures that each thread produces con�ict-free paths with
the remaining |�| − : AGVs. Figure 9 shows that as : increases,
the makespan slightly increases (200s), while runtime initially de-
creases dramatically and then rises slightly. The best con�guration
reduces runtime by up to 760s, with only a 72s increase in makespan.
The initial runtime reduction stems from concurrent task planning,
whereas the increase is attributed to (1) potential inter-thread con-
�icts requiring additional replanning and (2) workload imbalance,
where the slowest thread determines overall execution time.

8 CONCLUSION

In this paper, we introduced a con�ict-free AGV routing system
that is continuous in time, kinematic considered, and lifelong for
tasks. Speci�cally, we propose two base search algorithms, Gen-
eral Con�ict-Aware Search (GCAS) and Multi-Hop Con�ict-Aware
Search (MHCAS), together with two progressive search strategies
(MHSC and OHSMD) to e�ciently �nd the sequential optimal
con�ict-free paths. Additionally, we proposed the parking location
bu�er and task assignment strategy to support e�ective lifelong
task scheduling for continuous tasks. Finally, we conduct compre-
hensive experimental studies to demonstrate our algorithm’s high
e�ciency and e�ectiveness.

ACKNOWLEDGMENTS

Our research is funded by AIR@InnoHK research cluster of the
Innovation and Technology Commission (ITC) of the HKSAR Gov-
ernment. The results presented in this paper within the scope of
the research project ‘Everything Factory - Ultra-�exible Factories
based on Line-less Mobile Production’ has come to a successful
completion because of the support from ITC. We would like to
express our sincere gratitude to them. This work is also supported
by Natural Science Foundation of China #62202116 and Guangzhou
municipality big data intelligence key lab #2023A03J0012.

2265

REFERENCES
[1] [n.d.]. Moving AI Path�nding Benchmarks. https://movingai.com/benchmarks/

mapf/index.html
[2] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path

distance queries on large networks by pruned landmark labeling. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data. 349–
360.

[3] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. 2014. Suboptimal variants
of the con�ict-based search algorithm for the multi-agent path�nding problem.
In Proceedings of the International Symposium on Combinatorial Search, Vol. 5.
19–27.

[4] Robert Bogue. 2016. Growth in e-commerce boosts innovation in the warehouse
robot market. Industrial Robot: An International Journal (2016).

[5] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, Oded Betzalel, David Tolpin,
and Eyal Shimony. 2015. Icbs: The improved con�ict-based search algorithm
for multi-agent path�nding. In Proceedings of the International Symposium on
Combinatorial Search, Vol. 6. 223–225.

[6] Frodo Kin Sun Chan, Yan Nei Law, Bonny Lu, Tom Chick, Edmond Shiao Bun Lai,
and Ming Ge. 2022. Multi-Agent Path�nding for Deadlock Avoidance on Rota-
tional Movements. In 2022 17th International Conference on Control, Automation,
Robotics and Vision (ICARCV). IEEE, 765–770.

[7] Robert T Chien, Ling Zhang, and Bo Zhang. 1984. Planning collision-free paths
for robotic arm among obstacles. IEEE transactions on pattern analysis and
machine intelligence 1 (1984), 91–96.

[8] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability
and distance queries via 2-hop labels. SIAM J. Comput. 32, 5 (2003), 1338–1355.

[9] Chris Conlan, Teddy Cunningham, Gunduz Vehbi Demirci, and Hakan Ferhatos-
manoglu. 2021. Collective shortest paths for minimizing congestion on temporal
load-aware road networks. In Proceedings of the 14th ACM SIGSPATIAL Interna-
tional Workshop on Computational Transportation Science. 1–10.

[10] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs.
Numerische mathematik 1, 1 (1959), 269–271.

[11] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008.
Contraction hierarchies: Faster and simpler hierarchical routing in road networks.
In International workshop on experimental and e�cient algorithms. Springer, 319–
333.

[12] Roland Geraerts and Mark H Overmars. 2004. A comparative study of prob-
abilistic roadmap planners. In Algorithmic foundations of robotics V. Springer,
43–57.

[13] Clara Gomez, Marius Fehr, Alex Millane, Alejandra C Hernandez, Juan Nieto,
Ramon Barber, and Roland Siegwart. 2020. Hybrid topological and 3d dense
mapping through autonomous exploration for large indoor environments. In
2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
9673–9679.

[14] Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics 4, 2 (1968), 100–107.

[15] Wolfgang Hönig, TK Satish Kumar, Liron Cohen, Hang Ma, Hong Xu, Nora
Ayanian, and Sven Koenig. 2017. Summary: multi-agent path �nding with
kinematic constraints. In Proceedings of the 26th International Joint Conference
on Arti�cial Intelligence. 4869–4873.

[16] William E Howden. 1968. The sofa problem. The computer journal 11, 3 (1968),
299–301.

[17] Ryota Kamoshida and Yoriko Kazama. 2017. Acquisition of automated guided
vehicle route planning policy using deep reinforcement learning. In 2017 6th
IEEE International Conference on Advanced Logistics and Transport (ICALT). IEEE,
1–6.

[18] Sertac Karaman and Emilio Frazzoli. 2011. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research 30, 7 (2011), 846–
894.

[19] Sven Koenig and Maxim Likhachev. 2005. Fast replanning for navigation in
unknown terrain. IEEE Transactions on Robotics 21, 3 (2005), 354–363.

[20] Sven Koenig, Maxim Likhachev, and David Furcy. 2004. Lifelong planning A∗ .
Arti�cial Intelligence 155, 1-2 (2004), 93–146.

[21] Steven LaValle. 1998. Rapidly-exploring random trees: A new tool for path
planning. Research Report 9811 (1998).

[22] Jiaoyang Li, Ariel Felner, Eli Boyarski, HangMa, and Sven Koenig. 2019. Improved
Heuristics for Multi-Agent Path Finding with Con�ict-Based Search.. In IJCAI,
Vol. 2019. 442–449.

[23] Jiaoyang Li, Wheeler Ruml, and Sven Koenig. 2021. Eecbs: A bounded-suboptimal
search for multi-agent path �nding. In Proceedings of the AAAI Conference on
Arti�cial Intelligence, Vol. 35. 12353–12362.

[24] Jiaoyang Li, AndrewTinka, Scott Kiesel, JosephWDurham, TK Satish Kumar, and
Sven Koenig. 2021. Lifelong multi-agent path �nding in large-scale warehouses.
In Proceedings of the AAAI Conference on Arti�cial Intelligence, Vol. 35. 11272–
11281.

[25] Lei Li, Wen Hua, Xingzhong Du, and Xiaofang Zhou. 2017. Minimal on-road time
route scheduling on time-dependent graphs. Proceedings of the VLDB Endowment

10, 11 (2017), 1274–1285.
[26] Lei Li, Sibo Wang, and Xiaofang Zhou. 2019. Time-dependent hop labeling on

road network. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 902–913.

[27] Xiao Liang, Guanglei Meng, Yimin Xu, and Haitao Luo. 2018. A geometrical path
planning method for unmanned aerial vehicle in 2D/3D complex environment.
Intelligent Service Robotics 11 (2018), 301–312.

[28] Andrei Lissovoi and Carsten Witt. 2013. Runtime analysis of ant colony opti-
mization on dynamic shortest path problems. In Proceedings of the 15th annual
conference on Genetic and evolutionary computation. 1605–1612.

[29] Lixing Liu, Xu Wang, Xin Yang, Hongjie Liu, Jianping Li, and Pengfei Wang.
2023. Path planning techniques for mobile robots: Review and prospect. Expert
Systems with Applications (2023), 120254.

[30] Hang Ma, Daniel Harabor, Peter J Stuckey, Jiaoyang Li, and Sven Koenig. 2019.
Searching with consistent prioritization for multi-agent path �nding. In Proceed-
ings of the AAAI Conference on Arti�cial Intelligence, Vol. 33. 7643–7650.

[31] Hang Ma, Wolfgang Hönig, TK Satish Kumar, Nora Ayanian, and Sven Koenig.
2019. Lifelong path planning with kinematic constraints for multi-agent pickup
and delivery. In Proceedings of the AAAI Conference on Arti�cial Intelligence,
Vol. 33. 7651–7658.

[32] Hang Ma, Jiaoyang Li, TK Satish Kumar, and Sven Koenig. 2017. Lifelong Multi-
Agent Path Finding for Online Pickup and Delivery Tasks. In Proceedings of the
16th Conference on Autonomous Agents and MultiAgent Systems. 837–845.

[33] Mohammad Aijaz Mohiuddin, Salman A Khan, and Andries P Engelbrecht. 2016.
Fuzzy particle swarm optimization algorithms for the open shortest path �rst
weight setting problem. Applied Intelligence 45 (2016), 598–621.

[34] Afshin Oroojlooy and Davood Hajinezhad. 2023. A review of cooperative multi-
agent deep reinforcement learning. Applied Intelligence 53, 11 (2023), 13677–
13722.

[35] Dian Ouyang, Lu Qin, Lijun Chang, Xuemin Lin, Ying Zhang, and Qing Zhu. 2018.
When hierarchy meets 2-hop-labeling: E�cient shortest distance queries on road
networks. In Proceedings of the 2018 International Conference on Management of
Data. 709–724.

[36] Dian Ouyang, Long Yuan, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin.
2020. E�cient shortest path index maintenance on dynamic road networks
with theoretical guarantees. Proceedings of the VLDB Endowment 13, 5 (2020),
602–615.

[37] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, TK Satish Kumar,
Sven Koenig, and Howie Choset. 2019. Primal: Path�nding via reinforcement
and imitation multi-agent learning. IEEE Robotics and Automation Letters 4, 3
(2019), 2378–2385.

[38] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. 2015. Con�ict-
based search for optimal multi-agent path�nding. Arti�cial Intelligence 219
(2015), 40–66.

[39] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. 2013. The increasing
cost tree search for optimal multi-agent path�nding. Arti�cial intelligence 195
(2013), 470–495.

[40] Dingyuan Shi, Yongxin Tong, Zimu Zhou, Ke Xu, Wenzhe Tan, and Hongbo Li.
2022. Adaptive Task Planning for Large-Scale Robotized Warehouses. In 2022
IEEE 38th International Conference on Data Engineering (ICDE). IEEE.

[41] Dingyuan Shi, Nan Zhou, Yongxin Tong, Zimu Zhou, Yi Xu, and Ke Xu. 2023.
Collision-Aware Route Planning in Warehouses Made E�cient: A Strip-based
Framework. In 2023 IEEE 39th International Conference on Data Engineering
(ICDE). IEEE.

[42] Hamed Shorakaei, Mojtaba Vahdani, Babak Imani, and Ali Gholami. 2016. Opti-
mal cooperative path planning of unmanned aerial vehicles by a parallel genetic
algorithm. Robotica 34, 4 (2016), 823–836.

[43] David Silver. 2005. Cooperative path�nding. In Proceedings of the aaai conference
on arti�cial intelligence and interactive digital entertainment, Vol. 1. 117–122.

[44] Trevor Standley. 2010. Finding optimal solutions to cooperative path�nding
problems. In Proceedings of the AAAI Conference on Arti�cial Intelligence, Vol. 24.
173–178.

[45] Anthony Stentz. 1994. Optimal and e�cient path planning for partially-known
environments. In Proceedings of the 1994 IEEE international conference on robotics
and automation. IEEE, 3310–3317.

[46] Jonas Stenzel, Dennis Lünsch, and Lea Schmitz. 2021. Automated topology
creation for global path planning of large AGV �eets. In 2021 IEEE International
Intelligent Transportation Systems Conference (ITSC). IEEE, 3373–3380.

[47] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne
Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, TK Kumar, et al. 2019. Multi-
agent path�nding: De�nitions, variants, and benchmarks. In Proceedings of the
International Symposium on Combinatorial Search, Vol. 10. 151–158.

[48] Jiří Švancara, Marek Vlk, Roni Stern, Dor Atzmon, and Roman Barták. 2019.
Online multi-agent path�nding. In Proceedings of the AAAI conference on arti�cial
intelligence, Vol. 33. 7732–7739.

[49] Qi Wang, Markus Wulfmeier, and Bernardo Wagner. 2016. Voronoi-based heuris-
tic for nonholonomic search-based path planning. In Intelligent Autonomous

2266

https://movingai.com/benchmarks/mapf/index.html
https://movingai.com/benchmarks/mapf/index.html

Systems 13: Proceedings of the 13th International Conference IAS-13. Springer,
445–458.

[50] Ruizhong Wu, Mengxuan Zhang, Shuxin Wang, Frodo Kin Sun Chan, Yan Nei
Law, and Lei Li. 2025. A Lifelong Con�ict-Aware AGV Routing System. In
Australasian Database Conference. Springer, 447–462.

[51] Peter R Wurman, Ra�aello D’Andrea, and Mick Mountz. 2008. Coordinating
hundreds of cooperative, autonomous vehicles in warehouses. AI magazine 29, 1
(2008), 9–9.

[52] Yehong Xu, Lei Li, Mengxuan Zhang, Zizhuo Xu, and Xiaofang Zhou. 2023.
Global routing optimization in road networks. In 2023 IEEE 39th International
Conference on Data Engineering (ICDE). IEEE, 2524–2537.

[53] Alexander Zelinsky. 1992. A mobile robot navigation exploration algorithm.
IEEE Transactions of Robotics and Automation 8, 6 (1992), 707–717.

[54] Han-ye Zhang, Wei-ming Lin, and Ai-xia Chen. 2018. Path planning for the
mobile robot: A review. Symmetry 10, 10 (2018), 450.

[55] Mengxuan Zhang, Lei Li, Wen Hua, Rui Mao, Pingfu Chao, and Xiaofang Zhou.
2021. Dynamic hub labeling for road networks. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 336–347.

[56] Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou. 2021. E�cient 2-
hop labeling maintenance in dynamic small-world networks. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 133–144.

[57] Mengxuan Zhang, Lei Li, and Xiaofang Zhou. 2021. An experimental evaluation
and guideline for path �nding in weighted dynamic network. Proceedings of the
VLDB Endowment 14, 11 (2021), 2127–2140.

2267

	Abstract
	1 Introduction
	2 Related Works
	2.1 Single Agent Pathfinding
	2.2 Multi-Agent Pathfinding MAPF

	3 Preliminary
	3.1 General Settings and Definitions
	3.2 AGV Movement

	4 Conflict-Aware AGV Routing
	4.1 Conflict Detection and Collision Avoidance
	4.2 Search State
	4.3 General Conflict-Aware Search with Kinematic Constraints

	5 Optimized AGV Routing
	5.1 Multi-Hop Conflict-Aware Search
	5.2 Progressive Strategies
	5.3 Heuristic Search and Action Space Pruning

	6 Lifelong Task Scheduling
	7 Experiment
	7.1 Experimental Settings
	7.2 Experiment Results

	8 Conclusion
	Acknowledgments
	References

