
EinDecomp: Decomposition of Declaratively-Specified Machine
Learning and Numerical Computations for Parallel Execution

Daniel Bourgeois

Rice University

dcb10@rice.edu

Zhimin Ding

Rice University

zd21@rice.edu

Dimitrije Jankov

Rice University

dimitrijejankov@gmail.com

Jiehui Li

Rice University

jl302@rice.edu

Mahmoud Sleem

Rice University

msm15@rice.edu

Yuxin Tang

Rice University

yuxin.tang@rice.edu

Jiawen Yao

Rice University

jy75@rice.edu

Xinyu Yao

Rice University

xy38@rice.edu

Chris Jermaine

Rice University

cmj4@rice.edu

ABSTRACT

We consider the problem of automatic parallelism in high-perform-

ance, tensor-based systems. Our focus is on intra-operator paral-
lelism for inference tasks on a single GPU server or CPU cluster,

where each operator is automatically broken op so that it runs on

multiple devices. We assert that tensor-based systems should offer a

programming abstraction based on an extended Einstein summation
notation, which is a fully declarative, mathematical specification

for tensor computations. We show that any computation specified

in the Einstein summation notation can be re-written into an equiv-

alent tensor-relational computation that facilitates intra-operator

parallelism, and this re-write generalizes existing notations of ten-

sor parallelism such as “data parallel” and “model parallel.” We

consider the algorithmic problem of optimally computing a tensor-

relational decomposition of a graph of operations specified in our

extended Einstein summation notation.

PVLDB Reference Format:

Daniel Bourgeois, Zhimin Ding, Dimitrije Jankov, Jiehui Li, Mahmoud

Sleem, Yuxin Tang, Jiawen Yao, Xinyu Yao, and Chris Jermaine. EinDecomp.
PVLDB, 18(7): 2240 - 2253, 2025.

doi:10.14778/3734839.3734858

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/dcbdan/einsummable.

1 INTRODUCTION

Automatically partitioning numerical computations over matrices

or multi-dimensional arrays (often referred to as tensors) so that

they can be run in parallel on multiple computers, cores, or compute

devices such as GPUs is a key problem in modern computing.

There are two types of parallelism available to tensor-based sys-

tems. In intra-operator parallelism [3, 31, 46], an operator (such as

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 7 ISSN 2150-8097.

doi:10.14778/3734839.3734858

a matrix multiply) is decomposed so that different sites or compute

devices can work on different parts of the operator at the same

time. In inter-operator parallelism [19, 20, 33] (typically realized as

pipeline parallelism in tensor and database systems) different oper-

ators are placed on different sites/devices and as the computation

progresses, intermediate results are moved from site to site.

Both types of parallelism can increase throughput—the amount

of data processed per time period—because they facilitate the use

of additional compute resources. However, in many modern AI

models, only intra-operator parallelism can reduce latency—the
time to process a given amount of data—as parallelizing a given

operator can mean that it takes less time to execute.
1
Thus, for user-

facing tasks (such as AI inference, when a human is waiting for the

results) or other, latency-critical tasks, intra-operator parallelism is

particularly important. It is inter-operator parallelism that we are

concerned with in this paper.

Effectively applying intra-operator parallelism is very challeng-

ing due to the imbalance between modern compute and network

speeds. For example, consider the multiplication of two 𝑛 by 𝑛 ma-

trices. The optimal 3D algorithm for parallelizing multiplication of

square matrices on 𝑑 devices [3] requires transferring 𝑛2×3𝑑
1

3 float-

ing point numbers.
2
Using eight H100 GPUs, the lower bound on

compute time required tomultiply two 10
4×10

4
matrices (half preci-

sion) using the 3D algorithm is around 0.000125 seconds. In contrast,

the time required to transfer the 10
8 × 6 floating point numbers re-

quired to perform the computation using a super high-performance

3.2 terabit Infiniband connection is 0.003 seconds—nearly 30× the

required compute time. Thus, even the fastest modern Infiniband

connection between machines make it difficult to facilitate latency

reduction using cross-machine parallelism in GPU clusters. GPU-to-

GPU interconnects on the same server are faster
3
but point remains:

modern compute devices are so fast that realizing latency reduction

via inta-operator parallelism is challenging.

1
For example, in most popular transformers (such as LLaMA), the compute graph is

“long and skinny” without inherent parallelism to exploit via pipelining, and intra-

operator parallelism is necessary to decrease latency. Other models, such as MoEs [16],

are designed with parallelism in mind and may be more amenable to pipelining.

2
This considers the cost to shard and place the input matrices, and to aggregate

intermediate results.

3
NVLink provides for up to 7.2 terabits per second, bi-directionally, between any two

GPUs on a server, for 112 terabits of connectivity on an 8-GPU server.

2240

https://doi.org/10.14778/3734839.3734858
https://github.com/dcbdan/einsummable
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3734839.3734858
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Automating intra-operator parallelism. Because realizing ac-

tual speedups from intra-operator parallelism is so difficult, it makes

sense to develop intelligent algorithms that can automatically deter-

mine how to best decompose operators over tensors. Automation is

attractive because in the general case, the design space for realizing

intra-operator parallelism is huge, and made worse when the goal

is not simply to decompose a single operator, but an entire, complex

computation, such as inference in a modern transformer.

The classical forms of intra-operator parallelism in AI/ML are

data parallelism [12, 18] and model or tensor parallelism [15, 37, 55].

In data parallelism a batch of data are sharded into sub-batches, and

handled at different sites. In model parallelism, the model is parti-

tioned and data are replicated. However, data parallelism and model

parallelism are not the only options [22, 56]. The aforementioend

3D decomposition can be seen as form of joint data and model paral-

lelism. Even the terms “data-” and “model-parallel” are problematic.

Deep within an ML computation, it is unclear which dimensions

are “data” dimensions and which are “model” dimensions.

Programming and intra-operator parallelism.With a few no-

table exceptions [8, 22, 32, 56], there has been relatively little work

aimed at “hands-free” decomposition of tensor-based computations

to enable fully-automated, intra-operator parallelism. The problem

we consider in this paper is how to optimally and automatically

decompose a computation consisting of a large number of tensor-

based operators to reduce latency, via intra-operator parallelism.

Because slow inter-server network connections make latency re-

duction via intra-operator parallelism for multi-server GPU-based

computations challenging, our focus is on single-server GPU-based

inference where a super-fast network (based on a technology such

as NVLink) is available, or on multi-machine CPU clusters, where

the slower processors make latency reduction from intra-operator

parallelism easier to realize.

In this paper, we address two, closely-linked questions. First,

what programming abstraction should systems for tensor-based

computing offer to enable intra-operator parallelism? Second, given

that abstraction, how should such systems automatically decom-

pose an tensor-based computation? We believe that these two ques-

tions cannot be disentangled, because the selected programming

abstraction needs to expose the semantics underlying the array-

based computation to the system, or else the system cannot un-

derstand how to properly decompose the computation. While the

programming abstraction can be hidden beneath a PyTorch-like

API for programmers familiar with the current API, the current

state of affairs, where operations over tensors (such as matrix multi-

plication) are black-box operations whose semantics are opaque to

the system, cannot easily facilitate fully automated intra-operator

parallelism. Systems such as PyTorch have massive APIs, and so any

ad-hoc approach that does not seek to provide a unified abstraction

for specifying the semantics of computations over tensors is not

likely to be practical. As the developers of PyTorch state, “Writing

a backend for PyTorch is challenging. PyTorch has 1200+ operators,

and 2000+ if you consider various overloads for each operator [36].”

Our contributions. This paper has three main contributions.

First, we argue that tensor-based systems should offer a pro-

gramming abstraction based on an extended Einstein summation
notation [14]. Einstein summation notation is a fully declarative,

mathematical specification for tensor computations, that is com-

mon in physics and is already supported in at least some fashion by

both PyTorch and TensorFlow, and so it already has some buy-in.

Further, it is simple and easy to understand. If one views a tensor

as a relation—tensors can be seen as relations mapping keys (lists

of integers that index into the tensor) to values (some sort of scalar

value)—then Einstein summation notation is closely related to other

relational programming languages such as SQL, as it specifies a

join followed by an aggregation over the input tensors [5]. We call

our expended Einstein summation notation EinSum.
Second, we show that any computation expressed in EinSum can

be re-written into an equivalent tensor-relational computation [54].

A tensor-relational computation is a relational computation that

operates not over relations mapping keys to scalars, but instead

operates over relations mapping keys to tensors. This equivalence

is crucial because while a classical relational system operating over

scalars is never going to be competitive with PyTorch or TensorFlow,

tensor-relational computations are amenable to a high-performance

implementation on top of a tensor-based runtime that, in theory

could be implemented on top of almost any existing system for ten-

sor computations. A tensor-relational computation pushes tensors,

not scalars, through a runtime, and operates over those tensors us-

ing high-performance kernel functions [9, 26, 51] that are carefully
optimized to make full use of the CPU/GPU hardware.

Re-writing an operation specified in EinSum into an equivalent,

tensor-relational computation facilitates intra-operator parallelism,

as it effectively decomposes the operation into a set of kernel in-

vocations. However, the space of possible decompositions is large,

and further complicated when the input computation consists of

many operations. The decompositions cannot be considered inde-

pendently, as decomposing an operation to support intra-operator

parallelism implicitly produces a decomposition of the output ten-

sor that may be incompatible with the next operation.

Thus, our third contribution is to consider the problem of op-

timally choosing a tensor-relational decomposition for a directed,

acyclic graph of EinSum operations. We propose an algorithm,

called EinDecomp, that does the decomposition so as to minimize

the amount of communication between kernel calls in the resulting

tensor-relational computation, while ensuring that there is enough

work to keep all devices (CPU cores or GPUs) busy.

An extensive set of experiments on CPUs and GPUs shows the

value of the EinDecomp approach.

2 PAPER ROADMAP

We begin by describing the EinSum language through a number of

examples, including how it can be used to succinctly specify multi-

headed attention [52] (Section 3). We then define the notion of a

tensor relation, which is a relation that can be used to implement a

tensor as a set of keyed sub-tensors. We describe a simple relational

algebra over tensor relations called the tensor relational algebra
(TRA) that can be implemented on top of an existing runtime, like

PyTorch, or as a special-purpose TRA runtime. We then describe

how any EinSum expression can be re-written into a computation

in the TRA (Section 4). The amount and exact nature of the par-

allelism available in the resulting TRA computation is controlled

by a partitioning vector. Thus, given a complex computation (such

2241

as a large language model) specified as a graph of EinSum opera-
tions, the problem of decomposing it into a TRA computation is

reduced to the problem of associating a partitioning vector with ev-

ery computation in the graph (Section 5). We develop a cost model

for executing such a TRA computation (Section 7), as well as a

dynamic programming algorithm called EinDecomp that chooses

the set of partitioning vectors to minimize that cost (Section 8).

3 EINSUM BACKGROUND AND EXAMPLES

We introduce the EinSum tensor operator by generalizing from

matrix multiplication. First, we define the notion of tensor. We use

bold upper-case (for example, U) to denote a tensor. Define the

bound vector for U, bU to be a vector of integers of length 𝑟 . “r”

stands for “rank;” matrices are rank-2 tensors. Next, define I(bU)
to be the set {0...bU [0] −1}×{0...bU [1] −1}× ...×{0...bU [𝑟 −1] −1}.
This is the set of all indices or keys that obey the bound. A tensor

U is then a function from I(bU) to the set of real numbers.

Simple EinSum examples. We start with the classic example: ma-

trix multiplication. Let X and Y be matrices with bounds [100, 200]
and [200, 50], respectively. Then matrix multiplication is written

as: ∀ 𝑖, 𝑘 ∈ I ([100, 50]):

Z𝑖,𝑘 ←
∑︂

𝑗∈I([200])
X𝑖, 𝑗 × Y𝑗,𝑘 (1)

For simplicity, we may drop the subscript on the aggregation

operation, as it is implied; any indices that appear in the input

tensors that do not appear in the output tensor must be aggregated.

We also typically drop the range specification for the output labels,

as this is implied by the bound vector for the output tensor.

If instead of computing matrix multiply, we wanted to compute

the squared 𝐿2
distance between each row of X and each column of

Y, then we can replace the scalar multiplication 𝑥 ×𝑦 with (𝑥 −𝑦)2:

Z𝑖,𝑘 ←
∑︂
(X𝑖, 𝑗 − Y𝑗,𝑘)2 .

To compute the 𝐿∞ distance instead, (i) replace 𝑥 ×𝑦 with |𝑥 −𝑦 |
and (ii) replace the summation with maximization:

Z𝑖,𝑘 ← max |X𝑖, 𝑗 − Y𝑗,𝑘 |.

If one views the tensors as relations mapping keys to real values,

binary EinSum expressions perform a join of the two tensors to link

values, followed by the application of a scalar function (multipli-

cation, squared difference, etc.), followed by an aggregation. It is

possible to have unary EinSum expressions where the join is re-

placed by a simple map operation that only applies a scalar function.

The aggregation operator must be associative and commutative.

General form of EinSum. In full generality, EinSum applies to

all rank 𝑟 tensors, not just matrices. The general form involves

more notation to specify indexing; the notation will be necessary to

precisely describe decompositions of general EinSum expressions.
A label is some symbol that can be bound to a value. We use

ℓU to denote a list (vector) of labels used to index into tensor U.

Viewed relationally, a tensor with label vector ℓU is equivalent to a

database relation with schema U(ℓU [1], ℓU [2], ..., val). When we

“bind” ℓU, we are specifying specific key values we are interested in

selecting for.

Often, we will need to project or permute a bound vector. Given

two lists of labels ℓ1 and ℓ2, and a bound vector b, define b[ℓ1; ℓ2] to
be a vector of length |ℓ1 |, where the 𝑖th entry is b[𝑗] iff ℓ1 [𝑖] = ℓ2 [𝑗].
As an example, let b = [2, 3, 4] and let ℓ1 = [𝑘, 𝑖] and ℓ2 = [𝑖, 𝑗, 𝑘].
Then b[ℓ1; ℓ2] = [4, 2].

Given this, binary Einsum expressions take the general form:

∀ ℓZ ∈ I (bZ) : ZℓZ ←
⨁︂

ℓagg∈I(bXY [ℓagg;ℓXY])

⨂︂(︁
XℓX ,YℓY

)︁
(2)

Here,

⨁︁
is the aggregation operator and

⨂︁
is the scalar function

applied to joined values (EinSum is an extended Einstein summation

notation as it allows for arbitrary

⨁︁
and

⨂︁
operations). In the

above expression, to denote the concatenation of two label lists ℓX
and ℓY, we use ℓXY. bXY similarly denotes the concatenation of two

bound vectors.

Consider a more complicated EinSum expression over tensors.

Assume that we have two tensors X and Y with bound vectors

bX = [10, 100, 20] and bY = [100, 20, 2000]. We wish to transpose

X to obtain a tensor with bound [20, 10, 100], then transpose Y to

obtain a new tensor with bound [20, 100, 2000], and do a batch

matrix multiply [2] of the two resulting tensors, and then sum out

the batch dimension.

In EinSum, this is expressed in the single expression:

∀𝑖, 𝑘 ∈ ([10, 2000]),Z𝑖,𝑘 ←
∑︂

𝑏,𝑗∈I([20,100])
X𝑖, 𝑗,𝑏 × Y𝑗,𝑏,𝑘

Considering the general form, we have ℓX = [𝑖, 𝑗, 𝑏], ℓY = [𝑗, 𝑏, 𝑘],
ℓagg = [𝑏, 𝑗] and bXY = [10, 100, 20, 100, 20, 2000]. The bound vector
for the aggregation is computed as bXY [ℓagg; ℓXY]. How? ℓagg has
two labels: 𝑏 and 𝑗 . As 𝑏 occupies the third (and fifth) position in

ℓXY, and 𝑗 occupies the second (and fourth) position in ℓXY, we

select the third (or fifth) item in bXY, and the second (or fourth)

item results in bXY. This results in the bound vector [20, 100].
When the aggregation operator is summation and the join func-

tion is multiplication, then the EinSum is often referred to as a

contraction. Contractions include matrix multiplication and tend to

be the most computationlly challenging EinSum expressions. The
labels that appear in inputs but not outputs are ℓagg. If ℓagg is empty

(meaning there are no indices being summed out), then the EinSum
is often referred to as element-wise and the aggregation operator

may be omitted. If ℓZ contains labels not found in either ℓX or ℓY,

then the EinSum is often referred to as a broadcast, as entries are
being replicated across one or more dimensions. In the remainder of

the paper, we ignore broadcasts (so bZ = bXY [ℓZ; ℓXY]) and focus

on contractions. We assume no repeated labels in ℓX or in ℓY, but

labels are often repeated across the two sets.

Multi-headed attention via EinSum. EinSum can be used to spec-

ify most modern ML computations. For an informatative examaple,

we use EinSum expressions to specify multi-headed attention [52]

used by large language models. Multi-headed attention runs the

attention mechanism several times in parallel, and the attention

mechanism includes a softmax term. Working backwards, we first

build softmax in EinSum.
For amatrixX, softmax can be expressed in the following EinSum:

C𝑖 ← max X𝑖, 𝑗 E𝑖, 𝑗 ← 𝑒X𝑖,𝑗−C𝑖
S𝑖 ←

∑︂
E𝑖, 𝑗 Y𝑖, 𝑗 ←

E𝑖, 𝑗

S𝑖

2242

As the extensions to 𝑟 > 2 and 𝑟 = 1 are straightforward, we

assume there is an EinSum softmax macro that accepts any non-

scalar tensor.

The attention mechanism, applied to “query,” “key” and “value”

matrices Q, K, V, is given by softmax(QK
𝑇

√
𝑑𝑘
)V, where 𝑑𝑘 is the

number of columns of K. This can be expressed as the following

EinSum:

T
(1)
𝑖,𝑘
←

∑︂
Q𝑖, 𝑗 × K𝑘,𝑗 T

(2)
𝑖,𝑘
← 1√︁

𝑑𝑘

T
(1)
𝑖,𝑘

T
(3) ← softmax(T(2)) Y𝑖,𝑘 ←

∑︂
T
(3)
𝑖, 𝑗
× V𝑗,𝑘

Multi-headed attention, applied again to query, key and value

matrices, is typically presented as follows:

MultiHead(Q,K,V) = [H1, ...Hℎ]W𝑂

where H𝑖 = Attention(QW𝑄

𝑖
,KW𝐾

𝑖 VW
𝑉
𝑖)

Here, the input matrices are linearly projected once for each “head”

according to weight matrices. Then, the result of each attention

head is concatenated together and linearly projected to the final

output space.

In the following EinSum, the label “h” stands for “head”, “s” for
“sequence” and “a” for “attribute.” First, the query, key and value

matrices are linearly projected across the head dimension:

Q
𝐻
𝑠,ℎ,𝑑
←

∑︂
Q𝑠,𝑎 ×W

𝑄

𝑎,ℎ,𝑑

K
𝐻
𝑠,ℎ,𝑑
←

∑︂
K𝑠,𝑎 ×W𝐾

𝑎,ℎ,𝑑

V
𝐻
𝑠,ℎ,𝑑
←

∑︂
V𝑠,𝑎 ×W𝑉

𝑎,ℎ,𝑑

The attention computation is “parallelized” by batching across the

head dimension:

T
(1)
ℎ,𝑠,𝑠′

←
∑︂

Q
𝐻
𝑠,ℎ,𝑑
× K𝐻

𝑠′,ℎ,𝑑 T
(2)
ℎ,𝑠,𝑠′

← 1√︁
𝑑𝑘

T
(1)
ℎ,𝑠,𝑠′

T
(3) ← softmax(T(2)) O𝑠,ℎ,𝑑 ←

∑︂
T
(3)
ℎ,𝑠,𝑠′

× V𝐻
𝑠′,ℎ,𝑑

Lastly, the linear output projection is applied:

Y𝑠,𝑎 =
∑︂

O𝑠,ℎ,𝑑 ×W𝑂
𝑎,ℎ,𝑑

Note that in the EinSum formulation, W
𝑂
is not a matrix as in the

standard defintion but a rank-3 tensor. This is still equivalent as

the contraction producing Y is equivalent to first concatenating

the aggregation dimensions ℎ and 𝑑 on inputs O andW and then

doing matrix multiply.

4 RE-WRITING EINSUM TO TRA

In this section, we describe how any computation expressed in

the EinSum can be transformed into a computation in the tensor-

relational algebra (TRA) [54]. The TRA is a simple implementation

abstraction that can be implemented on top of any appropriate

tensor-based back-end. Like relational algebra, TRA is trivially

parallelizable, and this rewrite into TRA allows for parallelization

of EinSum expressions. Translating EinSum into TRA so it can be

executed on a tensor backend is analogous to translating SQL into

relational algebra so it can be implemented on a database backend.

4.1 Tensor Relations

The TRA operates over tensor relations. A tensor relation may be

viewed as a set of pairs of the form

(key, tensor)
Mathematically, it is a function mapping keys to tensors. Like a

tensor, a tensor relation R has a bound vector bR , but it also has a

partitioning vector dR . The tensor relation is then a function

R : I (dR) →
(︃
I
(︃
bR
dR

)︃
→ R

)︃
Here, the division

bR

dR

operates element-wise over the vectors. Thus,

we can evaluate R at any value i ∈ I (dR) and obtain a tensor.

We use Ri to denote this evaluation. For a tensor R, we use Rj to

denote the real number obtained when evaluating R at j. When we

index a tensor relation to select a particular sub-tensor, and then

we index into the sub-tensor to select a scalar, we write Ri
j
.

We say that a tensor R and a tensor relation R having the same

bound are equivalent, denoted R ≡ R, if, for all vectors j ∈ I (dR):

Rj = R
j

dR
j mod dR

Again, in the above definition we assume the “mod” operation

operates element-wise over the input vectors. R ≡ R implies that

the tensor and tensor relation are alternative implementations for

the same function. Intuitively, we say that R ≡ R when R stores R,

broken into a set of sub-tensors.

This may seem quite abstract; consider the matrix U:

U =

⎡⎢⎢⎢⎢⎢⎢⎣
1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

⎤⎥⎥⎥⎥⎥⎥⎦ .
As this is a 4 × 4 matrix, the bound vector bU = [4, 4]. Now, let us
imagine that we instead wanted to represent U as a tensor relation

U where bU = [4, 4] and dU = [4, 2]. This dU implies that we

slice the first dimension 4 ways, and the second two ways, so if

U ≡ U, then

U =

{︄ (︃
⟨0, 0⟩,

[︃
1

3

]︃)︃
,

(︃
⟨0, 1⟩,

[︃
2

4

]︃)︃
,

(︃
⟨0, 2⟩,

[︃
5

7

]︃)︃
,

(︃
⟨0, 3⟩,

[︃
6

8

]︃)︃
,(︃

⟨1, 0⟩,
[︃

9

11

]︃)︃
,

(︃
⟨1, 1⟩,

[︃
10

12

]︃)︃
,

(︃
⟨1, 2⟩,

[︃
13

15

]︃)︃
,

(︃
⟨1, 3⟩,

[︃
14

16

]︃)︃ }︄
.

This can be viewed as a function from I([4, 2]) to sub-tensors with
bound vector

[4,4]
[4,2] = [1, 2].

If instead we let dU = [2, 2], then we slice both dimensions two

ways, and so if U ≡ U, then

U =

{︄ (︃
⟨0, 0⟩,

[︃
1 2

3 4

]︃)︃
,

(︃
⟨0, 1⟩,

[︃
5 6

7 8

]︃)︃
,(︃

⟨1, 0⟩,
[︃

9 10

11 12

]︃)︃
,

(︃
⟨1, 1⟩,

[︃
13 14

15 16

]︃)︃ }︄
.

Effectively, to create a tensor relation U that is equivalent to U,

we simply slice up U according to the partitioning vector dU , and

represent U as a set of keyed sub-tensors.

2243

4.2 The Tensor-Relational Algebra

The TRA is an algebra over tensor relations, that can serve as the

implementation abstraction or interface that is exported by a high-

performance runtime. It is closely related to the classic relational

algebra. As we will show, the TRA can easily be used to implement

EinSum. The three TRA operations we are concerned with are join,
aggregation, and repartition.

Join. Given two tensor relations X and Y, join applies a kernel

function 𝐾 to each pair of sub-tensors from the two inputs that

“match”. Assume that we have a tensor-valued function𝐾 accepting

two sub-tensors having bounds
bX
dX

and
bY
dY

. We have two label vec-

tors ℓX and ℓY . Then ⋈︁𝐾,ℓX ,ℓY (X,Y) first joinsX andY, matching

𝑥 ∈ X and 𝑦 ∈ Y iff 𝑥 .key[𝑖] = 𝑦.key[𝑖] whenever ℓX [𝑖] = ℓY [𝑗].
When 𝑥 and 𝑦 match, a new tuple 𝑡 is included in the output. 𝑡 .key
is 𝑥 .key concatenated with 𝑦.key (with redundant dimensions that

are trivially equal, per the join predicate, removed, as in a natural

join). 𝑡 .tensor is 𝐾 (𝑥 .tensor, 𝑦.tensor).

Aggregation. Given a tensor relation X, aggregation performs a

grouping of the tensor relation and then applies a commutative and

associative kernel function ⊕ to reduce the values in each group

to a single value. Assume that we have a tensor-valued function ⊕
accepting two tensors both having bounds

𝑏X
𝑑X

. Assume we have

two label vectors ℓX and ℓagg.
∑︁
⊕,ℓX ,ℓagg (X) first partitionsX so two

tuples 𝑥1 and 𝑥2 are in the same partition iff 𝑥1 .key[𝑖] = 𝑥2 .key[𝑖]
whenever ℓX [𝑖] is not in ℓagg. For each partition, produce an out-

put tuple 𝑡 by picking a tuple 𝑥 from the partition, and setting

𝑡 .key[𝑖] = 𝑥 .key[𝑗] whenever ℓagg [𝑖] = ℓX [𝑗]. 𝑡 .tensor is pro-

duced by reducing all of the tensor values in the partition using ⊕.
Note that if ℓX and ℓagg are identical, the aggregation is the identity

operation because there are no labels in ℓX not in ℓagg.

Repartition. Given a tensor relation X, let X ≡ X. Then Π
d
(X)

produces the tensor relation X′ such that dX′ = d and X ≡ X′.

4.3 EinSum as a Tensor-Relational Language

We now show that any binary EinSum expression can be converted

to an equivalent tensor-relational computation. The benefit is that

such a rewrite allows EinSum expressions to be run in parallel, on a

set of devices. This is done via the introduction of a partition vector

that “explodes” the EinSum computation into a TRA expression

over tensor relations, subsuming traditional notions such as “data

parallel” and “model parallel.”

The rewrite relies on the idea of “cloning” each list of labels in a

label list such as ℓU to produce a new label list ℓ̄U. The original list

of labels iterates through the tuples in the tensor relation, and then

the cloned list iterates through the entries in a tensor stored in the

tensor relation. For example, we may take the matrix multiplica-

tion from Equation 3 and rewrite it as ∀ 𝑖, 𝑘 ∈ I ([2, 2]) ,∀ 𝑖̄, 𝑘¯ ∈
I ([50, 25]):

Z𝑖×50+𝑖,
𝑘×25+𝑘¯

←
∑︂

𝑗∈I([2]),
𝑗̄∈I([100])

X 𝑖×50+𝑖,
𝑗×100+ 𝑗̄

× Y𝑗×100+ 𝑗̄ ,
𝑘×25+𝑘¯

We can generalize this idea to any EinSum expression of the form

given as Equation 3. Assume we are given a partition vector d. We

Figure 1: Four tensor-relational partitionings for Z𝑖,𝑘 ←∑︁
X𝑖, 𝑗 × Y𝑗,𝑘 . In each there are 16 kernel calls.

can now rewrite Equation 3 as:

∀ℓZ ∈ I (d [ℓZ; ℓXY]) , ℓ̄Z ∈ I
(︃
bXY

d

[ℓZ; ℓXY]
)︃

: Z
ℓZ× b

XY

d
[ℓZ;ℓXY]+ℓ̄Z

←
⨁︂

ℓagg∈I(d[ℓagg;ℓXY])
ℓ̄agg∈I

(︂
b
XY

d
[ℓagg;ℓXY]

)︂
⨂︂(︂

XℓX×d[ℓX,ℓXY]+ℓ̄X ,YℓY×d[ℓY;ℓXY]+ℓ̄Y

)︂
(3)

Now, assume that we have two tensor relations X ≡ X, andY ≡ X,

where dX = d[ℓX; ℓXY] and dY = d[ℓY; ℓXY]. We can rewrite Equa-

tion 3 to compute a tensor relation Z ≡ Z with dZ = d[ℓZ; ℓXY]
as follows:

∀ℓZ ∈ I (d [ℓZ; ℓXY]) , ℓ̄Z ∈ I
(︃
bXY

d

[ℓZ; ℓXY]
)︃

: ZℓZ
ℓ̄Z

←
⨁︂

ℓagg∈I(d[ℓagg;ℓXY])
ℓ̄agg∈I

(︂
b
XY

d
[ℓagg;ℓXY]

)︂
⨂︂(︂

XℓX
ℓ̄X
,YℓY
ℓ̄Y

)︂
(4)

Note that we effectively have a nested EinSum expression: the outer
one is operating over tensor relations, and the inner one is operating

over tensors in those two tensor relations.

Now, imagine that we have a kernel function 𝐾 that accepts two

sub-tensors XℓX andYℓY and creates a tensor Z
′
with bound vector

bXY

d
such that ∀ℓ̄Z ∈ I

(︂
bXY

d
[ℓZ; ℓXY]

)︂
, Z
′
ℓ̄Z

is set to

⨁︁
ℓ̄agg∈I

(︂
b
XY

d
[ℓagg;ℓXY]

)︂ ⨂︁ (︂
XℓX
ℓ̄X
,YℓY
ℓ̄Y

)︂
. If

⨁︁
over two ten-

sors performs the

⨁︁
operation element-wise over entries in the

tensors, then, using this kernel, Equation 4 becomes:

∀ℓZ ∈ I (d [ℓZ; ℓXY]) : ZℓZ ←
⨁︂

ℓagg∈I(d[ℓagg;ℓXY])
𝐾

(︂
XℓX ,YℓY

)︂
(5)

The above equating is then implemented in the TRA by the two

steps; a join to link tuples from X and X using the label lists ℓX
and ℓY followed by an aggregation using ⊕:

temp←⋈︁𝐾,ℓX ,ℓY (X,Y) res←
∑︂

⊕,ℓX⊙ℓY ,ℓagg
(temp)

⊙ concatenates the two label lists, removing any duplicate labels in

the process (as in a classic natural join).

2244

Figure 2: Dataflow graphs associated with the partitionings of Figure 1 For partitionings d = [4, 1, 1, 4] and d = [2, 1, 1, 8], there is
only a join layer, as the joined dimensions are not partitioned. For d = [2, 4, 4, 2] and d = [2, 2, 2, 4] there is also an aggregation.

4.4 Parallelism via the Partitioning Vector

Thus, any binary EinSum expression can be re-written as an equiv-

alent computation in the TRA, that can then be implemented by

a TRA runtime. Crucially, the way that the EinSum expression is

decomposed into tensor relations is controlled by the partitioning

vector d; choosing a different d produces different partitionings of

the input tensors, “exploding” the computations in different ways.

For example, the matrix multiplication of two 8 × 8 matrices,

specified via Z𝑖,𝑘 ←
∑︁
X𝑖, 𝑗 × Y𝑗,𝑘 . The decomposition of the input

matrices, as well as the resulting TRA computation, are fully speci-

fied with a d vector having four entries (because both inputs are

rank two). Figure 1 depicts how four different d vectors specify four

different decompositions of the two input matrices. Figure 2 depicts

the four associated dataflow (or lineage) graphs. These graphs show

how the TRA computations associated with the decompositions

shown in Figure 1 map tuples into kernel calls.

5 OPTIMIZING THE DECOMPOSITION

A complex computation specified in EinSum can be represented

as a directed, acyclic graph called an EinGraph whose nodes are

EinSum expressions and whose edges represent data flow. For each

vertex, we have a triple:

(bound, EinSum, inputs)

EinSum is the code run at the vertex, bound is the bound vector b

for the output of the EinSum, and inputs lists vertices providing

inputs. Note that inputs has an explicit ordering, as EinSum need

not be commutative. inputs is empty if and only if EinSum empty;

then the tensor is input to the computation. Otherwise, the bound
can be deduced from the EinSum labels and the input tensor shapes.

As described in the previous section, an EinGraph can be ex-

ecuted by a TRA engine. Once a partition vector describing each

EinSum operation is to be parallelized has been associated with each
vertex in the graph, each vertex is executed as a join followed by

an aggregation, with (optionally) a repartition required in between

operations if the output partitioning of an operation does not match

the required input partitioning of the next operation.

A key question is: How to associate a partitioning vector with

each operation in the EinGraph, as this can have a radical impact on

system performance? Thus, we now consider: Given an EinGraph,

how do we annotate the EinGraph with partitioning vectors (see

Figure 3) to describe how the inputs each vertex in the EinGraph

are to be partitioned, to produce the best partitioning?

There will be two key considerations when labeling the Ein-

Graph with partition vectors. First, we want to ensure that there is

enough parallel work to do. And second, we want to ensure that the

decomposition we choose is low cost. The question of how much

parallel work is associated with a decomposition, and how to cost

a decomposition, are considered in the next two sections.

6 ENSURING ENOUGH PARALLEL WORK

Assume the underlying system has 𝑝 “processors” (in practice these

may be CPU cores, GPUs, or FPGAs). We want to ensure that

the tensor relational implementation of each EinSum expression is

decomposed to at least 𝑝 independent calls to the kernel 𝐾 . At the

same time, we do not want too many independent kernel calls, as

more kernel calls tend to induce more movement across processors.

Thus, we attempt to decompose each EinSum expression into exactly
𝑝 kernel calls.

How to ensure this? A partitioning vector d controls the de-

composition of an EinSum computation. d partitions a tensor d[𝑖]
ways along the 𝑖th dimension. For a binary EinSum expression

over tensors ZℓZ ←
⨁︁⨂︁ (︁

XℓX ,YℓY
)︁
, d partitions X according to

d[ℓX; ℓXY] and Y according to d[ℓY; ℓXY]. Note that the elements in

d corresponding to the same label must be the same. For example,

Figure 1 shows four possible partitioning vectors (and the corre-

sponding partitionings) for a matrix multiply Z𝑖,𝑘 ←
∑︁
X𝑖, 𝑗 × Y𝑗,𝑘 .

2245

Figure 3: Modifying an EinGraph supplied by a programmer,

to produce a TaskGraph, by adding bound vectors.

Here, valid partitionings will have d[1] = d[2], corresponding to
the shared 𝑗 label.

When an EinSum expression is partitioned according to d, the

number of pairs of tuples matched during the join is 𝑁 (ℓX, ℓY, d) =∏︁
d[ℓX ⊙ ℓY; ℓXY]. Recall that ⊙ concatenates the two label lists,

removing any duplicate labels in the process. What is the intuition

behind this formula? Repeated labels correspond to an equality

predicate associated with the join, and an equality predicate cuts

down the number of tuples resulting from the join by a factor of 𝑑

when the number of partitions along the corresponding dimension

is 𝑑 . So, in our matrix multiply example, d = [16, 2, 2, 4] would
result in 16 × 2 × 4 = 128 tuples being output from the join; as the

second 2 is associated with a join predicate and does not contribute

join results.

The series of dataflow graphs shown in Figure 2 depict how tuples

are linked and kernel functions invoked, for four tensor-relational

implementations of the matrix multiplication Z𝑖,𝑘 ←
∑︁
X𝑖, 𝑗 × Y𝑗,𝑘 .

Note that for each of these partition vectors, 𝑁 ([𝑖, 𝑗], [𝑗, 𝑘], d) = 16.

7 COSTING A DECOMPOSITION

Our approach to costing a decomposition is to compute the number

of floating point numbers that must be transferred to implement

the resulting tensor relational computation, and to use that as the

cost. Counting transfers makes sense as all decompositions will

have the same total number of floating point operations.

Note that without knowing how all of the decomposed opera-

tions are to be placed onto compute devices, we cannot compute

the exact number of numbers to be transferred (for example, if

two tensors are to be added together, and they already sit on the

same device, no transfer is required, but if they are on different

devices, one must be transferred to the location where the other is

located). However, we wish to perform this decomposition without

worrying about implementation issues such as where computations

are placed. To facilitate this, our tactic is to develop a cost model

that assumes the worst case transfer cost for obtaining the input to

each operation: the cost model assumes that every input to a node

in the dataflow graph must be transferred to a different processor,

where it is to be used.

By considering only the decomposition and not the placement,

we can develop an algorithm that is optimal for a large class of

graphs. This is similar to the way in which logical query optimiza-

tion is often separated from physical query operation in database

systems.

To execute a vertex in an EinGraph, there are three steps that

incur data transfer, corresponding to the join, aggregation, and

possible repartition of the output that are necessary to implement

the vertex:

(1) Transferring sub-tensors to where two tuples are to be

joined.

(2) Transferring sub-tensors resulting the join to the location

where they are to be aggregated.

(3) Possibly re-partitioning the result of the aggregation to be

used in subsequent EinGraph nodes.

Transferring into the join. Let 𝑛X be the count of floating point

numbers in each sub-tensor from X. This is

∏︁
bXY

d
[ℓX; ℓXY]. Com-

pute 𝑛Y similarly. Then the number of floating point numbers that

must be transferred into the join is 𝑝 × (𝑛X + 𝑛Y), as each processor

will receive one copy of a sub-tensor from the left, and from the

right. Subsequently, we use costjoin (d, ℓX, ℓY, bXY) to refer to this
quantity.

For example, consider the top-left case in Figure 2, where ℓX =

[𝑖, 𝑗], where ℓY = [𝑗, 𝑘], and ℓXY = [𝑖, 𝑗, 𝑗, 𝑘]. As bXY = [8, 8, 8, 8]
and d = [4, 1, 1, 4], bXY

d
= [2, 8, 8, 2]. Thus, 𝑛X = 2 × 8 = 16,

𝑛Y = 8 × 2 = 16, and thus costjoin is 8 × (16 + 16).

Transferring into the aggregation. Let 𝑛Z be the number of float-

ing point numbers in the sub-tensor resulting from each kernel call;

this is

∏︁
bXY

d
[ℓZ; ℓXY]. Let 𝑛agg be the number of sub-tensors that

are aggregated down to a single sub-tensor; this is

∏︁
d[ℓagg; ℓXY].

The total number of floating point numbers that must be transferred

is then
𝑝
𝑛agg

(︁
𝑛agg − 1

)︁
𝑛Z. There are

𝑝
𝑛agg

groups of tuples that must

be aggregated. In the best case, the amount of data transferred for

each group is

(︁
𝑛agg − 1

)︁
𝑛Z, as all tuples in a group are sent to a

single processor for aggregation—but if a processor that already has

such a tuple is chosen as the aggregation site, no transfer happens.

We use costagg (d, ℓagg, ℓZ, ℓXY, bXY) to refer to this quantity.

For example, consider the top-left case in Figure 2. ℓagg = [𝑗] so
𝑛agg = 1, so the aggregation cost is zero (there is no aggregation).

Considering the bottom-right case where d = [2, 2, 2, 4], we have
𝑛agg = 2. As ℓZ = [𝑖, 𝑘] we have 𝑛Z = 2 × 4 = 8, and the total

number of floating point numbers moved is
16

2
(2 − 1)8 = 64.

2246

Figure 4: Modifying an EinGraph supplied by a programmer,

to produce a TaskGraph, by adding bound vectors. This is

done so as to minimize an upper bound on the communica-

tion required for the corresponding decomposition.

Re-partitioning across operations. If two operations are con-

nected (one is a producer and one is a consumer) but their partition-

ings do not match, re-partitioning is necessary. To understand how

we cost a re-partition, imagine that we have two matrix multiplies

described by the EinSum expression Z𝑖,𝑘 ←
∑︁
X𝑖, 𝑗 ×Y𝑗,𝑘 . The parti-

tioning of the first (the “producer”) is described by d
(𝑝) = [2, 2, 2, 4]

and the partitioning of the second (the “consumer”) is described

by d
(𝑐) = [4, 1, 1, 4]. Effectively, we are using the output of the

computation in the lower left corner of Figure 2 as the left input to

the computation in the upper right corner of Figure 2.

A graph showing the flow of data from the producer into the

consumer is shown in Figure 4. Each producer sub-tensor must be

sent to two locations—one location where its top half is used, and

one location where its bottom half is used. As each producer sub-

tensor has 8 floating point numbers, and there are 8 of them, the

transfer cost is 2×8×8 = 128. Further, as we build up the consumer

sub-tensors, each consumer sub-tensor must be sent to subsequent

three locations after it accepts the first producer sub-tensor: to the

location where it accepts the second, then the third, and the final.

Thus, the cost to move the input sub-tensors is 3× 16× 4 = 192, for

a total cost of 320.

In the general case, we have a producer producing a tensor

with bound bZ and partitioning dZ and a consumer accepting a

tensor with the same bound, and partitioning dX. Let 𝑛p be the

number of floating point numbers in each producer sub-tensor,

computed as

∏︁
bZ

dZ

. This is 4 × 2 = 8 in our example. Let 𝑛c be the

number of floating point numbers in each consumer sub-tensor;

this is computed as

∏︁
bX

dZ

(2 × 8 = 16 in our example). Let 𝑛int be

the number of floating point numbers contributed by a producer

sub-tensor to a consumer sub-tensor; this is

∏︁
min

(︂
bZ

dZ

,
bX

dZ

)︂
. Here,

min() is computed element-wise. This is 2 × 2 = 4 in our example.

And finally, let 𝑛 be the number of floating point numbers in the

output of the producer, or the input to the consumer (computed

as 𝑛 =
∏︁

dZ; this is 8 × 8 = 64 in our example). Then, the final

cost is

(︂
𝑛c
𝑛int
− 1

)︂
𝑛
𝑛c
(𝑛c + 𝑛p), plus an additional transfer of 𝑛p

𝑛
𝑛c

if 𝑛p ≠ 𝑛int. This latter term corresponds to the cost to send each

producer sub-tensor to the location where part of it is extracted

to form the initial consumer sub-tensor. If the entire producer sub-

tensor is used, then no such extraction is required. Subsequently,

we use costrepart (dX, dZ, bZ) to refer to this computation.

8 THE EINDECOMP ALGORITHM

Given an EinGraph, we consider how to label all of the bounds to

produce a TaskGraph (as in Figure 3).

8.1 Counting EinSum Partitionings
The core reason there exists a tractable solution is that the number

of partitionings to consider for a given EinSum expression can be

kept surprisingly small. We first start by assuming that the number

of processors 𝑝 = 2
𝑁
for integer 𝑁 and that every entry in d will

be chosen to be a power of two. If the actual number of processors

is not a power of two, 𝑝 can be chosen to be larger than the number

of available processors. Choosing 𝑝 to be slightly larger than the

number of processors physically available will increase the worst-

case communication cost, but a quality assignment of operations

to processors tends to alleviate this.

If 𝐷 is the number of unique labels in ℓX and ℓY then the number

of possible values for d is
(𝑁+𝐷−1)!
𝑁 !(𝐷−1)! . Note that if two labels match

across ℓX and ℓY the corresponding dimensions are co-partitioned,

and so they effectively count as one bucket; see Section 4. This

often allows all possible partitionings for an EinSum expression to

be enumerated, brute-force. For example, if 𝑁 = 10 and 𝐷 = 6, then

the number of partitionings is 3003.

8.2 Dynamic Programming

In an EinGraph where there is not more than one consumer for

any non-input vertex, there exists a relatively efficient dynamic

programming algorithm for computing an optimal TaskGraph.

This algorithm relies on a lookup table𝑀 that is a map from (vertex

𝑣 , partitioning dZ) pairs to the lowest (optimal) cost for computing

the subgraph up to and including vertex 𝑣 , subject to the constraint

that the output partition for the vertex is dZ.

Imagine that we have an EinGraph vertex 𝑣 associated with ma-

trix multiplication, which results in an output tensor with bound

vector [8, 8]. If we require 𝑝 = eight kernel calls in the imple-

mentation of 𝑣 , the possible partitioning d vectors associated with

implementing the EinSum for 𝑣 are: [2, 1, 1, 4]; [4, 1, 1, 2]; [8, 1, 1, 1];
[1, 1, 1, 8]; [2, 2, 2, 2]; [4, 2, 2, 1]; [1, 2, 2, 4]; [1, 8, 8, 1] . Each of these

partitioning vectors produces eight kernel calls since, after remov-

ing the repeated middle (join) index partitioning, the product over

all entries is eight. Thus, the set of possible output partitionings dZ

for 𝑣 contains: [2, 4]; [4, 2]; [8, 1]; [1, 8]; [2, 2]; [4, 1]; [1, 4]; [1, 1],
as the middle dimensions are aggregated out in matrix multiplica-

tion. The lookup table𝑀 would then contain entries for (𝑣, [2, 4]),
(𝑣, [4, 2]), (𝑣, [8, 1]), and so on. 𝑀 (𝑣, [2, 4]) , for example, would

store the optimal cost for computing the EinGraph up to vertex

𝑣 , subject to the constraint that the EinSum expression associated

with vertex 𝑣 produces an output partitioning of dZ = [2, 4].
The reason for maintaining this lookup table is that computing

the lowest-cost implementation for vertex 𝑣 requires having access

to the lowest cost implementations of the inputs to vertex 𝑣 ; if we

2247

Figure 5: Progression of the EinDecmop dynamic program-

ming algorithmvia a topological sort. After step 1, the lookup

table𝑀 holds lowest cost for producing all possible output

partitionings of vertex 1. After step 2, 𝑀 holds the lowest

costs for both vertex 1 and 2. And in general, after step 𝑛,

𝑀 holds the lowest cost for producing all possible output

partitionings of vertices 1 through 𝑛.

have access to the lowest cost for every possible input partitioning

to 𝑣 , we can simply enumerate all of the partition vectors for 𝑣 ,

applying the formulas of the previous section to figure out the best

way to implement vertex 𝑣 . The dynamic programming algorithm

proceeds according to the order provided by a topological sort of

the input EinGraph, as in Figure 5. For any 𝑣 with no inputs, set

𝑀 [𝑣, d] to zero for each d. This reflects the fact that inputs are

generally pre-computed, offline, and incur no cost.

8.3 Computing the Optimal Cost During DP

Our goal is to compute𝑀 as the dynamic programming progresses.

Consider a vertex 𝑣 with a binary EinSum expression for which

we wish to compute𝑀 [𝑣, dZ]; let 𝑣X be the first entry in 𝑣 .inputs
(so it corresponds to the X input to the EinSum expression for 𝑣)

and let let 𝑣Y be the second entry in 𝑣 .inputs. Let ℓX, ℓY, and ℓZ
to refer to the label vectors associated with 𝑣 .EinSum, and bXY

to refer to the bound vector for the EinSum computation. Finally,

let viable(EinSum, 𝑝) return a list of all partitioning vectors for a

tensor-relational implementation of the EinSum expression, subject
to the constraint that the number of results of the embedded join is

exactly 𝑝 , ensuring 𝑝 pieces of parallel work.

To compute𝑀 [𝑣, dZ] we minimize:

over all d ∈ viable(𝑣 .EinSum, 𝑝) where d[ℓZ; ℓXY] = dZ;

over all left input partitionings dX;

and over all right input partitionings dY;

the following expression:

𝑀 [𝑣X, dX] +𝑀 [𝑣Y, dY] + costrepart (dX, d[ℓZ; ℓXY], bXY [ℓX; ℓXY])+
costrepart (dY, d[ℓZ; ℓXY], bXY [ℓY; ℓXY])+

costjoin (d, ℓX, ℓY, bXY) + costagg (d, ℓagg, ℓZ, ℓXY, bXY)
This is: we minimize the overall cost, which is the sum of the

cost for computing the graph up to and including the left and right

Figure 6: Linearizing an EinGraph to enable dynamic

programming-based TaskGraph construction.

inputs, the cost to re-partition into the current EinSum expression,

and then the cost to perform the join and aggregation for the current

EinSum expression. For a given output partitionings, this is mini-

mized by considering all possible d vectors that will produce that

output; for each, we consider all possible left input partitionings,

and all possible right input partitionings.

Once all𝑀 [.] entries have been computed for the input EinGraph,
the best labeling for the graph can be found by back-tracking from

the best𝑀 [𝑣, d] value, where 𝑣 is the output vertex for the graph.
To produce the TaskGraph, at each vertex 𝑣 we choose the parti-

tioning vector d that produced the 𝑀 [𝑣, dZ] value that was used
by the immediate descendant to produce its own optimal value.

8.4 Handling General DAGs

This algorithm is not applicable if there exists more than one con-

sumer for the output of a non-input vertex, as the algorithm relies

on being able to describe all possible optimal computations for a

subgraph up to and including vertex 𝑣 with a set of𝑀 [𝑣, d] entries.
If the output of 𝑣 has two consumers 𝑣1 and 𝑣2, we would need to

maintain a lookup table that stores the optimal cost for all possible

combinations of output partitionings for both 𝑣1 and 𝑣2 Even if

there is never more than one consumer of a non-input vertex, the

algorithm may be too slow for a very large graph.

Such DAGs can be handled in approximate fashion by “lineariz-

ing” the graph. That is, we decompose the graph into a series of

linear paths, and when optimizing, we consider only vertices and

edges along the path. For any inputs into the path that do not come

from the path, we ignore the cost to compute the associated sub-

graph, as well as the possible re-partition cost. So, for example, if

the left (𝑣X) input into a vertex 𝑣 is along the path, but the right is

not, to compute𝑀 [𝑣, dZ] we minimize:

over all d ∈ viable(𝑣 .EinSum, 𝑝) where d[ℓZ; ℓXY] = dZ;

and over all left input partitionings dX;

the following expression:

𝑀 [𝑣X, dX] + costrepart (dX, d[ℓZ; ℓXY], bXY [ℓX; ℓXY])+
costjoin (d, ℓX, ℓY, bXY) + costagg (d, ℓagg, ℓZ, ℓXY, bXY)

The overall algorithm is shown above in Figure 5. First, we find

the longest path in the EinGraph (shown in blue), that originates

from vertex 1, and optimize only along that path. To produce the

TaskGraph partition labelings, if 𝑣 is the last vertex in the path,

2248

Figure 7: EinDecomp vs. SQRT vs. ScaLAPACK on a chain of

matrix operations (16 CPU machines).

Figure 8: EinDecomp vs. “Portable” Einstein Notation/SQL on

a chain of matrix operations (one CPU machine).

Figure 9: EinDecomp vs. SQRT vs. DASK, matrix chain (GPU).

we choose the smallest𝑀 [𝑣, dZ] value, and then backtrack back to

vertex 1. At each vertex 𝑣 , we again choose the partitioning vector

d that produced the𝑀 [𝑣, dZ] value that was used by the immediate

descendent to produce its own optimal value. Then, we find the

next longest path (shown in orange, starting from vertex 2) and

optimize along that path. This process is repeated for the third

longest path, starting at vertex 3.

9 EXPERIMENTAL EVALUATION

We ask: how does the general EinDecomp approach compare to

bespoke algorithms for decomposition? For example, for large-

scale matrix multiplication, how does EinDecomp compare to the

classical 3D algorithm [3]? For large-languagemodel inference, how

does EinDecomp compare to the tensor-parallel approach taken by

Megatron [45]? A secondary question: Can an EinDecomp-based
system be competitive with other systems?

Figure 10: EinDecomp vs. PyTorch for training high-

dimensional classifier.

9.1 Experimental Overview

We have implemented the EinDecomp algorithm on top of our

Einsummable system, which is a machine learning system that

utilizes an EinSum-based API and the EinDecomp decomposition

algorithm to run machine learning computations on top of the

Turnip execution engine [13]. Einsummable can run on both multi-

machine CPU clusters, and on multi-GPU servers.

In the case of CPU, EinSum expressions are compiled by the

system into kernels that (1) unpack the input tensors, (2) call Intel

MKL’s batch matrix multiply, and (3) re-pack the result into an

output tensor. Communication is implemented using the UCX [42]

library. In the case of GPU servers, EinSum expressions are compiled

into GPU kernels using NVIDIA’s CuTensor [10]. The Einsummable
code base is currently around 27,000 lines (mostly C++).

CPU experiments are run on Amazon Web Services (AWS), us-

ing a cluster of 16 m6in.16xlarge machines. Each machine has

256GB of RAM and 100 Gb per second network transfer. These

machines have Intel Xeon processors (Ice Lake 8375C) and 32 phys-

ical cores, each of which has two virtual cores (used by Intel’s

hyper-threading implementation). However, for the workloads we

target (high-performance EinSum kernels), running one thread per

physical core, pinned to the core, produces the best performance.

Some GPU experiments are run on AWS P4d instances with

eight, 40 GB NVIDIA Tesla A100 GPUs. The machine has two Intel

CPUs with a total of 1.1TB of RAM. Some are run on server with

four, 16GB NVIDIA Tesla P100 GPUs. This machine has two Intel

CPUs with a total of 1.3TB of RAM. Some experiments are run on

a server with eight, 32GB NVIDIA Tesla P100 GPUs. This machine

also has two Intel CPUs with a total of 1.3TB of RAM.

9.2 Experiments Run

Our evaluation of the EinDecomp framework considered in this

paper consists of four different experiments.

Experiment 1: Testing EinDecomp’s ability to parallelize large-scale
matrix-chain arithmetic. Parallelizing chains of matrix operations is

a classical problem. We consider two chains of the form (A × B) +
(C × (D × E)). In the first, all matrices are square, so for a scale of

𝑠 , all matrices are sized 𝑠 × 𝑠 . In the second, the matrices are sized

as: A: 𝑠 × .1𝑠 , B: .1𝑠 × 𝑠 , C: 𝑠 × .1𝑠 , D: .1𝑠 × 10𝑠 , E: 10𝑠 × 𝑠 .
Our experiments test a wide variety of 𝑠 values. We run this on

the CPU cluster and on the P100 GPU server. On both, we compare

Einsummable + EinDecomp with Einsummable + “SQRT,” where, to

decompose amatrix into𝑛 parts, we simply slice thematrix

√
𝑛ways

2249

Figure 11: LLaMA large language model, run in Einsummable using different decomposition algorithms.

vertically and

√
𝑛 ways horizontally. If the matrices are square, this

gives rise to the well-known 3D matrix multiplication algorithm,

which is communication-optimal for square matrices. On the CPU

cluster we compare the two Einsummable-based algorithms with

ScaLAPACK, which is the classical, high-performance, distributed

matrix software. On the GPU server we compare with DASK, which

is a Python library for parallel computing. We also compare with

an EinSum-to-SQL compiler [5] on one CPU machine; the SQL is

executed using Postgres. CPU results are in Figure 7. GPU results

are in Figures 8 and 9. “OOM” means that the method (ScaLAPACK

in this case) failed due to out-of-memory errors.

Experiment 2: Testing EinDecomp’s ability to decompose a large
feed-forward neural network classifier for training. Here we consider
training a large, feed-forward neural network (FFNN), using Py-

torch (vanilla data parallel) and using Einsummable + EinDecomp.
We use the AmazonCat-14K data set, which has 14,588 labels and

597,540 input features to train a FFNN having 8192 hidden neu-

rons, using gradient descent. We start with 8192 input features, and

gradually increase the number of input features until all are used.

For PyTorch, we also test an option that uses only a single GPU, as

opposed to all four P100 GPUs. Results are given in Figure 10, with

batch sizes of 128 and 512 data points.

Experiment 3: Comparing EinDecomp with standard algorithms
for decomposing a large language models. Our experiments target

“first token” inference (“FTinf”) using LLaMA large-language model

[49] (or “LLM”; FTinf is also known as “prefill”): How long does

it take to produce the first output token, given an input prompt?

These experiments are run on the V100 server with eight GPUs.

There are a number of methods to parallelize LLM inference. One

alternative is the now-classic “Megatron” parallelization scheme

[45], which is a tensor-parallel or model-parallel scheme. Another is

“sequence”, which splits the input sequence up 𝑛 ways, for inference

on 𝑛 GPUs. A final alternative is what we call “attention”, where all

attention heads are split into groups. To ensure an apples-to-apples

comparison, all three of these methods were implemented on top

of Einsummable, and compared with Einsummable + EinDecomp
to compare the automatic decomposition with these other options.

We run three different FTinf experiments using the 7 billion

parameter LLaMA model. In the first, we use all eight GPUs, and

perform FTinf on sequences of 4096 tokens, varying the batch size.

In the second, we use sequences of 1024 tokens, batch size eight,

Figure 12: Einsummable vs ZeRO and FlexGen, LLaMA infer-

ence.

and vary the number of GPUs. In the third, we use sequences of

4096 tokens, batch size four, and vary the number of GPUs. Results

are given in Figure 11.

Experiment 4: Comparing how an EinDecomp-powered system
compares with other systems for large-scale LLM inference. Our last
experiment is tasked with asking the question: can an EinDecomp-
based system compete with a standard, hand-coded system for LLM

inference? One unique aspect of Einsummable is that, due to the

Turnip engine, it is able to page data in GPU RAM out to CPU RAM,

and avoid the ubiquitous OOM errors that plague GPU computing.

Two other, well-known, PyTorch-based systems that can also do

this are ZeRO Inference [4] and FlexGen [44]. We run two FTinf

experiments on the AWS A100 server, both with a batch size of 16.

The first uses the 7 billion parameter LLaMA model, the second the

65 billion parameter model. In each, we vary the sequence length.

9.3 Discussion

With just a few exceptions, Einsummable + EinDecompwas the best
option. Crucially, the automated parallelism enabled by EinDecomp
almost always met or outperformed the performance of bespoke

decomposition/parallelization strategies.

In Experiment 1, as expected, SQL is much slower than Einsum-
mable + EinDecomp, as pushing huge numbers of tuples through

a database is much slower than executing a TRA-based computa-

tion using high-performance kernels. Also, it was quite surprising

how poorly both ScaLAPACK and DASK performed. In the GPU

experiments, we observe exactly what as expected: Einsummable

2250

+ EinDecomp and Einsummable + SQRT perform the same for uni-

form sizes, whereas there is a consistent 2× gap for non-uniform

sizes, as the simple decomposition provided by SQRT does not adapt

to the skewed matrix sizes.

In Experiment 2, EinDecomp far outperformed data parallel Py-

Torch. This is perhaps the worse case for a data parallel approach:

a massive model which must be broadcast across GPUs, and a com-

paratively small input batch. This is why PyTorch does so poorly.

In fact, PyTorch on one GPU did far better than PyTorch on four

GPUs, because it removes the need to broadcast the model.

In Experiment 3, we find that in the case of powering a LLM,

EinDecomp is able to consistently do as good as, or better than, all

of the obvious alternatives. One surprising finding is how well de-

composing along the sequence dimension works. It is outperformed

by EinDecomp, but consistently outperforms Megatron.

Finally, in Experiment 4, we find that Einsummable + EinDecomp
is able to far outperform other PyTorch-based systems that enable

inference in a memory-constrained environment. This does not di-

rectly evaluate EinDecomp, as the engine underlying Einsummable
differs from the runtime for these systems. FlexGen is particularly

slow at smaller sequence lengths because it utilizes pipeline paral-

lelism to reduce memory usage—pipeline parallelism on a model

such as LLaMA cannot reduce latency, but in this case it actually

increases latency significantly due to pipeline startup and shut-

down times (such delays would be smaller, as a fraction of total

time, for larger batch sizes). ZeRO loads weights layer by layer

from CPU RAM, incurring significant costs. Loading 65B weights

over a PCIe bus will take four or more seconds, depending up on

the setup. Further, different systems will implement expensive op-

erations (such as attention) differently. While all of these issues

undoubtedly contribute to performance differences, the results do

show that the automated decompositions enabled by EinDecomp
can power a high-performance machine learning system.

10 RELATEDWORK

Variants of Einstein summation notation have been used for a long

time (not surprisingly, Einstein used such notation [14]), and it is

supported by both TensorFlow and PyTorch. Recent work has ex-

plored its use for ML [28] and its translation to SQL [5, 48], though

this sort of “pure” relational implementation cannot compete with

a tensor-relational implementation in terms of performance. There

is a high computational overhead to push each tuple through a

relational system [30, 34, 47]. The carefully-designed memory ac-

cess patterns in an array-based kernel means that a CPU or GPU

operates at close to its optimal floating-point operation per second

rate, with little overhead.

Parallelizing ML computations has generated a lot of recent in-

terest. Only a few recent works such as Alpa [56], FlexFlow [22]

and follow-ups such as Unity [50], and Galvatron [32] have ex-

plored automatic parallelism. Unlike EinDecomp, none of these

papers considered the question of how to declaratively specify the

computation, and how to leverage that declarative specification

to facilitate auto-parallelism. Unity, for example takes an entirely

algebraic approach, directly manipulating “programs” written in

their implementation abstraction (called PCG). Unity (and the same

group’s earlier TASO paper [21]) generate algebraic transforma-

tions by relying on logical rules describing valid transformations on

operations, such as batch matrix multiply. EinDecomp, in contrast,

starts with a general-purpose tensor calculus (EinSum) with known

semantics, rather than relying on rules that specify the semantics

of each operator (as in Unity) or a manual enumeration of all possi-

ble parallelization strategies for supported operators (as in Alpa),

possible parallelization strategies are derived directly from the Ein-

Sum specification. Unlike these other efforts, EinDecomp works

for any computation that can be specified using SimSum, with no

operator-specific code required.

Other efforts at supporting parallelism offer less automation, or

are more focused. One of the most influential works in this do-

main is Megatron-LM [45], but it proposes a specific parallelization

scheme for transformers. Amazon SageMaker Model Parallelism

[23] is a PyTorch-based library that is designed to make training

of large and complex models easier as is Microsoft’s ZeRO-Infinity

[38]. GSPMD [53] is a Google-built tool for distributed/parallel ma-

chine learning, built on top of Google’s XLA compiler [1]. GSPMD

can be looked at as a Python API and engine for distributed tensor

computations (the majority the GSPMD paper is concerned with

describing the API). In that sense, the GSPMD effort sits below our

work—it is suggesting an alternative implementation abstraction

to the TRA that relies on ideas like distributed/sharded tensors.

One could, in fact, map to the TRA onto GSPMD, rather than im-

plementing a TRA runtime. Another effort is AutoMap [39] from

DeepMind. AutoMap implements an operator-based abstraction,

but programmers are asked to implement operators in a language

(MLIR/PartIR [7, 27]) that forces users to expose parallelism. Mesh

TensorFlow [43] allows programmers to partition tensors across a

compute mesh, but partitioning decisions are left to the program-

mer. Other recent efforts (such as PyTorch Distributed [29]) stick

to the classical data parallel paradigm.

This paper leverages the close connection between tensors and

classical relations. Others have noticed this connection before. The

Tensor Relational Algebra, whichwe use in this paper, was proposed

previously [54]. Many other systems leverage this synergy such

as SystemDS [6], DAPHNE [11], the Tensor Data Platform [17],

TileDB [35], ArrayQL [41], STOREL [40], and TensorDB [24, 25].

11 CONCLUSIONS

We have described how to compile a computation consisting of

a graph of operations expressed in the Einstein summation nota-

tion (EinSum language) and automatically decompose the EinSum
operations to execute in a distributed CPU cluster, or on a GPU

server. We showed, through an extensive set of experiments, that

the resulting EinDecomp algorithm is, when implemented within

the Einsummable system, able to perform as well as, or better than,

many other standard parallelization options.

ACKNOWLEDGMENTS

This research was supported by the NSF under grant numbers

2212557, 2131294, 2008240, 1918651, NIH CTSA award No.

UL1TR003167, and the US DOT Tier-1 UTC CYBER-CARE grant.

2251

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 265–
283.

[2] Ahmad Abdelfattah, Stanimire Tomov, and Jack Dongarra. 2020. Matrix multi-

plication on batches of small matrices in half and half-complex precisions. J.
Parallel and Distrib. Comput. 145 (2020), 188–201.

[3] Ramesh C Agarwal, Susanne M Balle, Fred G Gustavson, Mahesh Joshi, and

Prasad Palkar. 1995. A three-dimensional approach to parallel matrix multiplica-

tion. IBM Journal of Research and Development 39, 5 (1995), 575–582.
[4] Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li,

Du Li, Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley,

et al. 2022. DeepSpeed-inference: enabling efficient inference of transformer mod-

els at unprecedented scale. In SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 1–15.

[5] Mark Blacher, Julien Klaus, Christoph Staudt, Sören Laue, Viktor Leis, and

Joachim Giesen. 2023. Efficient and Portable Einstein Summation in SQL. Pro-
ceedings of the ACM on Management of Data 1, 2 (2023), 1–19.

[6] Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter, Robert

Ginthör, Kevin Innerebner, Florijan Klezin, Stefanie N. Lindstaedt, Arnab Phani,

Benjamin Rath, Berthold Reinwald, Shafaq Siddiqui, and Sebastian Benjamin

Wrede. 2020. SystemDS: A Declarative Machine Learning System for the End-to-

End Data Science Lifecycle. In CIDR.
[7] Uday Bondhugula. 2020. High performance code generation in MLIR: An early

case study with GEMM. arXiv preprint arXiv:2003.00532 (2020).
[8] Zhenkun Cai, Xiao Yan, Kaihao Ma, Yidi Wu, Yuzhen Huang, James Cheng, Teng

Su, and Fan Yu. 2021. Tensoropt: Exploring the tradeoffs in distributed dnn

training with auto-parallelism. IEEE Transactions on Parallel and Distributed
Systems 33, 8 (2021), 1967–1981.

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen

Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated end-to-end optimizing compiler for deep learning. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18). 578–594.

[10] Nvidia Corporation. 2023. cuTENSOR: A CUDA Library for Tensor Algebra.

https://docs.nvidia.com/cuda/cutensor/latest/index.html Accessed: 2024-10-01.

[11] Patrick Damme et al. 2022. DAPHNE: An Open and Extensible System Infras-

tructure for Integrated Data Analysis Pipelines. In CIDR. https://www.cidrdb.

org/cidr2022/papers/p4-damme.pdf

[12] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,

Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. 2012. Large

scale distributed deep networks. In Advances in neural information processing
systems. 1223–1231.

[13] Zhimin Ding, Jiawen Yao, Brianna Barrow, Tania Lorido Botran, Christopher

Jermaine, Yuxin Tang, Jiehui Li, Xinyu Yao, Sleem Mahmoud Abdelghafar, and

Daniel Bourgeois. 2024. TURNIP: A" Nondeterministic" GPU Runtime with CPU

RAM Offload. arXiv preprint arXiv:2405.16283 (2024).
[14] Albert Einstein, Leopold Infeld, and Banesh Hoffmann. 1938. The gravitational

equations and the problem of motion. Annals of mathematics (1938), 65–100.
[15] Philipp Farber and Krste Asanovic. 1997. Parallel neural network training on

multi-spert. In Algorithms and Architectures for Parallel Processing, 1997. ICAPP
97., 1997 3rd International Conference on. IEEE, 659–666.

[16] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers:

Scaling to trillion parameter models with simple and efficient sparsity. Journal
of Machine Learning Research 23, 120 (2022), 1–39.

[17] Apurva Gandhi, Yuki Asada, Victor Fu, Advitya Gemawat, Lihao Zhang, Rathi-

jit Sen, Carlo Curino, Jesús Camacho-Rodríguez, and Matteo Interlandi. 2022.

The Tensor Data Platform: Towards an AI-centric Database System. CoRR
abs/2211.02753 (2022). https://doi.org/10.48550/arXiv.2211.02753

[18] Stefan Hadjis, Ce Zhang, Ioannis Mitliagkas, Dan Iter, and Christopher Ré. 2016.

Omnivore: An optimizer for multi-device deep learning on CPUs and GPUs.

arXiv preprint arXiv:1606.04487 (2016).

[19] Waqar Hasan and Rajeev Motwani. 1994. Optimization algorithms for exploiting

the parallelism-communication tradeoff in pipelined parallelism. In VLDB, Vol. 94.
Citeseer, 12–15.

[20] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia

Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019.

Gpipe: Efficient training of giant neural networks using pipeline parallelism. In

Advances in neural information processing systems. 103–112.
[21] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and

Alex Aiken. 2019. TASO: optimizing deep learning computation with automatic

generation of graph substitutions. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles. 47–62.

[22] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and Model

Parallelism for Deep Neural Networks. Proceedings of Machine Learning and
Systems 1 (2019), 1–13.

[23] Can Karakus, Rahul Huilgol, Fei Wu, Anirudh Subramanian, Cade Daniel, Derya

Cavdar, Teng Xu, Haohan Chen, Arash Rahnama, and Luis Quintela. 2021. Ama-

zon SageMaker Model Parallelism: A General and Flexible Framework for Large

Model Training. arXiv preprint arXiv:2111.05972 (2021).
[24] Mijung Kim and K Selçuk Candan. 2014. Efficient static and dynamic in-database

tensor decompositions on chunk-based array stores. In Proceedings of the 23rd
ACM International Conference on Conference on Information and Knowledge Man-
agement. 969–978.

[25] Mijung Kim and K Selçuk Candan. 2014. Tensordb: In-database tensor ma-

nipulation with tensor-relational query plans. In Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge Manage-
ment. ACM, 2039–2041.

[26] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-

inghe. 2017. The tensor algebra compiler. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 1–29.

[27] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,

Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-

sandr Zinenko. 2021. Mlir: Scaling compiler infrastructure for domain specific

computation. In 2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE, 2–14.

[28] Sören Laue, Matthias Mitterreiter, and Joachim Giesen. 2020. A simple and

efficient tensor calculus. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 4527–4534.

[29] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,

Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. PyTorch

Distributed: Experiences on Accelerating Data Parallel Training. arXiv preprint
arXiv:2006.15704 (2020).

[30] Shangyu Luo, Zekai J Gao, Michael Gubanov, Luis L Perez, and Christopher

Jermaine. 2018. Scalable linear algebra on a relational database system. IEEE
Transactions on Knowledge and Data Engineering 31, 7 (2018), 1224–1238.

[31] Manish Mehta and David J DeWitt. 1995. Managing intra-operator parallelism

in parallel database systems. In VLDB, Vol. 95. 382–394.
[32] Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie, Hailin Zhang,

and Bin Cui. 2022. Galvatron: Efficient transformer training over multiple gpus

using automatic parallelism. arXiv preprint arXiv:2211.13878 (2022).
[33] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R

Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.

PipeDream: generalized pipeline parallelism for DNN training. In Proceedings of
the 27th ACM symposium on operating systems principles. 1–15.

[34] Thomas Neumann. 2011. Efficiently compiling efficient query plans for modern

hardware. Proceedings of the VLDB Endowment 4, 9 (2011), 539–550.
[35] Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy G. Mattson.

2016. The TileDB Array Data Storage Manager. Proc. VLDB Endow. 10, 4 (2016),
349–360. https://doi.org/10.14778/3025111.3025117

[36] PyTorch. 2023. PyTocrch 2.0. https://pytorch.org/get-started/pytorch-2.0

[37] Rajat Raina, Anand Madhavan, and Andrew Y Ng. 2009. Large-scale deep unsu-

pervised learning using graphics processors. In Proceedings of the 26th annual
international conference on machine learning. ACM, 873–880.

[38] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong

He. 2021. Zero-infinity: Breaking the gpu memory wall for extreme scale deep

learning. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–14.

[39] Michael Schaarschmidt, Dominik Grewe, Dimitrios Vytiniotis, Adam Paszke,

Georg Stefan Schmid, Tamara Norman, James Molloy, Jonathan Godwin, Nor-

man Alexander Rink, and Vinod Nair. 2021. Automap: Towards Ergonomic

Automated Parallelism for ML Models. arXiv preprint arXiv:2112.02958 (2021).
[40] Maximilian Schleich, Amir Shaikhha, and Dan Suciu. 2023. Optimizing Tensor

Programs on Flexible Storage. Proceedings of the ACM on Management of Data 1,
1 (2023), 1–27.

[41] Maximilian E. Schüle, Tobias Götz, Alfons Kemper, and Thomas Neumann. 2022.

ArrayQL Integration into Code-Generating Database Systems. In EDBT. https:

//doi.org/10.5441/002/edbt.2022.04

[42] Pavel Shamis, Manjunath Gorentla Venkata, M Graham Lopez, Matthew B Baker,

Oscar Hernandez, Yossi Itigin, Mike Dubman, Gilad Shainer, Richard L Graham,

Liran Liss, et al. 2015. UCX: an open source framework for HPC network APIs and

beyond. In 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects.
IEEE, 40–43.

[43] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani,

Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, and

Cliff Young. 2018. Mesh-tensorflow: Deep learning for supercomputers. arXiv
preprint arXiv:1811.02084 (2018).

[44] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi

Chen, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang. 2023. Flexgen:

High-throughput generative inference of large language models with a single

gpu. In International Conference on Machine Learning. PMLR, 31094–31116.

[45] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,

and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter

language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).

2252

https://docs.nvidia.com/cuda/cutensor/latest/index.html
https://www.cidrdb.org/cidr2022/papers/p4-damme.pdf
https://www.cidrdb.org/cidr2022/papers/p4-damme.pdf
https://doi.org/10.48550/arXiv.2211.02753
https://doi.org/10.14778/3025111.3025117
https://pytorch.org/get-started/pytorch-2.0
https://doi.org/10.5441/002/edbt.2022.04
https://doi.org/10.5441/002/edbt.2022.04

[46] Edgar Solomonik and James Demmel. 2011. Communication-optimal parallel 2.5

D matrix multiplication and LU factorization algorithms. In European Conference
on Parallel Processing. Springer, 90–109.

[47] Juliusz Sompolski, Marcin Zukowski, and Peter Boncz. 2011. Vectorization

vs. compilation in query execution. In Proceedings of the Seventh International
Workshop on Data Management on New Hardware. 33–40.

[48] Yuxin Tang, Zhimin Ding, Dimitrije Jankov, Binhang Yuan, Daniel Bourgeois,

and Chris Jermaine. 2023. Auto-Differentiation of Relational Computations

for Very Large Scale Machine Learning. In Proceedings of the 40th International
Conference on Machine Learning (Proceedings of Machine Learning Research),
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan

Sabato, and Jonathan Scarlett (Eds.), Vol. 202. PMLR, 33581–33598. https://

proceedings.mlr.press/v202/tang23a.html

[49] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[50] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos Efrain Quin-

tero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati, Pat McCormick, Ja-

maludin Mohd-Yusof, et al. 2022. Unity: Accelerating {DNN} training through

joint optimization of algebraic transformations and parallelization. In 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
22). 267–284.

[51] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,

Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert

Cohen. 2018. Tensor comprehensions: Framework-agnostic high-performance

machine learning abstractions. arXiv preprint arXiv:1802.04730 (2018).
[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in Neural Information Processing Systems. 6000–6010.
[53] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake Hechtman, Yanping Huang,

Rahul Joshi, Maxim Krikun, Dmitry Lepikhin, Andy Ly, and Marcello Maggioni.

2021. GSPMD: General and Scalable Parallelization for ML Computation Graphs.

arXiv preprint arXiv:2105.04663 (2021).
[54] Binhang Yuan, Dimitrije Jankov, Jia Zou, Yuxin Tang, Daniel Bourgeois, and Chris

Jermaine. 2021. Tensor Relational Algebra for Distributed Machine Learning

System Design. (2021).

[55] Xiru Zhang, Michael Mckenna, Jill P Mesirov, and David L Waltz. 1990. An

efficient implementation of the back-propagation algorithm on the connection

machine CM-2. In Advances in neural information processing systems. 801–809.
[56] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-

ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. 2022.

Alpa: Automating inter-and {Intra-Operator} parallelism for distributed deep

learning. In 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22). 559–578.

2253

https://proceedings.mlr.press/v202/tang23a.html
https://proceedings.mlr.press/v202/tang23a.html

	Abstract
	1 Introduction
	2 Paper Roadmap
	3 EinSum Background and Examples
	4 Re-Writing EinSum to TRA
	4.1 Tensor Relations
	4.2 The Tensor-Relational Algebra
	4.3 EinSum as a Tensor-Relational Language
	4.4 Parallelism via the Partitioning Vector

	5 Optimizing the Decomposition
	6 Ensuring Enough Parallel Work
	7 Costing A Decomposition
	8 The EinDecomp Algorithm
	8.1 Counting EinSum Partitionings
	8.2 Dynamic Programming
	8.3 Computing the Optimal Cost During DP
	8.4 Handling General DAGs

	9 Experimental Evaluation
	9.1 Experimental Overview
	9.2 Experiments Run
	9.3 Discussion

	10 Related Work
	11 Conclusions
	Acknowledgments
	References

