
HADES: Range-Filtered Private Aggregation on Public Data

Xiaoyuan Liu
UC Berkeley

xiaoyuanliu@berkeley.edu

Ni Trieu
Arizona State University

nitrieu@asu.edu

Trinabh Gupta
University of California Santa Barbara

trinabh@ucsb.edu

Ishtiyaque Ahmad
University of California Santa Cruz

isahmad@ucsc.edu

Dawn Song
UC Berkeley

dawnsong@cs.berkeley.edu

ABSTRACT

In aggregation queries, predicate parameters often reveal user in-

tent. Protecting these parameters is critical for user privacy, re-

gardless of whether the database is public or private. While most

existing works focus on private data settings, we address a public

data setting where the server has access to the database. Current

solutions for this setting either require additional setups (e.g., non-

colluding servers, hardware enclaves) or are ine�cient for practical

workloads. Furthermore, they often do not support range predicates

or boolean combinations commonly seen in real-world use cases.

To address these limitations, we built HADES, a fully homo-

morphic encryption (FHE) based private aggregation system for

public data that supports point, range predicates, and boolean com-

binations. Our one-round HADES protocol e�ciently generates

predicate indicators by leveraging the plaintext form of public

data records. It introduces a novel elementwise-mapping operation

and an optimized reduction algorithm, achieving latency e�ciency

within a limited noise budget. Our highly scalable, multi-threaded

implementation improves performance over previous one-round

FHE solutions by 204x to 6574x on end-to-end TPC-H queries, re-

ducing aggregation time on 1M records from 15 hours to 38 seconds.
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1 INTRODUCTION

Typically, when a user queries a database, the database is expected

to know what the user is asking. Besides, the database may log the

query for future analysis. However, privacy-sensitive applications

can require stronger protections that allow the server to execute

queries without knowing their content. For instance, in the medical

�eld, a doctor might search for patient records based on speci�c

symptoms to determine the best course of treatment. The doctor
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may want to keep the symptoms hidden from the data service

provider to protect patient privacy, especially if a set of symptoms

are related to an uncommon disease. Similarly, in the �nancial

sector, an outside investigator may evaluate whether a �nancial

institution’s loan approvals are biased toward certain demographic

groups. To ensure the integrity of the investigation, speci�c demo-

graphic details and personally identi�able information must not be

disclosed to the �nancial institution.

In existing database solutions, both the infrastructure owner,

such as cloud platforms, and the data provider have direct access to

user queries. A curious data provider might enable database logging

to trace user access, while the infrastructure owner could moni-

tor storage access to database entries. Developing a database that

supports privacy-preserving query processing would signi�cantly

improve privacy protection in sensitive applications by ensuring

that only the user can access the query and its results.

There are existing works approaching this problemwith di�erent

techniques. Homomorphic Encryption (HE) allows arbitrary com-

putation under encryption. HE-based solutions, such as HEDA [21],

HE3DB [4], use ciphertext and homomorphic operations for the

complete computation procedure. While providing strong protec-

tion under cryptographic assumptions, existing solutions raise per-

formance concerns in practice due to slow homomorphic operations.

Multi-Party Computation(MPC)-based solutions [25] are in general

faster, but they usually assume non-colluding servers in deploy-

ment. There have also been works utilizing secure hardware [26],

but those solutions require trust in hardware manufacturers and

need extra considerations about memory access pattern leakage.

In this work, we focus on an HE-based solution for simplicity

of setup. Speci�cally, we consider supporting aggregation queries

in a public data setting, as aggregation is a common query type

that reveals data statistics to support decision-making. In a public

data setting, the database content is visible and typically owned

by the server, which we refer to as the data provider. Our problem

de�nition can be seen as an extension to the well-known private

information retrieval (PIR) [7] problem in two dimensions. First,

instead of selecting a single record, we compute the aggregated

value from multiple relevant records. Second, instead of accessing

values using index or keys (Keyword-PIR [6]), we support various

query predicates for data �ltering to satisfy various application

needs. A similar setting has also been discussed by Ha�z et al.[12]

To enable such private aggregations, we built HADES, a database

for e�cient private aggregation queries on public data with rich

predicate support. The HE-based HADES protocol is single-round,

and supports both point and range query predicates, as well as

their boolean combinations. During the protocol execution, the
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query parameters, such as equality-checking targets or ranges to

be matched, are completely hidden from the data provider. HADES

mainly faces two challenges: the query latency optimization under

limited HE noise budget, and parallelization. Existing HE-based

solutions [4, 21] process queries completely under ciphertext, and

there hasn’t been a discussion on how to design and optimize

the query protocol in a public data setting. Additionally, existing

protocols haven’t su�ciently considered design on scalability and

optimizations for queries on larger databases.

HADES protocol proposes two major optimizations in algorithm

design. First, for point and range queries, to fully utilize the public

data setting, we combine PIR-style retrieval and logical circuit to

build a novel and �exible building block. The building block ef-

�ciently conducts elementwise mapping for public values in the

database records while consuming a limited noise budget, acceler-

ating up to 786x compared with a baseline approach. Second, we

design a ciphertext aggregation algorithm speci�cally optimized

for larger databases. By optimizing the execution order , the new

algorithm reduces computation and communication costs simul-

taneously and outperforms its baseline by up to 4.5x. Besides the

protocol design, the implementation of HADES particularly focuses

on parallelization. We design a separate intermediate representa-

tion as the execution plan. It sorts out the dependency relations

between di�erent stages of parallel tasks before executing the ho-

momorphic operations. As a result, HADES achieves a high thread

utilization rate and reduces 761s of single-thread workload to 17s

with multi-threading.

Combining the novel protocol designs and e�cient implemen-

tations, with a clear single-round SQL query interface, HADES

achieves up to 6574x latency reduction compared with the best of

existing HE-based solutions. Prior to this work, there was no dis-

cussion on how to e�ciently support private aggregations in public

data setting with �ltering. HADES is the �rst work that shows the

feasibility of running private aggregations on a million-record data-

base in seconds, rather than hours. Besides, HADES advances the

state-of-the-art on extending PIR functionality. It proposes novel

building blocks that enable more complicated queries as well as

e�cient value aggregations.

2 PROBLEM OVERVIEW

2.1 Scenario

To explain the problem, let us follow an example scenario from the

standard database benchmark TPC-H [24] (Q6) for supporting busi-

ness decisions. A data provider manages a database that contains

detailed information on orders, items, and the supply chain which

models real-world business operations. An analyst plans to fore-

cast the revenue change after eliminating certain existing product

discounts. To explore the change, the analyst writes a SQL query

as shown in Figure 1. The query calculates the sum of revenue lost

due to discounts for items shipped in 1994, where the discount is

between 5% and 7%, and the quantity is less than 24 units.

Private aggregation query protects the privacy of the analyst by

hiding the query parameters from the data provider. As shown in

the bottom half of Figure 1, the data provider processes the data

�ltering and aggregation without knowing either the selection of

data records or the �nal aggregation result.

2.2 Query Functionality

For simplicity, we use a SQL interface to express the functionality

supported in a private aggregation query. A common private aggre-

gation query involves three clauses: (�!��) , �'$" , and,��'�.

The (�!��) clause includes the names of columns wrapped by ag-

gregation operators such as �$*#) , (*" , and �+� . The �'$"

clause speci�es the table in the database to be accessed.

The key in the private aggregation problem is the support for

,��'� clause with encrypted query parameters. The WHERE

statement speci�es predicates which match a subset of the records

in the table. Given a data record, the WHERE statement can be seen

as a boolean function that outputs true for matched records and

false for unmatched ones. Some predicates contain values that a�ect

the outcome of the boolean function. We refer to these values as

predicate parameters. For example, the ship date attribute "1994-01-

01" and the numbers 0.05, 0.07, 24 in the query are the parameters

that need to be hidden.

Based on the �ltering operation type, predicates can be grouped

into point predicates, range predicates, and combined predicates. A

point predicate checks whether a speci�c column in a table matches

a particular value, facilitating an equality check on a single point.

A range predicate, on the other hand, tests whether the column

in a table falls within a speci�c continuous range of values. The

combined predicates apply logical operators, such as �#� , $',

#$) , to �lter the records based on the result of other predicates.

The example query in Figure 1 can be seen as a combined predicate

applied to multiple range predicates.

There are also other commonly seen query keywords such as

�'$*% �. and$'��' �. that also extend the functionality of the

private aggregation query. We discuss these operators in Section 6.

2.3 System Design Goals

Considering functionality and real-world deployment requirements,

here we summarize our system design goals.

Privacy. The system should protect the privacy of the analyst by

hiding all the information related to the query parameters. Formally,

consider a data provider who chooses two queries with di�erences

only in their query parameters. When provided with the original

hidden version of one of these two queries, the data provider should

not be able to determine which hidden query corresponds to which

original query, with a negligible probability. This guarantee ensures

no information leakage on the query parameters. In terms of the

threat model, we assume a strong malicious adversary who may

arbitrarily compromise the data provider or the network. The adver-

sary may have access to network packets, or the requests received

and the responses sent by the data provider. We assume that the

adversary cannot compromise standard cryptographic primitives,

and the adversary does not compromise the device of the analyst

and cannot access its storage content, such as secret keys.

SQL Support and Interoperability. Our goal is to build a private

query system that is simple to use and understand. A key idea

to improve interoperability and reduce the learning e�ort is to

make it similar to existing relational database management systems

(RDBMS). Supporting commonly used SQL interfaces and data

formats facilitates standardized use and testing.
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(6) Add(Ħġ, ęĪ0, ęĪ1 ) → ęĪ2: takes two ciphertexts and calculates the

sum ęĪ2. Decrypt(ĩġ, ęĪ2 ) = Decrypt(ĩġ, ęĪ0 ) + Decrypt(ĩġ, ęĪ1 ) .

(7) MultiplyPlain(Ħġ, ęĪ0,ģ1 ) → ęĪ2: takes a ciphertext ęĪ0 and a

vectorģ1 of size Ĥ, calculates the elementwise product ęĪ2 that

Decrypt(ĩġ, ęĪ2 ) = Decrypt(ĩġ, ęĪ0 ) »ģ1.

(8) Multiply(Ħġ (+ěġ ), ęĪ0, ęĪ1 ) → ęĪ2: takes two ciphertexts and

calculates the elementwise product ęĪ2 with Decrypt(ĩġ, ęĪ2 ) =

Decrypt(ĩġ, ęĪ0 ) » Decrypt(ĩġ, ęĪ1 ) . Evaluation keys are used to

relinearize the output and maintain the same format as the input

ciphertexts.

(9) Rotate(Ħġ (+Ĩġ ), ęĪ0, ĩ ) → ęĪ1 uses Galois keys to cyclically ro-

tate the vector encrypted in the input by an o�set ĩ , i.e., the ( (ġ+ĩ )

mod Ĥ) ’th element in the vector encrypted in input ciphertext ęĪ0
becomes the ġ’th element in the new vector encrypted by ęĪ1. For

simplicity, from now on we denote "Rotate(Ħġ, ...)" as "Rot(...)".

In BFV, noise is deliberately added during encryption to secure

the scheme. This initial noise ensures that the ciphertext masks

the plaintext e�ectively. However, most HE operations—such as

addition or multiplication—on the ciphertext increase the noise.

Over time, the accumulated noise can exceed a critical threshold,

making decryption impossible. The noise budget represents the

remaining capacity before this threshold is reached, indicating how

many more computations can be safely performed on the encrypted

data without harming correctness. Designing e�cient HE protocols

with a limited noise budget poses additional challenges.

4.1.2 Encrypted Indicator. HADES takes an approach similar to

PIR which generates indicators representing whether the record

is selected. Here we provide an example to explain the basic idea

of PIR. Assume a simple case that the data provider has 8 records

E0, E1, ..., E7 and assume a batching vector size = = 1 to discuss a

non-batched version. To retrieve E5, the analyst sends 8 ciphertexts

& = [Enc( [0]), Enc( [0]), Enc( [0]), Enc( [0]), Enc( [0]), Enc( [1]),

Enc( [0]), Enc( [0])]. To get the encryption of the target record,

the data provider calculates the sum
∑7
ğ=0& [8] ∗ Eğ which equals

to Enc( [E5]) and returns it to the analyst. After decryption, the

analyst learns the value it requested.

To see how batching works in a SIMD manner, assume a batch-

ing vector of size = = 4, by chunking the database into vectors,

we can reorganize the above procedure. The analyst sends & =

[Enc( [0, 0, 0, 0]),Enc( [0, 1, 0, 0])] and the data providers calculates

& [0]∗[E0, E1, E2, E3]+& [1]∗[E4, E5, E6, E7] withMultiplyPlain. The

vectors "[0, 0, 0, 0]", "[0, 1, 0, 0]" represent the selection of relevant

records, which we address as indicator vectors. The encryption of

such vectors are further denoted as encrypted indicator vectors.

To extend PIR to aggregation query processing, we need to (1)

extend indexing to �ltering, and (2) add an aggregation step. How-

ever, such extension brings new challenges. Di�erent from indexing,

�ltering requires designs to process point and range predicates, and

boolean combinations between multiple predicates. Unlike PIR,

aggregation requires addition between records under encryption,

which may result in potential value over�ow. The small �eld size

used by HE makes over�ow prevention even more challenging. The

rest of the section explains our design to tackle these challenges.

4.1.3 Logical Operations. As mentioned in Figure 2, in stage three

we process boolean combinations on encrypted indicator vectors.

In practice, we use arithmetic operations to express boolean opera-

tions, speci�cally, for ciphertext 0 and 1:

(1) NOT(ė) = 1 − ė

(2) AND(ė,Ę ) = ė ∗ Ę where "∗" uses ciphertext Multiply.

(3) OR(ė,Ę ) = NOT(AND(NOT(ė),NOT(Ę ) ) ) = ė + Ę − ė ∗ Ę,

where "+", "−", and "∗" are all homomorphic operations.

Note that, in the "OR" operation, if we know in advance that

both terms will not be true simultaneously, we can omit the term

“a * b” ($'(0, 1) = 0 + 1). This normally happens when processing

predicates like “x = 42 OR x > 42”, “x < 16 OR x > 32”. In practice,

this helps improve query e�ciency and save noise budget.

4.2 Supporting Point Predicates

Point predicate checks the equality between records and a certain

value. In general, it takes the form,��'� 2>;Į = E . For a database

column 2>;Į , depending on its data type, the point query di�culty

varies. Here we �rst discuss the simple case, where 2>;Į is an 8-

bit unsigned integer. Speci�cally, we discuss two general types of

methods as baselines. As we will see later, to e�ciently process

more bits, we need to combine the core idea of these two methods.

Protocol 1: Batched 8-bit Point Query

Assume a batching size Ĥ = 28 = 256 to be the same as the size of the

range of the value, and a database with Ċ = Ĥ = 256 records. For query

ēĄāĎā ęĥĢĮ = Ĭ:

• The analyst sendsģėĦĦğĤĝ = Enc(ģ) , whereģ is a vector of size

256 withģ[Ĭ ] = 1,ģ[ğ ] = 0∀ğ ∈ [0, 256) \ {Ĭ}.

• The data provider initiates a full-zero encrypted vector of size 256

ĨěĩīĢĪ = [0, 0, . . . , 0] and applies the following procedure to each

record in the database, for Ģ ’th record with value Ĩ :

(1) Rotate the required indicator to the �rst slot in the vector ac-

cording to the record value Ĩ :

ęīĨĨěĤĪ ← Rot(ģėĦĦğĤĝ, Ĩ )

(2) Use multiplication to mask out irrelevant indicators and only

keep the �rst slot:

ęīĨĨěĤĪ ← ęīĨĨěĤĪ ∗ [1, 0, 0, . . . ]

(3) Rotate the encrypted indicator of the record back to its original

location Ģ in the database

ęīĨĨěĤĪ ← Rot(ęīĨĨěĤĪ, −Ģ )

(4) Add the indicator to the result ciphertext

ĨěĩīĢĪ ← ĨěĩīĢĪ + ęīĨĨěĤĪ

The result satis�es ĨěĩīĢĪ = Enc(ğĤĚ ) , where ğĤĚ [Ģ ] = ģ[Ĩ ] for all

records, i.e., ğĤĚ [Ģ ] = 1 i� Ĩ = Ĭ, o/w ğĤĚ [Ģ ] = 0.

Method A: PIR-style retrieval. The basic version of PIR can be

directly used when processing equality checks in a small range

(e.g. 8-bit unsigned integers). The key idea is to consider values

in the database as indexes on encrypted 1s’ and 0s’. For simplicity,

we �rst consider a non-batched version (i.e. = = 1). Speci�cally,

instead of directly encrypting the query parameter, the analyst

prepares a “mapping” vector of size equal to the range. For 8-bit

unsigned integers, the analyst prepares a vector of size 256. All

values in the mapping are zero except for the slot with an o�set

equals to the query parameter, which is set to one. The analyst

encrypts this mapping and sends it to the data provider (i.e. for a

point query 2>;Į = E , the analyst prepares<0??8=6[E] = Enc( [1]),

<0??8=6[8] = Enc( [0])∀8 ∈ [0, 28 = 256) \ {E}). The data provider,

upon receiving this mapping, picks the corresponding ciphertext
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according to the values in its database. Speci�cally, for a data-

base with a list of values 30, 31, 32, ..., the data provider generates

<0??8=6[30],<0??8=6[31],<0??8=6[32], ..., which is the required

encrypted indicator vector.

Extending this simple method to a batched version requires

homomorphic rotation operations. Protocol 1 provides an overview

of the procedure. Compared with the non-batched version, because

the indicators are batched together, it takes the data provider more

steps to index them. The data provider needs to �rst rotate the

input ciphertext, then apply masking via multiplications to remove

irrelevant indicators, rotate the ciphertext back so that the indicator

appears in the correct location1, and add all collected indicators up

to form the result indicator also in the batched form.

Method B: Bitwise circuit. Instead of checking equality by “index-

ing” or “mapping”, an alternative method is to check each of the 8

bits then merge the result. Speci�cally, for checking where 2>;Į = E

without batching, we can write E in the binary representation as

E = E0 ∗2
0+E1 ∗2

1+ ...+E7 ∗2
7, where E0 ..E7 are binary values. Then

for each bit, we conduct bitwise checking �& (0, 1) = 1+2∗0∗1−0−1,

then combine the result with the boolean “AND” operation.

Compared with method A, method B is easier to batch and re-

quires fewer encrypted values for the input. However, it requires

more multiplication operations which are linear to the bit width of

the column, resulting in huge HE noise growth.

Combined: Point query on more bits. Real-world queries often

involve point queries on data types with more bits. However, both

methods mentioned above become impractical when there are more

bits to be checked. For example, for a 64-bit equality check, For

method A, the client needs to send 264 encrypted values to represent

the mapping, which is communication ine�cient. For method B,

the server needs to process 6 layers of multiplications, which leaves

few bits of noise budget for other predicates and other query stages.

HADES protocol combines two methods to form a practical so-

lution. The idea is to conduct multiple 8-bit equality checks in

method A and use “AND” operations to combine them similar to

method B. For example, for a 32-bit value |���� | representing

the value � ∗ 28∗3 + � ∗ 28∗2 +� ∗ 28∗1 + � ∗ 28∗0 where �, �,�, �

are all 8-bit values, and similarly another value |���� |. To verify

|���� | = |���� |, it is equivalent to check (� = �) AND (� =

� ) AND (� = �) AND (� = � ). In this way, we break one 32-bit

equality check into four 8-bit equality checks and three AND opera-

tions. We solve both problems: (1) As only four mappings of length

28 are required, the communication is still e�cient. (2) As only

three AND operations are involved (two layers of multiplications),

the noise budget is still su�cient. Similarly, we can support equality

checks for 16 bits, 64 bits, and more. Note that we select the 8-bit

equality check as it works well in most cases under our default HE

parameters. In practice, one might select a bit width to achieve the

best trade-o�s between latency and noise growth.

4.3 Supporting Range Predicates

Range predicate checks if the record is within a given range, which

in general takes the form of,��'� 2>;Į > EĢ ,,��'� 2>;Į >= EĢ ,

,��'� 2>;Į < EĨ , or ,��'� 2>;Į <= EĨ . The basic protocol

1A simple optimization is to construct di�erent masks to select slots and only rotate
once by location o�set. We discuss an optimization covering this idea in Section 5.

for an 8-bit range query is similar to the one for a point query.

The only di�erence is in the number of encrypted 1s’ used in the

query ciphertext. Again, we �rst explain how to support 8-bit range

queries, and then we discuss its extension to wider ranges.

8-bit range query. To support 8-bit range query, we can still use

the indexing-based protocol. To cover a range instead of a single

point, we set all values that match the predicate in the mapping

vector to be 1s’. Consider,��'� 2>;Į > EĢ as an example, where

EĢ ∈ [0, 255). The only change we need to make to Protocol 1 is

for analyst to de�ne < as <[8] = 1∀8 ∈ (EĢ , 256), o/w <[8] = 0.

Then with the same protocol, the data provider can calculate the

indicator for the speci�ed range predicate. For l’th record of value

A in the database, the protocol returns A4BD;C = Enc(8=3), where

8=3 [;] =<[A ]. 8=3 [;] = 1 i� A ∈ (EĢ , 256), as desired.

Range query onmore bits. Supporting range queries on more bits

is similar to supporting point queries formore bits. The key idea is to

combine 8-bit building blocks using boolean operations to construct

equivalence. However, di�erent from more-bit point queries which

only uses 8-bit point queries, more-bit range queries not only use

8-bit range queries but also 8-bit point queries. Concretely, consider

16-bit comparison between the value |�� | where both � and � are

8-bit values and |�� | = � ∗ 28∗1 +� ∗ 28∗0, and similarly value |�� |,

we have |�� | < |�� | ô � < � OR (� = � AND � < �). It would

require two 8-bit range queries, one 8-bit point query, one “OR”

operation, and one “AND” operation. Similarly, one can construct

range queries on more bits. The conversion takes multiple steps

and in each step, an 8-bit range query is made on more signi�cant

bits, then a point query to cover the other case.

Because all comparisons are made under encryption, boolean

short-circuiting cannot be applied here to save operations. How-

ever, as discussed in Section 4.1.3, we can apply the optimized $'

operation as we know in advance � < � and � = � cannot hold

simultaneously, even if we don’t know the query parameter value.

4.4 Supporting Aggregation

After indicator calculation with methods mentioned in Section

4.2 & 4.3, and boolean circuit evaluation using boolean operators

described in Section 4.1.3, in the record aggregation stage, the data

provider takes the input of the database and the �nal encrypted

indicator vector that represent which database records are selected,

and outputs the aggregated values according to the query. Here we

discuss two types of queries: “COUNT” and “SUM”. While HADES

focuses on aggregation queries, the “SUM” aggregation can also be

used for rich-predicate retrievals when selecting a single record.

Note that the aggregation under encryption presents a chal-

lenge due to the �eld used for homomorphic operations. With

CRT-batching, each slot in the encrypted vector can only preserve

a limited number of bits. In practice, for an encrypted message

Enc(<) used in HADES with our default parameter, for = = 214,

we have 0 f <[8] < 16384 where 8 ∈ [0, 214). This suggests each

slot can hold 17 bits of information. While in the earlier stages it is

�ne to have a smaller �eld as indicators are only 0s’ and 1s’, in the

aggregation stage, we introduce new protocol designs to overcome

the limitations in the aggregated data type.

COUNT query. In a COUNT query, the data provider adds up

the encrypted indicators to see how many values are selected. For
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batched indicators, the goal is to merge the indicators into a single

value in one slot. Such merging is important when the database is

large and multiple encrypted indicator vectors for di�erent chunks

need to be merged before being sent back. To support this operation,

we use rotation operations along with multiplications for masking.

Consider an example with batch size = = 8, for an encrypted indica-

tor vector � = Enc(8=3) with value 8=3 = [1 0 0 1 0 0 1 0], the data

provider calculates A4BD;C = (� +Rot(� , 1) +Rot(� , 2) +Rot(� , 3) +

Rot(� , 4) + Rot(� , 5) + Rot(� , 6) + Rot(� , 7)) ∗ [1 0 0 0 0 0 0 0] and

gets the desired merged result with value [3 0 0 0 0 0 0 0].

Then, for multiple indicator ciphertexts computed from di�erent

chunks of the database, the data provider merges them into a single

ciphertext before returning to the analyst. A naive approach is

to directly add up the ciphertext. However, this causes potential

over�ow when there are many chunks. Concretely: (1) It is �ne

to add up values in the same ciphertext in one slot because we

have 214 binary values in one ciphertext, and the size of the �eld

is larger than 217, 214 < 217. (2) It is �ne to add up 23 aggregated

ciphertexts as 214 ∗ 23 f 217, and the �eld size is larger than 217.

However, when there are more than 23 chunks, we need over�ow

prevention. To solve this, in HADES, instead of directly adding up

the chunk results in the same slot, we use rotations and additions

to put them in di�erent slots to make use of all 214 available slots.

Then the analyst can decrypt the returned ciphertext and add it

up in cleartext to get the �nal sum. In this way, we can support

COUNT for up to 231 records within one ciphertext.

SUM query. To sum the selected values for the given list of records

in the database, the simplest solution is to run plaintext multiplica-

tions between the plaintext database and the ciphertext encrypted

indicator vector, the same as in PIR, then add up inside each ci-

phertext. For example, for the database [11 22 33 44 55 66 77 88]

and the encrypted indicator [1 0 0 1 0 0 1 0], we �rst run plaintext

multiplication, then similar to the COUNT query, we use rotations

to merge the results into a single slot to get [132 0 0 0 0 0 0 0].

However, di�erent from the COUNT which adds up binary indica-

tor values, the SUM query needs to consider the database column

being processed. For example, the decimal in TPC-H takes 42 bits

while our HE scheme can only handle 17 bits in one ciphertext slot.

If we use the COUNT algorithm, there will be over�ows that make

the �nal result unrecoverable.

To address this challenge, HADES decomposes the 42-bit data-

base values into its octal representation, handling 3 bits each time.

Since 23 ∗ 214 f 217, we can guarantee no over�ow when ag-

gregating within a single ciphertext. To recover the original sum,

HADES runs multiple octal SUM queries simultaneously and marks

the order of the results in the returned ciphertext. The analyst

can recover the original sum by treating the results as the oc-

tal decomposition. To explain with a concrete example summing

up three 8-bit values 4210 = 0528, 15110 = 2278, 1910 = 0238,

HADES breaks the record into 3 pieces, then run 3 SUM queries

separately and mark the result order. The data provider calculates

0 + 2 + 0 = 2, 5 + 2 + 2 = 9, 2 + 7 + 3 = 12 under encryption, then

the analyst recovers the sum 2 ∗ 82 + 9 ∗ 81 + 12 ∗ 80 → 212, which

equals 42 + 151 + 19. The protocol guarantees no over�ow and thus

the aggregation results are always recoverable.

5 HADES OPTIMIZATIONS

While Section 4 explains the baseline protocol that supports pri-

vate aggregation queries, latency e�ciency still requires careful

algorithm design. In this section, we explain two major optimized

algorithms to accelerate the two most time-consuming stages in

HADES: indicator calculation and record aggregation.

5.1 Batched Elementwise Mapping

In Section 4, we explained how we can use PIR-style retrieval for

8-bit predicates. Here we extend this building block to have a more

general functionality. Speci�cally, assuming batched ciphertext

with = = 28, consider a list of 8-bit record values from the data

provider: 31 = [A0, A1, ...], and consider a mapping of size 256 sent

by the analyst with 8-bit keys: <0??8=6 = �=2 (E), where E =

[E0, E1, ...]. Following the same procedure in Protocol 1, the data

provider can compute A4BD;C = �=2 ( [E [A0], E [A1], ...]), where E [Ağ ]

is the Ağ ’th value in the mapping being encrypted. The functionality

of the building block can be formalized as below.

• MappingGen(Ħġ, Ĝ ) → ęĪĜ : takes a mapping Ĝ from domain

[0, 2Ě ) to any integers, generates a ciphertext ęĪĜ that stores the

mapping. We need ĉ = 2Ě slots in the ciphertext to store the

mapping. If 2Ě f Ĥ, where Ĥ is the size of the vector, the mapping

only occupies 2Ě slots in all Ĥ slots inside ęĪĜ , otherwise, the

operation generates a list of ciphertexts to store a single mapping.

• ApplyElementwiseMapping(Ħġ,ģ, ęĪĜ , Ě ) → ęĪ : takes the do-

main size bit-width Ě , an encrypted mapping ęĪĜ , and a plaintext

vectorģ with all elements in domain [0, 2Ě ) , applies elementwise

mapping for all elements inģ to compute an encrypted ęĪ satisfy-

ing that ∀ġ : Decrypt(ĩġ, ęĪ ) [ġ ] = Ĝ (ģ[ġ ] ) . For simplicity, we

omit the Ħġ argument and denote the function as "Emap( [ ...] )".

Following Protocol 1, for a database with # = 214 records, the

required amount of multiplications and rotations needed for Emap

is huge, resulting in slow computation. Speci�cally, it requires 214

multiplications, 214 rotations, and 214 − 1 additions after apply-

ing the location o�set-based rotation. Because HE operations are

usually time-consuming, making the solution practical requires

avoiding an operation number that is linear to the database size.

Rotation caching. Observe that all the rotations are applied to

the masked mapping, because there are only " slots used in the

mapping, there are only " di�erent possible rotations rather than

the batch size =. If we can preprocess to cache these di�erent rota-

tions and reuse them for di�erent database records, we can reduce

the required rotations from = to " (in practice, from 214 = 16384

to 28 = 256). Also observe that, it is possible to apply masking for

multiple records together in a batched way. Then, the number of

multiplication operations is also reduced.

Following the above idea, we describe the algorithm for e�cient

batched elementwise mapping in the HADES protocol. Algorithm

1 shows the optimized algorithm and Figure 3 illustrates the pro-

cedure. By expanding the mapping to occupy the full ciphertext

(assuming = can be divided by") and calculate all" possible ro-

tations, we cache all possible rotation forms. Then, we construct

proper masks to select slots from the rotations that re�ect the

database value, multiply to apply the masks, and sum the masked

rotations to get the �nal results.
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Algorithm 1 Our e�cient elementwise mapping algorithm

ApplyElementwiseMapping(?:,<, 2CĜ , 3) → 2C

1: [step 1]: Repeat the mapping to �ll up the ciphertext

2: while ğ ← [Ě, log2 (Ĥ) ) do

3: ęĪĜ ← Add(Ħġ, ęĪĜ ,Rotate(Ħġ,ĝġ, ęĪĜ , 2
ğ ) )

4: end while

5: [step 2]: Prepare all possible rotations

6: Ĩ_ęĪĜ ← list of 2Ě vectors of ciphertexts ² “Ĩ_" for “rotated"

7: Ĩ_ęĪĜ [0] ← ęĪĜ

8: while ğ ← [1, 2Ě ) do

9: Ĩ_ęĪĜ [ğ ] ← Rotate(Ħġ,ĝġ, Ĩ_ęĪĜ [ğ − 1], 1)

10: end while

11: [step 3]: Construct mask vectors in batch

12: Ę_ğĤĚ ← list of 2Ě vectors of plaintext zeros ² “Ę_" for “batched"

13: while ğ ← [0, Ĥ) do

14: Ę_ğĤĚ [ (ģ[ğ ] − ğ ) mod 2Ě ] [ğ ] ← 1

15: end while

16: [step 4]: Index values with correct locations

17: Ę_ĨĥĪ ← list of 2Ě vectors of ciphertexts ² “Ę_" for “batched"

18: while ğ ← [0, 2Ě ) do

19: Ę_ĨĥĪ [ğ ] ← Multiply(Ħġ, ěġ, Ĩ_ęĪĜ [ğ ], Ę_ğĤĚ [ğ ] )

20: end while

21: return
∑2Ě −1

ğ=0 Ę_ĨĥĪ [ğ ]
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Figure 3: Illustration of the elementwise mapping algorithm.

The steps are explained in Algorithm 1. The example uses

3 = 2, = = 8 for illustration. The ciphertext output applies

elementwise mapping to values in message< as required.

Performance analysis. For the unoptimized protocol, we dis-

cussed earlier that for 8-bit elementwise mapping with = = 214,

" = 28, the data provider needs to process 214 multiplications, 214

rotations, and 214−1 additions. For the optimized protocol, consider

each step: (1) Repeating the mapping requires log2 (=/") additions.

(2) Preparing rotations requires" − 1 rotations. (3) Construct plain-

text masks only require plaintext operations. (4) Applying masks

requires " plaintext multiplications. (5) Sum across masked ro-

tations requires " − 1 additions. Table 1 summarizes both the

theoretical and concrete savings in the number of operations.

Saving across database chunks. The rotation caching not only

saves the number of operations required for processing a single

Algorithm Addition Rotation Multiplication

Unoptimized = − 1 = =

with = = 214," = 28 16,383 16,384 16,384

Optimized log2 (=/") +" − 1 " − 1 "

with = = 214," = 28 261 (1.59%) 255 (1.56%) 256 (1.56%)

Table 1: Single-chunk elementwise mapping analysis

Algorithm Addition Rotation Multiplication

Unoptimized : ∗ = − : : ∗ = : ∗ =

with # = 220," = 28 1,048,512 1,048,576 1,048,576

Optimized log2 (=/") + : ∗" − : " − 1 : ∗"

with # = 220," = 28 16,326 (1.56%) 255 (0.02%) 16,384 (1.56%)

Table 2: Multi-chunk elementwise mapping analysis

database chunk, but also improve performance when the database

size is larger than the batching size. Consider a database size # =

: ∗=, as discussed in earlier sections, to apply elementwise mapping

to such a database, we need to �rst chunk the database then run

protocol on each chunk.While for the basic protocol, the cost grows

linearly with : , with rotation caching, the �rst two steps in the

algorithm can be reused across di�erent chunks as long as the

mapping is the same, resulting in huge computation savings for

large databases. To demonstrate the saving, in Table 2 we provide

theoretical cost analysis alongwith a concrete example of a database

with 220, around 1 million records. Consider in practice the rotation

operation often takes more time than the plaintext multiplication,

the optimized protocol results in huge savings.

5.2 Hybrid Multi-Cipher Reduction

Simple aggregation via looping. While in Section 4.4, we ex-

plain how to ensure the correctness of aggregation by preventing

over�ow, here we describe a new merging algorithm that improves

e�ciency. When using HE to process aggregations of ciphertexts,

a common practice involves two steps: (1) summing up the values

in one ciphertext using rotations and additions, and (2) reduce the

aggregated multiple ciphertexts into a single ciphertext for return

while keeping the sum value for each original ciphertext separate.

While sequential executing these two steps is direct and natural,

we show by carefully designing an algorithm that merges two steps

together, we can save around 80% total computation time.

Concretely, assume for input we have : = 2ĩ ciphertexts, each

encrypts a vector +ğ that contains = = 2Ī slots, with B <= C . This

usually represents a input database with # = 2ĩ ∗ 2Ī entries in 2ĩ

chunks. The goal is to get a single ciphertext encrypting vector

+ėĤĩ with slots containing the sum of +ğ , such that +ėĤĩ [8] = Σ+ğ .

Using a simple looping algorithm, we need : plaintext-ciphertext

multiplications, : ∗ C rotations, and : ∗ (C + 1) additions.

Combining self-reduction and multi-cipher reduction. How-

ever, while it is natural to separate two steps, there is a signi�cant

waste of computation during the self-addition of the single cipher-

text in the �rst step. Particularly, during the 9 ′Cℎ iteration of the

second-level loop, the addition between 2(Ī− Ġ−1) values inside the

ciphertext are actually repeated 2Ġ times. To avoid such waste,

we propose a new algorithm to reduce the overall computation

cost. The new algorithm combines two steps by merging cipher-

texts and values inside the ciphertext simultaneously, avoiding the
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repetition mentioned earlier. As a result, it requires around 2 ∗ :

plaintext-ciphertext multiplications, 2 ∗ : rotations, and 4 ∗ : addi-

tions. Compared with the simple solution, this avoids a factor of C

in both the rotations and additions.

While the complexity for rotations and additions has been signif-

icantly reduced, the number of multiplications required is doubled

compared with the simple looping algorithm. In practice, the rota-

tion is often as time-consuming as plaintext multiplication, thus

the overall saving is still huge. In practice, for = = 214, C = 14, the

time consumption ratio between plaintext multiplication, rotation,

and addition is around 13.8 : 32.8 : 1. Omitting the common factor

: , the optimization leads to about 80% saving.

Noise budget tradeo�.While the new algorithm overall improves

the e�ciency, it is worth noting that the consecutive multiplications

consume signi�cantly more noise budget than the naive approach.

In practice, one may combine the naive algorithm and the optimized

algorithm by running the optimized algorithm for the �rst few steps,

and then the naive algorithm to make sure the noise budget is not

used up in the end. In such a hybrid solution, because the �rst few

steps can exponentially reduced the number of ciphertexts, the

overall saving is still signi�cant.

6 IMPLEMENTATION

Real-world database applications often demand high performance

and rich functionalities to support complex query semantics. The

HE algorithms introduced in Sections 4 and 5 present complex

data dependencies, challenging the implementation of highly par-

allelized systems. Moreover, the basic protocol discussed thus far

only covers limited query keywords and preliminary data types,

such as unsigned integers.

To address these challenges and achieve the goals of SQL sup-

port, latency e�ciency, and scalability outlined in Section 2.3, we

developed HADES in 3.6k lines of C++ and 1.2k lines of Python

using multi-thread programming. We utilized Microsoft SEAL [22]

for BFV homomorphic operations, selecting a polynomial-size of

214 and using CRT to encode 217 bits in each slot. The parameters

are selected to achieve the best trade-o� between per-slot operation

speed and adequately su�cient noise budget. Next, we detail our

approach. First, we discuss our staged multi-thread design, which

accommodates the data dependency topology. Then, we explore

protocol extensions that broaden the coverage of SQL keywords

and data types. Our protocol implementation is open-sourced and

available at https://github.com/camelop/hades-dev .

Multi-thread scheduling. In Section 3, we introduce the �ve

stages of the HADES protocol, with the middle three stages ex-

ecuted on the data provider side. While parallelization is critical

for e�ciency and scalability, the complicated data dependencies in

HADES present signi�cant implementation challenges. Speci�cally,

each stage involves unique dependency structures and thus requires

synchronization and task regrouping. In the indicator calculation

stage, the rotation preparation for each encrypted value is only

processed once and then used for multiple database chunks. In the

boolean circuit evaluation stage, indicators generated in the earlier

stage for the same chunk of the database are grouped together

following the logical operations speci�ed in the query template.

In the record aggregation stage, indicators from di�erent chunks

across di�erent subqueries are merged.

To properly organize the execution order, in HADES we explic-

itly construct a CSV-formatted intermediate representation (IR) to

describe task dependencies across di�erent stages. Each line of the

CSV contains a parallelizable task with a unique task ID, the task

parameters (e.g. which database chunk to access, what boolean

operation to compute), and describes its dependent IDs for cross-

referencing during execution. To reduce communication between

tasks and e�ciently share dependent task objects, we choose thread-

level parallelization and maintain read-only access for dependent

objects. Our separation of stages guarantees that all cross-task de-

pendencies are crossing stages, signi�cantly reducing unnecessary

synchronizations and avoiding all dependent task status checks.

To implement the above mechanism, in practice we built a query

compiler in Python that pre-fetches table statistics and generates

execution IR based on the input query template. We built a multi-

thread C++ execution engine that interprets the generated IR and

accesses the database to complete the query processing. The C++

execution engine maintains a thread pool to execute tasks from the

IR in the same stage utilizing SEAL, goes through all three stages

sequentially, and �nally generates the result ciphertexts.

Support more keywords and data types. HADES supports oper-

ators like AVG, GROUP BY, ORDER BY, and formulas in SELECT

statements through multi-subquery merging and preprocessing. It

optimizes execution by computing a shared encrypted indicator

vector for subqueries and merging aggregation results to minimize

communication. AVG is supported by combining SUM and COUNT

operations, allowing the analyst to compute averages locally. For

GROUP BY, the server preprocesses data into groups and applies

queries to each, sending separate results back. Formulas in SELECT

statements are precomputed by creating new columns, and OR-

DER BY is processed locally by the analyst. HADES also supports

signed values, �xed-point numbers, and strings by applying value

conversions and hashing.

7 EVALUATION

We evaluate HADES, focusing on its query processing latency,

scalability, and comparison with state-of-the-art baseline systems.

Furthermore, we explore the reasons for the system performance

improvement by analyzing the e�ectiveness of our algorithm opti-

mizations in Section 5. Here we summarize our main results.

• For three TPC-H SQL queries on onemillion records, HADES

e�ectively reduces the query latency compared with the

best previous results from HE3DB and HEDA. Speci�cally,

with the public data setting, it reduces the latency from

14h (Q1), 27h (Q4), and 5h (Q6), to 17.2s, 14.9s, and 80.5s,

achieving 2981x, 6574x, and 204x speedup respectively.

• Despite the complicated internal data dependencies, the

query processing performance of HADES su�ciently scales

when the thread number increases. With 128 threads, the la-

tency to run Q1 on one million records signi�cantly reduces

from 760.8s, the single-thread results, to 17.2s.

• Both optimized algorithms demonstrate signi�cant advan-

tages in time consumption and noise budget saving, con-

tributing to the speedup of HADES query protocol.
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In terms of noise growth, we observe the latter two stages con-

sume more noise budget in general. When the number of records

increases, the noise budget required by aggregation also increases.

This is because more steps of merging are required for more records,

indicating more layers of ciphertext multiplications for masking.

7.2 Scalability

Figure 5: TPC-H Q1 pro�ling with di�erent number of threads for

10K/1M records. The top region shows the thread utilization rate.

The middle region shows for all stages, the accumulative latency

decreases as the number of threads increases. The bottom region

shows the time consumption percentage for each stage.

Time used (s) 8-bit 16-bit 32-bit 48-bit 64-bit

PIR-style retrieval (method A)
1761.67

(1.74MB)

1767.11

(6.97MB)

∗

(457 GB)

∗

(29 PB)

∗

(2 ZB)

Bitwise circuit (method B) 2780.04 5591.73 11159.98 16705.79 22394.79

8-bit retrieval + emap (ours) 8.19 15.08 30.88 45.64 61.47

1-bit (bitwise) + emap 3.49 7.24 13.84 20.65 29.11

Table 4: Point query algorithm comparison on 214 records. For PIR-

style retrieval experiment skipped andmarked ∗, while theoretically

the computation time remains the same for di�erent bits, the com-

munication cost is far from practical.

Time used (s) 214 records 217 records 220 records

Naïve emap 1794.04 14352.31∗ 114818.47∗

Opt emap w/o rot caching 8.17 60.84 478.33

Opt emap 8.18 23.25 146.08

Table 5: Ablation study on the elementwise mapping operator for

rotation caching in 8-bit point predicate indicator generation. Values

marked ∗ are estimated.

To achieve practical performance for large tables, HADES achieves

scalability by performing multi-threading in each query processing

stage as mentioned in Section 6. Here we investigate the scaling

characteristic of HADES and Figure 5 shows how the processing

time decreases as more threads are used. We observe that all stages

bene�t from multi-threading. With an increasing number of used

threads, the overall time signi�cantly reduced to seconds.

By comparing with the single-thread performance, we calculate

the utilization rate of each thread by its relevant slowdown and illus-

trate it on the top region of Figure 5. For the most time-consuming

“mask & index” step (red) and record aggregation stage (green), the

utilization rate keeps above 50% before reaching 32 cores. Also, the

utilization rate is generally higher for the larger 1M workload. We

also veri�ed that as discussed earlier, the boolean circuit evaluation

stage is less parallelizable compared with other stages. We envi-

sion that to further reduce query processing time to the sub-second

level, a future direction is to further decompose basic HE operations

via multi-threading or speci�c hardware acceleration, as a single

ciphertext multiplication is already taking around 70 ms.

7.3 Micro-benchmark

To further investigate the source of acceleration for HADES, we

run micro-benchmarks to measure the performance gain from the

optimizations mentioned in Section 5.

Indicator generation algorithm comparison. First, we evaluate

the indicator generation procedure for di�erent algorithms by their

time consumption, communication cost, and introduced noise. The

algorithm starts with the encrypted point predicates and 214 records,

and outputs the ciphertext indicators for whether the records are

selected. We choose four algorithms as our comparison targets. We

describe the basic PIR-style retrieval and bitwise circuit methods

in Section 4. In addition to our combined method that uses an 8-bit

retrieval building block with elementwise mapping, we also add

an optimized version of bitwise circuit leveraging the elementwise-

mapping operator we designed, which can be treated as a variant

that uses a 1-bit retrieval building block. Table 4 summarizes the

performance comparison between di�erent algorithms for point

predicates with varying bit length.

Comparing with baseline methods, we observe that the element-

wise mapping algorithm signi�cantly accelerate point query speed.

Additionally, we �nd that most algorithms scale nearly linearly

with the bit-number to be compared, the only exception is PIR-style

retrieval but its communication cost becomes impractical when

there are more than 16 bits. When selecting the mapping size for

the elementwise mapping algorithm, the 8-bit building block avoids

3 levels of ciphertext multiplications at the cost of doubling the

computation time. Because ciphertext multiplication is the domi-

nant factor for noise growth, avoiding these 3 levels helps greatly in

saving the noise budget. Considering the end-to-end performance,

the noise budget saved from here can be used to signi�cantly reduce

record aggregation time, by incorporating more optimized merging

steps as we discuss next. Similarly, range queries also bene�t from

elementwise mapping, as the underlying building block is exactly

the same as point queries.

Elementwise mapping operation optimization. Here we also take a

deeper look into the elementwise mapping step in the point query to

verify the theoretical saving discussed in Section 5. Table 5 provides

an ablation study for the optimizations used on 8-bit point query

indicator generations.

We �rst observe that the naive protocol is completely impractical

even for a slightly larger database. Processing a single 8-bit map-

ping on 1m records takes 1.3 days. From the “214 records” column

that only processes a single ciphertext, compared with the naive
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protocol, we observe a huge saving from our optimized algorithm,

down to 0.46%. We also notice that the actual saving in the experi-

ment is even more signi�cant than our theoretical analysis from

operation number estimation in Section 5 (1.56%). This is because

in practice, the rotation operation does not have a constant cost. Its

cost is in�uenced by the rotation o�set and is minimal when the

o�set is 1. While our optimized method always uses an o�set of 1

to generate all possible rotations, the naive method uses a dynamic

o�set, resulting in many times of extra cost.

To verify the e�ectiveness of rotation caching across di�erent

database chunks, Table 5 also provides an ablation study without

caching the rotation across di�erent database chunks. We observe

that when applying the same mapping to more database chunks,

rotation caching signi�cantly saves the computation time, which

is aligned with our discussion in Section 5, reducing the cost to

process each additional 214 records from 7.5s to 2.2s.

Record aggregation optimization. In addition to indicator gen-

eration, we also measure the performance of record aggregation.

Speci�cally, we compare the simple aggregation, optimized aggre-

gation and the hybrid solution with di�erent numbers of optimized

steps. We use the layer number of multiplication needed to esti-

mate the noise growth. Table 6 provides the comparison details. We

observe that the fully optimized aggregation is the fastest among

all methods, at the cost of huge noise growth. Besides, all three

methods with optimized steps signi�cantly improve from the sim-

ple aggregation, providing up to 4.5x speedup, which matches our

analysis in Section 5.2. Among them, the 4-step hybrid algorithm

achieves performance close to the fully optimized version, while

maintaining a controllable noise consumption. This is because in

the �rst four steps, the number of ciphertexts needed to be pro-

cessed has already been signi�cantly reduced.

To summarize, all proposed optimized algorithms signi�cantly

outperform their baseline methods, which leads to the overall la-

tency reduction in the end-to-end HADES query processing.

Time used (s) # Mul layer

# Record 214 217 220 223 214 217 220 223

Simple aggregation 0.3 2.4 19.2 153.6 1 1 1 1

Opt aggregation 0.3 0.7 4.3 34.2 1 4 7 10

Hybrid - 2 step 0.3 0.9 7.4 59.0 1 3 3 3

Hybrid - 4 step 0.3 0.7 4.8 39.1 1 4 5 5

Table 6: Record aggregation algorithm comparison.

8 RELATED WORK

FHE-based encrypted database. There are several closest relevant

recent works [4, 14, 21, 23] that have explored e�cient FHE-based

protocol design for query processing with private query and private

database. HEDA [21] designs a conversion protocol between two

types of FHE ciphertext, allowing the use of both the numerical

and binary forms of the data to be used during the query process-

ing. HE3DB [4] proposes new HE operators to further improve

the performance and support more query functionalities. Kim et

al. [14], compared with the other two works, focuses on the opti-

mization of the equality predicate operators rather than the full

query, discussing the construction for both conjunctive and dis-

junctive queries. Tan et al. [23] further explore range predicates

for record retrieval rather than aggregation, with proposed VFE en-

coding groups the bits to be compared for e�ciency. All the above

For database

with N records
HADES

Splinter

(M parties, M>=2)

Ha�z

(M parties, M>=2)

Assumptions Cryptographic (RLWE)

Cryptographic (FSS) +

Non-colluding

- At least one honest

Information-theoretic +

Non-colluding

- Above given threshold

Communication 1 round with 1 party

O(logN) rounds

with M parties

for disjoint conditions

1 round

with M parties

Data duplications 1 M M

Computation O(N) O(NlogN) O(N)

Table 7: Comparison with MPC-based solutions.

works focus on protocol design for private databases. In compari-

son, our work explores the PIR-style HE protocol design for public

databases, thus achieving order-of-magnitude better performance

in more speci�c use cases as shown in Section 7.

MPC-based and Enclave-based private query. There are some

other works [8, 12, 16, 25, 26] that target similar functionalities

with di�erent assumptions. Splinter [25] also targets private queries

on public data. It relies on function secret sharing to hide query

parameters in a non-colluding server setting. Similarly, Ha�z et

al. [12] relies on an improved IT-PIR protocol to process aggre-

gation queries with multiple non-colluding servers. While these

solutions support the setting in HADES, they require non-collusion,

more communication rounds, and multiple database copies as sum-

marized in Table 7. In terms of performance, their experiments lack

standard TPC-H results and do not include interval-range queries

(e.g., ;_@D0=C8C~ < 24). For comparable equality-based queries on

millions of records, the MPC-based solution demonstrates higher

throughput; however, the di�erence remains within the same order

of magnitude (Splinter-custom-Q3 3 : 173 records/ms vs. HADES-

Q4: 67 records/ms). Designed on top of the distributed hardware

enclaves, Opaque [26] uses a threat model mainly focusing on root

adversaries from the cloud provider, and mitigates access pattern

attacks. It relies on the use of speci�c hardware and assumes that

the adversary cannot compromise the trusted hardware.

Extensions for PIR. While the basic PIR [7, 11, 17] solutions

mainly support retrieval with indexing, there has been e�orts

extending this functionality for practical convenience. Keyword

PIR [1, 6, 18, 20] extends the use of index to an identi�er, function-

ally introduces an equality check on a single �eld for retrieving the

record. Cristofaro et al.[9] and Boneh et al.[5] extend the predicate

support to cover disjunctive and conjunctive clauses. Coeus [2]

discusses supporting private document relevance ranking in query.

Hayata et al. [13] discusses the range query for IT-PIR. It claims

the lack of formal insecurity for existing query privacy preserving

schemes and presents an FSS-based multi-round range query proto-

col with a non-colluding server setting. Also targeting to extend PIR

functionality, our solution HADES extends CPIR for data aggrega-

tions, e�ciently processing comprehensive boolean combinations

of point and range predicates.
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