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ABSTRACT

Truss decomposition is a fundamental approach in graph theory

that focuses on uncovering cohesive subgraphs within networks.

However, many networks involve groupwise rather than pairwise

relationships and are often represented as hypergraphs. Modeling

and capturing k-truss in hypergraphs is essential for uncovering

tight-knit relationships in such multi-relational networks. In this

paper, we tackle the problem of truss decomposition in hypergraph.

A hyper 𝑘-truss is a subgraph in which each node is part of at

least 𝑘 hyper-triangles. We first introduce a framework for hyper-

truss decomposition and determine that the most time-consuming

component is counting hyper-triangles. To count all hyper-triangles

efficiently, we propose an edge-iterator algorithm. To further reduce

redundant computations, we present an improved algorithm that

combines edge-iterator and node-iterator techniques to prune non-

promising nodes. Next, to handle common nodes in hypergraphs,

we develop a novel prefix forest technique to encode all hyperedges

and count triangles within this prefix forest.We also propose several

optimization strategies that reorder nodes and hyperedges to

improve work balancing. Finally, we conduct extensive experiments

on real-world hypergraph datasets, demonstrating the efficiency

and effectiveness of our algorithms.
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1 INTRODUCTION

In network analysis, identifying cohesive substructures within

large and complex networks is essential. Traditional graph-based

methods, such as k-core [12] and k-truss [48] decompositions, have

provided valuable insights by focusing on vertex connectivity

and cohesive subgraphs. Among these, k-truss decomposition is

particularly noteworthy for its ability to filter out less significant
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Figure 1: Example for a hypergraph

information from the k-core, thereby preserving the most cohesive

parts of the network. However, despite having polynomial-time

algorithms, existing methods for computing k-truss often struggle

to scale effectively with the size of modern networks.

Expanding this concept to hypergraphs—where an edge can

connect more than two vertices—introduces a new set of challenges

and opportunities, as illustrated in Fig. 1. Hypergraphs generalize

traditional graphs and are particularly useful for modeling complex

relationships in domains such as bioinformatics, social networks,

and information retrieval. The concept of truss decomposition in

hypergraphs extends k-truss to these more complex structures,

offering a richer and more nuanced understanding of network

cohesion.

Truss decomposition in hypergraphs is an emerging field that

seeks to develop efficient algorithms capable of handling the vast

and intricate data associated with hypergraphs. In this extended

model, a hyper k-truss is a subgraph in which each node is part

of at least 𝑘 hyper-triangles. This model more accurately captures

the cohesiveness relations in a hypergraph. For example, in a co-

purchases network (such as Pinduoduo or Groupon), a hyperedge
can represent a group purchase, and a hyper k-truss can effectively

capture the cohesiveness of various group purchase sizes.

However, according to the definition of hyper k-truss, counting
triangles in hypergraphs more efficiently is of great importance for

mining hyper k-trusses in hypergraphs. Inspired by the definition of

traditional triangles in graphs, we define the triangle in hypergraphs

as follows: a triangle is a triple of distinct hyperedges {𝑒1, 𝑒2, 𝑒3} in
which 𝑒1 ∩𝑒2, 𝑒2 ∩𝑒3, 𝑒1 ∩𝑒3 ≠ ∅, but 𝑒1 ∩𝑒2 ∩𝑒3 = ∅. Counting the
triangles in traditional graphs is a hot topic in recent years, and the

theoretical time and space complexity of the iteration methods for

triangle counting is 𝑂 ( |𝐸 |1.5) and 𝑂 ( |𝐸 |), where |𝐸 | is the number

of edges in the graph [18, 40]. However, most optimization methods

are hard to apply to count the triangles in hypergraphs, since

each hyperedge in a hypergraph has a large number of neighbor

edges and nodes. Even worse, we observe that many hyperedges

connect to most of the hyperedges in the hypergraph in many
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datasets. Therefore, it is often very costly to count the triangles in

hypergraphs, since we need to compute the interactions of each

pairwise neighbor of hyperedges.

Note that, there are several implementations of the truss model.

The general baseline Truss used in our experiments is based on

the bipartite representation of a graph, where each hyperedge is

transformed into a complete graph. For bipartite graph models, Kai

Wang et al.[49] introduced Bitruss, where the key definition is that

the butterfly support of each edge in a 𝑘-bitruss is greater than

or equal to 𝑘 . Additionally, regarding hypergraph trusses, Wang

et al.[50] have previously studied truss models in hypergraphs.

However, it has certain limitations in defining hypergraph triangles:

given parameters 𝛼 and 𝛽 , it requires 𝐸𝑥 ∩ 𝐸𝑦 ∩ 𝐸𝑧 ≥ 𝛼 and 𝐸𝑥 ∪
𝐸𝑦 ∪𝐸𝑧 ≥ 𝛽 , which now appears restrictive. Compared to the above

models, our model is more general and better suited for modeling

truss in native hypergraphs.

Contributions. In this paper, we formulate and provide efficient

solutions for truss decomposition in a hypergraph. The main

contributions of our work are summarized as follows.

(i) Novel Model.We introduce a model for 𝑘-trusses and triangles

in hypergraphs and validate the definition. A hyper 𝑘-truss is a
subgraph in which each node is part of at least 𝑘 hyper-triangles.

Through our framework for truss decomposition in hypergraphs,

we identify that a crucial step in this process is counting all the

hyper-triangles.

(ii) Efficient Algorithms. After introducing the framework for

hyper-truss decomposition, we explore methods to efficiently

count all hyper-triangles. Initially, we propose a baseline al-

gorithm, HTC-B, which counts hyper-triangles using an edge-

iterator approach. However, this method proves inefficient as it

requires enumerating all neighbors of the hyperedges, and often,

a hyperedge is connected to a large number of other hyperedges.

To mitigate redundant computations, we integrate edge-iterator

and node-iterator techniques, leading to an improved algorithm,

HTC-P. We note that many hyperedges share common nodes

but are computed independently during enumeration. To address

this, we design a novel prefix forest to encode all hyperedges

and introduce HTC-PF, which enumerates triangles within this

prefix forest. Furthermore, we have developed several optimization

techniques, incorporating node or edge ordering heuristics, to

further accelerate our counting algorithm.

(iii) Extensive experiments. We conduct extensive experiments

on 10 real-world datasets to evaluate our algorithms. The experi-

mental results show that i) Our algorithm of truss decomposition

in hyper graphs is only slightly slower than truss decomposition

in traditional graph, and is faster than other comparative methods;

ii) The hyper-triangles counting algorithm HTC-PF is much faster

than the baseline method HTC-B. Particularly, HTC-PF is about 10-
100 times faster than the HTC-B, and HTC-PF only consumes 0.31

seconds to count the triangles in a co-authorship hypergraphDBLP
with 3.7 million hyper-edges; iii) Through a case study on DBLP,
hyper k-truss demonstrates a clearer and more precise depiction of

tight relationships compared to k-truss.

Organization. Section 2 introduces the model and formulates our

problem. The framework of the hyper truss decomposition and the
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Figure 2: The bipartite form of the hypergraph in Fig.1

algorithms to efficiently counting hyper-triangles are proposed in

Section 3 and 4. Experimental studies are presented in Section 5,

and the related work is discussed in Section 6. Section 7 draws the

conclusion of this paper.

2 PRELIMINARIES

Let G = (𝑉G, 𝐸G) be a hypergraph, in which 𝑉G is the set of

nodes, 𝐸G is the set of hyperedges (𝐸1, 𝐸2 ...). Obviously, |𝐸G | ≤
2
|𝑉 |

. We consider a simple and undirected hypergraph in this

manuscript, so one hyperedge 𝐸𝑥 ∈ 𝐸G is structured as an un-

ordered set of nodes (𝑣𝑥1 , 𝑣𝑥2 ...) and it represents a set of |𝐸𝑥 |
nodes that take interactions. For convenient, we record 𝑥 to be

the ID of the hyperedge 𝐸𝑥 , and mark the nodes of each hyperedge

(𝑣𝑥1 , 𝑣𝑥2 , 𝑣𝑥3 , ...) in ascending order such that (𝑥1 < 𝑥2 < 𝑥3 < ...).
Fig. 2(a) illustrates a hypergraph with 8 nodes and 8 hyperedges.

We can see that a hypergraph can be easily presented by a bipartite

graph, and the two separated parts in Fig. 2(a) are nodes and

hyperedges. The hyper-triangle can be defined as follows.

Definition 1 (hyper-triangle). Given a hypergraph
G = (𝑉G, 𝐸G), a hyper-triangle △ in G is a triple of hyperedges
{𝐸𝑥 , 𝐸𝑦, 𝐸𝑧 } ⊆ 𝐸G in which 𝐸𝑥 ∩ 𝐸𝑦 ≠ ∅, 𝐸𝑥 ∩ 𝐸𝑧 ≠ ∅, 𝐸𝑦 ∩ 𝐸𝑧 ≠ ∅
but 𝐸𝑥 ∩ 𝐸𝑦 ∩ 𝐸𝑧 = ∅.

Note that in Definition 1, we can observe that the hyper-

triangle has two properties: (𝑖) each pair of hyperedges has

nodes in common; (𝑖𝑖) the triple of hyperedges has no node in

common. Those properties have become a consensus in hypergraph

theory [9, 26, 37]. The property (𝑖) is intuitive, such that each pair

of edges are connected inside each triangle △. Consider a triple of
hyperedges which satisfies property 𝑖 but dissatisfies property 𝑖𝑖 ,

the triple becomes a shape of triple star ⋌(as Fig. 2(c) shown). In

topology, the Betti Number [36] (the maximum number of cuts that

can be made without dividing a surface into two separate pieces)

of △ and ⋌are 1 and 0, respectively. We can find that △ is much

more stable than ⋌, such that the Betti Number of △ is higher than ⋌.

Therefore, the hyper-triangle in a hypergraph must have the two

properties described in Definition 1.

Here, we introduce some useful concepts for a hypergraph G.
Let 𝑉G (𝐸𝑥 ) be the set of nodes in hyperedge 𝐸𝑥 , 𝐸G (𝑢) be the set
of hyperedges which contains 𝑢, 𝑛 = |𝑉G | and 𝑚 = |𝐸G | be the

number of nodes and hyperedges, N𝑉
G
(𝑣) = 𝑣 ∪ {𝑢 |∃𝐸𝑥 ∈ 𝐸G, {𝑢, 𝑣}

⊆ 𝐸𝑥 } be the set of neighbor nodes of node 𝑣 , N𝐸
G
(𝐸𝑥 ) = {𝐸𝑐 |𝐸𝑐 ∈

𝐸G, 𝐸𝑐 ∩ 𝐸𝑥 ≠ ∅} be the set of neighbor edges of edge 𝐸𝑥 , and

D𝑉
G
(𝑣) = |N𝑉

G
(𝑣) |, D𝐸

G
(𝐸𝑥 ) = |N𝐸

G
(𝐸𝑥 ) | be the degree of node 𝑣 and

hyperedge 𝐸𝑥 in G. The capacity of one hyperedge C(𝐸𝑥 ) is the
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number of nodes inside 𝐸𝑥 , which equals |𝑉G (𝐸𝑥 ) |. The example

below shows the explanations of the notations.

Example 1. Fig. 2(a) shows a hypergraph G in which 𝑉G =

{𝑢1, 𝑢2, ..., 𝑢8} and 𝐸G = {𝐸1, 𝐸2, ..., 𝐸8}. Consider hyperedge 𝐸1, we
can find that 𝑉G (𝐸1) = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢6}, 𝑉G (𝐸2) = {𝑢1, 𝑢3, 𝑢4, 𝑢5}
and so on. Note that node 𝑢1 is in hyperedges 𝐸1, 𝐸2 and 𝐸3, we can
see that 𝐸G (𝑢1) = {𝐸1, 𝐸2, 𝐸3} and N𝑉

G
(𝑢1) = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢6} ∪

{𝑢1, 𝑢3, 𝑢4, 𝑢5} ∪ {𝑢1, 𝑢3, 𝑢5, 𝑢6} = {𝑢1, 𝑢2, ..., 𝑢6}. In addition,
N𝐸
G
(𝐸1) = {𝐸G (𝑢1) ∪ 𝐸G (𝑢2) ∪ 𝐸G (𝑢3) ∪ 𝐸G (𝑢4) ∪ 𝐸G (𝑢6)} =

{𝐸1, 𝐸2, ..., 𝐸8}. Fig. 2(b) is the illustration for hyperedges 𝐸4, 𝐸6
and 𝐸7. We can observe that 𝐸4 ∩ 𝐸6 = {𝑢2, 𝑢4}, 𝐸4 ∩ 𝐸7 = {𝑢3},
𝐸6 ∩ 𝐸7 = {𝑢6} and 𝐸4 ∩ 𝐸6 ∩ 𝐸8 = ∅. So, the triple of
hyperedges can form a hyper-triangle. In Fig. 2(c), although
𝐸1 ∩ 𝐸4, 𝐸1 ∩ 𝐸6, 𝐸4 ∩ 𝐸6 ≠ ∅, but 𝐸1 ∩ 𝐸4 ∩ 𝐸6 = {𝑢2, 𝑢4}. Therefore,
the union of 𝐸1, 𝐸4, 𝐸6 can not be a hyper-triangle.

On the basis of hyper-triangles, we define the support of a

hyperedge as follows.

Definition 2 (support). Given a hypergraph G = (𝑉G, 𝐸G),
the support of a hyperedge 𝐸 ∈ 𝐸G in G, denoted by 𝑠𝑢𝑝 (𝐸,G),
is the number of hyper-triangles which contain hyperedge 𝐸, i.e.
𝑠𝑢𝑝 (𝐸,G) = |{△|𝐸 ∈ △, △ ⊆ 𝐸G}|.

In a traditional graph, a 𝑘-truss is the maximal subgraph where

every node each edge is contained in at least 𝑘-2 triangles. In the

following, we define the hyper 𝑘-truss below.

Definition 3 (hyper 𝑘-truss). Given a hypergraph
G = (𝑉G, 𝐸G), a hyper 𝑘-truss in G, denoted by 𝐻𝑇𝑘 , is a
maximal subgraph H, such that ∀𝐸 ∈ 𝐸G, 𝑠𝑢𝑝 (𝐸,H) ≥ 𝑘 − 2.

Besides, the hyper 𝑘-truss number of the edge 𝐸, denoted by

ℎ𝑡𝑛(𝐸), is the maximal number of 𝑘 such that there is a hyper

𝑘-truss containing 𝐸 but no hyper (𝑘 + 1)-truss containing it.
Problem Statement. The goal of truss decomposition (denoted

by HTRUSS) in a hypergraph G is to compute the hyper 𝑘-truss

number for each edge in G.

Challenges. The problem of truss decomposition in hypergraphs

is similar to truss decomposition in traditional graphs. However,

the algorithm for hypergraph truss decomposition, faces several

computational challenges, particularly related to the efficiency of

the initial support calculation, i.e. the hyper-triangle counting in

the whole hypergraph. Counting hyper-triangles in hypergraphs

is analogous to counting triangles in traditional graphs, but direct

application of traditional methods is inadequate. In conventional

graphs, triangle counting algorithms typically list all adjacent edge

pairs (wedges) and check which pairs form triangles. Given that

the average degree of nodes in these graphs is not excessively high,

traditional algorithms have a time complexity of 𝑂 ( |𝐸 |1.5).
However, the situation is more complex in hypergraphs. Each

hyperedge may have a large number of neighboring edges, and

we need to verify whether the intersection 𝐸𝑥 ∩ 𝐸𝑦 ∩ 𝐸𝑧 is empty,

which can result in a time complexity of up to 𝑂 ( |𝐸 |3). Thus, the
primary challenges are (i) efficiently pruning impossible candidates

among the neighboring edges and (ii) determining whether the

intersection 𝐸𝑥 ∩ 𝐸𝑦 ∩ 𝐸𝑧 is empty using a more efficient method.

Addressing these challenges is crucial for theHTRUSS algorithm.

The efficiency of the algorithm heavily relies on overcoming these

Algorithm 1: HTRUSS(G, 𝑘)
Input: Hyper-graph G = (𝑉G, 𝐸G )
Output: The hyper 𝑘-truss number for 𝐸 ∈ 𝐸G, i.e. ℎ𝑡𝑛 (𝐸 )

1 ℎ𝑡𝑛 ← ∅; E← 𝐸G;

2 [Computing all the support for each edge]

3 for each 𝐸 ∈ E do
4 ℎ𝑡𝑛[𝐸 ] ← support for each hyperedge 𝐸;

// Equivalent to counting all the hyper-triangles, we can invoke the

HTC algorithm in the next section

5 for 𝑘 = 3 : 𝐶2

|𝑉G |
do

6 while ∃𝐸 ∈ E satisfying ℎ𝑡𝑛[𝐸 ] < 𝑘 − 2 do

7 E.𝑟𝑒𝑚𝑜𝑣𝑒 (𝐸 ) ;
8 for 𝐸′ ∈ N𝐸

G
(𝐸 ) in an ascending order of ℎ𝑡𝑛 do

9 if ∃𝐸∗ ∈ N𝐸
G
(𝐸 ) ∩ N𝐸

G
(𝐸′ ) s.t. 𝐸∗ ∩ 𝐸′ ∩ 𝐸 = ∅ then

10 ℎ𝑡𝑛 (𝐸′ ) ← ℎ𝑡𝑛 (𝐸′ ) − 1;

11 if E = ∅ then break for;

12 return ℎ𝑡𝑛;

difficulties in hyper-triangle counting. In the following sections,

we will introduce several novel filtering techniques and an efficient

enumeration algorithm based on a prefix forest to tackle these

issues, thereby improving the overall performance and scalability

of the HTRUSS algorithm for large-scale hypergraph analysis.

3 HYPER TRUSS DECOMPOSITION

FRAMEWORK

Based by a peeling method, we present a framework for truss

decomposition in a hypergraph, as shown in Algorithm 1. The

HTRUSS algorithm begins by initializing an empty map ℎ𝑡𝑛 to

store the truss number for each hyperedge and a working set

E containing all hyperedges from the input hypergraph G. For
each hyperedge 𝐸 ∈ E, it computes the support, which counts the

number of hyper-triangles that include 𝐸, and stores this support

value in the ℎ𝑡𝑛 map (lines 3-4). The algorithm iterates through

possible values of 𝑘 starting from 3 up to 𝐶2

|𝑉G | . For each 𝑘 , it

repeatedly removes hyperedges 𝐸 from E that have a support less
than 𝑘 − 2 (lines 5-6). After removing a hyperedge 𝐸, the support

values of its neighboring hyperedges 𝐸′ (those that share vertices
with 𝐸) are decremented by 1, processing the neighbors in ascending

order of their support values to ensure correct updates (lines 7-10).

Note that, after removing an edge, the support reduces only when

its neighbors can form a hyper-triangle (lines 9). If E becomes

empty, the algorithm terminates early for the current 𝑘 (line 11).

Finally, the algorithm returns the ℎ𝑡𝑛 map, which contains the

hyper 𝑘-truss number for each hyperedge in the hypergraph. This

framework efficiently decomposes a hypergraph into its 𝑘-truss

components, providing a scalable method for analyzing large and

complex hypergraphs.

Next, we analyze the complexity of the HTRUSS algorithm. In

the initialization step, which involves initializing the ℎ𝑡𝑛 map and

the set of hyperedges E, takes 𝑂 ( |𝐸G |), where |𝐸G | is the number

of hyperedges in the hypergraph G. For each hyperedge 𝐸 ∈ E, the
support is calculated by counting the number of hyper-triangles it

participates in. So we record the hyper-triangles counting time
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to be 𝑇 (#△). Then, the peeling process involves an outer loop

running from 𝑘 = 3 to 𝐶2

|𝑉G | , but in practice, the peeling process

terminates early, so the upper bound is not always reached. For

each 𝑘 , the while-loop iterates over the hyperedges and removes

those with support less than 𝑘−2, considering each hyperedge once
in the worst case. Removing a hyperedge and updating the support

values of its neighboring hyperedges takes𝑂 (𝑑) time per hyperedge,

where 𝑑 is the maximum degree of the hypergraph. The inner for-

loop updates the support values for affected hyperedges, involving

processing neighbors in ascending order of support, which can be

efficiently managed using appropriate data structures (e.g., priority

queues), resulting in a time complexity of𝑂 (𝑑 log𝑑) per hyperedge
removal. The condition E = ∅ is checked in each iteration of the

outer for-loop, taking constant time 𝑂 (1).
Combining these steps, we get the overall worst-case time

complexity of the HTRUSS algorithm as 𝑂 (𝑇 (#△) + |𝐸G | · 𝑑 log𝑑),
where |𝐸G | is the number of hyperedges and 𝑑 is the maximum

degree of the hypergraph. However, in the next section, we will

show that our proposed best algorithm needs about 𝑂

(︂
|𝐸G |3
|𝑉G |

)︂
to

count all the hyper-triangles in the hypergraph. Thus, the overall

time complexity of the HTRUSS algorithm largely depends on the

efficiency of hyper-triangles counting.

Efficiently counting hyper-triangles is crucial because it di-

rectly impacts the initialization phase where the support for

each hyperedge is calculated. If the hyper-triangle counting is

optimized, it can significantly reduce the time complexity of

the HTRUSS algorithm. This efficiency gain can lead to better

performance in real-world applications, especially for large-scale

hypergraphs where the number of hyperedges and vertices is

substantial. Therefore, improving hyper-triangle counting methods

can make the HTRUSS algorithm more practical and scalable for

massive hypergraph datasets. In the next sections, we will delve

into the details of our optimized hyper-triangle counting techniques

and demonstrate their impact on the overall performance of the

HTRUSS algorithm.

4 HYPER-TRIANGLE COUNTING

ALGORITHMS

In this section, we first introduce a basic framework to count the

hyper-triangles. Then, we propose an advanced framework which

can reduce the triangles computation by recording the interactions

of the former hyperedges. Next, we develop an improved algorithm

which can first store the predecessor neighbors in a prefix forest,

then filter and count the hyper-triangles by trees in the constructed

forest. The details of the proposed algorithms are shown below.

4.1 The HTC-Basic Algorithm
To solve the problem of counting hyper-triangles, there are two

intuitive methods: edge-iterator and node-iterator based counting

framework. The first one is to iterator all the edges and find which

triple of edges can be a hyper-triangle. Recall Definition. 1, we can

enumerate the edge in 𝐸G to be 𝐸𝑥 , and then search the neighbor of

𝐸𝑥 to find 𝐸𝑦 and 𝐸𝑧 . The second one is to iterator all the nodes and

find which triple of nodes can be contained in different hyperedges.

We can enumerate the node 𝑢 in𝑉G, search 𝐸G (𝑢) to get a neighbor

Algorithm 2: HTC-B(G)
Input: Hyper-graph G = (𝑉G, 𝐸G )
Output: The numbers of all the hyper-triangles in G

1 𝑐𝑜𝑢𝑛𝑡 ← 0;

2 for each 𝐸𝑥 ∈ 𝐸G in parallel do
3 N𝐸

G
(𝐸𝑥 ) ← {𝐸𝑐 |𝐸𝑐 ∈ 𝐸G, 𝐸𝑐 ∩ 𝐸𝑥 ≠ ∅};

4 for each 𝐸𝑦 ∈ N𝐸
G
(𝐸𝑥 ) s.t. 𝑦 < 𝑥 do

5 for each 𝐸𝑧 ∈ N𝐸
G
(𝐸𝑥 ) s.t. 𝑧 < 𝑦 do

6 if 𝐸𝑦 ∩ 𝐸𝑧 ≠ ∅ and 𝐸𝑥 ∩ 𝐸𝑦 ∩ 𝐸𝑧 = ∅ then
7 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1;

8 return 𝑐𝑜𝑢𝑛𝑡 ;

𝑣 , and search the common neighbor𝑤 of 𝑢 and 𝑣 to search hyper-

triangles. However, this method may result in complex judgments

for whether the hyper-triangle shared by 𝑢 and 𝑣 is same as 𝑣 and

𝑤 ; whether the hyper-triangle formed by (𝑢, 𝑣,𝑤) is same as that

by (𝑢′, 𝑣 ′,𝑤 ′), and so on.

Therefore, we propose an edge-iterator based framework as a

baseline to count the hyperedges, as shown in Algorithm 2. It first

enumerates the edge 𝐸G to be 𝐸𝑥 in parallel (line 2). Then, the

algorithm initializes a hyperedge set, N𝐸
G
(𝐸𝑥 ), which contains all

the hyperedges whose intersection with 𝐸𝑥 is not empty (line 3).

Next, it enumerates the edges 𝐸𝑦 and 𝐸𝑧 in N𝐸
G
(𝐸𝑥 ) to be another

two edges in the hyper-triangle (lines 4-5), and the value of 𝑐𝑜𝑢𝑛𝑡

will increase 1 if 𝐸𝑦 ∩ 𝐸𝑧 ≠ ∅ and 𝐸𝑥 ∩ 𝐸𝑦 ∩ 𝐸𝑧 = ∅. Note that, the
three hyperedges {𝐸𝑥 , 𝐸𝑦, 𝐸𝑦} in a hyper-triangle need to satisfy

𝑧 < 𝑦 < 𝑥 to avoid redundant computations.

Theorem 4.1 (Complexity of HTC-B). The time and space
complexity of Algorithm 2 are 𝑂 (C𝑚3) and 𝑂 (C𝑚), respectively, in
which𝑚 and C are the number and average capacity of hyperedges.

Proof. The algorithm first enumerates the hyperedges in 𝐸G,

such that it will have 𝑚 iterations. Then, it needs to calculate

the neighour edges of hyer-edges 𝐸𝑥 in line 3, of which the time

complexity is certainly bounded by 𝑂 (𝑚). Next, the algorithm

enumerates N𝐸
G
(𝐸𝑥 ) twice to search the proper 𝐸𝑦 and 𝐸𝑧 in lines

4-5, such that it will have at most𝑚2
iterations. In line 6, it needs

𝑂 (C) to compute 𝐸𝑦∩𝐸𝑧 and 𝐸𝑥∩𝐸𝑦∩𝐸𝑧 , in whichC is the average

capacity of all the hyperedges. To sum up, Algorithm 2 needs the

time complexity of 𝑂 (𝑚 × (𝑚 + C𝑚2)) = 𝑂 (C𝑚3) to count all the

hyperedges. Consider the occupation of space, Algorithm 2 needs

not to store any other structures expect the hypergraph, such it

only needs space of 𝑂 (C𝑚). □

4.2 The HTC-Plus Algorithm
To reduce the redundant computations, the current advanced trian-

gle counting algorithm consists of two major steps: orientation and

computation. Orientation steps focus on reducing the redundant

counting since {𝐸1, 𝐸2, 𝐸3} and {𝐸3, 𝐸2, 𝐸1} are same triangles.

Computation steps focus on reducing the cost of calculating the

interaction of hyperedges. Here we introduceHTC-P, a Plus version
of the hyper-triangle counting algorithm.

There are three optimization features in the algorithm HTC-P:
(𝑖) We design a partial ordering relation for all the hyperedges,
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Algorithm 3: HTC-P(G)
Input: Hyper-graph G = (𝑉G, 𝐸G )
Output: The numbers of all the hyper-triangles in G

1 𝑐𝑜𝑢𝑛𝑡 ← 0;

2 for each 𝐸𝑥 ∈ 𝐸G in parallel by a decreasing order do
3 𝑃𝑟𝑒𝑐 ← ∅;
4 N𝐸

G
(𝐸𝑥 ) ← {𝐸𝑐 |𝐸𝑐 ∈ 𝐸G, 𝐸𝑐 ∩ 𝐸𝑥 ≠ ∅};

5 for 𝐸𝑐 ∈ N𝐸
G
(𝐸𝑥 ) s.t. 𝐸𝑐≺ 𝐸𝑥 do

6 𝑃𝑟𝑒𝑐 [𝐸𝑐 ] ← 𝐸𝑐 ∩ 𝐸𝑥 ;
7 for 𝐸𝑦 ∈ N𝐸

G
(𝐸𝑥 ) s.t. 𝐸𝑦 ≺ 𝐸𝑥 and 𝑃𝑟𝑒𝑐 [𝐸𝑦 ] ≠ ∅ do

8 𝐻𝑆𝑒𝑡 ← ∅;
9 for each 𝑣 ∈ (𝐸𝑦 \ 𝑃𝑟𝑒𝑐 [𝐸𝑦 ] ) do
10 for 𝐸𝑧 ∈ 𝐸G (𝑣) s.t. 𝐸𝑧 ≺ 𝐸𝑦 do

11 if 𝑃𝑟𝑒𝑐 [𝐸𝑧 ] = ∅ or 𝑧 ∈ 𝐻𝑆𝑒𝑡 then

12 contine;

13 𝐻𝑆𝑒𝑡 ← 𝐻𝑆𝑒𝑡 ∪ 𝑧;
14 if 𝑃𝑟𝑒𝑐 [𝐸𝑦 ] ∩ 𝑃𝑟𝑒𝑐 [𝐸𝑧 ] = ∅ then
15 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1;

16 return 𝑐𝑜𝑢𝑛𝑡 ;

and search the hyper-triangles in which the hyperedges satisfy

𝐸𝑧 ≺ 𝐸𝑦 ≺ 𝐸𝑥 . Suppose all the nodes in the hyperedges are ordered

in increasing order of their IDs. One hyperedge 𝐸𝑦 ≺ 𝐸𝑧 if there

exists a 𝑘 such that the indices of the nodes from 0 to 𝑘 are the same,

and the index of the (𝑘 + 1)-th node in 𝐸𝑧 is greater than that in 𝐸𝑦 .

For example, the hyperedge 𝑢1, 𝑢3, 𝑢4, 𝑢5 ≺ 𝑢1, 𝑢4, 𝑢5 because the

index of the first node is the same (1 = 1), and the index of the fourth

node is 3 < 4. (𝑖𝑖) Recall in HTC-B, we enumerate all the neighbor

edges of 𝐸𝑥 to seek 𝐸𝑦 and 𝐸𝑧 . However, the enumeration will

result in redundant computations for computing the interactions.

So, we compute and store the common nodes for 𝐸𝑥 ∩ 𝐸𝑦 and

𝐸𝑥 ∩ 𝐸𝑧 to reduce the considerate nodes. (𝑖𝑖𝑖) While searching the

last hyperedge 𝐸𝑧 in the triangle, we enumerate the nodes in 𝐸𝑦
to filter more impossible edges. As it is hard to avoid orientation

while enumerating nodes, we set some flag values which help us

ensure that there are no repeat countings.

Algorithm 3 shows the details of the improved counting algo-

rithm. Same as HTC-B, it first enumerates the edge 𝐸G to be 𝐸𝑥
in parallel (line 2). Then, HTC-P initializes a set 𝑃𝑟𝑒𝑐 to record

the interaction of 𝐸𝑥 and its neighbors, a set 𝐹𝑙𝑎𝑔 to store the

loop number of the edges, and a set N𝐸
G
(𝐸𝑥 ) to record hyperedges

which are connected with 𝐸𝑥 (lines 3-6). Next, as shown in the third

optimization above, the algorithm enumerates 𝐸𝑦 inN𝐸
G
(𝐸𝑥 ) (line 7),

and searches node 𝑣 in 𝐸𝑦 to find 𝐸𝑧 (line 9). Note that, if 𝐸𝑧 has been

searched through one node 𝑣 , 𝑧 will be in𝐻𝑆𝑒𝑡 (line 11), such that if

|𝐸𝑦∩𝐸𝑧 | ≥ 2, the triangle will not be counted more than once (lines

11-13). In the last step of the loop, if 𝑃𝑟𝑒𝑐 [𝐸𝑦] ∩𝑃𝑟𝑒𝑐 [𝐸𝑧] = ∅, then
𝐸𝑥 ∩ 𝐸𝑦 ∩ 𝐸𝑧 = ∅ and the value of 𝑐𝑜𝑢𝑛𝑡 will increase 1 (line 15).

The following example shows the process of Algorithm 3 while

search hyper-triangles in Fig. 2(a).

Example 2. Fig. 3 shows the process of counting hyper-
triangles in Fig. 2(a). Consider hyperedge 𝐸𝑥 = 𝐸8,
N𝐸
G
(𝐸8) = {𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, 𝐸7}. Suppose 𝐸𝑦 = 𝐸7, we can

see 𝑃𝑟𝑒𝑐 [𝐸7] = {𝑢3, 𝑢6, 𝑢7} and it is not ∅. However, each item in 𝐸7
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Figure 3: Running example for HTC-P

are all in 𝐸8 such that the loop continues to consider 𝐸𝑦 = 𝐸6. We can
get 𝑃𝑟𝑒𝑐 [𝐸6] = {𝑢6, 𝑢8}, and there are two nodes {𝑢2, 𝑢4} which are
in 𝐸6 but not in 𝐸8. Consider 𝐸G (𝑢4) = {𝐸1, 𝐸2, 𝐸4, 𝐸6}, we can find
that only 𝐸4 satisfies that 𝑃𝑟𝑒𝑐 [𝐸4] ∩𝑃𝑟𝑒𝑐 [𝐸6] = ∅, such that there is
a hyper-triangle while 𝐸𝑧 = 𝐸4. Consider 𝐸G (𝑢2) = {𝐸1, 𝐸4, 𝐸5, 𝐸6},
we can find that 𝐸4 satisfies that 𝑃𝑟𝑒𝑐 [𝐸4] ∩ 𝑃𝑟𝑒𝑐 [𝐸6] = ∅, but
𝐹𝑙𝑎𝑔[𝐸4] has been recorded as 𝑓 𝑙𝑎𝑔. So, this hyper-triangle with
𝐸𝑧 = 𝐸4 has been counted before and it will continue to loop as
lines 11-12 show. Combining the edge-iterator and node-iterator,
Algorithm 3 reduces several redundant computations to count the
hyper-triangles. □

Theorem 4.2 (Complexity of HTC-P). The time and space

complexity of Algorithm 3 are 𝑂 ( C
3

𝑛 𝑚3) and 𝑂 (C𝑚), respectively, in
which 𝑛 is the number of nodes,𝑚 and C are the number and average
capacity of hyperedges.

Proof. The algorithm first enumerates the hyperedges in 𝐸G
which requires𝑚 iterations (line 2). Then, it calculates all the 𝑃𝑟𝑒𝑐

set of 𝐸𝑥 , which needs 𝑂 (C𝑚) time (lines 4-6). Next, it searches

each 𝐸𝑦 in N𝐸
G
(𝐸𝑥 ) and each 𝑣 in 𝐸𝑦 (lines 7-9), which has loops of

𝑂 (C𝑚). In lines 10-15, the algorithm enumerates the hyperedges

which 𝑣 is in, and the average number of iterations is 𝑂 ( C𝑚𝑛 ).
Note that, all 𝑃𝑟𝑒𝑐 [𝐸𝑧] has been calculated before, and computing

𝑃𝑟𝑒𝑐 [𝐸𝑦] ∩ 𝑃𝑟𝑒𝑐 [𝐸𝑧] needs 𝑂 (C) time. To sum up, Algorithm 3

needs the time complexity of 𝑂 (𝑚 × (C𝑚 + C𝑚 × C𝑚
𝑛 × C)) =

𝑂 ( C
3

𝑛 𝑚3). Consider the occupation of space, Algorithm 3 stores all

the temporary 𝑃𝑟𝑒𝑐 set of 𝐸𝑥 , which needs at most 𝑂 (C𝑚), such
that the space complexity of Algorithm 2 is also 𝑂 (C𝑚). □

Note that, in a real-life hypergraph the average capacity of

hyperedges is much less than the node of the hypergraphs, such

that 𝑂 ( C
3

𝑛 𝑚3) will be much less than 𝑂 (C𝑚3) in real applications.

The experiments will show that Algorithm 3 is much efficient than

Algorithm 2 in practice.

4.3 The HTC-Prefix Forest Algorithm

Although Algorithm 3 is efficient in practice, it still has two

limitations: (𝑖) Algorithm 3 still needs to enumerate the neighbors

of 𝐸𝑥 in line 7 first, and then uses the sets of 𝑃𝑟𝑒𝑐 and 𝐹𝑙𝑎𝑔 to

reduce the interactions of hyperedges. As the N𝐸
G
(𝐸𝑥 ) may contain

large amounts of hyperedges, we need to reduce it before the

enumerations. (𝑖𝑖) In hypergraphs, most hyperedges may share

several common nodes, but they are all computed separately

during the enumerations. For example, consider hyperedges 𝐸′ =
{𝑣1, 𝑣2, 𝑣3} and 𝐸′′ = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, clearly they have three common
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Algorithm 4: BuildPrefixForest(G)
Input: Hyper-graph G = (𝑉G, 𝐸G )
Output: A prefix forest which encodes all the edges.

1 𝐸𝑛𝑡𝑟𝑎𝑛𝑐𝑒 ← ∅;
2 for each 𝐸𝑥 ∈ 𝐸G in an increasing order of edges do
3 if |𝐸𝑥 | = 1 then contine;

4 𝑁𝑜𝑑𝑒 ← 𝐸𝑛𝑡𝑟𝑎𝑛𝑐𝑒 ;

5 for 𝑢 ∈ 𝐸𝑥 do

6 if 𝑢 ∈ 𝑁𝑜𝑑𝑒.𝑛𝑒𝑥𝑡 .𝑘𝑒𝑦𝑠 ( ) then
7 𝑁𝑜𝑑𝑒 ← 𝑁𝑜𝑑𝑒.𝑛𝑒𝑥𝑡 [𝑢 ]; contine;
8 else

9 𝑁𝑜𝑑𝑒.𝑛𝑒𝑥𝑡 ← 𝑁𝑜𝑑𝑒.𝑛𝑒𝑥𝑡 ∩ {𝑢 : ∅};
10 𝑁𝑜𝑑𝑒 ← 𝑁𝑜𝑑𝑒.𝑛𝑒𝑥𝑡 [𝑢 ];
11 if 𝑢 = 𝐸𝑥 .𝑒𝑛𝑑 ( ) then
12 𝑁𝑜𝑑𝑒.𝑒𝑙𝑎𝑏𝑒𝑙 ← 𝐸𝑥 ;

13 return 𝐸𝑛𝑡𝑟𝑎𝑛𝑐𝑒 ;

nodes. Suppose 𝐸∗ = {𝑣1, 𝑣2, 𝑣5} and 𝐸∗∗ = {𝑣3, 𝑣5}, we can find that
there are two hyper-triangles {𝐸′, 𝐸∗, 𝐸∗∗} and {𝐸′′, 𝐸∗, 𝐸∗∗}. It can
be observed that node 𝑣4 does not participate in the construction of

triangles, so 𝐸′ and 𝐸′′ are same while constructing the triangles.

As many hyperedges will have overlaps of nodes, we need to merge

some calculations during the loops.

To overcome those limitations, we propose a novel counting

algorithm, HTC-PF, which relies on Prefix Forests to record the

hyperedges and finds the triangles in the forests. The striking

features of HTC-PF are twofold: (𝑖) On one hand, it needs not to

enumerate the neighbor of each hyperedge to search the triangles.

Instead, it enumerates some root of trees to find the next hyperedge

of the triangle. (𝑖𝑖) On the other hand, HTC-PF can reduce the

redundant computations while the hyperedges have overlap nodes

since those two similar hyperedges come from one branch in the

prefix tree. Below, we first introduce how to build the prefix forest

in Algorithm 4, and then describe the HTC-PF in Algorithm 5.

Building the Prefix Forest. Suppose that the nodes in hyperedges

are sorted in an increasing order of their IDs. Algorithm 4 first

initializes a pointer 𝐸𝑛𝑡𝑟𝑎𝑛𝑐𝑒 to record the start of the forest (line 1).

Then, it encodes each hyperedges into the forest (lines 2-12). In line

3, we eliminate hyperedges with a single node in order to reduce

the number of single-node trees in the prefix forest, as these do not

contribute to the formation of triangles. In each loop, the algorithm

literately searches the node 𝑢 in 𝐸𝑥 . If the current node 𝑢 is in

𝑁𝑜𝑑𝑒.𝑛𝑒𝑥𝑡 .𝑘𝑒𝑦𝑠 (), then 𝑢 is already in the branch of the tree and

the loop continues (lines 6-7). Otherwise, there is a new branch

starting at 𝑢 in the tree (line 9). If 𝑢 is the last item of 𝐸𝑥 , then the

𝑒𝑙𝑎𝑏𝑒𝑙 of the current node is marked as 𝐸𝑥 (lines 11-12). After all the

hyperedges are encoded into the trees, the algorithm returns the

pointer 𝐸𝑛𝑡𝑟𝑎𝑛𝑐𝑒 to be the start of the prefix forest. The following

example shows the process of building the prefix forest.

Example 3. Fig. 4 shows the prefix forest which encodes the
hypergraph in Fig. 2(a). To construct the prefix forest, algorithm
BuildPrefixForest initializes an entrance of the forest, and literately
adds the hyperedges into it. The algorithm first adds 𝐸1 into the
forest, such that we can get the left branch. Next, it will encode
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Figure 4: The prefix forest which encodes the hyperedges in

Fig. 2(a)

𝐸2 = {𝑢1, 𝑢3, 𝑢4, 𝑢5} into the forest. We can see that the current
𝑁𝑜𝑑𝑒 = ∅ (line 4) and ∅ →= {𝑢1}, so 𝑁𝑜𝑑𝑒 = ∅ → 𝑢1. Then,
consider 𝑢3 in 𝐸2, 𝑢3 is not in ∅ → 𝑢1 →, so we create a new node
𝑢3 and add it into ∅ → 𝑢1 →. If it comes to the end of 𝐸2, the node
will be marked by an 𝑒𝑙𝑎𝑏𝑒𝑙 , such that all the leaf in the forest will
have an 𝑒𝑙𝑎𝑏𝑒𝑙 . Note that, not all the 𝑒𝑙𝑎𝑏𝑒𝑙s are on leafs. Consider
𝐸7 and 𝐸8, 𝐸7 is totally a prefix of 𝐸8, such that 𝐸7 is the branch of
∅ → 𝑢3 → 𝑢6 → 𝑢7, but 𝐸8 is ∅ → 𝑢3 → 𝑢6 → 𝑢7 → 𝑢8. We
can also observe that the path from ∅ to the node which has 𝑒𝑙𝑎𝑏𝑒𝑙
represents one hyperedge in the hypergraph. □

Theorem 4.3 (Complexity of BuildPrefixForest). The time
and space complexity of Algorithm 4 are 𝑂 (C𝑚) and 𝑂 (C𝑚),
respectively.𝑚 and C are the number and average capacity of the
hyperedges.

Proof. In Algorithm 4, each node in the hypergraph will be

considered to be encoded into the prefix forest once, such that the

time complexity of Algorithm 4 is 𝑂 (C𝑚). In addition, the prefix

forest will not store any other structure, so the space complexity of

Algorithm 4 is 𝑂 (C𝑚). □

Counting the hyper-triangles in the Prefix Forest. After

encoding all the hyperedges by building the prefix forest, we

propose two-stage depth-first searches for constructing the hyper-

triangles. The depth-first searches are divided into two kinds. The

first kind, DFS-Same, is to search the other hyperedges in the same

tree as a given hyperedge 𝐸𝑥 . The second kind, DFS-Different, is
to search the other hyperedges in tree 𝑇 ′ for a given hyperedge

𝐸𝑥 in 𝑇 (𝑇 ≠ 𝑇 ′). In the following, we store and record all the

temporary interaction of two hyperedges 𝐸𝑥 , 𝐸𝑦 by 𝑃𝑟𝑒𝑐 [𝐸𝑥 , 𝐸𝑦],
which is significant to record the results of the depth-first searches.

For a given hyperedge 𝐸𝑥 , there are three situations for the

position of other two hyperedges 𝐸𝑦 and 𝐸𝑧 : (𝑖) 𝐸𝑦 is the prior

node in the same tree of 𝐸𝑥 , and 𝐸𝑧 is in another tree. (𝑖𝑖) 𝐸𝑦 and

𝐸𝑧 are in the same tree, but this tree is different from the tree of 𝐸𝑥 .

(𝑖𝑖𝑖) 𝐸𝑥 , 𝐸𝑦 and 𝐸𝑧 are all in different trees.

For situation (𝑖), since 𝐸𝑦 and 𝐸𝑥 are in the same tree, so we

can invoke the DFS-S once in the tree which has 𝐸𝑥 to get all the

𝑃𝑟𝑒𝑐 [𝐸𝑥 , 𝐸𝑦]. Under this situation, 𝐸𝑧 will certainly on the other

tree, otherwise 𝐸𝑧 will share at least one node 𝐸𝑥 .𝑓 𝑖𝑟𝑠𝑡 () with 𝐸𝑥
and 𝐸𝑦 . To search 𝐸𝑧 , we can invoke the DFS-D in the trees whose

root is less than 𝐸𝑥 .𝑓 𝑖𝑟𝑠𝑡 (). We can also use 𝑃𝑟𝑒𝑐 [𝐸𝑥 , 𝐸𝑦] to early

terminate the DFS-D if the visiting node is already in 𝑃𝑟𝑒𝑐 [𝐸𝑥 , 𝐸𝑦].
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Algorithm 5: HTC-PF(G)
Input: Hyper-graph G = (𝑉G, 𝐸G )
Output: The numbers of all the hyper-triangles in G

1 𝐹𝑜𝑟𝑒𝑠𝑡 ← BuildPrefixForest(G) ;
2 𝑇𝑟𝑒𝑒𝑠 ← 𝐹𝑜𝑟𝑒𝑠𝑡 .𝑛𝑒𝑥𝑡 ( ) ; 𝑐𝑜𝑢𝑛𝑡 ← 0; 𝑃𝑟𝑒𝑐 ← ∅;
3 for 𝑡𝑟𝑒𝑒1 ∈ 𝑇𝑟𝑒𝑒𝑠 in parallel do
4 for 𝐸𝑥 ∈ 𝑡𝑟𝑒𝑒1 .𝑙𝑒𝑎𝑓 𝑠 ( ) do
5 [Situation (i)]

6 DFS( [𝑡𝑟𝑒𝑒1, ∅, ∅, ∅], 𝑃𝑟𝑒𝑐, 𝐸𝑥 , ∅, ∅) ;
7 for 𝐸𝑦 ∈ 𝑡𝑟𝑒𝑒1 .𝑙𝑒𝑎𝑓 𝑠 ( ) s.t. 𝐸𝑦 ≺ 𝐸𝑥 do

8 for 𝑡𝑟𝑒𝑒2 ∈ 𝑇𝑟𝑒𝑒𝑠 s.t. 𝑡𝑟𝑒𝑒2 ≺ 𝑡𝑟𝑒𝑒 do

9 DFS( [𝑡𝑟𝑒𝑒2, ∅, ∅, ∅], 𝑃𝑟𝑒𝑐, 𝐸𝑥 , 𝐸𝑦, 𝑐𝑜𝑢𝑛𝑡 ) ;

10 [Situation (ii)]

11 for 𝑡𝑟𝑒𝑒2 ∈ 𝑇𝑟𝑒𝑒𝑠 s.t. 𝑡𝑟𝑒𝑒2 ≺ 𝑡𝑟𝑒𝑒 do

12 if 𝑡𝑟𝑒𝑒2 .𝑓 𝑖𝑟𝑠𝑡 ( ) ∉ 𝐸𝑥 then contine;

13 DFS( [𝑡𝑟𝑒𝑒2, ∅, ∅, ∅], 𝑃𝑟𝑒𝑐, 𝐸𝑥 , ∅, ∅) ;
14 for 𝐸𝑦 ∈ 𝑡𝑟𝑒𝑒2 .𝑙𝑒𝑎𝑓 𝑠 ( ) do
15 DFS( [𝑡𝑟𝑒𝑒2, ∅, ∅, ∅], 𝑃𝑟𝑒𝑐, 𝐸𝑥 , 𝐸𝑦, 𝑐𝑜𝑢𝑛𝑡 ) ;

16 [Situation (iii)]

17 for 𝑡𝑟𝑒𝑒3 ∈ 𝑇𝑟𝑒𝑒𝑠 s.t. 𝑡𝑟𝑒𝑒3 ≺ 𝑡𝑟𝑒𝑒2 do

18 DFS( [𝑡𝑟𝑒𝑒3, ∅, ∅, ∅], 𝑃𝑟𝑒𝑐, 𝐸𝑥 , 𝐸𝑦, 𝑐𝑜𝑢𝑛𝑡 ) ;

19 return 𝑐𝑜𝑢𝑛𝑡 ;

20 Procedure DFS( [𝑛𝑜𝑑𝑒,𝑉 𝑖𝑠𝑖𝑡𝑒𝑑, 𝑃, 𝑃2 ], 𝑃𝑟𝑒𝑐, 𝐸𝑥 , 𝐸𝑦, 𝑐𝑜𝑢𝑛𝑡 )
21 if 𝑛𝑜𝑑𝑒.𝑒𝑙𝑎𝑏𝑒𝑙 ≠ ∅ then
22 𝑃𝑟𝑒𝑐 (𝐸𝑥 , 𝐸𝑛𝑜𝑑𝑒.𝑒𝑙𝑎𝑏𝑒𝑙 ) ← 𝑃 ;

23 if 𝐸𝑦 ≠ ∅ then 𝑃𝑟𝑒𝑐 [𝐸𝑦, 𝐸𝑛𝑜𝑑𝑒.𝑒𝑙𝑎𝑏𝑒𝑙 ] ← 𝑃2;

24 if 𝑐𝑜𝑢𝑛𝑡 ≠ ∅ 𝑎𝑛𝑑 𝑃 ∪ 𝑃2 ≠ ∅ then 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1;
25 for 𝑢 ∈ 𝑛𝑜𝑑𝑒.𝑛𝑒𝑥𝑡 ( ) s.t. !𝑉𝑖𝑠𝑖𝑡𝑒𝑑 [𝑢 ] do
26 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 [𝑢 ] ← 𝑇𝑟𝑢𝑒 ;

27 if 𝑢 ∈ 𝐸𝑥 then 𝑃 ← 𝑃 ∪𝑢;
28 if 𝐸𝑦 ≠ ∅ then
29 if 𝑢 ∈ 𝑃𝑟𝑒𝑐 [𝐸𝑥 , 𝐸𝑦 ] then continue;

30 if 𝑢 ∈ 𝐸𝑦 then 𝑃2 ← 𝑃2 ∪𝑢;
31 DFS( [𝑢,𝑉𝑖𝑠𝑖𝑡𝑒𝑑, 𝑃, 𝑃2 ], 𝑃𝑟𝑒𝑐, 𝐸𝑥 , 𝐸𝑦, 𝑐𝑜𝑢𝑛𝑡 ) ;
32 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 [𝑢 ] ← 𝐹𝑎𝑙𝑠𝑒 ;

For situation (𝑖𝑖), for a given hyperedge 𝐸𝑥 , we can first invoke

DFS-D to calculate and record the 𝑃𝑟𝑒𝑐 [𝐸𝑥 , 𝐸𝑦] on each tree. Then,

for each 𝐸𝑦 in one given tree, we can call the DFS-S once to count

all the hyper-triangles in the tree.

For situation (𝑖𝑖𝑖), since 𝐸𝑥 , 𝐸𝑦 and 𝐸𝑧 are in the different trees,

we need to invokeDFS-D first to calculate and record the 𝑃𝑟𝑒𝑐 of all

hyperedges 𝐸′ which satisfy 𝐸′ ≺ 𝐸𝑥 . Then, we must invokeDFS-D
for a second time to check whether hyperedges {𝐸′′ |𝐸′′ ≺ 𝐸′}
satisfy 𝑃𝑟𝑒𝑐 [𝐸′′, 𝐸′], 𝑃𝑟𝑒𝑐 [𝐸′′, 𝐸𝑥 ] ≠ ∅ and 𝐸′′ ∉ 𝑃𝑟𝑒𝑐 [𝐸′, 𝐸𝑥 ].

Since it is hard to performed powerful optimization strategies

in situation (𝑖𝑖𝑖), the following example shows how to conduct the

two-stage DFS under the first and second situations above.

Example 4. Fig. 5 (𝑖) shows the first situation of the triple
hyperedges. Suppose 𝐸𝑥 = 𝐸6, 𝐸𝑦 are all in the tree started at 𝑢2.
We can invoke the DFS-S to get 𝑃𝑟𝑒𝑐 [𝐸5] = {𝑢2} and 𝑃𝑟𝑒𝑐 [𝐸4] =
{𝑢2, 𝑢4}. Then, we find 𝐸𝑧 in the tree started at 𝑢1. The branch
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Figure 5: Different situations of hyperedges in the prefix

forest

𝑢1 → 𝑢2 → is pruned, since all the possible hyperedge 𝐸𝑦 will
have 𝑢2 in 𝑃𝑟𝑒𝑐 . If 𝐸𝑦 = 𝐸5, we call DFS-D in tree started at 𝑢1,
and we can find that both 𝐸2 and 𝐸3 can be 𝐸𝑧 , such that there are
two hyper-triangles {𝐸6, 𝐸5, 𝐸2} and {𝐸6, 𝐸5, 𝐸3}. If 𝐸𝑦 = 𝐸4, only 𝐸3
can be 𝐸𝑧 . So, we get a hyper-triangle {𝐸6, 𝐸4, 𝐸3}. Next, if 𝐸𝑥 = 𝐸5,
we can see that 𝑃𝑟𝑒𝑐 [𝐸4] = {𝑢2, 𝑢3}, and then all the branches are
pruned in the tree started at 𝑢1. Therefore, there is no triangles when
𝐸𝑥 = 𝐸5, 𝐸𝑦 = 𝐸4.

Fig. 5 (𝑖𝑖) shows the second situation of the triple hyperedges.
Suppose 𝐸𝑥 = 𝐸8, we can find that the branch of 𝑢2 → 𝑢3 → will
only support one hyperedge in the triangle since 𝑢3 is in 𝐸8. If 𝐸𝑦 =

𝐸6, we can invoke DFS-S once to find all the interaction of 𝐸6 and
hyperedges in the tree started at 𝑢2. We can find that 𝐸6 ∩ 𝐸5 = {𝑢2},
𝐸6 ∩ 𝐸4 = {𝑢2, 𝑢4}. Recall in Fig. 5 (𝑖), we have the similar results.
So, we can invoke DFS-S in each tree once to get all the interaction
of edges in the same tree. Next, we can find that 𝐸6 ∩ 𝐸5 ∉ 𝐸8 and
𝐸6 ∩ 𝐸4 ∉ 𝐸8, such that there are two triangles {𝐸8, 𝐸6, 𝐸4} and
{𝐸8, 𝐸6, 𝐸5} in Fig. 5 (𝑖𝑖). □

Algorithm 5 shows the details of counting hyper-triangles in

the prefix forest. It first initializes the prefix forest by invoking

Algorithm 4 (line 1), sets the final results by 𝑐𝑜𝑢𝑛𝑡 , and records the

temporary interaction set by 𝑃𝑟𝑒𝑐 (line 2). Next, the algorithm starts

to carry out the two-stage depth-first searches for each 𝑡𝑟𝑒𝑒1 in the

forests. The calculations in lines 6-9 correspond to the situation

(𝑖) when 𝐸𝑦 and 𝐸𝑥 are in the same tree, but 𝐸𝑧 is in the different

tree. It calls DFS first to calculate all the 𝑃𝑟𝑒𝑐 in the first stage

in the same tree as 𝑡𝑟𝑒𝑒1 (line 6), and then uses it to count the

triangles in another tree 𝑡𝑟𝑒𝑒2 (line 9). The calculations in lines 10-

18 correspond to situations (𝑖𝑖) and (𝑖𝑖𝑖) as described above. There

are two parts in this process: one part invokes DFS on 𝑡𝑟𝑒𝑒2 twice

since 𝐸𝑦 and 𝐸𝑧 are in the same tree (lines 13,15), the other part

invokes DFS on 𝑡𝑟𝑒𝑒2 and 𝑡𝑟𝑒𝑒3 since 𝐸𝑥 , 𝐸𝑦 and 𝐸𝑧 are in different

trees (lines 13,18).

Consider the procedure DFS, it has several parameters in which

𝑛𝑜𝑑𝑒 is the current searched nodes in the tree, 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 records

the set of the visited nodes in the depth-first search, 𝑃 ,𝑃2 are the

temporary paths of 𝑃𝑟𝑒𝑐 [𝐸𝑥 , 𝑛𝑜𝑑𝑒] and 𝑃𝑟𝑒𝑐 [𝐸𝑦, 𝑛𝑜𝑑𝑒], 𝑃𝑟𝑒𝑐 is the
set which store 𝑃𝑟𝑒𝑐 [𝐸𝑥 , 𝐸𝑦] for the pair of hyperedges and 𝑐𝑜𝑢𝑛𝑡
is the number of the triangle countings. The procedure first checks

whether the 𝑒𝑙𝑎𝑏𝑒𝑙 of the current node is ∅ (line 21). If so, the

depth-first search has find a hyperedge and record the iteration

path to be the 𝑃𝑟𝑒𝑐 of the hyperedge 𝐸𝑥 . If the DFS is in the second

stage (lines 9,15,18), 𝐸𝑦 and 𝑐𝑜𝑢𝑛𝑡 will not be ∅ and the 𝑐𝑜𝑢𝑛𝑡 will

increase (lines 23-24). Then, DFS searches the node 𝑢 to be the next
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node of the current 𝑁𝑜𝑑𝑒 (line 25), and searches all the branches

by depth-first (lines 26-32). For a given hyperedge 𝐸𝑥 , we can get

all the 𝑃𝑟𝑒𝑐 of hyperedges in the same tree after invoking the DFS
which is accumulated in line 27. Note that, in procedure DFS, the
branch of searches will be pruned once the node is already in the

interaction 𝑃𝑟𝑒𝑐 [𝐸𝑥 , 𝐸𝑦] (lines 29).
In conclude, HTC-PF separates the triple of hyperedges in the

prefix forest into three situations, and proposes several two-stage

depth-first searches for counting the hyper-triangles.

Theorem 4.4 (Complexity of HTC-PF). The time and space

complexity of Algorithm 5 are 𝑂 ( C
3

𝑛𝑥𝑚
3) and 𝑂 (C𝑚2), respectively,

in which 𝑥 is the number of the trees in the prefix forest,𝑚 and C are
the number and average capacity of hyperedges.

Proof. In Algorithm 5, it first invokes Algorithm 4 to build the

prefix forest, which requires 𝑂 (C𝑚) time. Then, it enumerates the

leafs on 𝑡𝑟𝑒𝑒1 to be 𝐸𝑥 which has C𝑚 iterations in total (lines 3-4).

In line 6, it needs 𝑂 (C𝑚) time to construct the 𝑃𝑟𝑒𝑐 [𝐸𝑥 , 𝐸𝑦] for
all 𝐸𝑦 in 𝑡𝑟𝑒𝑒1. Next, the algorithm needs to perform DFS on all

𝑡𝑟𝑒𝑒2, so the total time of lines 7-9 in all the loops is 𝑂 ( C
2

𝑚2

𝑥2𝑛
) in

which 𝑥 is the number of trees. In lines 11-15, the average number

of 𝐸𝑦 in line 9 is
C𝑚
𝑛𝑥 , and the time of invoking the DFS will be

C𝑚
𝑥 (line 15). In lines 16-18, searching the nodes by DFS in all trees

will need𝑂 (C𝑚). To sum up, the time complexity of Algorithm 5 is

𝑂 ( C
3

𝑛𝑥2
𝑚3) (Situation (i),(ii)) +𝑂 ( C

3

𝑛𝑥𝑚
3) (Situation (iii)) =𝑂 ( C

3

𝑛𝑥𝑚
3).

Consider the occupation of space, Algorithm 5 will store the prefix

forest and the 𝑃𝑟𝑒𝑐 sets for all pairs of the hyperedges, which in

total consume the space complexity of 𝑂 (C𝑚2). □

4.4 Optimizations

In this section, firstly, we discuss the effect of the nodes’ orders on

the efficiency for the hyper-triangle counting algorithms. Secondly,

we examine and analyze a finer-grain for the parallel computations.

4.4.1 Node Ordering Heuristic. To reduce the computation costs

of HTC-PF, we need to avoid counting the hyper-triangles in

situation (𝑖𝑖𝑖) in section 4.3 while the triple of hyperedges are in

different trees. To address this problem, we can re-order the nodes

to get different prefix forests, which are significant to counting

the hyper-triangles in algorithm HTC-PF. Below, we discuss the
non-increasing degree ordering strategy.

The non-increasing degree order. Given a hypergraphG, we can
order the nodes in G by sorting the nodes in a non-increasing of

degree. If the nodes are in the non-increasing degree order, consider

two nodes 𝑣𝑥 , 𝑣𝑦 in 𝑉G (𝑥 < 𝑦), we can get 𝐷𝑉
G
(𝑣𝑥 ) ≥ 𝐷𝑉

G
(𝑣𝑦).

We observe that the ordering of nodes has great impact on the

structure of the prefix forest, which can be seen in the modified

prefix forest of Fig. 6(b).

Example 5. Consider the hypergraph in Fig. 2(a), we can observe
that𝐷𝑉

G
(𝑢3) = 7, which has highest degree among all the nodes. Thus,

we reorder the nodes in the hypergraph into {𝑣1, 𝑣2, ...𝑣8} in Fig. 6(a),
which corresponds to {𝑢3, 𝑢6, 𝑢2, 𝑢4, 𝑢5, 𝑢1, 𝑢7, 𝑢8} in Fig. 2(a). Recall
the partial ordering relation of hyperedges in Section 4.2, we can
insert all the hyperedges into the prefix forest by an increasing of the
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Figure 6: The prefix forest with the nodes in a non-increasing

degree order

partial ordering. Also, from Fig. 6(b) we can see {𝐸1 ≺ 𝐸3 ≺ 𝐸7 ≺
𝐸8 ≺ 𝐸4 ≺ 𝐸5 ≺ 𝐸2 ≺ 𝐸6}. Surprisingly, we find that there are
only two trees in the Fig. 6(b), such that we need not to consider the
situation (𝑖𝑖𝑖) in section 4.3 any longer. So, the hyper-triangles must
have 𝐸6 since the triple of hyperedges can not be in one same tree.
Therefore, we can easily find that there are 10 hyper-triangles, which
are {𝐸6, 𝐸2, 𝐸5}, {𝐸6, 𝐸2, 𝐸7}, {𝐸6, 𝐸2, 𝐸8}, {𝐸6, 𝐸2, 𝐸3}, {𝐸6, 𝐸5, 𝐸8},
{𝐸6, 𝐸5, 𝐸7}, {𝐸6, 𝐸5, 𝐸3}, {𝐸6, 𝐸4, 𝐸8}, {𝐸6, 𝐸4, 𝐸7} and {𝐸6, 𝐸4, 𝐸3}.

Remark. Consider the complexity of Algorithm. HTC-PF, if two

node all in one same tree, the time complexity will be 𝑂 ( C
3

𝑛𝑥2
𝑚3).

Otherwise if three nodes are in different trees (situation (iii)), the

time complexity will be 𝑂 ( C
3

𝑛𝑥𝑚
3). So we can merge more trees to

have better performance. The non-increasing degree order of nodes

can reduce the running time of HTC-PF in practice, which will be

shown in the experiments in Section 5.

4.4.2 Parallelization of Finer-grained. In this paper, all the pro-

posed hyper-triangle counting algorithms are implemented in

parallel, as shown in line 2 of Algorithm 2, 3 and line 3 of 5. For

example, if the number of cores in the CPU is T, then theoretically

HTC-PF will have the running time of 𝑂 ( 1T
C
3

𝑛𝑥𝑚
3). However, since

the the workloads in the trees can continue to be divided and set

𝑃𝑟𝑒𝑐 is maintained in HTC-PF, which gives rise to unbalanced

workloads and access delay on different cores. We consider the

situations below to improve the shortcomings.

(i) Both the number of leafs on 𝑡𝑟𝑒𝑒1, 𝑡𝑟𝑒𝑒2 are small numbers. In
general, if the number leafs on 𝑡𝑟𝑒𝑒1 and 𝑡𝑟𝑒𝑒2 are smaller than a

constant 𝜏 , the stride factor of different cores are also small. In this

case, the overhead of partitioning the forests from merge-based

algorithm takes the majority of the runtime. Consider the set 𝑃𝑟𝑒𝑐

in the shared memory, it can be cached by the shared memory with

the average cost on caching reducing to a small number, such that

all cores can read it by a small number of coalesced memory reads.

(ii) The number of leafs on 𝑡𝑟𝑒𝑒1 is small number, while the number
of leafs on 𝑡𝑟𝑒𝑒2 is large number. When |𝑡𝑟𝑒𝑒1 | << |𝑡𝑟𝑒𝑒2 |, one of
the two vertices has large degree while the other has small degree.

Obviously, we can first compute the 𝑃𝑟𝑒𝑐 on 𝑡𝑟𝑒𝑒1 and store it in the

shared memory. Then, we can read 𝑃𝑟𝑒𝑐 in the cache, and partition

the nodes on 𝑡𝑟𝑒𝑒2 for better parallelization.

(iii) Both the number leafs on 𝑡𝑟𝑒𝑒1 and 𝑡𝑟𝑒𝑒2 are large numbers.
In this case, the workloads are much heavy, and more value must

be stored in 𝑃𝑟𝑒𝑐 . However, we can still partition the trees quickly

since we can separate it from the deep layer of the tree. This process

can be done by a breadth-first search on the trees. To overcome the
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Table 1: Statistics of datasets

Dataset |E | =𝑚 |𝑉 | = 𝑛 𝑚
𝑛 Ĉ C

NS 112,919 5,557 20.32 187 9.98

CHS 172,035 328 524.49 5 2.32

TAU1 192,947 200,975 0.96 14 2.3

TAU2 271,233 3,030 89.51 5 3.42

TMS1 719,792 201,864 3.56 5 3.49

TMS2 822,059 1,630 504.33 21 2.6

CMG 1,591,166 1,261,130 1.261 284 3.76

CMH 1,813,147 1,034,877 1.75 925 3.09

DBLP 3,700,681 1,930,379 1.91 280 3.33

TSO 11,305,343 3,455,074 3.27 25 2.64

problems that 𝑃𝑟𝑒𝑐 is much larger, we can just store the temporary

𝑃𝑟𝑒𝑐 in the separate trees, just like the steps in HTC-P.

Remark. Consider Algorithm HTC-PF, we only do the parallel

computations in line 3. Furthermore, we can still separate the

computations of the for loops in line 4,7,11,14 and 17. The discussion
above details how to split the computations when the considered

two trees are in different sizes. The experiments in Section 5 show

the impacts of this improvement.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the

proposed algorithms.

For hyper truss decomposition, we compare six different algo-

rithms: 1) TRUSS [48]: the fastest truss decomposition algorithm

( transform each hyperedge into a clique and then apply TRUSS).
2) nbHCORE [3]: the latest neighborhood-based hypergraph core

decomposition method. 3) kgHCORE [25]: the (k, g)-core de-

composition in the hypergraph. 4) BITRUSS [49] : the k-bitruss

in a bipartite graph. CETRUSS [50] : the (𝑘, 𝛼, 𝛽)-truss in a

hypergraph. 5) HTRUSS: the fastest algorithm proposed in this

paper (a combination of Alg. 1 and Alg. 5).

For hyper-triangles counting (HTC),we implement six different

algorithms for comparison: (i) HTC-B is a baseline that counts

the hyper-triangles by a naive edge-iterator based framework,

which is proposed in Algorithm. 2. (ii) HTC-P is an improved

algorithm that improves HTC-B by considering several orientation

and computation steps, which is proposed in Algorithm. 3. (iii)
HTC-PF is a tricky algorithm that relies on a prefix forests to

record the hyper-edges and finds the triangles in the forests,

which is proposed in Algorithm. 5. (iv) HTC-PFO1 is a variation

of Algorithm. 5 which reorders the nodes in the hyper-edges in

section 4.4.1. (v) HTC-PFO2 is a variation of Algorithm. 5 which

optimizes the hyper-edges with different workloads in section 4.4.2.

(vi) HTC-PF+ is a variation of Algorithm. 5 which combines the

benefits of HTC-PFO1 and HTC-PFO2.

All algorithms are implemented with C++ and compiled using

gcc version 11.1.0 with optimization level set to O3. All the

experiments are conducted on a Linux kernel 4.4 server with an

AMD Threadripper 3990X of 64 cores and 128 GB memory. When

quantity measures are evaluated, the test was repeated over 5 times

and the average is reported here.

Datasets. We use 10 different real-world hypergraphs in the

experiments. The detailed statistics of our datasets are summarized

in Table 1, where |E| =𝑚 denotes the number of the hyperedges,

|𝑉 | = 𝑛 is the number of the nodes,Cˆ denotes the maximum number

of the hyperedge’s capacity, and C represents the average number
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Figure 7: Runtime of different algorithms (in single thread)

of the hyperedge’s capacity. All the datasets are downloaded from

https://www.cs.cornell.edu/~arb/data/, and they are listed in an

increasing order of number of hyperedges. NS (NDC-substances) is
the datasets of substances making up drugs. CHS (contact-high-
school) describes groups of people in contact at a high school.

TAU1 (threads-ask-ubuntu) is the datasets of users asking and

answering questions on threads on askubuntu.com. TAU2 (tags-
ask-ubuntu) is a set of tags applied to questions on askubuntu.

com. TMS1 (tags-math-sx) records the sets of tags applied to

questions on math.stackexchange.com. TMS2 (threads-math-sx) is
the sets of users asking and answering questions on threads on

math.stackexchange.com. CMG (coauth-MAG-Geology) and CMH
(coauth-MAG-History) are co-authorships on Geology and History

papers. DBLP (coauth-DBLP) records the co-authorship on DBLP

papers. TSO (threads-stack-overflow) is a set of users asking and

answering questions on threads on stackoverflow.com.

5.1 Efficiency Testings of HRTUSS

Exp-1. Runtime of different algorithms (in single thread).

Fig. 7 shows the Runtime of our proposed best HTRUSS algo-

rithm compared to TRUSS, nbHCORE, kgHCORE, BITRUSS and

CETRUSS on four hypergraphs. Similar results can also be observed

on the other datasets. Note that, the above algorithms are all consid-

ered SOTA methods for dense sub-hypergraph decomposition, but

they may not produce identical results. The goal of this experiment

is to evaluate the efficiency of our algorithm in comparison to these

established methods. As illustrated in the figure, our algorithm

even outperforms the core decomposition algorithms kgHCORE for
hypergraphs on all four datasets, while kgHCORE incorporates g-

distance influence constraints. Compared to the bipartite truss mod-

els (BITRUSS) and hyper-truss models (CETRUSS), our approach
demonstrates significantly better performance. This is because

these models rely on motif counting—BITRUSS requires counting

butterflies, whileCETRUSS counts (𝛼, 𝛽)–triangles. In contrast, our
algorithm leverages an efficient prefix forest to minimize redundant

computations, giving it a clear advantage in speed. Additionally,

our algorithm’s runtime is slower than TRUSS by 0.5 orders of

magnitude. This is because the number of triangles in traditional

graphs is much larger than in hypergraphs. Since the peeling time

does not significantly impact overall performance, it indicates that

our pruning technique for hyper-triangle counting is very effective.

Exp-2. Runtime of peeling time vs. counting time in HTRUSS.
Table. 2 analyzes the time spent on different components of the

best HTRUSS algorithm, including 𝑡𝑟𝑒𝑎𝑑𝑖𝑛𝑔: the time to read the

graph; 𝑡𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔: the time to count hyper-triangles, i.e., compute
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Table 2: Runtime (s) of different components in HTRUSS
(𝑡𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 part: 64x in parallel , other parts: in single thread)

Dataset 𝑡𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑡𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑡𝑝𝑒𝑒𝑙𝑖𝑛𝑔 𝑡𝑡𝑜𝑡𝑎𝑙
𝑡𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔
𝑡𝑡𝑜𝑡𝑎𝑙

NS 0.01 0.029 0.083 0.122 23.77%

CHS 0.011 0.033 0.099 0.143 23.08%

TAU1 0.18 0.0042 0.0138 0.198 2.12%

TAU2 0.2 20.78 3.23 24.21 85.83%

TMS1 0.45 2.12 0.67 3.24 65.43%

TMS2 0.43 87.49 3.2 96.45 90.71%

CMG 1.08 0.17 0.13 1.38 12.32%

CMH 1.21 0.012 0.1 1.322 0.91%

DBLP 2.18 0.31 0.15 2.64 11.74%

TSO 4.56 50.25 17.13 71.94 69.85%

Table 3: Runtime (s) of different algorithms (64x in parallel)

Dataset HTC-B HTC-P HTC-PF #hyper-triangles

NS 0.34 0.14 0.029 572,714,845

CHS 0.73 0.20 0.033 660,585,969

TAU1 0.27 0.052 0.0042 4,757,191

TAU2 474.58 21.24 20.78 1,440,582,225

TMS1 59.42 4.71 2.12 1,400,810,790

TMS2 899.85 88.69 87.49 38,323,775,462

CMG 5.08 0.47 0.17 39,213,491

CMH 1.21 0.055 0.012 836,375

DBLP 11.58 1.71 0.31 70,022,805

TSO INF 389.74 50.25 4,636,096,640

the initial support of all edges; 𝑡𝑝𝑒𝑒𝑙𝑖𝑛𝑔: the time for the peeling

process as described in Alg. 1; and 𝑡𝑡𝑜𝑡𝑎𝑙 : the total time. The table

also shows the percentage of 𝑡𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 relative to 𝑡𝑡𝑜𝑡𝑎𝑙 . The results

indicate that 𝑡𝑝𝑒𝑒𝑙𝑖𝑛𝑔 is consistently shorter than 𝑡𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 across all

datasets, confirming the theoretical analysis from previous sections.

Additionally, in the TAU2, TMS1, TMS2, and TSO datasets, 𝑡𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔
accounts for over 60% of 𝑡𝑡𝑜𝑡𝑎𝑙 due to the higher degree of nodes

in these datasets. Furthermore, the following experimental table

(Table. 3) shows that the number of hyper-triangles in the TAU2,
TMS1, TMS2, and TSO datasets is significantly higher compared to

other datasets.

5.2 Efficiency Testings of HTC

Exp-3. Runtime of HTC-B, HTC-P and HTC-PF. Table. 3 evalu-
ates the Runtime with 64 threads in parallel of HTC-B, HTC-P and

HTC-PF in the 10 real-world hypergraphs, in which INF represents

that the algorithm can not be done in 1 day. We invoke each

algorithm for 10 times in different datasets, and then record the

average time of computing once. From Table. 3, we can see that

HTC-PF is much faster than HTC-P and HTC-B. This is because
that we use a prefix forest encoding to speed up counting the

hyper-triangles in HTC-PF. Note that, in TAU2 and TMS2, the
counting time is slower than the other datasets and HTC-PF is

slightly faster than HTC-P, since the average degree 𝑚
𝑛 in TAU2

and TMS2 is very high such that HTC-PF needs to compute most

interactions of the hyperedges. We can also see that HTC-P is

slightly faster thanHTC-B, since it records the 𝑃𝑟𝑒𝑐 to reduce some

redundant computations for the interactions. As can be seen, on

DBLPwith 3.7 million hyperedges,HTC-B takes only 11.58 seconds

and our proposed algorithm HTC-PF only consumes 0.31 seconds.

These results confirm that our proposed algorithms are indeed very

efficient on large real-life hyper-graphs.

Exp-4. The impact of the optimization techniques. Table. 4

evaluates the Runtime with 64 threads in parallel of HTC-PF,
HTC-PFO1, HTC-PFO2 v.s. HTC-PF+. From Table. 4, we can see

Table 4: The impact of the optimizations (64x in parallel)

Dataset HTC-PF HTC-PFO1 HTC-PFO2 HTC-PF+
NS 0.029 0.023 0.025 0.021

CHS 0.033 0.027 0.031 0.023

TAU1 0.0042 0.0032 0.0037 0.0030

TAU2 20.78 17.13 18.13 17.03

TMS1 2.12 1.83 2.02 1.81

TMS2 87.49 62.69 83.12 58.69

CMG 0.17 0.15 0.17 0.15

CMH 0.012 0.011 0.012 0.010

DBLP 0.31 0.26 0.29 0.24

TSO 50.25 37.32 48.97 36.97
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Figure 8: Scalability of the proposed algorithms on DBLP

that HTC-PFO1, HTC-PFO2 and HTC-PF+ are much faster than

HTC-PF. This is because that we use the re-ordering and balanced

strategies to speed upHTC-PF. We observe thatHTC-PFO1 is much

faster than HTC-PFO2 in all the datasets, such that the strategy of

re-ordering nodes can benefit more than the work balance. Note

that, the
𝑡𝑖𝑚𝑒 (HTC-PFO1 )
𝑡𝑖𝑚𝑒 (HTC-PF) is much lower on TAU2 and TMS2, such

that the impact of re-ordering on TAU2 and TMS2 is much higher.

It may be the reason that there are nodes with high degree on TAU2
and TMS2, such that we can re-order the nodes to largely reduce

the number of trees in the prefix forest. These results suggest that

the proposed optimizations can improve the speed of HTC-PF.

Exp-5. Scalability and parallelizability. Fig. 8 shows the scal-

ability testings with 64 threads in parallel of HTC-B, HTC-P
and HTC-PF+ on the DBLP dataset. Similar results can also be

observed on the other datasets. We first generate ten hypergraphs

by randomly picking 10%-100% of the nodes and the hyperedges,

and evaluate the Runtimes of the proposed algorithms on those sub-

graphs. As shown in Fig. 8(a)-(b), the Runtime increases smoothly

with increasing numbers of nodes or hyperedges. Also, we can see

that HTC-PF+ is significantly faster than HTC-B and HTC-P with

all datasets of different scale, which is consistent with our previous

findings. These results suggest that our proposed algorithms are

scalable when handling large hypergraphs.

Fig. 9 shows the parallel performance of HTC-B, HTC-P and

HTC-PF+ on datasets TMS2 and DBLP. Similar results can also be

observed on the other datasets. We change the threads number of

the CPU by 1, 2, 4, 8, 16, 32 and 64 to test the parallelizability of

those algorithms. As expected in Fig. 9(b),(d), when the Runtimes

are listed in log-scale, the Runtime of all the algorithms decreases

linearly as the number of threads increases. This is because that all

the calculations can be carried out asynchronously. These results

confirm that the proposed algorithms are good in parallelizability.

Exp-6. Memory overhead. Fig. 10 shows the memory usage of

HTC-B, HTC-P and HTC-PF+ on different datasets. The y-axis

datas are in log scale for better visualization. The algorithm HTC-B
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Figure 9: Parallel performance of the proposed algorithms
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Figure 10: Memory overhead of HTC-B, HTC-P and HTC-PF+

only needs to store the hypergraph, such that its memory overhead

is close to the size of the hypergraph. We can see that the memory

usages of HTC-P and HTC-PF+ are higher than the memory usage

of HTC-B, because HTC-P needs to store the 𝑃𝑟𝑒𝑐 of 𝐸𝑥 and

HTC-PF+ needs to store the prefix forest and the 𝑃𝑟𝑒𝑐 [𝐸𝑥 , 𝐸𝑦]
for pairs of (𝐸𝑥 , 𝐸𝑦) during the counting process. In practice, in

HTC-P and HTC-PF+, we can free the memory of 𝑃𝑟𝑒𝑐 once the

hyper-triangles start at 𝐸𝑥 has been counted. Therefore, on large

datasets, the memory usages of HTC-P and HTC-PF+ are typically

lower than ten times of the size of the hypergraph. For instance, on

DBLP, HTC-PF+ consumes 6,419MB memory while HTC-B needs

802MB. These results indicate that all the proposed algorithms

can achieve near linear space complexity, which confirms our

theoretical analysis in Section 3.

5.3 Effectiveness Testings

Exp-7. Density of different dense sub-hypergraph models.

Table 5 presents a comparative analysis of the density values

across different models, including TRUSS, nbHCORE, kgHCORE,
BITRUSS, CETRUSS, and our proposed HTRUSS, across various
hypergraph datasets. The results demonstrate that HTRUSS con-

sistently achieves the highest density in all cases, highlighting

its ability to capture stronger structural connectivity. Notably,

nbHCORE generally exhibits higher values than kgHCORE, sug-
gesting it may better reflect the dynamics of core-periphery

Table 5: Density of different dense sub-hypergraph models

Dataset TRUSS nbHCORE kgHCORE BITRUSS CETRUSS HTRUSS
NS 91.26 123.45 115.75 109.60 110.25 153.10

CHS 100.87 146.80 139.50 124.00 125.25 170.50

TAU1 0.86 1.40 1.30 1.10 1.13 1.70

TAU2 162.45 216.20 204.80 192.00 197.25 247.60

TMS1 4.90 7.10 6.60 6.20 6.30 9.00

TMS2 123.57 217.20 204.50 172.32 183.25 246.50

CMG 1.90 3.20 2.80 2.53 2.59 3.50

CMH 2.80 4.00 3.80 3.54 3.49 4.60

DBLP 3.15 4.70 4.40 4.22 4.01 5.20

TSO 3.98 6.10 5.70 5.12 5.20 6.50
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Figure 11: Distributions of average degree and capacity of

hyper-triangles

structures. This trend is particularly evident in datasets like CHS
and TMS2, where nbHCORE significantly outperforms kgHCORE.
Overall, these findings emphasize the effectiveness of HTRUSS in

providing a more robust and comprehensive measure of hypergraph

cohesiveness compared to other baseline models.

Exp-8. Distributions of average degree and capacity of hyper-

triangles. In real-world, the degree in a graph always follows

the power-law distribution. In Fig. 11, we collect all the hyper-

triangles on DBLP and TMS2 and show the distributions of average

degree and capacity of hyper-triangles.We can observe that both the

average degree or capacity follow power-law distributions. Similar

results can also be observed on the other datasets. Note that, the

means of the average degree in Fig. 11 (b) is higher than that in

Fig. 11 (a), but the means of the average capacity in Fig. 11 (b) is

lower than that in Fig. 11 (a). It is because that dataset TMS2 has
larger average degree and lower capacity than DBLP, which can

be observed in Table. 1. In Fig. 11 (a), we can find that the average

degree and capacity of most hyper-triangles are no more than 200,

and in Fig. 11 (a) the average degree and capacity of most hyper-

triangles are no more than 200 and 500. The results indicate that the

average degree and capacity will be bounded by a constant, which

guarantees the efficiency of our proposed algorithm.

Exp-9. Case study of hyper 𝑘-truss on DBLP. Fig. 12 shows the
effectiveness the hyper k-trussmodel. In Fig. 12(a), we first construct

a traditional graph on DBLP and connect two authers once they

have co-operated in one article. Then, we invoke the traditional

k-truss method to get the cohesive subgraph. In Fig. 12(b), the

hyper k-truss is a subgraph in which each node is in at least 𝑘

hyper-triangles. Fig. 12 shows cohesive subgraphs which contains

Prof. Michael Stonebraker obtained by k-truss and hyper k-truss,
respectively. As shown in Fig.12(a), the k-truss (𝑘 = 5) subgraph
includes a large number of collaborators, making it difficult to

identify meaningful real-life communities. Additionally, multiple

edges connect to Prof. Stonebraker in Fig.12(a), further complicating

the extraction of well-defined dense subgraphs. In hyper k-truss
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Figure 12: Case study of hyper 𝑘-truss on DBLP

(𝑘 = 5), displaying all hyperedges would reduce visibility, so

we provide a summary of frequent relationships in Fig. 12(b).

Since each hyperedge represents a publication—for instance, 𝐸1
corresponds to a SIGMOD paper co-authored by Samuel Madden

and Prof. Stonebraker, while 𝐸3 represents an ICDE paper co-

authored by Matthew Perron and Prof. Stonebraker—we can infer

Prof. Stonebraker’s frequent participation in conferences such as

SIGMOD, VLDB, and ICDE, allowing for a clearer interpretation of

these relationships. The key difference between these two models

lies in how they capture collaborations. The k-truss model merges

all co-authorships into a single structure: while we know that

Samuel Madden frequently collaborates with Prof. Stonebraker, the

model does not distinguish between their work in Communications
of the ACM and SIGMOD. In contrast, the hyper k-truss model

preserves the influence of individual publications, ensuring that

different collaborations contribute separately to the results. Thus,

hyper k-truss offers a more structured representation of groupwise

relationships, making it a superior approach to modeling cohesive

subgraphs in hypergraphs compared to k-truss.

6 RELATEDWORK

This work primarily relates to cohesive subgraph models, specifi-

cally k-truss decomposition, and triangle counting in hypergraphs.

Below are the latest developments.

Cohesive Subgraph Models. Numerous cohesive subgraph mod-

els have been proposed based on different measures of cohesiveness

[11, 12, 43]. Notable examples include 𝑘-core [41], 𝑘-truss [48],

maximal 𝑘-edge connected subgraphs [59], and maximal cliques

[54–56]. The 𝑘-core is a maximal subgraph in which the degree

of each node is at least 𝑘 [30]. Recently, this concept has been

extended to uncertain graphs [7, 52], attributed graphs [28, 29],

distance generalized cores [8, 14, 33], and more [4, 31, 32, 44, 45].

A 𝑘-truss is a maximal subgraph where each edge participates

in at least 𝑘 − 2 triangles [13, 22, 23, 34, 46–48]. All the 𝑘-

core, 𝑘-truss, and maximal 𝑘-edge connected subgraphs can be

computed in polynomial time using a peeling-style algorithm.

Additionally, several studies have explored core decomposition

in hypergraphs [3, 10, 15, 25], dense subgraph mining in weighted

hypergraphs [5], and maintaining core structures in dynamic

hypergraphs [21]. Unlike these works, this paper focuses on truss

decomposition algorithms in hypergraphs. The primary challenge

of these algorithms lies in efficiently counting hyper-triangles,

which will be discussed in the next section.

Triangle counting. Traditional triangle counting algorithm iter-

ates through each edge of the graph and intersects the neighbor lists

of both source and destination nodes. Once a common neighboring

vertex is found, a triangle is enumerated. As such, the theoretical

time and space complexity of optimal methods for triangle counting

is 𝑂 ( |𝐸 |1.5) and 𝑂 ( |𝐸 |), where |𝐸 | is the number of edges in the

graph [18, 40]. In addition, Latapy [27] shows that the running

time of triangle counting can be bounded by Θ( |𝐸 | |𝑉 |
1

𝛼 ) in which

the degree distribution of the graph is governed by a power

law with exponent 𝛼 . Futhermore, Berry, et al. [6] show that

the running time can be Θ( |𝑉 |) in realistic circumstances where

the 4/3 moment of a graph is bounded by a constant. For a

normal traditional graph, the most efficient algorithm to count

the triangles relies on matrix multiplication and runs in 𝑂 ( |𝑉 |𝑤)
or 𝑂 ( |𝐸 |𝑤/(1+𝑤𝑠 ) ) where 𝑤 < 2.376 is the matrix multiplication

exponent [2, 51, 53], but these algorithms require Θ( |𝑉 |2) space to
construct the matrix. Zhang, et al. [58] propose a sampling-based

method for estimating triangle counts in hypergraph streams. In

recent years, there are also many works focus on counting triangles

in distributed architectures [1, 16, 19], on GPUs [20, 38, 39], and

in graph streams [17, 24, 35, 42, 57] and so on. Although various

studies have explored triangle counting, existing methods cannot

enumerate triangles in hypergraphs for truss decomposition, and

current optimization techniques are not directly applicable for

efficient triangle counting in hypergraphs.

7 CONCLUSION

In this work, we address the challenge of truss decomposition

in hypergraphs. We begin by presenting a framework for hyper

truss decomposition, focusing on the key challenge of computing

the initial support for all hyperedges. Our analysis reveals that

this task is essentially equivalent to performing a global count

of hyper-triangles. We then introduce a baseline algorithm for

hyper-triangle counting, which provides a foundation for fur-

ther enhancements. To improve this approach, we incorporate

edge-iterator and node-iterator strategies, significantly reducing

redundant computations. To further improve the efficiency, we

propose a novel prefix forest structure to encode hyperedges and

enumerate hyper-triangles within this forest. This method is further

optimized through techniques such as node reordering by degree

and work balancing, all contributing to enhanced performance.

Extensive experimental evaluations on real-world hypergraph

datasets confirm the effectiveness and efficiency of our algorithms.
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