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ABSTRACT
Spatio-Temporal Prediction (STP) is crucial for various smart city
applications, such as traffic management and resource allocation.
However, training samples can be scarce in data-constrained sce-
narios, which often degrades the predictive capability of existing
deep STP models. Although recent STP foundation models excel in
few-shot and zero-shot learning through extensive pre-training on
large-scale, multi-domain spatio-temporal data, they often rely on
large parameter scale to achieve enhanced performance, resulting in
high computational demands that hinder practical deployment. In
response, we develop CompactST, an efficient, compact, and versa-
tile pre-trained model for STP in data-scarce settings. Recognizing
the complexities posed by large-scale, heterogeneous pre-training
datasets, CompactST integrates three specialized components: (1)
a mixture-of-normalizers module to address domain and spatial
heterogeneity, (2) a multi-scale spatio-temporal mixer that cap-
tures diverse patterns from datasets with varying spatio-temporal
resolutions, and (3) an adaptive dataset-oriented tuning module
that transfers the handling of dataset-specific parameters from
pre-training to fine-tuning stage. These tailored designs enable
CompactST to maximize generalizability across diverse datasets
while maintaining a compact model size (i.e., only 300K parame-
ters). To validate its effectiveness, we pre-train CompactST on a
substantial corpus of public spatio-temporal datasets spanning over
10 domains and encompassing 300 million data points. Extensive
experimental results on ten real-world datasets demonstrate Com-
pactST’s significantly improved prediction accuracy and efficiency
in data-scarce scenarios.
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1 INTRODUCTION
With the rapid development of sensing and ubiquitous comput-
ing technologies, massive spatio-temporal data have been gener-
ated in urban spaces, capturing various aspects of human activi-
ties and environmental dynamics [65]. For instance, air pollutant
concentrations are tracked over time by measurement stations
deployed in cities [13], while urban traffic monitoring systems con-
tinuously record real-time vehicle speeds and flows within the road
network [40]. Spatio-Temporal Prediction (STP) is the task of pre-
dicting future states of these urban phenomena based on historical
data, which can assist in optimizing smart city services, improving
resource management, and supporting sustainable urban develop-
ment. Given its substantial practical value, STP has attracted great
research interest [9, 40, 49, 50, 56].

Unlike standard time series data, spatio-temporal data are char-
acterized by their strong correlations and dependencies along the
spatial dimension [2, 14]. Consequently, the prevailing approach is
to first organize the data into spatially structured formats (e.g., grid
or graph formats), and then model them using hybrid deep learning
models that combine Convolutional Neural Networks (CNNs) [55]
or Graph Neural Networks (GNNs) [14, 40] with various sequence
models, such as Transformer [45]. While effective, most existing
models rely on extensive in-domain data collected from a spe-
cific spatial region to achieve decent performance, which fail to
generalize to unfamiliar urban contexts with limited data avail-
ability [16, 17], e.g., regions with newly deployed sensors, under-
developed cities, or emerging urban services. This limitation poses
a critical barrier to the real-world application of STP models.

To address this limitation, we are witnessing rapid progress of
developing general-purpose STP models that can be transferred
across diverse data-scarce scenarios. Recent studies either adapt
pre-trained language models [23, 25, 28] or directly pre-train large
Transformer-based foundationmodels [22, 57] to learn common pat-
terns on numerous spatial-temporal datasets frommultiple domains,
demonstrating promising few-shot and zero-shot performance on
unseen datasets. However, to accommodate diverse spatio-temporal

2149

https://doi.org/10.14778/3734839.3734851
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3734839.3734851
https://github.com/usail-hkust/CompactST
https://www.acm.org/publications/policies/artifact-review-and-badging-current


patterns, the parameter scale of these models has expanded from
tens of millions [22, 57] to even billions [23, 25, 28], leading to
significant deployment costs, particularly in resource-constrained
industrial environments, e.g., edge devices. Thus, it is indicative
to minimize the number of parameters and develop compact yet
capable pre-trained STP models.

Recently, several multi-layer perceptron (MLP) models [7, 29,
38, 61] have been proposed for STP tasks. These models replace
parameter-intensive self-attention mechanisms used in Transform-
ers with lightweight MLP layers, which substantially reduces the
parameter scale while still achieving comparable or even superior
performance to state-of-the-art STP models. This motivates our
exploration of scalable pre-training for compact MLP models on
large-scale spatio-temporal data. However, training a small MLP
model on extensive and diverse spatio-temporal datasets presents
three data-level challenges: (1) Heterogeneous data distribu-
tions: Spatio-temporal datasets vary considerably in their under-
lying distributions, both within the same domain, due to regional
differences in city infrastructure, geography, and socio-economic
factors [22, 35], and across domains, resulting in significant spatial
heterogeneity and domain heterogeneity. Small models with limited
capacity struggle to memorize the complex and varied data distri-
butions from different regions and domains. (2) Diverse spatio-
temporal patterns at varying scales: Different datasets often
exhibit divergent patterns at vastly distinct spatio-temporal scales.
For instance, minute-level traffic flow data captures short-term fluc-
tuations and localized propagation among nearby intersections,
while daily recorded air quality dataset reflects broader spatial dis-
persion patterns and long-term temporal trends of pollutants. The
model must be capable of modeling the intricate dependencies in
diverse spatio-temporal resolutions. (3) Downstream knowledge
misalignment: Given inherent variations across urban contexts,
downstream target dataset may only partially share the spatio-
temporal knowledge acquired during pre-training. As a result, how
to effectively preserve relevant pre-trained knowledge while main-
taining flexible adaptability to the unique characteristics of specific
target dataset is also a critical challenge.

To tackle the above challenges, we develop CompactST, a small
yet capable pre-trained model tailored for generalizable STP in
data-scarce scenarios. Specifically, we first propose a mixture-of-
normalizers module, which is symmetrically structured to first
remove and then restore specific domain and spatial effects of input
data instances. This allows the model to learn domain-invariant
and spatially generalizable features during pre-training, thereby
addressing the first challenge. After that, we design a multi-scale
spatio-temporal mixer, which includes a series of alternately stacked
lightweight MLP layers and parameter-free graph-shift operators to
capture spatio-temporal patterns at various scale ranges. Moreover,
we propose an adaptive dataset-oriented tuning module, including
(1) a knowledge selection mechanism that selectively adapts the
pre-trained knowledge to target dataset, and (2) a private spatial
mixing block that further grasps unique spatial knowledge in the
target dataset to augment the pre-trained model.

Our contributions are summarized as follows: (1) We propose
CompactST, a lightweight pre-trainedmodel with specialized design
(i.e., only 300K parameters), which for the first time demonstrates
the potential of tinymodels for general-purpose STP. (2)We develop

a mixture-of-normalizers module and a multi-scale spatio-temporal
mixer, overcoming the bottleneck of pre-training extremely small
MLP models on massive spatio-temporal data. (3) We introduce
an adaptive dataset-oriented tuning module to alleviate negative
knowledge transfer and further enhance the usability of pre-trained
model on real-world target datasets. (4) We conduct extensive ex-
periments on a large-scale spatio-temporal data corpora consisting
of 300 million data points. The results demonstrate the effectiveness
and efficiency of CompactST against state-of-the-art baselines.

2 PRELIMINARIES
In this section, we first present some basic concepts and then
formally define our problem. We summarize the notations used
throughout the paper in Table 1.

Table 1: Notations and explanations.

Notation Explanation

X1:𝑇 ∈ R𝑁 ×𝑇 Observation matrix from 𝑁 nodes over𝑇 time steps
x𝑖 Observation sequence at node 𝑖
A Spatial adjacency matrix
𝜏 Prediction horizon length
𝜇, 𝜎2 Mean and variance of the input instance
𝜇𝑠 , 𝜎

2
𝑠 Mean and variance of node-wise sequence

𝛾, 𝛽 Learnable scaling and bias parameters
𝑁𝑠 Number of spatial normalizers
𝐺 ( ·), 𝐸𝑛 ( ·) Routing function and 𝑛-th spatial normalizer
x′
𝑖
∈ R𝑃×𝑀 𝑀 patches of node 𝑖 with patch length 𝑃

W, E Learnable parameter matrices
x𝑑
𝑖
, x𝑝

𝑖
, x𝑓

𝑖
, x𝑠

𝑖
Node representations after spatio-temporal mixing

x𝑠,(𝑙 )
𝑖,𝑚

Representation of patch𝑚 at layer 𝑙
AGG( ·) Patch aggregation function
x(𝑙 )
𝑖

Output of node 𝑖 at layer 𝑙
X(𝐿) Final output after 𝐿 layers
x̂𝑇+1:𝑇+𝜏 Predicted values over future 𝜏 steps

Spatio-temporal data. Spatio-temporal data is represented as
a two-dimensional observation matrix X1:𝑇 = (x1, x2, · · · , x𝑁 ) ∈
R𝑁×𝑇 , where x𝑖 denotes the sequence of𝑇 observations (e.g., traffic
flow, air quality) at node 𝑖 (i.e., a sensor or region in urban space)
and 𝑁 is the number of nodes. The spatial relations between nodes
can be represented as a graph G = (V, E,A), whereV is a set of
nodes, E is a set of edges, and 𝐴 denotes the adjacency matrix built
from geographical distance [20].

Typically, there are two formats of spatio-temporal data: network-
based and raster-based. Network-based spatio-temporal data [14]
are collected from a set of geo-distributed sensors deployed across
a specific urban area. In contrast, raster-based spatio-temporal
data [60] divides the urban area into regular grids, with each grid
containing a specific time-varying attribute.

Spatio-temporal prediction. For a specific dataset, given a se-
quence of past𝑇 observations X1:𝑇 and the associated spatial graph
structure G = (V, E,A), the goal of spatio-temporal prediction is
to predict future states of all the nodes in the next 𝜏 time steps. This
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can be expressed as follows:

X𝑇+1:𝑇+𝜏 = 𝑓𝜃 (X1:𝑇 ,G) (1)

where X𝑇+1:𝑇+𝜏 is the predicted future values from time step 𝑇 + 1
to 𝑇 + 𝜏 , 𝑓𝜃 (·) represents a mapping function parameterized by 𝜃 ,
i.e., prediction model.

Multi-domain pre-training. Given a set of spatio-temporal
datasets X = {X1,X2, . . . ,X𝐶 }, where each dataset X𝑖 belongs to
a specific source domain D𝑖 (e.g., taxi demand), our objective is
to pre-train a STP model 𝑓𝜃 (·) on X, capable of encoding spatio-
temporal knowledge that is generalizable to downstream dataset
X𝑡𝑎𝑟𝑔𝑒𝑡 . Specifically, we focus on few-shot and zero-shot prediction
scenarios, where the pre-trained model 𝑓𝜃 (·) can adapt to X𝑡𝑎𝑟𝑔𝑒𝑡
with only a limited number of training samples fromX𝑡𝑎𝑟𝑔𝑒𝑡 or even
without additional training. Notably, the domain of target down-
stream dataset can be either seen or unseen during pre-training,
i.e., we may have D𝑡𝑎𝑟𝑔𝑒𝑡 = D𝑖 for 1 ≤ 𝑖 ≤ 𝐶 .

3 METHODOLOGY
Figure 1 illustrates an overview of CompactST. We will introduce
each component of CompactST below.

3.1 Mixture-of-Normalizers
Existing studies [24, 39, 57] usually rely on statistics (e.g., mean
and standard deviation) of training data to normalize inputs. How-
ever, these statistics only capture distribution specific to a given
dataset, lacking universal transferability across domains or spatial
regions, especially in scenarios with limited or no historical data.
To overcome this limitation, we draw inspiration from instance nor-
malization [19, 44] and design the mixture-of-normalizers, which
progressively eliminates domain- and location-specific effects from
input instances, allowing the model to focus on learning domain-
invariant and spatially generalizable features.

3.1.1 Domainnormalizer. Given an input instanceX1:𝑇 ∈ R𝑁×𝑇 ,
where 𝑁 is the number of nodes and 𝑇 denotes the length of look-
back window, we omit the subscripts in X1:𝑇 for simplicity, and
then calculate the mean and variance of each input instance X:

𝜇 =
1
𝑁𝑇

𝑁∑︂
𝑖=1

𝑇∑︂
𝑗=1

X𝑖, 𝑗 , 𝜎2 =
1
𝑁𝑇

𝑁∑︂
𝑖=1

𝑇∑︂
𝑗=1
(X𝑖, 𝑗 − 𝜇)2, (2)

where X𝑖, 𝑗 is the observation at node 𝑖 and time step 𝑗 , 𝜇 and 𝜎2

denote the mean and variance of input instance, respectively. Intu-
itively, the computed statistics of each instance inherently carry the
properties (e.g., numerical scales) of its associated domains. There-
fore, we can remove domain-specific information by normalizing
the original input instance X as follows:

X̂ =
X − 𝜇
𝜎 + 𝜖 ,

(3)

where 𝜖 is a small constant added to ensure numerical stability. This
normalization step produces a domain-agnostic instance, helping
prevent the model from overfitting to the specific characteristics of
particular domains.

3.1.2 Spatial normalizers. Although the domain normalizer can
mitigate the domain shifts among instances, heterogeneity still ex-
ists within the same instance due to significant variations in data
distribution across space. This spatial heterogeneity can introduce
location-specific biases into the model, making it difficult to estab-
lish stable and universally applicable spatio-temporal correlations.
Thus, we develop a series of spatial normalizers to further enhance
the model’s generalizability across different spatial regions.

Unlike domain normalizer, each spatial normalizer applies nor-
malization operator on a per-node basis instead of the entire input
instance, defined as

𝜇𝑠 =
1
𝑇

𝑇∑︂
𝑗=1

x𝑖, 𝑗 , 𝜎2𝑠 =
1
𝑇

𝑇∑︂
𝑗=1
(x𝑖, 𝑗 − 𝜇𝑠 )2, (4)

where x𝑖 is the 𝑖-th row vector of the domain normalized input X̂.
After that, we derive the spatially normalized input for each node 𝑖
via the following equation:

x̃𝑖 = 𝛾 · x𝑖 − 𝜇𝑠
𝜎𝑠 + 𝜖

+ 𝛽, (5)

where 𝛾 and 𝛽 are learnable parameters. Specifically, 𝛾 and 𝛽 allows
for node-wise scaling and shifting of the normalized features, which
can retain critical temporal dynamics.

However, simply normalizing the features may reduce the spatial
distinguishability of each node, which has been proven very useful
for model prediction in previous works [5, 38]. Hence, rather than
using a unified normalizer for all nodes, we introduce the Mixture
of Normalization Layer (MNL), which consists of multiple spatial
normalizers. Concretely, an MNL layer employs learnable router to
select a specific spatial normalizer from a shared normalizer pool
for each node. Formally, an MNL layer is defined as

x̃𝑖 =
𝑁𝑠∑︂
𝑛=1

𝐺𝑛 (x𝑖 ) · 𝐸𝑛 (x𝑖 ), (6)

where𝑁𝑠 denotes the number of normalizers,𝐺 (·) is a sparse router
and 𝐺𝑛 (·) is the 𝑛-th element of the output vector from 𝐺 (·), indi-
cating the importance of the 𝑛-th normalizer 𝐸𝑛 (·). We instantiate
𝐺 (·) with a simple MLP layer, denoted as𝐺 (x𝑖 ) = Top-1(MLP(x𝑖 )),
where Top-1(·) operator sparsely activate one normalizer with the
largest entry in the output of MLP. By doing so, we can adaptively
select the most suitable normalizer for each node, preserving im-
portant node-specific dynamics even after normalization. Finally,
we denote the output of MNL as X̃, where the 𝑖-th row vector of
X̃ is x̃𝑖 . The data instance will be denormalized to restore spatial
and domain information at the output of prediction model, which
is detailed in Section 3.2.2.

3.2 Multi-Scale Spatio-Temporal Mixer
In this section, we elaborate on how to capture spatio-temporal
dynamics at varying scales via a multi-scale spatio-temporal mixer,
which can significantly enhance model’s adaptability to diverse
pre-training datasets.

3.2.1 Multi-scale spatio-temporal mixing. Given the normal-
ized input x𝑖̃ ∈ R𝑇 for node 𝑖 , we first divide x𝑖̃ into non-overlapping
patches [34] along temporal dimension, denoted as x′

𝑖
∈ R𝑃×𝑀 ,

where 𝑃 is patch length and𝑀 is the number of patches. By using
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Figure 1: The framework of CompactST.

the patching strategy, we can significantly reduce the number of
parameters and memory usage for subsequent processing. Next, we
transform the patched input x′

𝑖
into an 𝐻 -dimension latent space

and inject positional embeddings to preserve the temporal order of
each patch, defined as

x𝑑𝑖 = W𝑑x
′
𝑖 + E

𝑝𝑜𝑠 , (7)

whereW𝑑 ∈ R𝐻×𝑀 represents a learnable projection matrix, and
E𝑝𝑜𝑠 is the sinusoidal positional embedding [45].

Previous studies suggests that replacing computationally inten-
sive self-attention mechanism with lightweight MLP mixing layer
can still yield strong performance in various tasks [7, 43]. Therefore,
to reduce model complexity, we design the spatio-temporal mixing
layer, which contains three types of operators: inter-patch mixing,
intra-patch mixing, and spatial mixing. Specifically, inter-patch
mixing processes each dimension separately by mixing temporal
information across different patches:

x𝑝
𝑖
= x𝑑𝑖 + 𝜎 (x

𝑑
𝑖 W𝑝1)W𝑝2, (8)

whereW𝑝1 ∈ R𝑀×𝑀 andW𝑝2 ∈ R𝑀×𝑀 are learnable inter-patch
mixing matrices, 𝜎 (·) is a non-linear activation function, and a
residual connection is added to facilitate information flow across
layers. In contrast, intra-patch mixing operates on the output of
the inter-patch mixing and mixes information along the feature
dimension within each patch:

x𝑓
𝑖
= x𝑝

𝑖
+W𝑓 2𝜎 (W𝑓 1x

𝑝

𝑖
), (9)

whereW𝑓 1 ∈ R𝐻×𝐻 andW𝑓 2 ∈ R𝐻×𝐻 are learnable intra-patch
mixing matrices. In addition, we construct a spatial adjacency ma-
trixA for each dataset, which encodes the prior spatial relationships
among nodes [14]. Building upon the adjacency matrix A, we de-
sign a new spatial mixing operator, which leverages a graph-shift
operator that mixes information from different nodes at a particular

time (i.e., patch), defined as

x𝑠𝑖 = x𝑓
𝑖
+ 𝜎 (

𝑁∑︂
𝑗=1

A𝑖, 𝑗x
𝑓

𝑗
), (10)

Since A is a highly sparse matrix with fixed values, the spatial
mixing operator is parameter-free and extremely fast in practice.

To learn spatio-temporal patterns at varied scales, we further
introduce a layer-wise patch aggregator, which gradually reduces
the number of patches by merging adjacent patches as the layer
increases. Formally, suppose we stack 𝐿 spatio-temporal mixing
layers, the output of the 𝑙-th layer can be rewritten as a series
of patches {x𝑠,(𝑙 )

𝑖,1 , x𝑠,(𝑙 )
𝑖,2 , ..., x𝑠,(𝑙 )

𝑖,𝑀 (𝑙 )
}, where 𝑀 (𝑙 ) is the number of

patches in layer 𝑙 . The patch aggregator for the subsequent layer
𝑙 + 1 is defined as follows:

x𝑠,(𝑙+1)
𝑖,𝑚

= AGG( [x𝑠,(𝑙 )
𝑖,2𝑚−1, x

𝑠,(𝑙 )
𝑖,2𝑚 ]), (11)

where AGG(·) is an aggregation function that combines two con-
secutive patches x𝑠,(𝑙 )

𝑖,2𝑚−1 and x
𝑠,(𝑙 )
𝑖,2𝑚 from layer 𝑙 to form a new patch

x𝑠,(𝑙+1)
𝑖,𝑚

in layer 𝑙 + 1. Thus, the number of patches are reduced
from 𝑀 (𝑙 ) to 𝑀 (𝑙+1) = 𝑀 (𝑙 )/2. Here we implement AGG(·) with
a trainable linear projection. By interleaving the spatial mixing
operator with patch aggregator, we can progressively decreases the
temporal granularity while simultaneously capturing dependencies
across a wider spatial range.

3.2.2 Cross-scale fusion. In practice, we stack 𝐿 spatio-temporal
mixing layers, with each layer operating at a specific scale range.
For the 𝑙-th layer, we apply mean pooling operator to aggregate its
output x𝑠,(𝑙 )

𝑖
∈ R𝐻×𝑀 (𝑙 ) along the patch dimension, resulting in

x(𝑙 )
𝑖
∈ R𝐻 . Then, we adopt a layer-wise prediction module to fuse

the derived x(𝑙 )
𝑖

at different layers, defined as

x̂𝑇+1:𝑇+𝜏 =

𝐿∑︂
𝑙=1

x(𝑙 )
𝑖

W𝑙 , (12)

2152



whereW𝑙 ∈ R𝐻×𝜏 maps x(𝑙 )
𝑖

to the future prediction. Intuitively,
some datasets may benefit more from the fine-scale predictions of
earlier layers, while others may rely on the broader patterns cap-
tured by deeper layers. This strategy enables themodel to effectively
integrate spatio-temporal patterns at multiple scales, thereby en-
hancing its capacity to generalize across different spatial-temporal
contexts. Finally, we denormalize the output of the layer-wise pre-
diction module using the statistics from Equation 3 and 5 to restore
the original spatial and domain information:

x̂𝑇+1:𝑇+𝜏 ← 𝜎𝑠 ·
x̂𝑇+1:𝑇+𝜏 − 𝛽

𝛾
+ 𝜇𝑠 , (13)

x̂𝑇+1:𝑇+𝜏 ← 𝜎 · x̂𝑇+1:𝑇+𝜏 + 𝜇. (14)
Our model is pre-trained by optimizing the following objective:

L =
1
𝑁𝜏

𝑖=𝑁∑︂
𝑖=1

𝑗=𝑇+𝜏∑︂
𝑗=𝑇+1

|x𝑖, 𝑗 − x̂𝑖, 𝑗 |. (15)

3.3 Adaptive Dataset-Oriented Tuning
Finally, we present the adaptive dataset-oriented tuning module,
which includes (1) a knowledge selectionmechanism that adaptively
selects beneficial knowledge from the pre-trained representations,
and (2) a private spatial mixing block that further captures unique
spatial dependencies in target dataset.

3.3.1 Knowledge selection. In multi-domain pre-training, the
model acquires extensive spatio-temporal knowledge from hetero-
geneous datasets. However, the discrepancy between pre-training
datasets and target dataset may lead to the negative transfer of
irrelevant or even harmful knowledge. To address this issue, we
introduce a learnable spatial prompt to adaptively select useful
pre-trained knowledge for the target dataset:

X(𝐿) ← X(𝐿) ⊙ E𝑝 , (16)

where the 𝑖-row vector of X(𝐿) is x(𝐿)
𝑖

, E𝑝 ∈ R𝑁×𝐻 is a learnable
prompt, and ⊙ denotes the element-wise product. The prompt E𝑝
is dataset-specific and is learned during the fine-tuning process on
the target dataset, ensuring that only useful knowledge is retained
while negative information is automatically discarded.

3.3.2 Private spatial mixing. The target dataset might exhibit
implicit spatial dependencies that are not encoded by the prior
adjacency matrix. For example, in traffic prediction, regions that
are spatially distant may share similar traffic patterns due to envi-
ronmental or functional similarities [14, 40]. These dependencies
are difficult to learn during pre-training, as they are highly context-
dependent and often unique to the target dataset.

To capture such context-aware spatial dependencies, we intro-
duce a private spatial mixing block, defined as follows:

X(𝐿) ←W𝑠X(𝐿) , (17)

where W𝑠 ∈ R𝑁×𝑁 is a learnable matrix that mixes information
across different nodes. One scalability concern is that the spatial
mixing operator has quadratic complexity O(𝑁 2), making it com-
putationally infeasible for large spatio-temporal systems with nu-
merous nodes. In response, we develop an optional lightweight
operator based on linear attention [18]. Concretely, we first de-
fine two trainable context embedding matrices E𝑠 ∈ R𝑁×𝐻 and

E𝑡 ∈ R𝑁×𝐻 , and the lightweight spatial mixing operator can be
defined as follows:

X(𝐿) ← E𝑠̂ (E𝑡̂
⊤X(𝐿) ), (18)

where E𝑠̂ = 𝜎 (E𝑠 )/∥𝜎 (E𝑠 )∥2 and E𝑡̂ = 𝜎 (E𝑡 )/∥𝜎 (E𝑡 )∥2, with ∥ · ∥2
and 𝜎 (·) denoting a row-wise Euclidean norm function and a non-
linear activation function (e.g., ReLU), respectively. The brackets
indicate the order of matrix multiplication. Using this operator, we
avoid explicitly materializing the quadratic spatial mixing matrix
W𝑠 , thus reducing the computational and storage complexity to a
linear scale. During fine-tuning process, the derived X(𝐿) can be
utilized to generate final prediction by following equation 12.

3.4 Complexity Analysis
In this section, we analyze the complexity of each proposed compo-
nent. For the mixture-of-normalizers module, the time and space
complexities of domain normalizer are both O(𝑁𝑇 ), while the com-
plexities for spatial normalizers are O(𝑁𝑇 +𝑁𝐷) and O(𝑁 +𝑁𝑇 +
𝑁𝑠𝐷), where 𝐷 is the dimension of MLP used to determine the
importance of each normalizer. In layer 𝑙 of the spatio-temporal
mixer, the inter-patch mixing operates on𝑀 (𝑙 ) patches, resulting in
a time complexity of O(𝑀 (𝑙 ) 2). Given𝑀 (𝑙 ) = 𝑀/2𝑙−1, where𝑀 is
the number of patches in the first layer, the time complexity across
𝐿 layers becomes O(𝑀2∑︁𝐿

𝑙=1 1/4
𝑙−1). Since∑︁𝐿

𝑙=1 1/4
𝑙−1 converges,

we simplify the complexity to O(𝑀2). Similarly, the overall com-
plexity of intra-patch mixing across 𝐿 layers is O(𝐻2𝑀). The spatial
mixing requires a time complexity of O(|E|), where E denotes the
number of sparsely connected edges in the spatial graph, which is
more efficient than dense matrix multiplication. The patch aggrega-
tor reduces the number of patches by half with each layer, leading
to a logarithmic complexity of O(𝐻 log𝑀). Hence, the overall time
complexity of spatio-temporal mixer is O(𝑀2+𝐻2𝑀 +E+𝐻 log𝑀),
while the space complexity is O(𝑀2 +𝐻2 + E). In adaptive dataset-
oriented tuning, the time and space complexities of knowledge
selection are both O(𝑁𝐻 ). For private spatial mixing, the naive
implementation has quadratic complexity in terms of 𝑁 , while
the lightweight version reduces the complexity from O(𝑁 2𝐻 ) to
O(𝑁𝐻2). Overall, since the number of patches𝑀 is relatively small
and can be regarded as a constant, the model complexity scales
linearly with 𝑁 , making it efficient for large-scale datasets.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Dataset description. We conduct experiments on a large
spatio-temporal data corpora encompassing 34 individual datasets,
which can be classified into 10 domains based onmeasured variables.
In particular, these datasets are collected from various regions in
China and the United States, including cities such as Beijing, Shang-
hai, Shenzhen, Hangzhou, Chengdu, New York City, Chicago, and
Washington, among others. For each dataset, we construct the cor-
responding graph adjacency matrix based on the distance between
different spatial nodes [20]. Our pre-training utilizes a subset of
24 datasets, covering a total of 9,718 regions and 299,637,248 data
points. We leave the remaining datasets for model evaluation. The
statistics of each dataset are summarized in Table 2 and 3.
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Table 2: Statistical information of the pre-training datasets, which are aggregated based on the measured variables. For sampling
rate: T=minute, H=hour. We provide detailed description of each dataset in supplementary material.

Domain Metro Flow Bike-Sharing Taxi Demand Vehicle Speed Vehicle Flow Air Quality Total
# of Regions 644 398 1,301 5,775 1,718 280 9,718
# of Records 7,141,216 3,853,440 74,561,556 126,515,596 85,112,640 2,452,800 299,637,248
Sampling Rate 10T, 15T, 30T 30T, H 15T, 30T, H 5T, 10T, 15T, 30T, H 5T, 10T, 15T, 30T, H H 5T, 10T, 15T, 30T, H

Source [27, 59] [46] [46, 59, 63] [3, 20] [11, 41] [13] -

Table 3: Statistical information of the downstream evaluation datasets. Notice that, the evaluation datasets differ from the
pre-training datasets in terms of spatial regions, sampling rate, or domains. For example, the pre-training datasets of taxi
demand are collected from Beijing and Shenzhen, China as well as Chicago, USA, whereas NYC-Taxi dataset used in evaluation
is collected from New York City, USA.

Dataset NYC-Bike NYC-Taxi DiDi-CD DiDi-SZ SD Beijing-AQI NYC-PVm NYC-PVh DC-Wind DC-WP
Domain Bike-Sharing Taxi Demand Traffic Index Traffic Index Vehicle Flow Air Quality Solar Energy Solar Energy Wind Speed Wind Power

# of Regions 200 200 524 627 716 35 129 129 759 759
# of Records 1,152,000 1,152,000 9,054,720 10,834,560 25,088,640 306,600 2,260,080 1,130,040 13,334,112 13,334,112
Sampling Rate 30T 30T 10T 10T 15T H 15T H 30T 30T

Source [46] [46] [33] [33] [30] [13] [1] [1] [6] [6]

4.1.2 Baselines. For few-shot prediction, we compare the pro-
posed model with state-of-the-art baseline methods, including (1)
heuristic approach: Historical Average (HA), (2) time series forecast-
ing models: Informer [67], PatchTST [34], MTSMixer [21], iTrans-
former [31], and TimeMixer [47], (3) Spatio-Temporal GNN mod-
els: STGCN [53] and GWNET [54], and (4) advanced non-GNN
predictive models: ST-Norm [5], STID [38], STAEformer [26], and
EasyST [42]. For zero-shot prediction, we compare our model with
recently released large foundation models: TimesFM [4], Timer [32],
and OpenCity [22]. We implement all deep learning baselines using
a popular STP library BasicTS [37] or their official codes.

4.1.3 Implementation details. Our model and all deep learning
baselines are implemented with Pytorch. Model pre-training is
conducted on a Linux server with 2 NVIDIA A40 GPUs. Specifically,
we set the look-back time window 𝑇 and prediction horizons 𝜏 to
96 and 48, respectively. We set the number of spatial normalizers
to 8. For multi-scale spatio-temporal mixer, we set the number of
patches and the patch length in the first layer to 16 and 6. The
hidden dimension 𝐻 and the number of layers in spatio-temporal
mixer is fixed to 64 and 5. The dropout rate is set to 0.1. The model
is pre-trained with 30 epochs using the Adam optimizer, with a
weight decay of 0.0003, a learning rate of 0.001, and a gradient
clip of 5. The batch size of pre-training is set to 32, and we apply
the learning rate decay at epochs 15 and 25 with a decay rate of
0.1. For downstream fine-tuning, we set the dimension of context
embedding matrices 𝐷 to 32. We split all evaluation datasets into
training, validation, and test set by using the ratio of 7:1:2, and we
only use 5% and 10% of the training data for few-shot prediction.

4.2 Overall Results
4.2.1 Few-shot prediction. In real-world applications, practition-
ers often have a limited amount of target data available for train-
ing a model. Thus, we evaluate few-shot performance on both
seen (i.e., NYC-Bike, NYC-Taxi, SD, and Beijing-AQI) and unseen

(i.e., DiDi-CD, DiDi-SZ, NYC-PVm, NYC-PVh) domains during pre-
training. Table 4 report the few-shot results using 5% of training
data. Overall, CompactST outperforms the best-performing base-
line on seen domains by 2.8% ~32.9% and unseen domains by 1.3%
~3.6%, demonstrating the effectiveness of pre-trained weights in
data-scarce scenarios. Moreover, we can make the following ob-
servations: (1) Informer performs even worse than HA on some
datasets, likely due to its sensitivity to data scarcity, which leads
to severe overfitting issues. (2) With a long look-back window of
96, PatchTST achieves strong results on most datasets due to its
robust long-sequence modeling capability. However, its inability to
capture spatial dependencies limits its performance on datasets rich
in neighborhood information, such as DiDi-CD and DiDi-SZ, where
GNN-based models like STGCN and GWNET perform better. (3)
The performance of STID and STAEformer lags behind time series
or GNN-based models, potentially due to difficulties in learning re-
liable embeddings with limited training data. Notably, STAEformer
surpasses STID on most datasets by leveraging the Transformer
architecture to capture richer spatial information, demonstrating
better capability in modeling spatio-temporal dependencies.

4.2.2 Zero-shot prediction. To evaluate the zero-shot performance
of CompactST, we compare it to three representative foundation
models, TimesFM [4], Timer [32], and OpenCity [22], using five
datasets that these models had not encountered during pre-training.
The underlying distributions of these datasets deviate substantially
from those in pre-training data, which is suitable for evaluating the
model’s robustness under spatio-temporal distribution shift with-
out fine-tuning. As shown in Figure 2, CompactST demonstrates
competitive and often superior performance compared to TimesFM,
Timer, and the three versions of OpenCity (mini, base, and plus),
despite having a smaller set of parameters. This further validates
the effectiveness of the proposed mixture-of-normalizers and multi-
scale modeling techniques, which enable the model to learn gener-
alizable patterns from extensive and diverse spatio-temporal data.
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Table 4: Few-shot prediction results with 5% of training data. The historical look-back window 𝑇 and forecast length 𝜏 are set to
96 and 48, respectively. We report the average MAE and RMSE over all forecast lengths.

Dataset NYC-Bike NYC-Taxi SD Bejing-AQI DiDi-CD DiDi-SZ NYC-PVm NYC-PVhInflow Outflow Inflow Outflow
Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
HA 3.51 10.54 3.54 10.64 20.33 60.42 21.20 58.69 118.07 148.35 41.81 57.15 6.38 8.20 4.85 6.89 4.77 7.86 4.71 7.69

Informer 3.71 11.56 3.73 11.48 21.89 61.88 22.33 59.85 41.27 72.17 43.76 62.19 3.28 4.91 2.92 4.55 2.88 6.85 2.68 6.09
iTransformer 2.41 7.96 2.49 8.03 15.09 47.31 15.65 45.66 32.51 56.01 38.99 55.42 3.24 4.84 2.82 4.66 2.68 5.84 2.41 5.67
PatchTST 2.47 8.06 2.36 7.82 12.33 39.28 12.59 38.92 32.79 60.51 35.26 55.19 3.44 4.96 2.84 4.41 2.56 5.78 2.44 5.73
STGCN 2.66 8.78 2.61 8.66 16.89 54.63 17.14 51.72 32.99 52.74 39.93 56.38 2.97 4.58 2.61 4.11 2.43 5.55 2.36 5.40
GWNET 2.38 6.75 2.28 8.58 14.55 46.27 15.31 47.12 34.67 53.42 38.91 54.19 3.14 4.66 2.73 4.46 3.41 8.98 3.39 8.67
ST-Norm 2.74 10.31 2.75 10.63 16.47 53.21 17.08 51.99 35.04 61.72 36.81 56.52 3.12 4.76 2.69 4.29 2.60 6.48 2.51 5.97
STID 2.49 8.34 2.42 8.16 13.22 41.76 12.81 38.64 35.45 67.83 34.53 52.82 3.23 4.92 2.81 4.35 3.07 6.37 2.84 6.50

STAEformer 2.41 8.18 2.35 8.42 14.57 43.38 15.03 44.41 30.69 47.45 37.67 53.18 3.11 4.62 2.81 4.43 2.54 6.38 2.55 5.74
MTSMixer 2.43 8.22 2.51 8.45 15.18 46.22 15.46 45.44 32.56 58.03 39.54 58.45 3.24 4.67 2.79 4.34 2.60 5.85 2.83 5.92
TimeMixer 2.24 7.82 2.20 7.89 16.51 50.59 15.65 44.97 28.95 56.12 38.43 54.32 3.15 4.60 2.80 4.36 2.45 5.63 2.35 5.39
EasyST 2.37 8.30 2.33 8.21 14.16 45.28 13.03 39.84 32.10 61.81 33.71 56.46 3.25 4.90 2.73 4.20 2.55 6.19 2.44 5.51

CompactST 1.79 6.44 1.74 6.33 9.58 32.31 9.73 31.12 25.30 43.47 33.31 51.49 2.92 4.30 2.52 4.01 2.43 5.34 2.32 5.24
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Figure 2: Zero-shot Prediction.

4.3 Scalability Analysis
4.3.1 Model size and inference cost. Figure 3 shows the size and in-
ference throughput of TimesFM, Timer, OpenCity, and CompactST,
where throughput refers to the average number of batches the
model can process per second. Compared to OpenCity-plus, our
model achieves 4.4× higher inference acceleration, while reducing
model size from 26M to 0.32M. In comparison to TimesFM, our
model is 625× smaller and achieves 27.3× faster inference speed.
These results confirm the potential of our model as a powerful, light-
weight solution for real-world applications where unseen domains
and data scarcity raise generalization concerns.

4.3.2 Scalability with data scale. In this section, we examine the
scalability of CompactST with respect to data size. Specifically, we
pre-train CompactST using varying amounts of data and evaluate its
zero-shot generalization capability on the NYC-Bike, NYC-Taxi, and
SD datasets. As shown in Figure 4, the zero-shot prediction error
of CompactST consistently decreases as the pre-training data size
increases. This steady improvement across datasets highlights the
robustness of CompactST and its potential as an efficient solution
capable of leveraging larger data scales to enhance zero-shot gen-
eralization performance. These observations indicate that even for
a small model, its ability to learn from large-scale spatio-temporal
data can be significantly enhanced through tailored design.

4.4 Ablation Study
In this section, we perform ablation studies on SD and DiDi-CD
datasets to analyze the contribution of each component in the
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Figure 4: Scalability with data scale.

proposed model. Specifically, we evaluate five model variants: (1)
woPW, which replaces the pre-trained model weights with ran-
domly initialized weights; (2) woDN, which removes domain no-
malizer; (3) woSN, which excludes spatial normalizers; (4) woMS,
which omits the patch aggregator and cross-scale fusion; (5) woKS,
which eliminates knowledge selection: (6) woPSM, which removes
private spatial mixing; (7) Full, which indicates the complete model.
The results are presented in Figure 5. Firstly, we observe significant
performance degradation when replacing pre-trained weights with
randomly initialized weights, with the effect being more dramatic
on SD. This is because the model was pre-trained on traffic flow
datasets from other regions, enabling it to generalize well to SD. In
contrast, DiDi-CD measures traffic index, a domain that the model
did not encounter during pre-training, resulting in relatively smaller
performance drop. Secondly, the domain normalizer, spatial normal-
izers, and multi-scale modeling module affect model performance
to varying degrees. The removal of spatial normalizers has the most
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Figure 5: Ablation study on SD and DiDi-CD datasets.

substantial impact, indicating that accounting for spatial hetero-
geneity is crucial in STP tasks. Thirdly, the knowledge selection
mechanism plays an essential role in maintaining performance on
DiDi-CD. The possible reason is that the traffic index domain is not
involved during pre-training, resulting in limited shared knowledge
between the pre-training data and the DiDi-CD dataset. Without
knowledge selection, there is a higher risk of negative knowledge
transfer when applied to this unseen domain.

5 RELATEDWORKS
5.1 Spatio-Temporal Prediction
Spatio-Temporal Prediction (STP) has become a crucial component
of various smart city services and has attracted significant research
attention [40, 49–51]. Over the past decade, deep learning models
have achieved remarkable success in STP tasks by simultaneously
capturing intricate spatial and temporal dependencies. In early stud-
ies [55, 60], Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) are frequently combined into hybrid neu-
ral architectures to process grid-based spatio-temporal data. Never-
theless, these methods fall short when learning from non-Euclidean
data prevalent in urban systems, such as traffic flow in road net-
works [30]. To overcome this limitation, Spatio-Temporal Graph
Neural Networks (STGNNs) [12, 14, 24, 39] have emerged as an ef-
fective approach, modeling complex spatio-temporal dependencies
as a diffusion process over the system’s underlying graph structure.
For instance, GWNET [54] learns a graph adjacency matrix directly
from data and combine Graph Neural Networks (GNNs) [52] with
dilated CNNs for spatio-temporal correlation modeling. Another
line of research, including STID [38] and STAEformer [26], utilizes
identity embeddings to memorize stable spatio-temporal patterns,
achieving state-of-the-art predictive performance. While effective,
these approaches still require extensive dataset-specific training and
a sufficient amount of in-domain data to build accurate predictive
models, raising generalization concerns in ubiquitous real-world
data-scarce scenarios. A few recent studies [22, 57] have started
exploring the pre-training of a unified predictive model across dif-
ferent datasets. However, the effectiveness of pretraining is still
limited by the inherent diversity of spatio-temporal data, which
remains an open question in this burgeoning field.

5.2 Pre-trained Models for Time Series
In recent years, we have witnessed progressive breakthrough in
time series learning models [36, 58, 62], such as PatchTST [34],

TimeMixer [47], and MSD-Mixer [66]. Despite this progress, state-
of-the-art models still experience substantial performance degrada-
tion when training data are scarce [32]. Therefore, it is crucial to
improve the generalizability of time series learning models.

Pre-training has been proven highly effective in the fields of nat-
ural language processing [64]. However, extending this success to
time series data remains challenging due to the limited availability
and diversity of public time series datasets. Time series data dif-
fer semantically across domains (e.g., healthcare, climate, and web
traffic) and vary considerably in their fundamental characteristics
(e.g., frequencies, sequence length, and the number of variables) [8].
These unique properties complicate the development of pre-trained
models that can generalize across different time series datasets.
To address these issues, several approaches have been proposed
recently, which fall into two classes: pre-trained language models
and large time series models. The former directly reuse or fine-tune
pre-trained language models for downstream time series analysis
tasks [15, 68]. For example, Time-LLM [15] aligns the embedding
space of large language models with time series data using a repro-
gramming strategy. More recently, significant progress has been
made in building time series foundation models by pre-training on
vast amounts of real-world and synthetic data, including Timer [32],
Moirai [48], TimesFM [4], Moment [10], and TTM [8]. Among
them, TTM is a lightweight pre-trained model with MLP architec-
ture, demonstrating strong few-shot and zero-shot capabilities on
unseen datasets. However, unlike the one-dimensional sequential
structure of time series data, spatio-temporal data is inherently
more complex, with entangled dependencies across both space
and time. In this paper, we focus on capturing the spatio-temporal
dependencies during the pre-training process.

6 CONCLUSION
In this paper, we introduce CompactST, an efficient, compact, and
versatile pre-trained model designed to enhance few-shot and zero-
shot STP in resource-constrained environments. By leveraging a
combination of normalizers, a multi-scale spatio-temporal mixer,
and an adaptive dataset-oriented tuning module, CompactST ef-
fectively captures generalizable spatio-temporal patterns across
various spatial regions and domains while maintaining a restricted
number of model parameters. Empirical evaluations on ten real-
world datasets demonstrate that CompactST achieves notable gains
in both performance and efficiency, particularly in data-scarce sce-
narios. However, while CompactST can handle datasets with vary-
ing numbers of spatial nodes, it is trained on specific look-back and
prediction lengths, which limits its flexibility. In future work, we
aim to extend CompactST with variable-length sequence modeling
capabilities and deploy it into real-world STP systems.
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