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ABSTRACT

Data scientists today often need to analyze data from various places.
This makes it necessary for corresponding engines to support query
federation (i.e., the ability to perform SQL queries over data hosted
in different sources). Although many systems come with federation
capabilities, their implementations are tightly coupled with the
core engine design. This not only increases complexity and reduces
portability across engines, but also often leads to performance
issues by missing optimization opportunities. This paper proposes
Accio, a new “bolt-on” approach to query federation. Accio is a
middleware library that decouples query federation from the target
system. It enables two key optimizations—join pushdown and query
partitioning—via a declarative interface that can be easily leveraged
by different engines. Our experience of adapting five popular data
science query engines shows that Accio can outperform existing
approaches by orders of magnitude in various scenarios without
the need for any intrusive changes or extra maintenance.
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1 INTRODUCTION

In recent years, a variety of query engines have become popular
among data scientists, such as Pandas [58], Spark [28], DuckDB [60],
ClickHouse [8] (chDB [7]), Dask [62], Modin [59], DataFusion [42],
Polars [16], etc. These engines are typically open-source and pro-
vide an intuitive SQL+dataframe Python interface. In this paper,
we categorize these systems as DS engines (data science query en-
gines), as they are popular for handling data science tasks such
as exploratory data analysis, data integration, feature engineer-
ing, and building ML pipelines. Since the data required to perform
these tasks often reside in different data sources, data collection
and analysis from various sources (i.e., query federation) becomes
a common necessity [1, 4, 13, 17]. Consider an exploratory data
analysis example in Figure 1:

ExaMPLE 1. A data scientist working for an E-Commerce company
is investigating the cause of a sales decline in the previous month.
Using Polars, she analyzes the purchase history alongside user profiles,
requiring joining tables stored in separate DBMSs maintained by the
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FROM my.Products P
JOIN my.Sales S
ON S.pid=P.id
JOIN pg.Customers C
ON S.cid=C.id

WHERE ...

GROUP BY ...

ORDER BY ...

polars/ I

=

PostgreSQL

Figure 1: Example of using a data science query engine (e.g.,
Polars) to query data on PostgreSQL and MySQL.

sales and CRM departments, respectively. Since she only has read
access to these databases and the entire data are too large to be cached
locally, she needs to craft a series of ad hoc federated queries, adjusting
filters and/or aggregations iteratively to explore different aspects of
the data and gradually narrow down the possible causes.

Under this background, there is a growing trend for DS engines
to add query federation support. Some engines, including Pan-
das [58], Dask [62], Modin [59], DataFusion [42], and Polars [16],
offer mechanisms for accessing external data sources. However,
since they lack direct support for federated queries (e.g., example
in Figure 1), users must first manually fetch the data needed from
each source and then join them on the DS engine. Others, such
as Spark [28], DuckDB [60], and ClickHouse [8] (chDB [7]) come
with native federation capability that allows users to directly issue
federated queries. However, their current implementations miss
optimizations for improving efficiency. Specifically, none of these
systems automatically pushes down joins (e.g., the join between
Products and Sales in Figure 1), and most of them fetch remote data
through a single SQL endpoint only (see Section 2).

To enable efficient query federation for all DS engines, a straight-
forward solution would be to have each engine develop its own
federation capability individually, which we refer to as the “built-in”
approach in this paper. However, this “built-in” approach requires
intrusive modifications to the core engines (e.g., query optimizer)
and involves considerable engineering efforts (see Section 2). Worse,
the efforts made for one engine are not portable to another, since
they are tightly coupled with the engine internals (e.g., data repre-
sentation, optimization framework).

In this paper, we propose Accio, a new “bolt-on” approach to
equip a given target DS engine for efficient query federation support
through a pluggable design, which can be easily adopted by various
engines without touching their core modules. While Accio directly
addresses the limitations of the “built-in” approach, its “bolt-on”
nature also introduces new challenges.

Firstly, how to make Accio easy to integrate with various target
DS engines? To achieve this, Accio functions as an external query
rewriter, decomposing the input federated query into multiple small
ones. Each of these rewritten queries is declarative and is executed
by only one of the involved systems (either a data source or the local
target engine), allowing direct use of the existing SQL interfaces.
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In the experiment, we find that it is easy to integrate Accio with
each evaluated engine (e.g., less than 50 lines of Python code).

Secondly, how to enable high query-federation performance for
various target DS engines? We focus on two optimizations in Accio:
Jjoin pushdown and query partitioning, which are either not imple-
mented or only partially supported in popular DS engines. Both
optimizations mitigate the critical data-transfer bottleneck. While
the former reduces data transfer by delegating joins to data sources,
the latter accelerates data fetching by parallelizing it. Furthermore,
they are applicable to various DS engines and data sources via
Accio’s declarative interface (see Section 3.1).

However, supporting these optimizations is not easy, particularly
for a “bolt-on” library like Accio. Specifically, the join pushdown
problem in Accio differs from that in traditional distributed/federated
systems due to its declarative interface. This interface provides no
direct control over the physical execution, such as the join order
in each participating system, which in turn affects the quality of
the join pushdown plan. Thus, existing distributed/federated op-
timization techniques, such as exhaustively enumerating all join
orders considering locality [34, 50], or identifying pushdown op-
portunities only based on the best join order [21, 66], are either
overly expensive or lead to poor performance (see Section 4.2). To
address this, we propose a new approach that effectively identifies
an efficient strategy by iteratively evaluating the next most bene-
ficial join (see Section 4.3). As for query partitioning, to adapt to
various DS engines and data sources, Accio provides a flexible inter-
face that supports different strategies. Its impact is also seamlessly
incorporated into the join pushdown process (see Section 5).

Note that we do not claim Accio can fully replace the “built-in”
approach. Since the latter has more access to the target engine and
more control over execution, it can potentially apply a wider range
of optimizations than Accio is capable of (see Section 3.2). However,
we argue that Accio remains valuable for its simplicity and porta-
bility. Moreover, it already delivers state-of-the-art performance.
We evaluate Accio with five popular DS engines on TPC-H [20]
and JOB [54] benchmarks (see Section 6). The results demonstrate
that Accio can substantially accelerate the target DS engine in gen-
eral and remains robust across different setups. We also compare
Accio-enhanced DS engines against standalone federation systems
(e.g., Trino [21], Apache Wayang [29]). We find that with Accio,
the target DS engine consistently outperforms these systems, all
while avoiding the need for users to set up an additional service.
2 BACKGROUND
Scope of the Paper. We study the problem of enabling efficient

query federation for DS engines. We target the loosely-coupled [47]
federation setup. Specifically, given a target DS engine (e.g., Spark,
Polars) and read access to heterogeneous data sources (e.g., Post-
greSQL, MySQL), all of which provide a SQL interface, our goal is
to enable and accelerate the execution of federated queries that are
issued to the target engine. Each base table referenced in the query
resides in either a data source or the target engine. We focus on
analytical workloads and RDBMS data sources since they are more
challenging and have much room for improvement.

Query Federation Support in DS Engines. We study the query
federation support in five DS engines: Spark, DuckDB, ClickHouse,
DataFusion and Polars, which show top performance in database-
like tools for data science benchmark [10].!

IThe picked engines are ranked top among those written in Java, C/C++ and Rust.
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Unsurprisingly, all engines support federation to some extent,
reinforcing the motivation of our work. However, the existing imple-
mentations focus on enabling query federation, while considerably
less efforts are devoted to optimizing the process. Since data trans-
fer is generally considered as a crucial bottleneck in the federation
setup [40], we focus our attention on two features: join pushdown
and query partitioning. While the former reduces the size of the data
movement by delegating join operations to the data sources, the
latter parallelizes data fetching by splitting a query into multiple
small ones (e.g., divide a column into bins and add each bin as a
predicate to the query [11, 12, 23]) and issuing them concurrently.
Table 1 summarizes the support of them in each engine.

We can see that optimizations that are crucial for federation
efficiency are generally not or only partially supported. None of
the engines automatically pushes down joins to the RDBMS data
sources. As for query partitioning, SparkSQL requires the user to
manually specify a partition column, the range of the column, and
the partition number [23]. DuckDB partitions queries in only two
of its RDBMS extensions (PostgreSQL and SQLite). Others do not
have the support. As we show in Section 6, enabling these missing
optimizations can result in significant performance improvements.

Built-in Approach. Although each engine can independently im-
plement its missing optimizations, we argue that the efforts required
for such a “built-in” approach are not trivial.

Firstly, intrusive changes are needed. For example, join push-
down is a challenging problem that must be evaluated with the
awareness of physical properties like table locality and join order-
ing (more details in Section 4). However, these DS engines either
perform join ordering over logical plans (e.g., SparkSQL, DuckDB)
or do not reorder joins at all (e.g., ClickHouse, DataFusion, Polars).
Therefore, enabling cost-based join pushdown requires significant
modifications to the core optimization logic of these engines.

Secondly, the engineering efforts required are substantial. These
engines generally adopt the mediator-wrapper architecture [57] to
enable query federation, where a wrapper is implemented for each
data source. To enable the above optimizations, information such
as statistics and supported partitioning scheme of each source is re-
quired, which these engines currently lack. Therefore, the wrappers
need to be more complicated than the existing ones, which are al-
ready fairly complex [49]. Furthermore, a wrapper of one engine is
generally not reusable by another since it is usually tightly coupled
with the engine internals, such as the specific data representation.

3 ACCIO: BOLT-ON QUERY FEDERATION

To address the above issues, we propose Accio, a “bolt-on” library
that can enable efficient query federation for DS engines.

3.1 Workflow

Our goal is to develop a reusable library that can be integrated with
various target engines to enable and/or enhance their federation
capabilities. To achieve this, Accio functions as an external query
rewriter that relies solely on the existing SQL interface of the sys-
tems involved. Specifically, it decomposes a federated query into
multiple small ones, each corresponding to a portion of the overall
execution. These queries are then processed by the appropriate
system, whether it is the target engine or one of the data sources.
Next, we use an example in Figure 2 to explain how Accio works.
The black and white circles denote the overall execution steps and
the internal query rewrite phases within Accio, respectively.



Table 1: Optimization supported for RDBMS data sources.?

Spark DuckDB ClickHouse DataFusion Polars

Join Pushdown X X X X X
Query Partitioning ¢ <+ X X X

Let g be a federated query issued against the target engine Sy
(green), which also queries tables maintained by two data sources
S (orange) and Sz (blue):

q: SELECT ... FROM S;.R, S2.S, S;.T, Sp.U
WHERE R.a = S.a AND R.b = T.b AND T.c = U.c AND S.d < 10

@ Rewrite. The input query g is first rewritten by Accio, which D
parses q to an initial query plan, whose leaf nodes (scan operators)
are annotated as the remote sites that store the data. Accio then
@ performs a series of optimizations. It first applies conventional
rewrite rules such as projection and filter pushdown, and then
runs the new join pushdown algorithm (more details in Section 4.3)
while considering query partitioning opportunities (more details
in Section 5). Finally, it @ traverses the plan tree and converts it
into a rewrite plan that consists of multiple declarative queries:

g1: SELECT ... FROM R, T WHERE R.b=T.b -- t1(S1)

q;: SELECT ... FROM S WHERE d < 10 AND ... -- t2(S2)
|- qf: ID < 1,000,000
|- a}: ID € [1,000,000, 2,000,000)
|- q%: ID > 2,000,000

q': SELECT ... FROM ty, ty, U WHERE tj.a=ty.a AND t;.c=U.c

Among these queries, q; and g, are the pushdown queries for sites
S and S, respectively, and ¢’ is the local query for the target engine.
@ Registration. To use the rewrite plan generated by Accio and
derive the final result, pushdown queries q1 and g, are sent to the
corresponding data sources (S1, S2) with their results registered in
the target engine (t1/t; for q1/q;). These result tables do not have
to be materialized now and can be created as views.

© Execution. Finally, the local query ¢’ is executed by the target
engine, using both the local table (U) and the results of the push-
down queries (t1, t2) as input. Data in t; and 3 can be obtained
from each data source through native table functions or extracted
using third-party tools into a common data format (e.g., Apache
Arrow [3]) and then ingested into the target engine.

In summary, Accio takes as input a federated query and outputs
a rewrite plan consisting of multiple pushdown queries and a local
query. Each pushdown query is executed by one of the data sources
using only its local tables, with the results fetched into the target
engine, where they are then used as inputs for the local query.
Thus, it only requires read access to each data source. Additionally,
this declarative workflow allows Accio to enable join pushdown
and query partitioning outside the target engine. Using the above
example, the join between R and T is pushed down to S; through q1,
and the table S in Sp can be fetched in parallel by issuing qg, q; and
q% through concurrent connections. Through this workflow, only
the necessary information is retrieved from each data source with
the flexibility to enable parallel data transfer, thereby alleviating
the bottleneck of moving large volumes of data through network.

3.2 Tradeoff Discussion

Compared to the “built-in” solution discussed in Section 2, the
“bolt-on” design comes with a tradeoff.

Advantages. 1) Simple and non-intrusive. It greatly reduces com-
plexity to enable efficient query federation. Instead of modifying
the core logic of the query engine, the target engine only needs
to invoke Accio and run the rewritten queries correspondingly.

2Until versions used in Section 6. Only consider automatic pushdown and partitioning.
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Figure 2: Example workflow. A federate aijllgle'y is @ fed into
Accio, where it is @ parsed, 2 optimized and 3 rewritten
into a set of pushdown queries (g1, ¢;) and a local query (q’).

Pushdown queries are @ issued to data sources, whose results
serve as input to the local query € executed by the DS engine.

2) Reusable. The efforts become shareable among different query
engines through a system-agnostic interface (i.e., declarative SQL).
This helps avoid reinventing the wheel and makes it easy to bench-
mark and evaluate different systems.

Limitations. 1) Limited plan quality. As we will illustrate in Sec-
tion 4, even the exhaustive approach cannot guarantee the optimal-
ity of the rewrite plan due to the lack of information and control of
the final execution. 2) Limited runtime control. Unlike federation sys-
tems with execution engines (e.g., Presto), Accio is only a rewriter
and cannot participate in the final query execution, making it hard
to support adaptive optimizations that dynamically adjust the ex-
ecution based on intermediate results [22] or realtime resource
availability [75] (more discussions in Section 8).

Despite the above limitations, we argue that Accio is still valu-
able due to its simplicity and the savings of engineering efforts. In
addition, as we will show in Section 6, Accio can already be used
to facilitate state-of-the-art federation performance, even with the
imperfections in optimization and execution described above.

4 JOIN PUSHDOWN

Given a federated query, join pushdown decides where to perform
each join.3 For example, in Figure 3, the input query joins four
relations from two remote sites (denoted by different colors), and
P and P; represent two valid solutions that push R»< S >« T and
R >« S to remote data sources, respectively. The two remaining
feasible decisions are to only push down R »< T and not push down
any join. R >« U can only be executed locally on the target engine.

In this paper, we only consider pushing down inner joins. Non-
inner joins as well as projections and filters are pushed into the
input relations as much as possible beforehand.

4.1 Problem Definition

Let R = {Ro, Ry, Ry, ...} be a set of relations, each residing at a site
in S = {Sp, S1, 52, ...}. A function s : R — S maps a relation R € R
to its location S € S. Without loss of generality, we let Sy indicate
the local target engine, and Sq, S, ... represent remote data sources.
A federated query can be seen as a graph G = (V, E), where V is
the set of joined relations, and edge (R;,R;) € E if there is a join
condition between R; and R;. We have the following definitions:

DEFINITION 1 (PUSHDOWN QUERY). A valid pushdown query is
a connected subgraph G’ = (V',E’) of G if there exists a remote site
Sk (k # 0) that supports join operation, s.t. E' = {(Ri, R;j)|(Ri, R;) €
EAR €V ARj € VV} AVR € V' : s(R) = S.

3Not to be confused with “join pushdown” in centralized systems, where an operation
is performed before others on the same system.



Plan Graph Partition Rewrite Plan

SELECT ... FROM t,, t, WHERE t,.c=t,.c

Py £,(5,): SELECT ... FROMR, S, TWHERE R.a=S.a AND R.b=T.b
t(S,): SELECT ... FROM U
SELECT ... FROM t,, t;, t; WHERE t,.b= t,.b AND t,.c=t5.c
P, £,(5,): SELECT ... FROM R, SWHERE R.a=S.a

t5(5;): SELECT ... FROMT
t3(S,): SELECT ... FROM U

Figure 3: Two valid rewrites for federated query: SELECT ...
FROM S;.R,S;.S,S;.T,S>.U WHERE R.a=S.a AND R.b=T.b AND R.c=U.c.

In Figure 3, each subgraph represents a pushdown query. Since
the local query always joins the results of all pushdown queries
along with local relations (if any), we can define a rewrite plan as:

DEFINITION 2 (REWRITE PLAN). A valid rewrite plan P is defined
by a set of valid and non-overlapping pushdown queries {G1, Gz, ...}
that cover all the remote relations. That is, Ug,epVi = {RIR € V A
s(R) # So}/\VGi,Gj EP:ViNVj= 0.

Figure 3 demonstrates two examples of valid rewrite plans. The
above definitions (i.e., pushdown query, rewrite plan) also corre-
spond to the output of Accio elaborated in Section 3.1. Finally, we
define the join pushdown problem for the “bolt-on” setup:

DEFINITION 3 (BOLT-ON JOIN PUSHDOWN). Given a federated
query, the bolt-on join pushdown problem aims to find the valid
rewrite plan with the minimum estimated cost.

Challenges. Bolt-on join pushdown has the following challenges:

1). Large Search Space. Unlike projection and filter, it is not always
favorable to push down joins. This is because DS engines usually
adopt a columnar-vectorized design, which is optimized for analyt-
ical workload and therefore can be much faster than legacy data
sources (e.g., PostgreSQL) on small/medium-sized data. To find the
best plan, one needs to traverse a large search space, which can be
up to the Bell number B(n) [67] (see [69] for more details).

2). No Physical Control. The rewrite plan cannot control the physical
execution of the query, such as join ordering or join algorithm
selection. For example, the local engine, rather than Accio, decides
how to physically join t3, 5 and t3 for P from Figure 3. Worse, these
physical properties affect the actual cost of a rewrite plan and vice
versa. Taking join order for example, P; in Figure 3 might be better
than P, with order (#; >« t3) »< t3, but inferior to (t; >« t3) > £y,
And order ((R»< S) >« U) >« T is feasible for P;, but not for P;.
The second challenge distinguishes the join pushdown problem
in our “bolt-on” setup from existing distributed/federated DBMSs.
To the best of our knowledge, we are the first to study this problem.
4.2 Adapting from Distributed/Federated DBMS

Although different, one can always adopt existing optimizations
for distributed/federated DBMSs and convert the result physical
plan into SQL queries for “bolt-on” federation. We discuss two
well-known approaches here and identify their issues.

Exhaustive Approach. Previous work [34, 50] introduced the
concept of interesting site, which is a physical property indicating
the locality that performs the operation. The new property can be
applied to exhaustive join enumeration algorithms (e.g., dynamic
programming) to generate a distributed plan. A concrete example
can be found in our technical report [69].

The primary drawback of the exhaustive approach lies in the
computational overhead. Specifically, the time complexity is O(s> *
3™), where n and s denote the number of join factors and the num-
ber of sites involved [50]. As demonstrated in Section 6.2, traversing
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Figure 4: Example of the best plan found by two-phase ap-
proach (P;) v.s. iterative approach (P2). Number in the plan
tree denotes the size of data transfer. Colors denote sites.

the entire search space can take seconds. Moreover, unlike in dis-
tributed DBMS, the exhaustive approach in the “bolt-on” setup
cannot guarantee to find the optimal plan even if the statistics are
correct, due to the lack of control over the actual physical execution.

Two-phase Approach. The two-phase hypothesis [44] was adopted
for the query optimization of distributed/federated DBMSs [21, 36,
66], which first generates the best join order assuming a central-
ized setup and then finds the best decomposition of the plan by
scheduling each fragment to a specific site.

The issue of this approach is that it overlooks the interaction
between join pushdown and ordering. By determining the join order
in the first phase without considering data movement costs and
pushdown possibilities, it may result in expensive plans that stall,
waiting for data transfer to complete. Figure 4 shows an example,
where a fact table R is joined with a co-located dimension table S
and T from another site. P; has a reasonable join order as it greatly
reduces the size of the intermediate data. However, this order makes
join pushdown impossible, resulting in a suboptimal plan that has
to move the large fact table through the network. In this case, P, is
preferable, despite having a suboptimal global join order.

4.3 TIterative Approach

The primary issue with the above solutions is that they tend to
focus more on join ordering than on pushdown, which is inefficient
for our setup because the order cannot be fully controlled in the
“bolt-on” fashion. Thus, we propose an alternative approach, which
iteratively pushes down the most beneficial join, considering join
order only for cost estimation using a heuristic algorithm.

Algorithm 1: Iterative Framework

Input: R = {Ry, ..., R, }
1 R = R; P* = joinOrdering(Sy, R);
2 foreach R; # Rj € R: s(R;) =s(R;) # S do
if ~connected(R;, R;) then
| continue;
B[{Ri,Rj}] = benefit(R; NRj);
while |B| > 0 do
{Ri,R;} = argmax B[{R;,R; } |;
R’ = joinOrdering(s(R;), {r|[r e RA(r e R;Vr € Rj)});
B=B\{{Ra,Rp}|Ra € {Ri,R;} VRp € {Ri,R; } };
foreach Ry € R\ {Ri,R;} : s(R) =s(R’) do
if =connected(Ry, R") then
| continue;
B[{Rk,R’}] = benefit(Rx > R’);
R=R\{Ri.R;} U{R'}:
if benefit(R; »< R;) > 1 then
pP= joinOrdering(So,ﬁ);
if C(P) < C(P*) then
‘ P* =P,

18
19 return P*;

The framework is illustrated by Algorithm 1, where joinOrder-
ing(S, R) refers to a join ordering algorithm that simulates the
process of ordering factors within R on site S by first fetching all
factors to S if they are not already there. The function benefit is
a criterion used to prioritize joins for pushdown, which will be



discussed in detail later. First, we generate a candidate plan, which
fetches all base relations to local for integration, as the initial best
plan P* (line 1). Then, pairwise factors are validated for pushdown
eligibility, and each valid pair is added to the pushdown candidate
set B with a benefit score (lines 2-5). Next, we iteratively generate
one candidate plan at a time in a greedy fashion. Specifically, at
each iteration, the pair {R;, R;j} with the highest benefit score is
selected (line 7), and a factor R’ is generated by pushing down all
the joins among the base factors within R; and R; to the correspond-
ing remote site (line 8). Pushdown candidates are then updated by
removing those that overlap with R; or R; (line 9) and adding new
ones formed by joining the remaining factors with R’ if applica-
ble (lines 10-13). The remaining factor set R is also updated by
replacing R; and R; with R’ (line 14). If the benefit of the selected
join is greater than 1 (line 15), indicating a potential performance
improvement, a new candidate plan is generated by joining the
remaining factors locally (line 16). The best plan is updated if this
new candidate has a smaller estimated cost (lines 17-18). The pro-
cedure continues until no more joins can be pushed down (line 6).

It is clear that using Algorithm 1, both P; and P, from Figure 4
would be generated (at line 1 and in the first iteration, respectively),
and the one with a lower estimated cost will be chosen. Algorithm 1
incrementally pushes down one join at each iteration and invokes
the join ordering algorithm for both the new pushdown query
and the global query. Thus, let O(X) be the complexity of the join
ordering algorithm, the complexity of the iterative framework is
O(X * n), where n denotes the number of join factors.

Cost Model. We adopt the calibration-based [49] approach to ex-
tend the Coy [56] cost function:

0,
[R| - ys + C(Ry) + C(Ry),

R is a base relation;

R) =
CR) { R =R; »s Ry,

where ys represents the relative cost of executing the same join
at site S over the local engine (i.e., ys, = 1). The advantage of
Couz is that it only depends on the cardinality without the need of
physical information. Similarly, we use a parameter rg to model
the overhead of fetching intermediate result R from site S to local:

C(fetch(R)) =|R| - s + C(R).

Thus, our cost model C simply abstracts the relative join execution
performance and the data transfer overhead of each remote site S
into two non-negative coefficients: ys and rg respectively.

Join Pushdown Criterion. Using the annotations of the above cost
functions, we can define the join pushdown criterion as follows:

DEFINITION 4 (PUSHDOWN BENEFIT). Let Cip = C(Ry) + C(R2),
we derive the benefit of pushing down a specific join Ry > Ry to S
(s(R1) = s(Rz) = Sk # So) as:

C(fetch(Ry) »<s, fetch(Ry)) — Cin

benefit(Ry »< Ry) = C(fetch(Ry »<s; R2)) — Cin

ey

Intuition & Analysis. Obviously, the iterative approach is heuris-
tic and can lead to suboptimal results. In [69], we formally prove
that it can find the best rewrite plan for some star queries with
certain restrictions. Here, we discuss some general intuitions.
From a high level, by deducting the total cost C;, associated
with the inputs of a join, the pushdown benefit isolates the impact
from pushing down this single join, considering its input/output
cardinality, data movement overhead and the performance variance
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between local and remote systems. Specifically, Equation (1) can be
expanded using C as:

1
TS T VSk '

|Ri| + [Rz|
[R1 < Ry |

Tsk

benefit(R; > Ry) = E——
I3 3

Intuitively, for a specific remote site, a join becomes more favorable
for pushdown when its input is large and the output is small. While
the former relates to the data transfer cost if it is not pushed, the

latter corresponds to the join cost and data transfer cost if it is
|Ry |[+|R, |
[Ri><Ry |
factors. The coefficients ys, and rg, further adjust the benefit for the
remote site S according to its relative execution and data transfer

overheads compared to others within the federation setup.

pushed down. The term heuristically combines these two

5 QUERY PARTITIONING

We show how Accio 1) accommodates various partition schemes
and 2) incorporates query partitioning opportunities into the cost-
based rewrite process. We assume static datasets here, but our
approach can be easily extended to dynamic ones as long as a
consistent snapshot of each data source is available, which has
been widely studied in prior work [51, 72, 76].

Accio exposes the following interface for query partitioning:
interface QueryPartitioner {

fn get_scheme(q) -> scheme;

fn estimate(q, scheme) -> cost;

fn partition(q, scheme) -> partitions;

}

The interface is seamlessly integrated into the rewrite process.

Specifically, during the optimization phase () in Figure 2), the func-
tion get_scheme is invoked for each pushdown query g enumerated
by Algorithm 1. The output scheme structure contains informa-
tion that defines how to partition the pushdown query, such as
the partition column and the number of partitions, and is attached
to g. If there is a valid partition scheme, the estimate method is
then used to overwrite the estimated cost described in Section 4 for
fetching q to local. Finally, to generate the rewrite plan (3 in Fig-
ure 2), the partition function converts the pushdown query into
the corresponding format, such as a list of partitioned queries that
can be executed directly through multiple connections.
Implementation & Extensibility. We describe an implementation
used in our experiment for PostgreSQL data source.
A Concrete Example. From a high level, we evenly partition the CTID
field, a system column exists in every PostgreSQL table that denotes
the physical location of the tuple, for large pushdown queries that
contain only one base table. Specifically, given a pushdown query,
get_scheme first inquires its cardinality and checks the number of
base tables involved. If the cardinality is smaller than 100K or there
are multiple tables, we return null, indicating no partitioning. Oth-
erwise, we derive the number of partitions np as min(|R|/100K, 32).
Intuitively, if the table is larger, we split the query into more par-
titions with a maximum number of 32. The constant values here
(i-e., 100K, 32) are configurable. estimate then adjusts the cost of
fetching the query with a new multiplier 1/n,. As for do_partition,
it places a predicate on top (e.g., 0';‘, in Figure 2), which evenly filters
the CTID column of the base table, and then converts the plans into
declarative queries in PostgreSQL dialect.

Through implementing the QueryPartitioner interface, Accio
can be extended to support a variety of partitioning strategies.
For example, rather than using the CTID column, partitioning can



Table 2: Dataset table grouping based on prior work [71].

Dataset Group 1 Group 2 Group 3
at,cn, ct, k, cc, cet, I, t, an, ci, chn,
JOB S o
kt, me,mk  mi, mii, ml ¢, it pirt,n
TPC-H part, lineitem, customer, supplier,
partsupp orders nation, region

also be performed on a column from the queried table. One could
also exploit the specific underlying data layout. For instance, if
the base table is already partitioned in the data source, one can
directly access distinct partitions in each output query. Additionally,
partitioning can be applied not only to single-table queries, but also
to queries involving join operations, such as by splitting the largest
table among all join tables or partitioning each table based on their
corresponding join keys. Due to space constraints, more detailed
examples are deferred to the technical report [69].

Tradeoff Discussion. There is a tradeoff between the generality
and effectiveness of partitioning strategies. This is because the ef-
fectiveness of a partitioning strategy is influenced by two critical
factors, both of which depend on the specific characteristics and
layout of the underlying queried data. 1) Partition evenness. Uneven
partitioning can result in stragglers that transfer disproportionately
large amounts of data, nullifying the benefits of parallelism. The
ability of a partitioning scheme to achieve even splits, however, de-
pends on the specific layout/distribution of the queried data, which
varies across different datasets and queries. 2) Introduced overhead.
Partitioning may introduce additional overhead at the data source
since the queries issued to generate partitions may share the same
costly subplan (e.g., full-table scan). Whether this overhead is small
enough to justify the partitioning depends on the physical storage
layout of the data. For instance, certain layouts (e.g., partitioned
or indexed) may naturally align with a given partitioning scheme,
minimizing overhead, while others may incur significant costs.

Therefore, as a “bolt-on” library that may be adopted in various
federation setup, Accio focuses on providing the extensible mecha-
nism rather than dictating the specific strategy used. We leave it
for future work to explore more partitioning strategies and develop
methods to select the best one for each specific scenario.

6 EVALUATION
6.1 Experimental Setup

Source code, workloads, and configurations used in our experiments
are publicly available at https://github.com/sfu-db/accio.

DS Engines. We evaluate Accio on five DS engines: Spark [28]
(v3.5.1), DuckDB [60] (v0.10.3), DataFusion [42] (v39.0.0), Polars [16]
(v1.3.0) and ClickHouse [8]. We adopt the embedded version of
ClickHouse, namely chDB [7] (v1.3.0), as it provides a more friendly
dataframe API in Python. Since enabling join pushdown requires
a data fetching mechanism capable of issuing arbitrary queries to
RDBMS data sources, which chDB, DataFusion, and Polars currently
lack, we use ConnectorX [70] to fetch the results of the pushdown
queries in the form of Arrow [3], and then convert them to their
internal data format. We slightly modify DuckDB’s PostgreSQL
scanner so that it can leverage multiple threads for arbitrary query
partitioning. These modifications are simple and non-intrusive,
requiring less than 100 lines of code in most cases.

Hardware and Platform. We use three servers with two 20-core
Intel Xeon Gold 6242R CPUs clocked at 3.10GHz, each has 80 hyper-
threads and 375GB main memory. We deploy the target DS engine
on one server and two PostgreSQL (v16.2) instances as data sources
on two other servers, respectively, and test under 10Gbps network
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Table 3: Comparison of join pushdown approaches on Spark
(10Gbps, JOB, unit: seconds).

‘ NoPush PushAll Exhaustive TwoPhase Iterative
Max 31.32 210.99 80.80 207.81 73.65
99th 27.95 70.14 39.56 26.67 25.42
90th 21.61 12.35 9.985 19.91 6.003
50th 3.225 1.595 1.745 2.865 1.570
Avg 7.782 6.095 4.152 7.443 3.492

and 1Gbps network bandwidth controlled by netem [43]. Unless
otherwise specified, we configure all tested engines to use 32 cores
and up to 128GB of memory, and the two PostgreSQL instances with
a maximum of 16 parallel workers and 128GB of shared buffers.

Datasets and Workloads. We use the Join Order Benchmark
(JOB) [54], and TPC-H [20] benchmark with various scale factors
(1,10,50) for evaluation. We use all 113 queries from JOB and report
the result of ten queries, ranging from joining two to eight relations,
for TPC-H. We follow previous work [71] to divide the tables of
each dataset into three groups as in Table 2. Each group contains
6%, 31% and 63% (13%, 85% and 2%) of the total size of JOB (TPC-H)
dataset respectively. For each dataset, we construct three different
table distributions (indicated by A, B, C), each of which places a
different group on one data source and the rest on the other. Note
that we place all tables on remote data sources to make the queries
more challenging (i.e., a larger exploration space for join pushdown
and query partitioning), even though Accio supports queries with
base tables residing in the local target engine as well.

Implementation. Accio is implemented in Java leveraging Cal-
cite [30]. It exposes interfaces in Python, Java, Rust and C/C++ for
integration, and provides wrappers that can execute the rewrite
plans on the five engines above directly. The implementation of the
wrapper is simple and straightforward (less than 50 lines of code
each). Unless otherwise specified, we issue Explain statements to
get estimated cardinalates from each PostgreSQL instance for data
that reside at the same source and use simple and widely adopted
heuristics [54] for cross-site joins. We manually tune the hyperpa-
rameters in the cost model using grid search and derive a set of
default values for evaluation. Automatic tuning of these parameters
is beyond the scope of this paper. Each query is repeated five times
after warm-up and the averaged result is reported.

6.2 Efficacy of Accio Optimizations

Join Pushdown. We evaluate three cost-based methods described
in Section 4, i.e., Exhaustive, TwoPhase and lterative, along with
two rule-based baselines: NoPush and PushAll. While the former
fetches all the base tables (with projection and filter pushdown),
the latter pushes all non-cross-product joins as long as they can
be executed at one of the remote sites. We adopt the widely used
GOO [39] algorithm as the heuristic join ordering method for both
TwoPhase and Iterative. Exhaustive and TwoPhase utilize the same
cost model with Iterative as discussed in Section 4.3. To mitigate
the possible impact of the adopted cardinality estimation strategy,
in this experiment, a single PostgreSQL instance with all the data
ingested is inquired for cardinality estimates. Query partitioning is
disabled in this comparison.

Table 3 shows the max, 99th and 90th percentile, median and
average latency of all queries from the three table distributions of
JOB with a 10Gbps bandwidth on Spark. Iterative shows the best
performance, which outperforms NoPush, PushAll and TwoPhase
by 2.2x, 1.7x and 2.1X, respectively. An interesting finding is that
Exhaustive is approximately 20% slower than Iterative on average.
We think it is due to two reasons. First, since Exhaustive explores
the entire search space, it is more sensitive to inaccuracies in cost


https://github.com/sfu-db/accio

2

—e— Exhaustive
TwoPhase
Iterative

2

Overhead (ms)

B
-

0.

o

%

10
# Tables

Figure 5: Maximum rewrite overhead of cost-based join push-
down approaches group by # join tables on JOB.

<=7 8 9 11

estimation, such as errors in cardinality estimates, cost model, and
discrepancies between the join order assumed by Accio and the
final physical plan executed. Second, as we will demonstrate next,
the overhead of Exhaustive becomes increasingly significant as the
number of tables rises beyond a certain threshold. The remaining re-
sults can be found in [69]. In summary, Iterative consistently shows
the best overall performance on all engines, whose average latency
is around 1.1%, 1.1X, 1.4X and 1.3X faster than the second best
approach on DuckDB, chDB, DataFusion and Polars, respectively.

Figure 5 shows the rewrite overhead of the three cost-based join
pushdown methods. Exhaustive scales exponentially with more
tables joined in the query (up to ~8 seconds). Both TwoPhase and
Iterative keeps the overhead within around 100ms, which is neg-
ligible considering the data transfer overhead and the execution
time of analytical queries under the federation setup.

Query partitioning. We disable join pushdown and show the
efficacy of query partitioning alone (i.e., fetching all base tables
with projection and filter pushdown to local for join). Since no join is
pushed, different table distributions illustrate similar results. Thus,
we only show the result of distribution A for each workload. In
order to leverage Spark’s native query partitioning mechanism [23],
we partition the queries on its first projected numerical column and
set the number of partitions to four. Figure 6 shows the latency of
the two workloads on Spark with 10Gbps bandwidth. We observe
that query partitioning effectively improves the performance. In
particular, by enabling query partitioning, the performance of a
single query can be accelerated by up to 3.7x on TPC-H, and the
accumulated latency of JOB is around 60% faster. The results on
other four engines exhibit similar patterns, as detailed in [69].

6.3 Performance Comparison

Enable Query Federation. We demonstrate that Accio enables
efficient query federation for DataFusion and Polars. Since neither
of these engines provides native federation support, we compare the
performance of the Accio-enabled solution against a Naive baseline.
The baseline fetches all necessary tables (with projection and filter
pushdown) without partitioning and joins them locally.

The three bars A-C in Figure 7a and Figure 7c denote the speedup
on the three table distributions for TPC-H queries. A “X” is placed
on Q5 in Figure 7a due to an OOM error raised by DataFusion, and
on Q7 and Q19 in Figure 7c since Polars currently does not support
disjunctive join conditions. For the remaining TPC-H queries, Ac-
cio consistently outperforms the Naive baseline for both engines,
achieving up to 14X and 17X speedup under 1Gbps and 10Gbps
bandwidth conditions, respectively. Figure 7b and Figure 7d show
the time distribution of all JOB queries from the three table distri-
butions. The average improvement is 3.7X and 5.3X (4.4X and 6.1X)
on DataFusion (Polars) under 1Gbps and 10Gbps, respectively.

Improve Query Federation. We take Spark, DuckDB and chDB,
and compare their performance without (i.e., using their existing
implementations) and with Accio. The result for chDB can be found
in [69]. Figure 8a shows the performance speed up after integrating
Accio to Spark on TPC-H. It is clear that Accio brings significant
improvement under both network conditions. In fact, it is beneficial
on almost all queries of TPC-H with up to 16X speedup. For JOB
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Figure 6: Impact of query partitioning on Spark (10Gbps).

(Figure 8b), we observe that Accio steadily improves the overall
performance by more than 4x under both network conditions.

Figure 8c and Figure 8d present the results on DuckDB. We
observe that Accio generally provides better performance under
1Gbps bandwidth but may be slower under 10Gbps. This is because
DuckDB’s native PostgreSQL scanner is highly efficient with query
partitioning already enabled. Furthermore, DuckDB outperforms
PostgreSQL when data fit in memory. As a result, with high band-
width, fetching base tables and performing joins on DuckDB tends
to be more beneficial, while Accio may delegate some joins to re-
mote sites, leading to a less optimal plan. Despite this, Accio is still
capable of finishing every query in a reasonable time frame (<20
seconds) and being faster for some queries. When bandwidth is
limited, the pushdown decisions made by Accio become helpful,
as the primary bottleneck shifts back to the data transfer. In such
cases, Accio helps DuckDB exhibit less degradation.

Compare with Standalone FDBMS. We compare the perfor-
mance between Trino [21] (release 453), a fork from Presto [64],
and Spark enhanced by Accio since both systems are scalable and
built for big data analysis. Trino is deployed on the same server and
is configured to use at least the same amount of CPU and memory
resources as Spark. We report the result of Trino, Spark and Spark
+ Accio. The first three figures of Figure 9 present the result of
running TPC-H with scale factor varying from 1 to 50 over table
distribution A (see [69] for B and C) given 10Gbps bandwidth. We
can see that although there is no clear winner between Trino and
native Spark, Accio can help Spark beat Trino significantly and
consistently by up to 8x. The last figure shows the result on JOB,
where native Spark is about twice as slow as Trino to complete
all queries, which, in turn, is more than twice as slow as Spark
+ Accio. Due to space limitation, we leave the comparison with
Apache Wayang [26, 29, 52] to our technical report [69].

7 RELATED WORK

Standalone Federation Systems. Federated DBMSs [65] aim to
coordinate a collection of autonomous DBMSs. Garlic [34, 63] inte-
grates different data sources using a mediator-wrapper architecture,
which is widely adopted later. More recently, ployglot and cross-
platform data systems [24, 26-28, 37, 38, 41,45, 47, 48, 52, 64, 68] fur-
ther renewed interest in query federation. In particular, Presto [64]
and its derivative products, including Trino [21], AWS Athena [2]
and Huawei Hetu [14], have become popular for supporting query-
ing multiple data sources with a unified SQL interface. Unlike these
systems that offer federation functionality directly through their
own engines, Accio is designed as a library that enables and en-
hances federation capabilities of various given query engines.

In-situ Query Federation. Tableau [71] uses a machine learn-
ing model to dynamically choose the best federation engine for
each query using the cost estimation from each instance. XDB [40]
delegates the entire query to existing DBMSs leveraging similar
query rewrite mechanism as Accio. These previous works address
scenarios where no fixed federation engine is designated. That is,
they study the problem of selecting the best engine(s) for federation
across all systems involved, assuming pre-established interconnec-
tions. In contrast, Accio aims to enable efficient query federation
for a specific target engine with fewer constraints.
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Virtual Data Integration Systems. Accio also shares similari-
ties with virtual data integration systems [55], particularly in the
overall query processing workflow. Like Accio, mediator-wrapper-
based virtual data integration systems [25, 31-33, 46, 53, 61] also
decompose an input query into multiple subqueries that are sent
to different data sources, with the results retrieved and integrated
locally. However, unlike Accio, these systems are essentially stan-
dalone platforms with dedicated engines as part of the mediator
for integration execution. They are designed for general data inte-
gration scenarios, emphasizing handling data heterogeneity using
semantic technologies such as RDF and SPARQL. In contrast, Ac-
cio is a “bolt-on” library that aims to enable efficient federation
capabilities for various relational query engines. Thus, we focus
on techniques (e.g., join pushdown, query partitioning) that are
applicable to general relational engines via the SQL interface.

8 DISCUSSION AND FUTURE WORK

Rule-based Rewrite. The optimization phase (2 in Figure 2) of
Accio applies a series of transformation rules utilizing the extensible
Calcite framework [30]. These rules, fired in multiple stages, in-
clude both provided ones (e.g., unnesting correlated subqueries [6],
predicate pushdown [5]) and newly implemented ones (e.g., join
pushdown, query partitioning). Likewise, Accio can be easily ex-
tended to incorporate additional transformations in a rule-based
manner, such as constant folding [15, 18], common subexpression
elimination [9, 19] and group-by pushdown [35, 73, 74].

Cost-based Group-by Pushdown. Enabling group-by pushdown
within the Iterative Framework of Accio in a cost-based manner is
not trivial, as exhaustively applying all possible transformations
considerably enlarges the search space [35]. Inspired by previous
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work [35], one possible solution is to push down a group-by oper-
ation only if it results in a cheaper pushdown query locally. This
approach is lightweight and also provides guarantees regarding
the quality of the resulting plan. More detailed discussions can be
found in the technical report [69]. We leave the exploration of more
sophisticated designs for future work.

Adaptive Pushdown. Joins pushed down by Accio can be coun-
terproductive when the hyperparameters (i.e., y, 7 from Section 4.3)
cannot reflect the realtime resource availability of the remote sites.
Adjusting these parameters through monitoring could mitigate this
issue but not resolve it, as resource utilization can fluctuate be-
tween planning and runtime. [75] proposes to adaptively push back
requests when the storage layer is under heavy load. It requires
modifications to both data sources and the target engine, which
lies beyond the scope of a “bolt-on” library like Accio. However,
Accio can be used to reduce the efforts needed to support it. For
example, Accio can be extended to generate a fallback plan that
avoids pushing down joins to data sources identified as being under
heavy load at runtime, eliminating the need for re-optimization
within the target engine. We leave this as an interesting direction
for future work and defer more detailed discussions to [69].

9 CONCLUSION

We studied the problem of “bolt-on” query federation. We identified
the issues of supporting federated queries in existing solutions
and proposed to decouple this feature into Accio, a middleware
library designed to enable efficient query federation for various DS
engines. We integrated Accio with five DS engines and conducted
extensive experiments, showing that Accio can easily “bolt-on” to
these systems while delivering high and robust performance.
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