
Optimized Batch Prompting for Cost-e!ective LLMs
Zhaoxuan Ji

School of Computer Science &
Technology, Beijing Institute of

Technology
jizhaoxuan@bit.edu.cn

Xinlu Wang
School of Computer Science &
Technology, Beijing Institute of

Technology
xinlu_wang@bit.edu.cn

Zhaojing Luo
School of Computer Science &
Technology, Beijing Institute of

Technology
zjluo@bit.edu.cn

Zhongle Xie∗
The State Key Laboratory of
Blockchain and Data Security,

Zhejiang University
xiezl@zju.edu.cn

Meihui Zhang†
School of Computer Science &
Technology, Beijing Institute of

Technology
meihui_zhang@bit.edu.cn

ABSTRACT
Large Language Models (LLMs) have recently demonstrated ex-
ceptional performance in various real-world data management
tasks through in-context learning (ICL), which involves structuring
prompts with task descriptions and several demonstrations. How-
ever, most LLMs are not free and charge based on the number of
input tokens. Speci!cally, for data management tasks, there may
be massive related questions, leading to high inference cost due to
redundant prompt content (i.e., overlapping demonstrations and
repeated task descriptions). In this paper, we investigate the idea of
batch prompting in leveraging LLMs for data management, which
leads to cost-e"ective LLMs by grouping questions and demonstra-
tions to perform inferences in batches. Current studies on batch
prompting are preliminary and mostly based on heuristics, mak-
ing it di#cult to generalize to various types of tasks and adapt to
di"erent grouping strategies. To address these challenges, in this
work we !rst formalize the batch prompting problem in general
setting. Then, we study the hardness of this problem and propose
e#cient algorithms for adaptive grouping. Finally, we conduct com-
prehensive experiments on 14 datasets. Extensive experimental
results demonstrate that our solution consistently outperforms the
state-of-the-art baselines while consuming lower cost.

PVLDB Reference Format:
Zhaoxuan Ji, Xinlu Wang, Zhaojing Luo, Zhongle Xie, and Meihui Zhang.
Optimized Batch Prompting for Cost-e"ective LLMs . PVLDB, 18(7): 2172 -
2184, 2025.
doi:10.14778/3734839.3734853

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/jzx-bitdb/BatchPrompt.

∗Also a#liated with Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and
Data Security.
†contact author
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 7 ISSN 2150-8097.
doi:10.14778/3734839.3734853

1 INTRODUCTION
Large language models (LLMs) have demonstrated considerable
e"ectiveness across a wide range of real-world applications, such as
question answering, machine translation, context summarization,
etc [45]. In particular, recent works [6, 18–20, 33, 44] delve into
applying LLMs to data management tasks for improving accuracy,
such as entity resolution [18] and data transformation [33]. These
works typically employ in-context learning (ICL) [16], where sev-
eral demonstrations (i.e., examples with corresponding answers
from the same/similar task) are provided together with the task
description and the target question in the prompt, see Single Prompt-
ing in Figure 1 for the illustration.

However, most closed-source LLMs are not free and charge based
on the number of input tokens when calling the provided APIs.
For data management tasks, there are usually a large number of
questions, leading to prohibitively high monetary cost for using
LLMs. Consider the data transformation [13] task as an example.
Real-world datasets may contain a massive number of data, e.g.,
there are 165,236 data tables in the open dataset published by the
U.S. government in March 2017 [34], each with tens of thousands
of data rows on average. Transforming each row using LLMs, with
around 100 tokens per row, would cost over $900k with GPT-4o
($5.00/1M tokens) [2, 6].

Batch prompting is an e"ective way for LLM cost reduction.
To be speci!c, several questions can be consolidated in a single
prompt for LLMs to perform inference, thereby eliminating redun-
dant demonstrations and task descriptions. Batch prompting has
been preliminarily explored in recent works [10, 18]. The method
in [10] proposes to randomly combine questions into groups, each
with the same number of questions and a !xed demonstration set.
As Random Grouping in Figure 1 shows, this method randomly
divides six questions into two groups, sharing the same demonstra-
tion set {𝐿4,𝐿5,𝐿6}. Batcher [18] targets only the entity resolution
task. It clusters diverse questions into groups with a !xed group
size. As shown in Figure 1, Batcher clusters questions with size 3.
After the question grouping, it selects demonstrations that are the
most relevant to questions within the group, e.g., it selects 𝐿1 for
the !rst group since it is the most relevant to all three questions
{𝑀1,𝑀2,𝑀3}. While these works have preliminarily demonstrate the
e"ectiveness of batch prompting on reducing LLM cost, several
challenges remain unresolved.

2172

https://doi.org/10.14778/3734839.3734853
https://github.com/jzx-bitdb/BatchPrompt
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3734839.3734853
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: Comparison of di!erent prompting strategies. Ques-
tions and demonstrations with the same color indicate they
are a"nitive (i.e., similar or diverse) to each other.

Challenge 1: There lacks a general solution to the problem of
LLM batch prompting. Existing works rely on !xed grouping strate-
gies and are speci!cally designed for certain tasks. However, di"er-
ent tasks may require di"erent grouping strategies. For instance,
grouping similar questions works well for data transformation task
since similar questions can help LLMs learn transformation rules
for data of the same type. However, in entity resolution task, a bet-
ter strategy is to group related questions (e.g., electronic products)
but avoid putting questions with high similarity (e.g., iPhone 14
and iPhone 14 plus) in one group in order to reduce the ambigu-
ity [18]. It therefore calls for an LLM batch prompting approach
that is generally applicable to typical data management tasks.

Challenge 2: There is no adaptive question grouping solution
for batch prompting. Existing methods use a !xed group size, i.e.,
the number of questions in all groups remains constant. However,
it is always di#cult or even infeasible to choose an appropriate
group size. Further, a !xed size may degrade the performance (e.g.,
accuracy and cost) of LLMs. To be speci!c, if the number is set
too large, unrelated questions may be grouped together, negatively
a"ecting the accuracy of LLMs, e.g., the second group in the Batcher
example in Figure 1. On the contrary, if the group size is small, the

proliferation of groups would increase the overall cost. Therefore,
a better strategy should be to adaptively group questions according
to the number of related questions. A simple way is to form groups
by clustering all related questions into one group. However, this
may produce groups that have too many questions (e.g., group 1 in
Simple Grouping in Figure 1), which could simply exceed the input
token limit of LLMs, or result in low accuracy due to large input
context [23, 24, 27, 28]. Thus, an optimized strategy should avoid
large group sizes. For example in Figure 1, the !rst group in Simple
Grouping should be further divided into two groups, i.e, {𝑀1,𝑀2}
and {𝑀3,𝑀4} in the Question Grouping part. How to adaptively
cluster related questions into groups while ensuring low cost and
high accuracy is thus challenging.

Challenge 3: There is no e"ective strategy for demonstration
selection. Existing methods either use a !xed demonstration set or
select the most similar demonstrations to the questions for each
group. Although the latter is regarded as more e"ective [18], it of-
ten results in groups containing an excessive number of questions
with insu#cient demonstrations, thereby impairing the reason-
ing ability of LLMs. For instance in Figure 1, the !rst group of
Simple Grouping has only one demonstration (i.e., 𝐿1), potentially
compromising the accuracy of LLMs. It would be bene!cial to add
more demonstrations, such as 𝐿7 and 𝐿8 for better LLM accuracy,
as outlined in the Demonstration Selection part. Thus, how to ef-
fectively select demonstrations in each group while balancing the
LLM performance and the overall cost is the third challenge.

In this paper, we investigate batch prompting techniques for
data management tasks that consist of numerous interdependent
questions to minimize the overall LLM cost while maintaining the
resulting accuracy. We !rst formalize this problem as a constrained
optimization problem. Speci!cally, we consider four factors a"ect-
ing the accuracy, including Question Group A#nity (relationship
between questions), Question Demonstration A#nity (relationship
between questions and demonstrations), Group Length (the number
of input tokens in a group), and Demonstration Coverage (balance
between questions and demonstrations). We further demonstrate
that this overall problem is NP-hard. To resolve this problem, we
propose a framework for data management tasks called Optimized
Batch Prompting (OBP) with exact and approximation solutions. In
detail, we develop a question clustering method, and then introduce
a three-staged approach for adaptively grouping questions and ef-
fectively selecting demonstrations. Last, we further propose two
optimizations to enhance the e#ciency of the framework, which
!lters out unnecessary demonstrations that are covered by others,
and reduce question a#nity computations by means of the triangle
inequality property, respectively.

In summary, our main contributions are as follows:

• We investigate batch prompting for data management tasks, and
formalize it as an optimization problem. We demonstrate it is
NP-hard in general with a theoretical analysis.

• We propose the Optimized Batch Prompting (OBP) framework
that adaptively groups questions and selects demonstrations, and
generates results with low cost while ensuring the accuracy.

• We propose two optimizations to accelerate the computation,
which !lter unnecessary demonstrations and reduce the number
of a#nity calculations respectively.

2173

• We conduct extensive experiments across three tasks with 14
datasets to evaluate the e"ectiveness and e#ciency of our pro-
posed method. Results show that our method reduces the cost
by up to 35% compared to the state-of-the-art LLM and non-
LLM based baselines. Meanwhile, our method outperforms the
baselines on almost all datasets in terms of accuracy.

The rest of the paper is organized as follows. We formalize the
batch prompting problem in Section 2. We then propose our frame-
work in Section 3. In Section 4, we provide an extensive set of
experiments to validate the e"ectiveness and e#ciency of our ap-
proach for the batch prompting. Finally, we discuss the related work
in Section 5 and conclude the paper in Section 6.

2 PROBLEM FORMULATION
In this section, we formulate the batch prompting problem and
present a theoretical analysis of the problem.

For a batch of questions Q = {𝑀1,𝑀2, ...,𝑀𝐿 } of certain data man-
agement tasks, we have a pool of demonstrationsD = {𝐿1,𝐿2, ...,𝐿𝑀 }.
The goal is to combine these questions into groups, which are de-
noted as G. Note that G covers all questions, and each question
exactly belongs to one group. Assuming the optimal number of
!nal groups is 𝑁 , i.e., G = {𝑂1,𝑂2, ...𝑂𝑁 , ...,𝑂𝑂 }, each group 𝑂𝑁 con-
sists of a task description T , a subset of questions Q𝑁 → Q and
a subset of demonstrations D𝑁 → D. Thus, 𝑂𝑁 can be written as
𝑂𝑁 = {T ,D𝑁 ,Q𝑁 }.

Since LLMs charge based on the number of input tokens, we
thus measure the cost by token counts. Each question and demon-
stration has its own cost, denoted by 𝑃𝑃𝐿 and 𝑃𝑄 𝑀

. The cost of the
task description is denoted as 𝑃𝑅 . The cost of each group includes
𝑃𝑅 and the cost of questions and demonstrations in the group.

Given a batch of questions Q and a pool of demonstrations D,
our goal is to cluster all questions in Q into groups with minimizing
the overall cost of all groups. i.e., min

)︄
𝑁 𝑃 (𝑂𝑁). However, merely

minimizing the cost can result in low accuracy. Therefore, we need
to minimize the cost without compromising the accuracy.

From a careful analysis, we observe the following four factors
mostly a"ect the LLM accuracy in the batch prompting problem.
(1) Question Group A!nity (QGA). In the batch prompting setting,
multiple questions are consolidated in a group. For questions in the
group, unrelated ones often span distinct contexts or domains, cre-
ating noise and making it challenging for LLMs to focus on relevant
information and make accurate inferences. Therefore, it is crucial
to consider the relationships between questions in batch prompt-
ing, as related questions allow LLMs to draw on common patterns
which leads to more coherent and accurate responses. Thus, the
!rst factor we consider for enhancing accuracy is the relationship
between questions within each group. We de!ne a function 𝑄𝑅 𝑅𝑃
to quantify this relationship for each group, formulated as follows:

𝑄𝑅 𝑅𝑃 (𝑂𝑁) = max
↑𝑃𝐿 ,𝑃𝐿↓ →𝑆𝑁

𝑄𝑅 𝑅𝑇 (𝑀𝑈 ,𝑀𝑈↓)

where 𝑄𝑅 𝑅𝑇 (𝑀𝑈 ,𝑀𝑈↓) represents the a#nity between pair-wise ques-
tions 𝑀𝑈 and 𝑀𝑈↓ . To compute the a#nity, the !rst step is to generate
representations (i.e., embeddings) for questions and demonstra-
tions, and the second step is to calculate the a#nity based on the

embeddings. In our framework, we do not restrict the speci!c imple-
mentation method of a#nity computation, which is orthogonal to
our method. In our implementation, the BERT-based encoders [36]
are exploited to tokenize questions into embeddings. Then, the a#n-
ity is calculated according to the distance metrics, i.e., Euclidean
distance, between the embeddings.
(2) Question Demonstration A!nity (QDA). In the setting of ICL,
when given a question, LLMs rely on demonstrations to perform
few-shot learning. Therefore, demonstrations that are relevant to
the question are crucial because they help LLMs better understand
the question and provide accurate inferences. To guide our method
to select suitable demonstrations to boost accuracy, we de!ne a
function 𝑄𝑅 𝑅𝑄 (𝑀𝑈 ,𝐿 𝑉) to measure the relationship between question
𝑀𝑈 and demonstration 𝐿 𝑉 . The process of calculating this a#nity is
akin to that used for 𝑄𝑅 𝑅𝑇 .
(3) Group Length (GL). To ensure high accuracy of LLMs, the input
length cannot be too large. First, LLMs have a token limit, and
exceeding this limit can lead to incomplete information, which ad-
versely a"ects accuracy. Second, overly long inputs make it di#cult
for LLMs to identify and extract relevant information. Therefore,
it is important to consider input length when designing our batch
prompting method for accurate responses. In our batch prompting
scenario, the input for LLMs is a group containing a task descrip-
tion, multiple questions and demonstrations. We de!ne the function
𝑃 (𝑂𝑁) as the total token count of group 𝑂𝑁 , so as to constrain the
input length of our method.
(4) Demonstration Coverage (DC). As mentioned above, in the ICL
setting, LLMs rely on demonstrations to generate accurate responses
for questions. If the number of demonstrations is small, LLMs may
struggle to comprehensively understand the question. Additionally,
a limited number of demonstrations prevent LLMs from capturing
nuances among questions within each group, thereby a"ecting the
reasoning ability of LLMs. Thus, we de!ne a function 𝑃𝑆𝑇 (𝐿 𝑉) for
each demonstration 𝐿 𝑉 in the group to represent questions it can
cover. Here, a question covered by a demonstration 𝐿 𝑉 means that
this question is a#nitive to 𝐿 𝑉 . For each demonstration 𝐿 𝑉 in the
group, its number of covered questions, i.e., |𝑃𝑆𝑇 (𝐿 𝑉) |, cannot be
too large to ensure su#cient demonstrations for better reasoning
ability of LLMs.

After taking into consideration the above four factors, we pro-
pose the following constraints to ensure accuracy of our batch
prompting method.

• QGA constraint: For each group 𝑂𝑁 → G, the questions in 𝑂𝑁
have to meet the a#nity requirement constrained by the a#nity
threshold 𝑈0, i.e., 𝑄𝑅 𝑅𝑃 (𝑂𝑁) ↔ 𝑈0.

• QDA constraint: Under the setting of ICL, each question in the
group should have one a#nitive demonstration as its context,
i.e., ↗𝐿 𝑉 → D𝑁 , 𝑄𝑅 𝑅𝑄 (𝑀𝑈 ,𝐿 𝑉) ↔ 𝑈1,↑𝑀𝑈 → Q𝑁 .

• GL constraint: For each group 𝑂𝑁 → G, the total token counts
of the group, denoted as 𝑃 (𝑂𝑁), cannot exceed the pre-de!ned
maximum length, i.e., 𝑃 (𝑂𝑁) ↔ 𝑈2.

• DC constraint: For each demonstration 𝐿 𝑉 , the number of ques-
tions it covers cannot exceed a threshold, i.e., |𝑃𝑆𝑇 (𝐿 𝑉) | ↔ 𝑈3.

To sum up, given a batch Q of questions and a pool D of demon-
strations, the objective of batch prompting is to group all ques-
tions and the corresponding demonstrations into 𝑁 groups, i.e.,

2174

Figure 2: The framework for batch prompting.

G = {𝑂1,𝑂2, ...𝑂𝑁 , ...,𝑂𝑂 } where 𝑂𝑁 = {T ,D𝑁 ,Q𝑁 }, such that the
overall cost of all groups is minimized, with the constraints of LLM
accuracy satis!ed, which is formulated as:

min
𝑂[︄
𝑁

𝑃 (𝑂𝑁)

𝑉 .𝑊 . 𝑄𝑅 𝑅𝑃 (𝑂𝑁) ↔ 𝑈0, ↑𝑋 → [1,𝑁]
𝑄𝑅 𝑅𝑄 (𝑀𝑈 ,𝐿 𝑉) ↔ 𝑈1, ↑𝑀𝑈 → Q𝑁 , ↗𝐿 𝑉 → D𝑁
𝑃 (𝑂𝑁) ↔ 𝑈2, ↑𝑋 → [1,𝑁]
|𝑃𝑆𝑇 (𝐿 𝑉) | ↔ 𝑈3, ↑𝐿 𝑉 → D𝑁

(1)

T!"#$"% 1. The optimization problem of batch prompting shown
in Equation 1 is NP-hard.

To show the hardness, we give a reduction from the weighted
set cover problem, which is known to be NP-hard [12]. Due to
the limitation of space, please refer to the technical report of this
paper [3] for proof details.

3 THE OBP FRAMEWORK
In this section, we present our framework Optimized Batch Prompt-
ing (OBP) for adaptive grouping, which is shown in Figure 2. The
input of our framework is a batch of questions Q and a demonstra-
tion pool D. The OBP framework o"ers three versions of solutions.
(1) OBP-Exact (Section 3.1): we transform the batch prompting
problem into MILP (Mixed Integer Linear Programming) formula-
tion, which can be solved via the MILP solver (e.g., GUROBI [1])
to get the exact solution. Several optimizations are also proposed
to accelerate the computations of the MILP solver. (2) OBP-Semi
(Section 3.2): Considering the expensive computation of the MILP
solver, it is infeasible to have exact solution when the number
of questions is large. To this end, we design question clustering
method (QueClt), which !rst constructs a graph to represent the
question relationship and then decompose it into clusters, so that
each cluster can be solved by the MILP solver individually, which
is signi!cantly faster than directly solving the original problem.
(3) OBP-Approx (Section 3.3): To further improve the e#ciency,
we design an approximation solution (CltSplt) to replace the MILP
solver and produce grouping result for the clusters with a larger
number of questions.

3.1 The OBP-Exact Solution
In this section, we discuss an MILP-based method, which can pro-
duce the exact solution to the batch prompting problem formalized
in Section 2. Speci!cally, we transform the abstract format in Equa-
tion 1, such that it can be solved by MILP solvers. Let 𝑌 (𝑂𝑁 , 𝑍) and
𝑎 (𝑂𝑁 , 𝑏) denote a boolean decision variable of whether a question
𝑀𝑈 and a demonstration 𝐿 𝑉 belong to group 𝑂𝑁 or not, respectively.
The following equation shows the transformation:

min
𝐿[︄
𝑁

(

𝐿[︄
𝑈

𝑃𝑃𝐿𝑌 (𝑂𝑁 , 𝑍) +
𝑀[︄
𝑉

𝑃𝑄 𝑀
𝑎 (𝑂𝑁 , 𝑏) + 𝑐 (𝑋)𝑃𝑅) (2a)

𝑉 .𝑊 .
𝐿[︄
𝑁

𝑌 (𝑂𝑁 , 𝑍) = 1, ↑𝑍 → [1,𝑑]

(2b)
𝑄𝑅 𝑅𝑃 (𝑀𝑈 ,𝑀𝑈↓)𝑌 (𝑂𝑁 , 𝑍)𝑌 (𝑂𝑁 , 𝑍

↓
) ↔ 𝑈0, ↑𝑋, 𝑍, 𝑍↓ → [1,𝑑]

(2c)
𝐿[︄
𝑁

𝑀[︄
𝑉

(𝑄𝑅 𝑅𝑄 (𝑀𝑈 ,𝐿 𝑉)𝑌 (𝑂𝑁 , 𝑍)𝑎 (𝑂𝑁 , 𝑏)) = 1, ↑𝑍 → [1,𝑑]

(2d)
𝐿[︄
𝑈

𝑃𝑃𝐿𝑌 (𝑂𝑁 , 𝑍) +
𝑀[︄
𝑉

𝑃𝑄 𝑀
𝑎 (𝑂𝑁 , 𝑏) + 𝑃𝑅 ↔ 𝑈2, ↑𝑋 → [1,𝑑]

(2e)

𝑐 (𝑋) ↔
𝐿[︄
𝑈

𝑌 (𝑂𝑁 , 𝑍) +
𝑀[︄
𝑉

𝑎 (𝑂𝑁 , 𝑏), ↑𝑋 → [1,𝑑]

(2f)

𝑐 (𝑋)𝑒 ↘

𝐿[︄
𝑈

𝑌 (𝑂𝑁 , 𝑍) +
𝑀[︄
𝑉

𝑎 (𝑂𝑁 , 𝑏), ↑𝑋 → [1,𝑑]

(2g)

Equation 2a is the objective of our optimization problem, which
minimizes the total cost of all groups. Equation 2b constrains
that each question can only belong to one group. Equations 2c
and 2d are the constraints about the QGA and QDA. To demonstrate
the QDA constraint, we can intuitively express as:

)︄𝐿
𝑁

)︄𝑀
𝑉 I(𝑈1 ≃

𝑄𝑅 𝑅𝑄 (𝑀𝑈 ,𝐿 𝑉)𝑌 (𝑂𝑁 , 𝑍)𝑎 (𝑂𝑁 , 𝑏)) ↘ 1. Note that I() denotes the indica-
tor function, where I(𝑌) returns true if 𝑌 ↘ 0, false otherwise.
However, this format is challenging to be solved due to the indica-
tor function. Fortunately, we can remove the indicator function by
pre-processing it. Speci!cally, for each 𝑄𝑅 𝑅𝑄 (𝑀𝑈 ,𝐿 𝑉), we rewrite it
as 1 if it is less than 𝑈1, 0 otherwise. Thus, the format is shown in
Equation 2d. Meanwhile, to maintain the DC constraint, for each
demonstration 𝐿 𝑉 , we sort all 𝑄𝑅 𝑅𝑄 (𝑀𝑈 ,𝐿 𝑉), and assign the !rst 𝑈3
questions as 1 (whose 𝑄𝑅 𝑅𝑄 is less than 𝑈1), 0 otherwise. While
this pre-processing is an approximation method1, it exhibits ex-
cellent accuracy in practice [9]. Besides, the pre-processing can
make the MILP solver more e#cient. This is because all coe#cients
are changed from $oat numbers to boolean values. Note that we
also change 𝑄𝑅 𝑅𝑇 (𝑀𝑈 ,𝑀𝑈↓) into 0 or 1. The GL constraint is shown

1This constraint is enforced during the MILP solving, rather than before the data is
input.

2175

Correlation Clustering New

q2

q7

q6

q5

q4

q3

q8

q1

.....

Cluster 1 Cluster 2

Figure 3: An example of Question A"nity Graph. The red
lines denote positive edges while the green lines are negative
edges. Note that we only draw partial green edges.

in Equation 2e. Note that a total of 𝑁 groups (𝑂1,𝑂2, ...,𝑂𝑂) would
cover all questions, where 1 ↔ 𝑁 ↔ 𝑑 (i.e., at least one group, or at
most 𝑑 singleton groups could be formed). We cannot know the
optimal group number 𝑁 in advance, so we introduce an additional
variable 𝑐 (𝑋) with Equations 2a, 2f and 2g to identify the number of
groups. Note that 𝑒 in Equation 2g is a pre-de!ned positive number
that can be considered as in!nity.

Once the MILP is formalized as shown in Equation 2, we exploit
a general-purpose solver to solve it (e.g., GUROBI [1]).

3.2 The OBP-Semi Solution
The optimal solution presented in Section 3.1 may be expensive
since the MILP-based solution has an exponential computation time
in the worst case. To expedite this procedure, we propose further
optimizations.

To allow the MILP-based solution to scale to a larger number
of questions, we break down the original optimization problem
into a sequence of small problems. To be speci!c, we split the
original question set Q into multiple clusters, making each cluster
as independent as possible. After the splitting, unrelated questions
are not grouped within the same cluster, allowing each cluster to
generate groups independently without being a"ected by others.
Then, combining these results gives the !nal grouping. Speci!cally,
each cluster can formalize an optimization problem without the
QGA constraint (i.e., the Equation 2c), so that the MILP solver can be
exploited in each cluster independently. As it turns out, it is faster
than the original MILP-based solution due to fewer constraints and
smaller data volume.

Next, we describe the question clustering method named QueClt.
To cluster original questions, we !rst build the question a#nity
graph to present the relationships between the questions. The a#n-
ity graph is de!ned as follows:

D"&’(’)’#(1 (*"+)’#(A&&’(’), G$-.! (QAG)). Given an
undirected (complete) graph 𝑓𝑊 = (𝑔𝑊 , 𝑕𝑊), each node in 𝑔𝑊 refers
to a question 𝑀𝑈 , and each edge in 𝑕𝑊 refers to 𝑄𝑅 𝑅𝑇 (𝑀𝑈 ,𝑀𝑈↓) between
𝑀𝑈 and 𝑀𝑈↓ , whose weight is either 1 (i.e., these pair-wise questions are
a!nitive to each other, denoted as the positive edge) or -1 (otherwise,
denoted as the negative edge).

Figure 3 presents an example QAG. The next step is to decom-
pose the graph into subgraphs that are as independent as possible,
ensuring that they do not a"ect each other. The goal is to !nd an
optimal clustering of nodes, such that the number of unrelated

nodes in the same cluster (connecting with negative edges) and
the number of related nodes (connecting with positive edges) in
di"erent clusters are minimized. This is exactly the goal of correla-
tion clustering [7]. To be speci!c, we give the formal de!nition of
correlation clustering as follows:

D"&’(’)’#(2 (C#$$"/-)’#(C/0+)"$’(1). Let 𝑓 = (𝑔 , 𝑕) be
an undirected (complete) graph, and the edge weights are 1 or -1. Let
𝑕+ be the set of positive edges, and 𝑕≃ be the set of negative edges.
Intuitively, edge 𝑖𝑋𝑌 → 𝑕+ if 𝑐 and 𝑇 are related, and 𝑖𝑋𝑌 → 𝑕≃ if 𝑐
and 𝑇 are unrelated. A clustering of G is a non-overlapping partition
of its node set. The goal of the correlation clustering problem is to
minimize: |{𝑖𝑋𝑌 → 𝑕+|𝑗 (𝑐) ω 𝑗 (𝑇)}| + |{𝑖𝑋𝑌 → 𝑕≃ |𝑗 (𝑐) = 𝑗 (𝑇)}|.
Note that 𝑗 (𝑐) = 𝑗 (𝑇) means nodes u and v are in the same cluster,
and 𝑗 (𝑐) ω 𝑗 (𝑇) means that they are in di"erent clusters.

There are various approximation algorithms [5, 7] for correlation
clustering. Among these, the algorithm proposed in [5] has the well-
known optimality bound, which can help achieve a feasible solution
within a reasonable time frame.We thus select it for implementation.
The approximation ratio of it equals to 3 [5], which bounds deviation
from the optimal solution. For example in Figure 3, after running
the correlation clustering algorithm, two clusters are produced
respectively: {𝑀1,𝑀2,𝑀6,𝑀7,𝑀8} and {𝑀3,𝑀4,𝑀5}.

3.3 The OBP-Approx Solution
While we can use the MILP solver to obtain the optimization so-
lution for each cluster, it is still intractable for large clusters with
substantial questions. To further accelerate the computation, we
design an e#cient approximate method Cluster Splitting (CltSplt).

We illustrate the procedure of CltSplt with an example shown in
Figure 4. Speci!cally, the cluster in the example has !ve questions
and four demonstrations, which can be presented as a bipartite
graph (Figure 4(a)). The blue nodes on the left represent the ques-
tions and the orange nodes on the right represent the demonstra-
tions. The edge between a question and a demonstration indicates
that they are a#nitive. Next, we introduce the whole procedure of
CltSplt based on this example.

Our solution includes three stages:
(1) For each cluster, we select a#nitive demonstrations with

minimal cost to cover all questions. Each demonstration and its
associated questions form a set. This problem is an instance of
weighted set cover problem2, so we can use the common-use ap-
proximation algorithm [11] to solve it, the approximation ratio of
which is ln𝑘 [11]. Note that 𝑘 indicates the number of questions in
the cluster. As the example in Figure 4(b) shows, {𝐿1,𝐿5,𝐿6} are the
selected demonstrations that can cover all questions with minimal
cost, and they together with the associated questions form three
sets;

(2) After stage 1, there may be questions that are covered by
multiple demonstrations in di"erent sets, e.g., in Figure 4(b), 𝑀6
is covered by both 𝐿1 in Set 1 and 𝐿5 in Set 2. Since one question
only belongs to one group in the !nal grouping, it needs to break
the tie by retaining only one connecting demonstration for each
question. However, achieving an e"ective method for high accuracy
is not straightforward. A randommethod may lead to cases where a

2The proof is similar to Section 2.

2176

Bipartite Graph

Set 1

Set 2

Set 3

q1:2

q2:3

q6:2

q7:1

q8:1

d1:2

d5:2

d6:1

d7:3

q1:2

q2:3

q6:2

d1:2

q6:2

q7:1
d5:2

q8:1 d6:1

Set 1

Set 2

Set 3

q1:2

q2:3

q6:2

d1:2

q6:2

q7:1
d5:2

q8:1 d6:1

(a) Stage 0: Initialization by a bipartite
graph.

Bipartite Graph

Set 1

Set 2

Set 3

q1:2

q2:3

q6:2

q7:1

q8:1

d1:2

d5:2

d6:1

d7:3

q1:2

q2:3

q6:2

d1:2

q6:2

q7:1
d5:2

q8:1 d6:1

Set 1

Set 2

Set 3

q1:2

q2:3

q6:2

d1:2

q6:2

q7:1
d5:2

q8:1 d6:1

(b) Stage 1: Selecting demonstrations
with minimal cost covering all questions.Bin Packing

Group 1 τ2=7

Group 2 τ2=7

Set 1

Set 2

Set 3

q1:2

q2:3

q6:2

d1:2

q6:2

q7:1
d5:2

q8:1 d6:1

q1:2

q2:3
d1:2

d5:2

d6:1

q6:2

q7:1

q8:1

(c) Stage 2: Determining the covering
associations to be retained.

Bin Packing

Group 1 τ2=7

Group 2 τ2=7

Set 1

Set 2

Set 3

q1:2

q2:3

q6:2

d1:2

q6:2

q7:1
d5:2

q8:1 d6:1

q1:2

q2:3
d1:2

d5:2

d6:1

q6:2

q7:1

q8:1

(d) Stage 3: Combining sets into a mini-
mal number of groups.

Figure 4: Illustration of the CltSplt procedure.

demonstration covers a large number of questions. When merging
the sets into groups, the group that contains this demonstration
has numerous questions but few demonstrations. As discussed in
Section 2, this imbalance can a"ect the reasoning of LLMs. To this
end, we propose a metric for retaining the covering associations
between demonstrations and questions, and a retention algorithm
in Section 3.3.1, with the aim to balance the number of questions
covered by each demonstration. For example, in Figure 4(c), 𝑀6 is
removed from Set 1 and only retained in Set 2, making the number
of questions covered by these demonstrations more balanced;

(3) The !nal stage is to combine as many sets as possible to
generate the minimum number of groups, while satisfying the
GL constraint. This is to reduce the overall cost since for every
additional group there will be an extra task description cost 𝑃𝑅 . In
Figure 4(d), three sets are !nally combined into 2 groups. We shall
elaborate on the combining strategy in Section 3.3.2.

3.3.1 Retentionmethod. Recall that the retentionmethod is applied
when there are questions that are covered by multiple demonstra-
tions in di"erent sets in stage 2 of CltSplt. The aim is to retain the
covering association that can lead to a high-quality grouping.

However, achieving e"ective retention to ensure high accuracy
is not straightforward. A random retention method could result in
one demonstration covering a large number of questions. Note that
one set consists of the demonstration and its associated questions.
When these sets are merged into groups, it will result in groups
with numerous questions but few demonstrations. Such imbalances
prevent LLMs from fully comprehending the questions, resulting in
a decline in performance. To avoid this situation, we shall balance
the number of questions in each set as much as possible while
performing the retention. We denote all sets in the cluster after
stage 1 as S, where each set 𝑉𝑈 → S consists of one demonstration
and its associated questions, e.g., Set 1 in Figure 4(b) contains {𝐿1}
and {𝑀1,𝑀2,𝑀6}. A direct indicator of the balance level of S is the
maximum number of questions in its all sets. Formally, we de!ne
the balance level of S as:

𝑉𝑍𝑎𝑏 = max
𝑐𝐿

|𝑉𝑈 |,↑𝑉𝑈 → S (3)

Note that |𝑉𝑈 | denotes the number of questions in set 𝑉𝑈 . A smaller
𝑉𝑍𝑎𝑏 value implies a more balanced set S. Thus, our goal is to
minimize 𝑉𝑍𝑎𝑏 when determining which covering association to be
retained. Consider the example in Figure 4(c). Removing 𝑀6 from
Set 1 results in a smaller 𝑉𝑍𝑎𝑏 , which is better than removing 𝑀6
from Set 2. To this end, we propose the following two retention
methods.

The !rst method is a dynamic programming (DP) based algo-
rithm. Speci!cally, we !rst sort the sets in S based on the number
of questions, and de!ne O𝑈 as the overlapping questions in the !rst
𝑍 sets. An overlapping question means that it appears in multiple
sets. Then, we de!ne 𝑙𝑚 (O𝑈) as the retention result of the !rst 𝑍
sets with minimizing 𝑉𝑍𝑎𝑏 as the objective. Thus, the !nal retention
result is 𝑙𝑚 (O𝑑), assuming that the total number of sets in S is 𝑛.
The recursive formula for dynamic programming can be computed
as follows:

|𝑙𝑚 (O𝑈) | = min

]︄
|𝑙𝑚 (O𝑈) |

max(|𝑙𝑚 (O𝑈≃1) |, |𝑉𝑈 \ 𝑆
↓

𝑈 |),𝑆
↓

𝑈 ⇐ 𝑆𝑈
(4)

Note that 𝑆𝑈 denotes set of the overlapping questions in 𝑉𝑈 . We
need to calculatemax(|𝑙𝑚 (O𝑈≃1) |, |𝑉𝑈 \𝑆

↓

𝑈 |) for 𝑜𝑖𝑝𝑞(𝑆𝑈) times and
𝑜𝑖𝑝𝑞(𝑆𝑈) denotes the number of permutation of 𝑆𝑈 . Thus, the time
complexity of this DP algorithm is 𝑟 (𝑜𝑖𝑝𝑞(O𝑈)𝑜𝑖𝑝𝑞(𝑆𝑈)𝑛).

The computation time is exponential for the number of overlap-
ping questions, making it challenging to obtain the optimal solution
for large number of overlapping questions.

To this end, we propose a heuristic method which is shown in
Algorithm 1. We begin by sorting S in descending order based on
|𝑉𝑈 |. If two sets have the same number of questions, the set with
a smaller |𝑆𝑈 | is ranked higher (line 1). Note that |𝑆𝑈 | denotes the
number of overlapping questions in the set 𝑉𝑈 . The rationale be-
hind this is to prioritize removing overlapping questions from sets
with larger |𝑉𝑈 |. When the number of questions in the sets (i.e.,
|𝑉𝑈 |) is equal, the set with fewer overlapping questions should be

2177

Algorithm 1 Retention Method

Input: Sets S after Stage 1.
Output: Retention Sets Ŝ.
1: Ŝ = 𝑠𝑆𝑝𝑊 (S), 𝑡 = 𝑠𝑖𝑊 ().
2: for 𝑉𝑈 in S do
3: for 𝑀𝑈 in 𝑉𝑈 do
4: 𝑡 .𝑄𝐿𝐿 (𝑀𝑈).
5: end for
6: end for
7: 𝐿𝑎𝑌𝑆 = |𝑊 |

|S |
.

8: for 𝑉𝑈 in Ŝ do
9: while |𝑉𝑈 | ↘ 𝐿𝑎𝑌𝑆 and Overlap(𝑆𝑈) do
10: 𝑢𝑖𝑞𝑆𝑇𝑖𝑣 𝑍𝑊𝑤𝑢𝑖𝑉𝑊𝑝𝑍𝑃𝑊 (𝑆𝑈).
11: end while
12: end for
13: for 𝑉𝑈 in Ŝ do
14: while |𝑉𝑈 | ↔ 𝐿𝑎𝑌𝑆 and Overlap(𝑆𝑈) do
15: 𝑢𝑖𝑞𝑆𝑇𝑖𝑣 𝑍𝑊𝑤𝑆𝑐𝑊𝑢𝑖𝑉𝑊𝑝𝑍𝑃𝑊 (𝑆𝑈).
16: end while
17: end for
18: Return Ŝ.

removed !rst, in order to balance the number of questions across
sets. Then, we calculate the average number of non-overlapping
questions in each set, denoted as 𝐿𝑎𝑌𝑆 (lines 2-7). Note that the num-
ber of questions in the largest set of the optimal solution cannot
be less than 𝐿𝑎𝑌𝑆 . Thus, for each set 𝑉𝑈 , if the number of ques-
tions |𝑉𝑈 | exceeds 𝐿𝑎𝑌𝑆 , we remove its overlapping questions using
the function 𝑢𝑖𝑞𝑆𝑇𝑖𝑣 𝑍𝑊𝑤𝑢𝑖𝑉𝑊𝑝𝑍𝑃𝑊 (𝑆𝑈) (lines 8-12). To be speci!c,
for a set 𝑉 𝑉 that has overlapping questions with 𝑉𝑈 , if |𝑉 𝑉 | > 𝐿𝑎𝑌𝑆 ,
the function 𝑢𝑖𝑞𝑆𝑇𝑖𝑣 𝑍𝑊𝑤𝑢𝑖𝑉𝑊𝑝𝑍𝑃𝑊 removes |𝑒𝐿 𝑀 |

2 overlapping ques-
tions from both 𝑉𝑈 and 𝑉 𝑉 ; otherwise, it removes |𝑃𝑈 𝑉 | overlapping
questions from 𝑉𝑈 . Note that |𝑃𝑈 𝑉 | denotes the number of overlap-
ping questions between 𝑉𝑈 and 𝑉 𝑉 . The rationale behind this is to
remove more overlapping questions from the set with a larger
number of questions. Furthermore, assume that set 𝑉𝑈 and 𝑤 other
sets have overlapping questions, denoted as 𝑃𝑈1, 𝑃𝑈2, ..., 𝑃𝑈𝑓 , we have)︄𝑓

𝑉=1 |𝑃𝑈 𝑉 | = |𝑆𝑈 | 3. Next, we iterate sets whose question count
is below 𝐿𝑎𝑌𝑆 and apply 𝑢𝑖𝑞𝑆𝑇𝑖𝑣 𝑍𝑊𝑤𝑆𝑐𝑊𝑢𝑖𝑉𝑊𝑝𝑍𝑃𝑊 (𝑆𝑈) (lines 13-17).
Unlike 𝑢𝑖𝑞𝑆𝑇𝑖𝑣 𝑍𝑊𝑤𝑢𝑖𝑉𝑊𝑝𝑍𝑃𝑊 (𝑆𝑈), 𝑢𝑖𝑞𝑆𝑇𝑖𝑣 𝑍𝑊𝑤𝑆𝑐𝑊𝑢𝑖𝑉𝑊𝑝𝑍𝑃𝑊 (𝑆𝑈) re-
moves |𝑒𝐿 𝑀 |

2 overlapping questions from both 𝑉𝑈 and 𝑉 𝑉 without
any restrictions. Finally, the processed sets are returned (line 18).
Next, we give a theoretical analysis about this heuristic algorithm.

T!"#$"% 2. 𝑢(S) ↔ 𝑟𝑚𝑥 (S) +
|𝑔

argmax(|𝑂𝐿 |≃
|𝑃𝐿 |
2)

|

2

P$##&. We use 𝑢(S) to denote the number of questions in the
largest set of the solution generated by Algorithm 1, and 𝑟𝑚𝑥 (S)
denote the number of questions in the largest set of the optimal
solution. We have:

3If 𝑐𝐿 contains an overlapping question that appears in multiple sets, this overlapping
question is counted only once to ensure that the summation formula

)︄𝑄
𝑀=1 |𝑒𝐿 𝑀 | = |𝑔𝐿 |

holds.

𝑢(S)↔ max
𝑈<𝑑

(|𝑉𝑈 | ≃
|𝑆𝑈 |

2
)

= max
𝑈<𝑑

(|𝑉𝑈 | ≃ |𝑆𝑈 |) +max
𝑈<𝑑

(|𝑉𝑈 | ≃
|𝑆𝑈 |

2
) ≃max

𝑈<𝑑
(|𝑉𝑈 | ≃ |𝑆𝑈 |)

↔ 𝑟𝑚𝑥 (S) +max
𝑈<𝑑

(|𝑉𝑈 | ≃
|𝑆𝑈 |

2
) ≃max

𝑈<𝑑
(|𝑉𝑈 | ≃ |𝑆𝑈 |)

↔ 𝑟𝑚𝑥 (S) + (|𝑉argmax(|𝑐𝐿 |≃
|𝑃𝐿 |
2)

| ≃ |

𝑆argmax(|𝑐𝐿 |≃
|𝑃𝐿 |
2)

2
|)

≃(|𝑉argmax(|𝑐𝐿 |≃
|𝑃𝐿 |
2)

| ≃ |𝑆argmax(|𝑐𝐿 |≃
|𝑃𝐿 |
2)

|)

= 𝑟𝑚𝑥 (S) +
|𝑆argmax(|𝑐𝐿 |≃

|𝑃𝐿 |
2)

|

2

(5)

where 𝑢(S) is generated in sets with more than 𝐿𝑎𝑌𝑆 questions,
it can be derived based on the 𝑢𝑖𝑞𝑆𝑇𝑖𝑣 𝑍𝑊𝑤𝑢𝑖𝑉𝑊𝑝𝑍𝑃𝑊 function, i.e.,
𝑢(S) = max𝑈<𝑑 (|𝑉𝑈 | ≃

)︄
|𝑐 𝑀 |↘𝑄𝑅𝑆𝑇

|𝑒𝐿 𝑀 |
2 ≃

)︄
|𝑐 𝑀 |<𝑄𝑅𝑆𝑇 |𝑃𝑈 𝑉 |). By am-

plifying the last term, we have 𝑢(S) ↔ max𝑈<𝑑 (|𝑉𝑈 | ≃
)︄ |𝑒𝐿 𝑀 |

2) =

max𝑈<𝑑 (|𝑉𝑈 | ≃ |𝑔𝐿 |
2). Additionally, we have max𝑈<𝑑 (|𝑉𝑈 | ≃ |𝑆𝑈 |) ↔

𝑟𝑚𝑥 (S). This is because 𝑟𝑚𝑥 (S) does not exceed the maximum
value of these sets after all overlapping questions have been re-
moved from each set.

⊋

Given the two proposed retention methods, how to select the
appropriate one is determined by the number of overlapping ques-
tions. When the number of overlapping questions is large, the
heuristic method is e#cient. Otherwise, the DP-based method is
better, which yields more e"ective results. Empirical results indi-
cate that when the number of overlapping questions exceeds 180,
the runtime of the DP-based method exceeds one hour.

3.3.2 Packing demonstrations and questions. In stage 3, we com-
bine sets produced in stage 2 into groups with the objectives to
minimize the number of groups and at the same time satisfy the GL
constraint. This problem can be reduced to the well-known bin pack-
ing problem (BPP) [22], in which items of di"erent sizes must be
packed into a !nite number of bins, each with a !xed given capacity.
The goal is to minimize the number of bins used. We map each set
𝑉𝑈 as the item, each group as the bin, and 𝑈2 as the capacity of the
bin. Given this mapping, we can reduce BPP to this problem. While
BPP is NP-hard, we utilize the !rst-!t bin packing algorithm [17]
to implement it, which guarantees a bounded deviation from the
optimal solution. The approximation ratio of this approximation
algorithm is 1.7 [17].

3.4 Time Complexity Analysis
In this section, we analyze the time complexity for the approxi-
mation method in OBP. Speci!cally, our approximation method
contains two steps, namely, QueClt and CltSplt.

For the QueClt step, given 𝑑 questions, it runs in time 𝑟 (𝑑𝑗),
i.e., the runtime for the approximation algorithm of correlation
clustering [5]. Note that 𝑗 is the number of generated clusters.

After the QueClt step, for each cluster with 𝑘 questions and𝑞
demonstrations, it is input into the CltSplt step. This step involves
three stages. Stage 1 leverages weighted set cover to select demon-
strations. Note that each demonstration corresponds to one set, and

2178

the total number of elements equals the number of questions in the
cluster, i.e. 𝑘 . Thus, its time complexity is 𝑟 (𝑞𝑘), i.e., the runtime
for approximate set cover algorithm [11]. Note that 𝑛 sets are pro-
duced by Stage 1, and subsequently are input into Stage 2. Stage
2 includes a heuristic algorithm (i.e., Algorithm 1) to balance the
number of questions between sets. This algorithm !rst sorts 𝑛 sets,
which takes𝑟 (𝑛𝑋𝑆𝑂𝑛) time. Then, it iterates over all 𝑛 sets. For each
set, it removes |𝑆𝑈 | questions. Therefore, the runtime for this step
is 𝑟 (𝑛 |𝑆𝑈 |). As a result, the overall time complexity of Algorithm 1
is 𝑟 (𝑛𝑋𝑆𝑂𝑛 + 𝑛 |𝑆𝑈 |). Then, the sets without overlapping questions
are input into Stage 3. Stage 3 exploits the !rst-!t bin packing [17]
to complete the !nal grouping, whose runtime is 𝑟 (𝑛𝑋𝑆𝑂𝑛). Thus,
the time complexity of the CltSplt step is𝑟 (𝑞𝑘 + 𝑛 |𝑆𝑈 | + 𝑛𝑋𝑆𝑂𝑛) for
each cluster.

In conclusion, the time complexity of the overall algorithm is
𝑟 (𝑑𝑗 + (𝑞𝑘 + 𝑛 |𝑆𝑈 | + 𝑛𝑋𝑆𝑂𝑛)𝑗).

3.5 Optimization for E"cient Computation
In this section, we propose two optimization strategies to further
speed up the computation.

3.5.1 Pruning ine!ective demonstrations . The demonstration pool
may comprise a large number of demonstrations, causing expensive
computations. Intuitively, we can prune the demonstrations that
are not a#nitive to any question in the batch Q. Let the remaining
demonstrations be referred as valid demonstrations. Meanwhile,
we can rule out those valid demonstrations that are dominated, as
given in the Lemma 1 below. Here, we de!ne that a demonstration
𝐿𝑎 is dominated by a demonstration 𝐿𝑕 (denoted as 𝐿𝑎 ⇒ 𝐿𝑕), if
𝑃𝑆𝑇 (𝐿𝑎) ⇐ 𝑃𝑆𝑇 (𝐿𝑕) and 𝑃𝑄𝑅 ↘ 𝑃𝑄𝑈 .

L"%%- 1. Pruning Dominated Demonstrations. Given two valid
demonstrations 𝐿𝑎 and 𝐿𝑕 , 𝐿𝑎 can be safely pruned if 𝐿𝑎 ⇒ 𝐿𝑕 holds.

3.5.2 Reducing a!inity computations. Our method requires pair-
wise 𝑄𝑅 𝑅𝑇 computations for questions, and pair-wise 𝑄𝑅 𝑅𝑄 compu-
tations for questions and demonstrations, which is time-consuming
especially when the a#nity calculation is performed over high-
dimensional embeddings. In the following, we propose an opti-
mization method to reduce the number of computations by means
of triangle inequality. First, we give the formal de!nition of triangle
inequality property:

D"&’(’)’#(3 (T$’-(1/" I("2-/’), P$#."$),). Let the dis-
tance metric between two points a and b be dist(a,b). For any three
points a, b, and c, we call the distance metric satisfying the triangle
inequality if 𝐿𝑍𝑉𝑊 (𝑄, 𝑃) ↔ 𝐿𝑍𝑉𝑊 (𝑄,𝑦) + 𝐿𝑍𝑉𝑊 (𝑦, 𝑃).

Note that most common metrics, e.g., Euclidean distance and
Cosine similarity, all satisfy this property. Through the computa-
tion of 𝑄𝑅 𝑅𝑇 , for each question 𝑀𝑈 , we need to obtain questions
whose a#nity with 𝑀𝑈 is below 𝑈0, denoted by 𝑑𝑖0 (𝑀𝑈). We have the
following lemma:

L"%%- 2. For any two questions 𝑀𝑈 ,𝑀 𝑉 → Q, and any question 𝑀𝑗 :
𝐿𝑍𝑉𝑊 (𝑀𝑈 ,𝑀𝑗) ≃ 𝐿𝑍𝑉𝑊 (𝑀 𝑉 ,𝑀𝑗) > 𝑈0 ⇑ 𝑀𝑈 ε 𝑑𝑖0 (𝑀 𝑉) 𝑄𝑛𝐿 𝑀 𝑉 ε 𝑑𝑖0 (𝑀𝑈).

We can use Lemma 2 to reduce some computations for 𝑄𝑅 𝑅𝑇 .
Speci!cally, according to Lemma 2, questions 𝑀𝑈 , 𝑀 𝑉 and 𝑀𝑗 form
a triangle. We denote 𝑀𝑗 as the pivot question and assume that

Algorithm 2 RAC

Input: A pivot question 𝑀, a batch of questions Q, all demonstra-
tions D, threshold 𝑈0 and 𝑈1.

Output: 𝑄𝑅 𝑅𝑇 and 𝑄𝑅 𝑅𝑄 .
1: Calculate 𝑄𝑅 𝑅𝑇 (𝑀, _)=𝑄𝑅 𝑅𝑇 (𝑀,𝑀𝑈),↑𝑀𝑈 → Q and sort them.
2: for 𝑀𝑈 in Q do
3: s=BinarySearch(𝑄𝑅 𝑅𝑇 (𝑀, _), 𝑄𝑅 𝑅𝑇 (𝑀,𝑀𝑈) + 𝑈0, >).
4: e=BinarySearch(𝑄𝑅 𝑅𝑇 (𝑀, _), 𝑄𝑅 𝑅𝑇 (𝑀,𝑀𝑈) ≃ 𝑈0, <).
5: 𝑄𝑅 𝑅𝑇=𝑄𝑅 𝑅𝑇 (Q𝑘

𝑐 ,𝑀𝑈).
6: end for
7: Calculate 𝑄𝑅 𝑅𝑄 (𝑀, _) =𝑄𝑅 𝑅𝑄 (𝑀,𝐿 𝑉),↑𝐿 𝑉 → D and sort them.
8: for 𝐿 𝑉 in D do
9: s=BinarySearch(𝑄𝑅 𝑅𝑄 (𝑀, _),𝑄𝑅 𝑅𝑄 (𝑀,𝐿 𝑉) + 𝑈1, >)
10: e=BinarySearch(𝑄𝑅 𝑅𝑄 (𝑀, _),𝑄𝑅 𝑅𝑄 (𝑀,𝐿 𝑉) ≃ 𝑈1, <)
11: 𝑄𝑅 𝑅𝑄=𝑄𝑅 𝑅𝑄 (D𝑘

𝑐 ,𝐿 𝑉)
12: end for
13: Return 𝑄𝑅 𝑅𝑇 and 𝑄𝑅 𝑅𝑄 .

𝐿𝑍𝑉𝑊 (𝑀𝑈 ,𝑀𝑗) and 𝐿𝑍𝑉𝑊 (𝑀 𝑉 ,𝑀𝑗) have been calculated. To calculate the
a#nity between 𝑀𝑈 and 𝑀 𝑉 , if 𝐿𝑍𝑉𝑊 (𝑀𝑈 ,𝑀𝑗) ≃ 𝐿𝑍𝑉𝑊 (𝑀 𝑉 ,𝑀𝑗) > 𝑈0, we
can directly conclude that 𝐿𝑍𝑉𝑊 (𝑀𝑈 ,𝑀 𝑉) > 𝑈0 without further a#nity
computations between 𝑀𝑈 and 𝑀 𝑉 . More details are included in the
technical report [3] due to space constraints. The designed e#cient
method is shown in Algorithm 2. First, we select a pivot question
𝑀 (e.g., the !rst question), and then calculate the a#nity between
𝑀 and all other questions (line 1). For each question 𝑀𝑈 except 𝑀,
we use the Lemma 2 and binary search to !lter questions whose
a#nity with 𝑀𝑈 is larger than 𝑈0 and then calculate the a#nity for
remaining questions (lines 2-6). For the computation of 𝑄𝑅 𝑅𝑄 , the
procedure is similar (lines 7-12).

4 EVALUATION
4.1 Experimental Setup
We implement the proposed framework in Python 3 and use GPT-
3.5-Turbo of OpenAI [2] as our backend LLMs. Meanwhile, our
MILP solver is GUROBI [1]. For simplicity, we use OBP to represent
the approximation method OBP-Approx when the context is clear.
Datasets.We evaluate our OBP framework using three represen-
tative tasks in data management, i.e., entity resolution (ER), data
transformation (DT) and data generation (DG). In the following,
we detail the corresponding datasets.
(1) Entity Resolution (ER). We use the well-adopted datasets from
Magellan [15], which are from a variety of domains, such as prod-
ucts, software, etc. They include eight datasets, and we split each
dataset into train, validation, and test sets according to the existing
ER studies [29, 37].
(2) Data Transformation (DT). It is a critical task in the data man-
agement domain that involves converting data from its original
format into another format suitable for further processing, such
as data cleaning and data integration [13, 25]. We use the datasets
introduced by [4, 46], which are collected from real-world tables.
Each sample contains the source format and the target format, e.g.,
“Norm Adams” and “n.adams”.
(3) Data Generation (DG). We use the dataset from ATLAS [38] to
evaluate our method, which is to generate code assertions for JAVA

2179

code. Each sample contains the context of a unit test followed by
the instruction, and the LLMs need to generate a single assertion
for the given test method. In this paper, we generate four datasets
from ATLAS by the category of assertions.
Baselines. We compare OBP with LLM-based baselines, which
include batching baselines (i.e., Batcher and 1demo) and the non-
batching baseline (i.e., Single). Furthermore, we also compare OBP
with non-LLM state-of-the-arts (SOTAs) for each task. The brief
introduction of these baselines is as follows:
LLM-based baselines: We compare with 3 LLM-based methods.
(1) Batcher [18]. They introduce a batch prompting framework
that consists of two modules, question batching and demonstration
selection. Speci!cally, they !rst cluster the questions, and then
select one question from each cluster separately, to generate a
group. After generating groups, they leverage set cover to select
demonstrations for each group.
(2) 1demo [18]. In this baseline, they use the samemethod in Batcher
to group questions. Then, they select the most similar demonstra-
tion for each question in the group.
(3) Single [35]. This method asks LLMs to resolve one question at a
time, with one demonstration that is most similar to the question.
Non-LLM Baselines.We compare against the non-LLM SOTA meth-
ods for each task.
(1) For entity resolution, we compare against Ditto [29], the current
SOTA deep learning-based approach which !netunes BERT [14].
(2) For data transformation, we compare against DTT [13], a trans-
former based example-driven solution.
(3) For data generation, we compare against ATLAS [38], a neural
machine translation-based approach.
Metrics. We conduct the evaluation on the following metrics.
(1) Cost. This metric measures how much an approach pays for
calling the API of a certain LLM, which is the main metric we
consider. It is worth noting that the LLM cost is charged by input
tokens. Hence, we de!ne the Cost metric as the number of input
tokens in this paper.
(2) Accuracy. Based on the nature of the task, we adopt di"erent
accuracy metrics for ER, DT and DG. For ER, we use 𝑧1 score to
measure the accuracy of an approach, which is a common metric
for existing ER works [18, 29, 37]. For DT and DG, we use exact
match accuracy, which denotes the percentage of numbers where
the predicted output matches lexically with the expected output.
(3) Execution Time. We evaluate the e#ciency of an approach by the
execution time, which includes the time of processing (i.e., group
generation) and calling LLMs.

4.2 Overall E"cacy Comparison
In this section, we compare our OBP framework with both LLM-
based baselines and non-LLM SOTAs on 14 real-world datasets.

4.2.1 Comparison between OBP and LLM-based baselines. The com-
parison results are shown in Table 1. For Batcher, we use the default
group size 8 in ER and DT, while the group size in DG is 2, which
performs the best. Furthermore, when computing 𝑄𝑅 𝑅𝑃 , we use the
reciprocal of the Euclidean distance as the a#nity metric for the
ER task, which is consistent with Batcher [18]. Meanwhile, we use
the Euclidean distance as the a#nity metric for DT and DG tasks,
as it yields the best performance.

Table 1: Comparison between OBP and baselines on 14
datasets. The LLM-based results are under GPT-3.5-Turbo.
The unit of Accuracy is %, and the Cost refers to token counts
(k). Note that the best results are bolded and the second best
results are underlined.

Dataset OBP Batcher 1demo Single non-
LLM

Acc Cost Acc Cost Acc Cost Acc Cost Acc
FZ 95.2 23.7 95.2 30.2 90.5 38.2 90.0 53.2 91.7
Beer 92.3 9.5 88.9 11.9 85.7 14.2 88.0 20.3 90.4
iA 94.1 7.9 92.3 10.4 92.3 11.8 87.7 19.4 82.1
DA 93.0 400.3 93.5 522.7 93.0 612.5 91.3 766.9 87.5
WA 83.7 223.7 82.8 280.3 83.0 341.4 75.8 475.2 74.8
AB 82.0 127.2 79.5 171.2 79.4 208.0 80.7 323.1 73.1
AG 57.8 175.5 57.4 193.7 59.4 231.9 49.4 346.5 57.8
DS 78.5 471.8 78.5 501.6 77.2 588.5 78.3 778.7 78.0

KBWT 70.9 3.5 68.0 3.7 70.0 3.9 69.9 11.2 33.3
WTS 93.3 0.3 46.7 0.3 73.3 0.4 46.7 1.5 53.0
ATr 88.8 87.4 78.3 91.3 76.7 107.8 82.7 112.6 72.7
ANN 91.5 279.5 90.1 324.0 89.4 324.3 84.4 350.8 80.2
AE 87.7 117.6 79.7 133.8 87.4 175.2 79.4 176.8 73.2
ATh 81.3 25.0 61.3 35.6 74.7 44.7 78.7 46.4 63.9

Cost. Table 1 shows that our method incurs the least cost over
all 14 datasets. Compared with Batcher, OBP can reduce the cost by
up to 30% (i.e., ATh). The cost of Batcher is the local optimum, and
our method OBP can reach the global optimum approximately. To
be speci!c, our method can adaptively adjust the number of groups
and the number of questions per group based on data. Except for
OBP, Batcher outperforms 1demo on cost. This is because for each
group, the number of demonstrations of Batcher may be less than
the number of questions due to demonstration sharing, and 1demo
selects a !xed number of demonstrations, which is the same as the
number of questions in the group.

Meanwhile, single prompting method (i.e., Single) incurs higher
cost than batch prompting methods. Even for 1demo, the batch
prompting method with the highest cost, it can reduce the cost by
up to 73% compared to Single. While the demonstration number
of Single and 1demo are the same (each question corresponds to
a demonstration), Single treats each question as a group to query
LLMs, resulting in higher task description cost.

Accuracy. From Table 1, we can observe that OBP performs
the best for almost all datasets, and only performs the second best
with only a slight di"erence in 2 datasets out of 14 datasets un-
der GPT-3.5-Turbo, which indicates that our method can produce
higher-quality results. Batcher and 1demo both use a !xed group
size, which may result in some questions being put in the same
group inappropriately. In contrast, our approach is able to perform
adaptive grouping, leading to more accurate results.

Additionally, we observe that batch prompting methods (i.e.,
OBP, Batcher and 1demo) outperform single prompting method
(i.e., Single), which validates the idea of batch prompting in lever-
aging LLMs for data management. It not only signi!cantly reduces
the cost, but also improves the result accuracy since more related
context is provided in a batch to facilitate the reasoning ability of
LLMs.

2180

Figure 5: Comparison between OBP and Batcher with di!er-
ent group sizes on the entity resolution task.

4.2.2 Comparison between OBP and non-LLM SOTAs. In this sec-
tion, we compare OBP with non-LLM SOTA methods of each task,
and the results are shown in the “non-LLM” column of Table 1. The
results show that LLM-based methods outperform non-LLM SOTA
methods on almost all datasets, and a signi!cant performance gap
can be observed on some datasets. For example, OBP under GPT-
3.5-Turbo achieves 70.9% accuracy on dataset KBWT whereas the
non-LLM SOTA only reaches 33.3%. We !nd that non-LLM base-
lines generally perform well on some datasets in simple tasks (e.g.,
the dataset FZ in entity resolution) but performs poorly on more
challenging ones (e.g., the dataset KBWT in data transformation).
Additionally, the LLM-based method is few-shot, requiring little
training data (i.e., demonstrations).

4.2.3 Comparison between OBP and Batcher with di!erent group
sizes. Batcher clusters questions with a !xed group size (i.e., the
number of questions in each group is constant). The default group
size is suggested to be 8 [18]. In this section, we compare OBP with
Batcher with group sizes varying from 2 to 64 to study the robust-
ness of our method. We conduct experiments on entity resolution,
which is the target task of Batcher. Due to space constraint, Figure 5
only shows the results on FZ and Beer datasets. We observe similar
results on other datasets. We !nd that OBP consistently outper-
forms Batcher in terms of accuracy regardless of the group size,
demonstrating its superior performance. Meanwhile, OBP incurs
relatively low cost. For Batcher, we can observe that group size
signi!cantly a"ects the accuracy, and the optimal group size varies
for di"erent datasets. For instance, the optimal group size of the
dataset FZ is 8. But for the dataset Beer, it is 16. In summary, OBP
can adaptively cluster a#nitive questions in one group, enhancing
the overall accuracy while ensuring low cost.

4.3 Tuning and Sensitivity Analysis of
Hyperparameters

Our framework involves four hyperparameters: 𝑈0, 𝑈1, 𝑈2, 𝑈3. In this
section, we !rst present the guidance for tuning these hyperparam-
eters, followed by a sensitivity analysis for each one.

Hyperparameter 𝑈0. It measures the a#nity between questions.
Thus, 𝑈0 needs to distinguish between relevant and irrelevant ques-
tions. We choose the appropriate value of 𝑈0 in three steps: the !rst
step is to calculate the a#nity values of each question with all other
questions and sort them in ascending order. The second step is to
identify the a#nity gap for each question (see Figure 6(a)), which is

Figure 6: A"nity distribution of hyperparameter 𝑈0 on the
ANN dataset.

the largest range between adjacent a#nity values. Intuitively, the
gap signi!es a cuto" value below which questions are a#nitive to
the given question, and above which questions are mostly unrelated
to the given question. We denote the cuto" value of the question
as the endpoint of the gap. The third step is to determine a cuto"
region among the cuto" values of all questions, which is an interval
that encompasses most cuto" values. Finally, we can either set 𝑈0
as the endpoint of the cuto" region to reduce cost or tune 𝑈0 within
the region for higher accuracy. See the example for more details.

Figure 6(a) shows the distribution of sorted a#nity values for
a sample question from the ANN dataset. Note that the x-axis
represents the most a#nitive questions to the sample question
in ascending order. As observed, we can derive the a#nity gap
[0.440, 0.447] and cuto" value 0.447 from the !gure. After obtaining
all cuto" values for each question, we plot them as depicted in
Figure 6(b). As observed, most of the cuto" values lie between 0.4
and 0.5, i.e., the cuto" region. Consequently, we set 𝑈0 as 0.5. We
can also tune 𝑈0 within [0.4, 0.5] for better accuracy. This way,
the search space for hyperparameter tuning can be signi!cantly
reduced. Similar guidance on determining 𝑈0 is also viable on other
datasets.

We further conduct a sensitivity analysis of 𝑈0, as depicted in
Figure 8(a). From the !gure, we observe that 𝑈0 performs the best in
terms of accuracy within the cuto" region. Furthermore, we observe
that 𝑈0 is less sensitive to accuracy within this region. For values not
belonging to this region, the accuracy shows a signi!cant decline.
Meanwhile, we observe that the cost decreases as 𝑈0 increases.
For a new dataset, users !rst identify the appropriate range of 𝑈0
values based on the above guidance. If the aim is to reduce cost,
they can choose the maximum value within the cuto" region as 𝑈0.
Otherwise, they can tune 𝑈0 within this region, ultimately choosing
the one that achieves the highest accuracy. In our implementation,
we set 𝑈0 to the maximum value within the cuto" region to reduce
cost.

Hyperparameter 𝑈1. It measures the relationship between ques-
tions and demonstrations. Thus, 𝑈1 is used to distinguish between
questions that are relevant and irrelevant to a demonstration. Simi-
lar to 𝑈0, we identify the appropriate value for 𝑈1 in the following
three steps: the !rst step is to calculate the a#nity values of each
demonstration with all questions and sort them in ascending or-
der. The second step is to identify the a#nity gap and cuto" value
within the !rst few a#nity values, as a demonstration cannot cover

2181

Figure 7: A"nity distribution of hyperparameter 𝑈1 on the
ANN dataset.

Figure 8: Sensitivity analysis of hyperparameters on the ANN
dataset.

too many questions. The third step is to determine the cuto" region
of 𝑈1 by inspecting cuto" values across all demonstrations. Finally,
we set 𝑈1 as the endpoint of the cuto" region to reduce cost or tune
𝑈1 within the region for higher accuracy.

Figure 7(a) illustrates the distribution of sorted a#nity values
for a sample demonstration from the ANN dataset. Furthermore,
Figure 7(b) presents cuto" values across all demonstrations. From
the !gure, we observe that the cuto" values in the ANN dataset
typically fall below 0.16. Note that when 𝑈1 becomes particularly
small, it leads to a lack of relevant demonstrations, resulting in
no feasible solution (i.e., the grey area in the !gure). For example,
in the ANN dataset, when 𝑈1 drops below 0.1, the algorithm fails
to return a result. Thus, we denote the cuto" region for the ANN
dataset as [0.1, 0.16]. Consequently, we set 𝑈1 as 0.16 or tune 𝑈1
within [0.1, 0.16] for better accuracy. Note that the guidance on
determining 𝑈1 is also applicable on other datasets.

We further perform a sensitivity analysis on 𝑈1, as shown in
Figure 8(b). We !nd that the best performance is achieved when

𝑈1 is set to values within the cuto" region. In terms of cost, we
!nd that cost decreases as 𝑈1 increases. For a new dataset, if the
users consider cost, we can achieve reduced cost if we select the
maximum value within the cuto" region as 𝑈1. Otherwise, we can
tune 𝑈1 within the cuto" region, selecting the one that achieves
higher accuracy. Again, the search space is signi!cantly reduced,
making !ne-grained tuning a"ordable. In our implementation, we
assign the maximum value within the cuto" region to 𝑈1 in order
to reduce cost.

Hyperparameter 𝑈2. This hyperparameter constrains the group
length. Considering that the length of questions and demonstrations
varies across tasks, wemodel 𝑈2 as𝛥⇓𝑀𝑁𝑘𝑑 , where𝑀𝑁𝑘𝑑 is the average
question length for each task, capturing task-speci!c characteristics.
Then, we vary 𝛥 to examine its impact on accuracy. The results are
shown in Figure 8(c). From the !gure, we !nd that when the value
of 𝛥 is around 15, it performs the best. For example, the average
question length in the ANN dataset is 200, and the optimal 𝑈2 value
is around 3000. Note that similar results are also observed on other
datasets. These empirically demonstrate that the optimal 𝛥 value is
generally applicable across datasets. In terms of cost, we observe
that when 𝑈2 becomes larger, the cost decreases. For a new dataset,
if users focus on cost, they can adjust 𝑈2 starting from 𝛥 = 15 and
gradually increase it. Otherwise, they can tune 𝑈2 around 𝛥 = 15 and
select the value that yields the best accuracy. In our implementation,
we choose the !rst option to reduce cost.

Hyperparameter 𝑈3. It limits the maximum number of ques-
tions that each demonstration can cover. This hyperparameter is
typically set to a relatively small value. If set too large, it may lead to
groups with many questions but few demonstrations, which nega-
tively a"ects the reasoning capabilities of LLMs. The corresponding
evaluation is shown in Figure 8(d). We observe that 𝑈3 performs the
best when it is set to 3 or 4. Similar results are observed on other
datasets. Taking cost into consideration, users can choose 4 as the
value for 𝑈3. This is because when 𝑈3 is larger, one demonstration
can cover more questions, thereby reducing the overall cost.

4.4 Cost-accuracy Trade-o! Analysis
In this section, we analyze the cost-accuracy trade-o" under varying
hyperparameters, with the relevant results shown in Figure 8.

For 𝑈0, Figure 8(a) shows that cost decreases as 𝑈0 increases, since
a larger 𝑈0 leads to fewer groups, decreasing the task description
cost. Accuracy initially improves, then declines as 𝑈0 increases.
When 𝑈0 is too small, most groups contain fewer demonstrations,
which can impact the reasoning capability of LLMs. Conversely,
a larger 𝑈0 leads to random groupings and poor performance. For
𝑈1, Figure 8(b) shows that cost decreases as 𝑈1 increases. This is
because a larger 𝑈1 requires fewer demonstrations. Accuracy drops
with larger 𝑈1 due to fewer relevant demonstrations per group. For
𝑈2, Figure 8(c) shows that a larger 𝑈2 reduces cost by increasing the
number of questions per group. Accuracy initially increases, then
decreases as 𝑈2 increases. A smaller 𝑈2 leads to fewer demonstra-
tions per group, a"ecting the LLM reasoning. Conversely, a larger
𝑈2 degrades performance due to the larger number of questions
within each group. For 𝑈3, Figure 8(d) shows that cost decreases as 𝑈3

2182

Figure 9: Evaluation on execution time of the three OBP
variants.

increases. As for accuracy, larger 𝑈3 reduces the number of demon-
strations, limiting domain knowledge and a"ecting the performance
of LLMs. More details are included in the technical report [3].

4.5 Ablation Study on OBP
Recall that the OBP framework o"ers three versions of solutions,
namely OBP-Exact, OBP-Semi, and OBP-Approx. In this section,
we evaluate the three OBP variants in terms of e"ectiveness and
e#ciency.

The comparison results on the execution time are shown in
Figure 9. Note that after correlation clustering, the cluster splitting
methods for each cluster can be executed concurrently. So the
execution time for OBP-Semi and OBP-Approx in Figure 9 refers to
the slowest time among all clusters. From the results, we can see that
compared to OBP-Exact, the execution time of OBP-Semi can be
reduced by around 85%. Take the dataset FZ as an example, it takes
24.26s with OBP-Exact, but only 3.79s with OBP-Semi. Furthermore,
OBP-Approx, which replaces the computationally expensive MILP
solver with our proposed approximation algorithm, achieves the
shortest execution time. For example, the runtime of OBP-Approx
is only 5% of OBP-Semi on the dataset FZ.

We summarize the comparison results on cost and accuracy of
the three OBP variants in Table 2. From the results, we observe
that OBP-Exact achieves the best performance for all datasets, due
to its optimal exact solution. However, it incurs a severe execu-
tion delay as shown in Figure 9, making it impractical for real-
world applications. On the contrary, OBP-Approx is e#cient and
achieves approximately optimal performance in terms of accuracy
and cost. Speci!cally, compared with OBP-Exact, the accuracy of
OBP-Approx only decreases by up to 1.6%, and the increase of cost is
nearly negligible. In summary, OBP-Approx is e"ective and e#cient
for LLM batch prompting in data management.

5 RELATEDWORK
Thiswork is related to two broad lines of research, i.e., LLMs prompt-
ing and LLMs for data management.

LLMs prompting. The main trend of using LLMs is through
prompting [8, 39]. This approach has changed the research para-
digm. LLMs only need to be given a suite of appropriate prompts.
The major advantage of LLMs is that they do not need model train-
ing or !ne-tuning, which is e#cient for deployment and gener-
ally applicable to the majority of downstream tasks. Commonly,

Table 2: Evaluation on cost and accuracy of the three OBP
variants. Note that cost refers to token counts (k), and the
best results are bolded.

Dataset OBP-Exact OBP-Semi OBP-Approx
Acc (%) Cost (k) Acc (%) Cost (k) Acc (%) Cost (k)

FZ 94.1 12.8 94.1 12.9 94.1 13.0
Beer 91.4 8.1 91.3 8.2 91.2 8.2
KBWT 73.0 3.3 72.3 3.4 73.0 3.4
ANN 97.6 48.4 96.5 48.6 96.0 48.7

prompt can be divided into hard prompt [40] and soft prompt [41]
respectively. Hard prompt means the same context is used for all
questions, such as the task description and !xed demonstrations.
Soft prompt typically refers to selecting or generating prompts dy-
namically with respect to the questions. For example, recent works
try to retrieve demonstrations similar to the question for improving
accuracy [18, 21, 31, 32, 35]. In this paper, we focus on batching
questions under the soft prompt setting.

LLMs for data management. LLMs have recently achieved
record-breaking results in various real-world applications. Recent
works [19, 30, 33, 42, 43] start to explore the possibility of applying
LLMs in data management tasks, for example, entity resolution [33],
data transformation [26], data generation [35], and so on [47, 48].
While LLMs demonstrate promising performance on these tasks,
there are still some challenges. For example, for some data manage-
ment tasks, they tend to process a large number of questions, which
can be very costly for LLMs. It therefore calls for developing a
cost-e"ective method. In this paper, we propose optimizations to re-
duce cost for LLMs through batching questions and demonstrations
without compromising accuracy.

6 CONCLUSION
In this paper, we study the problem of batch prompting in leveraging
LLMs for data management. To this end, we develop a framework
namedOptimized Batch Prompting (OBP) aiming to !nd the optimal
grouping of questions and demonstrations with accuracy guarantee
and minimal cost. Extensive experiments on 14 real-world datasets
from three representative data management tasks con!rm the su-
periority of our OBP compared to the state-of-the-art LLM and
non-LLM based baselines in terms of both cost and accuracy.

ACKNOWLEDGMENTS
This work was supported by National Key Research and Develop-
ment Program of China (2022YFB2405700), National Natural Science
Foundation of China (U2441237), the Fundamental Research Funds
for the Central Universities, and the Open Research Fund of The
State Key Laboratory of Blockchain and Data Security, Zhejiang
University. Zhaojing Luo was supported by National Key Research
and Development Program of China (2024YFC3308203), National
Natural Science Foundation of China (62472030). Zhongle Xie was
supported by the Major project of National Social Science Founda-
tion (24ZDA092) and the Pioneer R&D Program of Zhejiang (No.
2024C01021).

2183

REFERENCES
[1] 2025. Gurobi Optimizer Reference Manual. https://www.pgurobi.com.
[2] 2025. OpenAI API. https://platform.openai.com/.
[3] 2025. Technical Report. https://github.com/jzx-bitdb/BatchPrompt/blob/main/

technical_report.pdf.
[4] Ziawasch Abedjan, John Morcos, Ihab F Ilyas, Mourad Ouzzani, Paolo Papotti,

and Michael Stonebraker. 2016. Dataxformer: A robust transformation discovery
system. In Proceedings 32th International Conference on Data Engineering. IEEE,
1134–1145.

[5] Nir Ailon, Moses Charikar, and Alantha Newman. 2008. Aggregating inconsistent
information: ranking and clustering. Journal of the ACM (JACM) 55, 5 (2008),
1–27.

[6] Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Ho-
jel, Immanuel Trummer, and Christopher Ré. 2023. Language Models Enable
Simple Systems for Generating Structured Views of Heterogeneous Data Lakes.
Proceedings of the VLDB Endowment 17, 5 (2023), 1132–1145.

[7] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. 2004. Correlation clustering.
Machine learning 56 (2004), 89–113.

[8] Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. 2023. Prompting is
programming: A query language for large language models. Proceedings of the
ACM on Programming Languages 7, PLDI (2023), 1946–1969.

[9] Matteo Brucato, Juan Felipe Beltran, Azza Abouzied, and Alexandra Meliou. 2016.
Scalable Package Queries in Relational Database Systems. Proceedings of the
VLDB Endowment 9, 7 (2016).

[10] Zhoujun Cheng, Jungo Kasai, and Tao Yu. 2023. Batch Prompting: E#cient
Inference with Large Language Model APIs. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing. 792–810.

[11] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cli"ord Stein.
2022. Introduction to algorithms. MIT press.

[12] Marek Cygan, %ukasz Kowalik, and Mateusz Wykurz. 2009. Exponential-time
approximation of weighted set cover. Inform. Process. Lett. 109, 16 (2009), 957–
961.

[13] Arash Dargahi Nobari and Davood Ra!ei. 2024. DTT: An Example-Driven
Tabular Transformer for Joinability by Leveraging Large Language Models. Pro-
ceedings of the ACM on Management of Data 2, 1 (2024), 1–24.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). 4171–4186.

[15] AnHai Doan, Pradap Konda, Paul Suganthan GC, Yash Govind, Derek Paulsen,
Kaushik Chandrasekhar, Philip Martinkus, andMatthew Christie. 2020. Magellan:
toward building ecosystems of entity matching solutions. Commun. ACM 63, 8
(2020), 83–91.

[16] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu
Sun, Jingjing Xu, and Zhifang Sui. 2022. A survey on in-context learning. arXiv
preprint arXiv:2301.00234 (2022).

[17] György Dósa and Jirí Sgall. 2013. First Fit bin packing: A tight analysis. In 30th
International symposium on theoretical aspects of computer science (STACS 2013).
Schloss-Dagstuhl-Leibniz Zentrum für Informatik.

[18] Meihao Fan, Xiaoyue Han, Ju Fan, Chengliang Chai, Nan Tang, Guoliang Li, and
Xiaoyong Du. 2024. Cost-e"ective in-context learning for entity resolution: A
design space exploration. In Proceedings 40th International Conference on Data
Engineering. 3696–3709.

[19] Raul Castro Fernandez, Aaron J Elmore, Michael J Franklin, Sanjay Krishnan, and
Chenhao Tan. 2023. How large language models will disrupt data management.
Proceedings of the VLDB Endowment 16, 11 (2023), 3302–3309.

[20] Benjamin Feuer, Yurong Liu, Chinmay Hegde, and Juliana Freire. 2023.
ArcheType: A Novel Framework for Open-Source Column Type Annotation
using Large Language Models. arXiv preprint arXiv:2310.18208 (2023).

[21] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and
Jingren Zhou. 2023. Text-to-SQL Empowered by Large Language Models: A
Benchmark Evaluation. Proceedings of the VLDB Endowment 17, 10 (2023), 1034–
1045.

[22] Michael R Garey and David S Johnson. 1981. Approximation algorithms for bin
packing problems: A survey. In Analysis and design of algorithms in combinatorial
optimization. 147–172.

[23] Shawn Gavin, Tuney Zheng, Jiaheng Liu, Quehry Que, Noah Wang, Jian Yang,
Chenchen Zhang, Wenhao Huang, Wenhu Chen, and Ge Zhang. 2024. LongIns:
A Challenging Long-context Instruction-based Exam for LLMs. arXiv preprint
arXiv:2406.17588 (2024).

[24] Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan
Chang, Huiyuan Chen, and Xia Hu. 2024. LLM Maybe LongLM: SelfExtend
LLM Context Window Without Tuning. In Forty-#rst International Conference on
Machine Learning.

[25] Zhongjun Jin, Yeye He, and Surajit Chauduri. 2020. Auto-transform: learning-
to-transform by patterns. Proceedings of the VLDB Endowment 13, 12 (2020),

2368–2381.
[26] Moe Kayali, Anton Lykov, Ilias Fountalis, Nikolaos Vasiloglou, Dan Olteanu, and

Dan Suciu. 2024. Chorus: Foundation Models for Uni!ed Data Discovery and
Exploration. Proceedings of the VLDB Endowment 17, 8 (2024), 2104–2114.

[27] Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom
Sorokin, and Mikhail Burtsev. 2024. BABILong: Testing the Limits of LLMs with
Long Context Reasoning-in-a-Haystack. arXiv preprint arXiv:2406.10149 (2024).

[28] Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. 2024. Long-
context LLMs Struggle with Long In-context Learning. CoRR (2024).

[29] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep entity matching with pre-trained language models. Proceedings of
the VLDB Endowment 14, 1 (2020), 50–60.

[30] Zhaojing Luo, Shaofeng Cai, Jinyang Gao, Meihui Zhang, Kee Yuan Ngiam, Gang
Chen, and Wang-Chien Lee. 2018. Adaptive lightweight regularization tool for
complex analytics. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE). IEEE, 485–496.

[31] Zhaojing Luo, Shaofeng Cai, YatongWang, and Beng Chin Ooi. 2023. Regularized
pairwise relationship based analytics for structured data. Proceedings of the ACM
on Management of Data 1, 1 (2023), 1–27.

[32] Zhaojing Luo, Sai Ho Yeung, Meihui Zhang, Kaiping Zheng, Lei Zhu, Gang Chen,
Feiyi Fan, Qian Lin, Kee Yuan Ngiam, and Beng Chin Ooi. 2021. MLCask: E#cient
management of component evolution in collaborative data analytics pipelines.
In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE,
1655–1666.

[33] Avanika Narayan, Ines Chami, Laurel Orr, and Christopher Ré. 2022. Can Foun-
dation Models Wrangle Your Data? Proceedings of the VLDB Endowment 16, 4
(2022), 738–746.

[34] Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée J Miller. 2018. Table union
search on open data. Proceedings of the VLDB Endowment 11, 7 (2018), 813–825.

[35] Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023. Retrieval-based prompt selec-
tion for code-related few-shot learning. In Proceedings of the 45th International
Conference on Software Engineering.

[36] N Reimers. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks. arXiv preprint arXiv:1908.10084 (2019).

[37] Jianhong Tu, Ju Fan, Nan Tang, PengWang, Chengliang Chai, Guoliang Li, Ruixue
Fan, and Xiaoyong Du. 2022. Domain adaptation for deep entity resolution. In
Proceedings of the 2022 International Conference on Management of Data. 443–457.

[38] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshy-
vanyk. 2020. On learning meaningful assert statements for unit test cases. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing. 1398–1409.

[39] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-
ing in large language models. Advances in neural information processing systems
35 (2022), 24824–24837.

[40] Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and
Tom Goldstein. 2024. Hard prompts made easy: Gradient-based discrete op-
timization for prompt tuning and discovery. Advances in Neural Information
Processing Systems 36 (2024).

[41] HuiWu and Xiaodong Shi. 2022. Adversarial soft prompt tuning for cross-domain
sentiment analysis. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). 2438–2447.

[42] Kai Yang, Zhaojing Luo, Jinyang Gao, Junfeng Zhao, Beng Chin Ooi, and Bing
Xie. 2021. Lda-reg: Knowledge driven regularization using external corpora.
IEEE Transactions on Knowledge and Data Engineering 34, 12 (2021), 5840–5853.

[43] Meihui Zhang, Zhaoxuan Ji, Zhaojing Luo, Yuncheng Wu, and Chengliang Chai.
2024. Applications and challenges for large language models: From data manage-
ment perspective. In 2024 IEEE 40th International Conference on Data Engineering
(ICDE). IEEE, 5530–5541.

[44] Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen Deep,
and Jignesh M Patel. 2024. ReAcTable: Enhancing ReAct for Table Question
Answering. Proceedings of the VLDB Endowment 17, 8 (2024), 1981–1994.

[45] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

[46] Erkang Zhu, Yeye He, and Surajit Chaudhuri. 2017. Auto-join: Joining tables by
leveraging transformations. Proceedings of the VLDB Endowment 10, 10 (2017),
1034–1045.

[47] Jiaqi Zhu, Shaofeng Cai, Fang Deng, Beng Chin Ooi, and Junran Wu. 2024. Do
LLMs Understand Visual Anomalies? Uncovering LLM’s Capabilities in Zero-
shot Anomaly Detection. In Proceedings of the 32nd ACM International Conference
on Multimedia. 48–57.

[48] Jiaqi Zhu, Shaofeng Cai, Fang Deng, Beng Chin Ooi, and Wenqiao Zhang. 2023.
METER: A Dynamic Concept Adaptation Framework for Online Anomaly De-
tection. Proceedings of the VLDB Endowment 17, 4 (2023), 794–807.

2184

https://www.pgurobi.com
https://platform.openai.com/
https://github.com/jzx-bitdb/BatchPrompt/blob/main/technical_report.pdf
https://github.com/jzx-bitdb/BatchPrompt/blob/main/technical_report.pdf

	Abstract
	1 Introduction
	2 Problem Formulation
	3 The OBP framework
	3.1 The OBP-Exact Solution
	3.2 The OBP-Semi Solution
	3.3 The OBP-Approx Solution
	3.4 Time Complexity Analysis
	3.5 Optimization for Efficient Computation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Overall Efficacy Comparison
	4.3 Tuning and Sensitivity Analysis of Hyperparameters
	4.4 Cost-accuracy Trade-off Analysis
	4.5 Ablation Study on OBP

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

