
ACE: A Cardinality Estimator for Set-ValuedQueries
Yufan Sheng

University of New South

Wales

Sydney, Australia

yufan.sheng@unsw.edu.au

Xin Cao
∗

University of New South

Wales

Sydney, Australia

xin.cao@unsw.edu.au

Kaiqi Zhao

The University of Auckland

Auckland, New Zealand

kaiqi.zhao@auckland.ac.nz

Yixiang Fang

The Chinese University of

Hong Kong, Shenzhen

Shenzhen, China

fangyixiang@cuhk.edu.cn

Jianzhong Qi

The University of

Melbourne

Melbourne, Australia

jianzhong.qi@unimelb.edu.au

Wenjie Zhang

University of New South

Wales

Sydney, Australia

wenjie.zhang@unsw.edu.au

Christian S. Jensen

Aalborg University

Aalborg, Denmark

csj@cs.aau.dk

ABSTRACT

Cardinality estimation is a fundamental functionality in database

systems. Most existing cardinality estimators focus on handling

predicates over numeric or categorical data. They have largely omit-

ted an important data type, set-valued data, which frequently occur

in contemporary applications such as information retrieval and rec-

ommender systems. The few existing estimators for such data either

favor high-frequency elements or rely on a partial independence
assumption, which limits their practical applicability.

We propose ACE, an Attention-based Cardinality Estimator for

estimating the cardinality of queries over set-valued data. We first

design a distillation-based data encoder to condense the dataset

into a compact matrix. We then design an attention-based query

analyzer to capture correlations among query elements. To handle

variable-sized queries, a pooling module is introduced, followed by

a regression model (MLP) to generate final cardinality estimates.

We evaluate ACE on three datasets with varying query element

distributions, demonstrating that ACE outperforms the state-of-

the-art competitors in terms of both accuracy and efficiency.

PVLDB Reference Format:

Yufan Sheng, Xin Cao, Kaiqi Zhao, Yixiang Fang, Jianzhong Qi, Wenjie

Zhang, and Christian S. Jensen. ACE: A Cardinality Estimator for

Set-Valued Queries. PVLDB, 18(7): 2112 - 2125, 2025.

doi:10.14778/3734839.3734848

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/shengyufan/ACE.

1 INTRODUCTION

Set-valued data where the value of an attribute is a set of ele-

ments has emerged as an essential data type in many real-world

applications, including information retrieval [8], recommender

systems [1], and social networks [43]. For example, in a movie

∗
The corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 7 ISSN 2150-8097.

doi:10.14778/3734839.3734848

Table 1: Twitter hashtag dataset

Tweet_ID Hashtags

𝑡1 {Trump, shot}

𝑡2 {Spain, Euros, Yamal}

𝑡3 {Biden, Harris, Trump}

𝑡4 {Harris, Trump, debate}

𝑡5 {JD Vance, Trump}

𝑡6 {Messi, Yamal}

𝑡7 {Messi, Argentina, Copa America}

recommender system, each movie’s genre is generally associated

with a set of categories such as sci-fi, action, and comedy. In X

(http://www.twitter.com), each tweet generally has multiple hash-

tags. Table 1 shows a toy example, where each row corresponds

to a tweet and the Hashtags column is a set-valued attribute that

stores the hashtags of a tweet.

Given the prevalence of set-valued data across different domains,

set queries play a crucial role in efficiently handling multi-valued

attributes and complex relationships. For example, X offers the

functionality of searching for tweets by a set of keywords or hash-

tags using operators such as “OR” and “AND”. The SQL standard

includes support for storing multi-valued data in a single row [39].

Set-valued data and set queries are supported to varying degrees

by modern DBMSs such as Oracle [64], MySQL [63], IBM DB2 [31],

SQL Server [73], and PostgreSQL [68]. For example, MySQL sup-

ports up to 64 distinct elements in a set-valued attribute [63]. SQL

Server enables passing a set as a table-valued parameter. To the best

of our knowledge, PostgreSQL offers the best support for set-valued

data and set queries. It provides three set query predicates: superset
(@>), subset (<@), and overlap (&&). For example, to evaluate public

interest in the recent United States presidential election, we can

count the number of tweets containing at least one presidential

candidate. This can be achieved using the following set query 𝑞 in

PostgreSQL: SELECT COUNT(*) FROM T WHERE T.Hashtags &&
ARRAY["Trump", "Harris"].

To identify efficient query execution plans for complex queries,

cardinality estimation of a query step plays a crucial role since

it directly influences the efficiency of database query execution.

Cardinality estimation has been extensively studied [27, 33, 34, 48,

67, 90], showing its profound impact on the quality of selected

query plans [25, 47]. However, most DBMSs provide only limited

support for optimizing set query execution. To our knowledge,

PostgreSQL is the only DBMS that offers a built-in estimator for set

1

2112

https://doi.org/10.14778/3734839.3734848
https://github.com/shengyufan/ACE
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3734839.3734848
http://www.twitter.com
https://www.acm.org/publications/policies/artifact-review-and-badging-current

operators but the accuracy is not good enough. In this study, we

investigate cardinality estimation for queries over set-valued data,

which has not received sufficient attention. While some cardinality

estimators for set-valued predicates exist [40, 59, 96], they each

have significant shortcomings.

First, most studies pay more attention to elements with

high frequency (P1). For example, Yang et al. [96] propose two

sampling-based cardinality estimators for subset queries that aim

to capture the distribution of high-frequency elements. They suffer

in accuracy over queries containing low-frequency elements [59].

Second, most existing estimators do not capture the correla-

tion among elements in a query well (P2), which is crucial for

accurate estimation. For example, “Harris” and “Trump” appear 2

and 4 times, respectively, in the example. If we assume indepen-

dence, the estimated cardinality for � is 2 + 4 = 6, while the actual

cardinality is 4 because �3 and �4 contain both keywords. Korotkov

et al. [40] leverage a probabilistic model [16] to address the element

correlation issue. However, their model still relies on random sam-

pling of high-frequency elements, thus missing the correlation for

low-frequency elements. Recently, Meng et al. [59] propose to con-

vert a set-valued column into multiple categorical columns. They

then utilize existing estimators to capture the correlation between

columns. This approach still ignores the correlation among ele-

ments within the same subcolumn, leading to unstable estimation

accuracy. Besides, this solution relies on that a set query can be

converted into categorical sub-queries, which does not support all

set queries such as the overlap query.

Third, existing studies mainly focus on capturing data distribu-

tion and overlook the valuable insights in historical query

workloads (P3). The cardinalities of two similar queries can differ

on the operators used, even when their elements are identical. For

example, the cardinality of the example query (� = � && {"Harris",
"Trump"}) is 4 while the cardinality of a similar superset query

(�′ = � @> {"Harris", "Trump"}) is 2. Learning the data distribution

only is insufficient for accurate predictions across various query

types. Set Transformer [46] processes input sets using an attention

mechanism to capture the correlations between elements, mak-

ing it a potential candidate for a query-driven estimator. However,

our experiments in Section 7 show that its accuracy is unstable

and sometimes performs much worse than data-driven estimators,

because it is impractical to represent all possible combinations of

elements given limited training data. Thus, pure query-driven meth-

ods that treat the problem as a supervised learning task also have

a severe issue: their accuracy highly depends on the quantity and

quality of the training data (i.e., known query workload) [25].

To address the issues above, we propose ACE, an Attention-based

Cardinality Estimator for queries over set-valued data. As depicted

in Figure 1, ACE leverages information from both the data and the

query workload to address P3.

To address P1, we design a distillation-based data encoder to

generate a compact dataset representation. We construct a bipartite

graph that models the relationships between the set elements and

their corresponding sets. This graph serves as the foundation for

the subsequent aggregation step. The aggregator module synthe-

sizes a set embedding by integrating information from all elements

of the set, ensuring that even low-frequency elements are not un-

derrepresented. Once the set embeddings are computed, they are

Data
S =

Distillation-based Encoder

Aggregator

Bipartite Graph

e1 e2 e3 eM

s1 s2 sN

= So
()

Distiller Sc
()

Attention-based Analyzer

= q''

Pooling

Query
S @>

M
LP Card

Ests

Correlator
Cross

Attention

Self
Attention

Figure 1: Overview of ACE.

Table 2: Properties of different estimators

Method

Query supported Data-

driven

Query-

driven

Low-frequency

elements

Element

correlationSuperset Subset Overlap

PostgreSQL � � � � × × ×
Sampling � � � � × × ×
OT-S [96] � � � � × × ×
ST [59] � � × � × � ��
STH [59] � � × � × � ��
ACE (Ours) � � � � � � �

concatenated to form the initial representation of the full dataset

(i.e., a database table of set-valued data), denoted as �� . For large
datasets, this representation has a high dimensionality, posing sig-

nificant challenges for downstream learning tasks. To address this

issue, a distiller module is designed to produce a more compact

representation, �� , which compresses the original representation

with a fixed ratio while preserving as much information as possible.

Next, we design a correlator module to capture element corre-

lations and address P2. For each query in a given workload, we

apply a cross-attention mechanism to generate the query element

embeddings using the data representation obtained from the pre-

vious step. The computational complexity of the attention mecha-

nism [5, 11, 75, 81] scales with the size of the input, i.e., the number

of rows in the data representation and the number of query ele-

ments, which emphasizes the necessity of the distillation step. Then,

we utilize the self-attention mechanism to capture the correlation

between the learned latent representation of query elements. It is

noteworthy that set-valued queries have varying sizes, bringing

another challenge for the learning-based estimator. We address the

challenge with a pooling module to generate a fixed-sized query

embedding � and finally a linear regression model to map the em-

bedding to a cardinality estimation.

Table 2 summarizes the novelty of our estimator ACE compared

with existing set-valued query cardinality estimators. Please note

that we use the symbol�� because ST and STH can only capture

correlations between elements in different columns. Overall, we

make the following contributions:

• We propose ACE, a learning-based cardinality estimator

for queries over set-valued data, exploiting both the data

and query workload distributions.

• We design a distillation-based data encoder to generate a

dataset compact representation, reducing the dimensional-

ity while retaining key information.

• Wepropose an attention-based query analyzer that captures

correlations among query elements, followed by a pooling

method to address the issue of variable-sized queries.

2113

• We compare ACE and the state-of-the-art estimators on real-

world datasets and query workload. The results show that

ACE outperforms the SOTA estimators by up to 33.9× in

terms of accuracy while offering a stable estimation latency.

Additionally, the integration of ACE and PostgreSQL also

speeds up the end-to-end execution for complex queries.

2 PRELIMINARIES

We start with our problem statement and technical background for

our proposed model. Table 3 lists the frequently used notation.

Table 3: Frequently used notation

Notation Meaning

𝑆 = {𝑠𝑖 }𝑁𝑖=1 The set-valued dataset

𝐸 = {𝑒 𝑗 }𝑀𝑗=1 The element universe of the dataset

𝑑 The dimension of the embedding

𝐵𝑑 /𝐵𝑞 The batch size of data/query

𝑟 The distillation ratio

𝑛distill The number of layers for the distillation model

𝑛cross/𝑛self The number of layers for the cross/self attention

𝒔/𝒆/𝒒 The set/element/query embedding

𝑺𝒐/𝑺𝒄 The original/distilled matrix of the dataset

𝑸/𝑲 /𝑽 The queries/keys/values of the attention mechanism

2.1 Problem Statement

Definition 1 (Set-ValuedQuery). A set-valued query 𝑞 =

(operator, literal) is a predicate over the set-valued data, represented
by an operator-literal pair. To be consistent with PostgreSQL, operator
can be the superset (@>), subset (<@), or overlap (&&) operator, while
literal is a subset of 𝐸.

For example, 𝑞 = 𝑆 @> {𝑒1, 𝑒3, 𝑒7} is to find the sets over 𝑆 , each

of which is a superset of {𝑒1, 𝑒3, 𝑒7}.
Problem. The study aims to propose an estimator that can accu-

rately and efficiently predict the cardinality of a set query.

2.2 Attention Mechanism

The attention mechanism was originally envisioned as an enhance-

ment to the encoder-decoder Recurrent Neural Network (RNN) in

sequence-to-sequence applications [5]. In neural networks, atten-

tion is a technique that aims to mimic human cognitive attention,

and its motivation is that a network should focus on the important

parts of the data rather than treating all data equally. It employs

an attention function to decide which part of the data should be

emphasized. This function maps a query and a collection of key-

value pairs, assigns weights by computing the similarity between

each pair of the query and a key using some metric, and calculates

the weighted sum of values as its output. Therefore, compared to

other neural networks, the attention mechanism can achieve better

interpretability and have higher representative abilities.

In this study, we use the standard Scaled Dot-Product Atten-

tion [81], called Att. The keys and values are mapped to matrices 𝑲
and 𝑽 , of dimensions 𝑛 × 𝑑𝑘 and 𝑛 × 𝑑𝑣 , where 𝑛, 𝑑𝑘 , and 𝑑𝑣 denote

the size of the original input and the dimensions of the matrices

𝑲 and 𝑽 . A query is first converted to an𝑚 × 𝑑𝑘 matrix 𝑸 , where
𝑚 indicates the size of the query and is used as input to the dot

product. If 𝑸 is different from 𝑲 and 𝑽 , it is called cross-attention.

Otherwise, it is self-attention. Since a large dot product result often

leads to the vanishing gradient problem, the Att function divides

the dot product by the factor

√︁
𝑑𝑘 . The process consists of calcu-

lating the dot products of 𝑸 with all keys 𝑲 , dividing each by

√︁
𝑑𝑘 ,

applying the softmax function to obtain the weights, and obtaining

the output by multiplying the weights and the values 𝑽 .

Att (𝑸,𝑲 ,𝑽) = softmax

(
𝑸 · 𝑲T√︁

dk

)
𝑽

Next, we adopt the multi-head attention mechanism [81], which

linearly projects the queries, keys, and values usingℎ different linear

projections and then computes the Att function in parallel. The

independent attention outputs are then concatenated and linearly

transformed into the expected dimension. Compared with single-

head attention, this approach processes different projected spaces

jointly, thus capturing complex patterns from different perspectives.

MultiHead (𝑸,𝑲 ,𝑽) = concat (head1, · · · , headh)Wo,

where headi = Att (𝑸WQ
i ,𝑲WK

i ,𝑽WV
i) .

3 OVERVIEW OF ACE

The structure of ACE is shown in Figure 1. The encoder (Section 4)

generates a compact data representation, while the analyzer (Sec-

tion 5) captures correlations between query elements by learning

from both the queries and the underlying data.

As in previous studies [30, 50], the first task is representing the

dataset properly. Sets in S are combinations of elements, and we can

naturally represent a set as the concatenation of the embeddings

of its elements. However, this representation is incompatible with

neural networks due to the variable sizes of sets. We need to convert

variable-sized sets into fixed-sized vectors. Traditional methods,

including padding and truncation, have limitations. For example,

padding causes storage overheads and increases time complexities.

Instead, we propose to learn the representations of sets. Assuming

the number of elements that can occur in sets is𝑀 , there are 2
𝑀 − 1

possible sets, making it hard to design one model to represent all

the sets. We propose to construct a bipartite graph to model the

dependencies between elements and sets and to learn an aggregator

to obtain a set embedding 𝒔 by aggregating the information of each

element 𝒆 in the set. Thus, the underlying dataset is represented by

a matrix 𝑺𝒐 where each row is the embedding of a set.

Next, we aim to learn the representation of the query elements

from data. This motivates us to employ a cross-attentionmechanism

to discover the relation between the underlying dataset and each

query element. The original data matrix 𝑺𝒐 cannot be used directly

in the attention framework for large-scale datasets. For instance,

training on our smallest datasetGN requires 42GB of GPU memory,

even with a batch size of 1. Thus, we design a distiller module to

obtain a matrix 𝑺𝒄 that preserves the essential knowledge in 𝑺𝒐 .
As shown in the example query in Section 1, it is crucial to

capture correlations between query elements, influenced by the

underlying data, to get accurate estimates. Thus, we propose a

correlator module to achieve this. We first leverage a data-query

cross-attention to measure the relevance between each query el-

ement and the underlying data. We then adopt a self-attention

mechanism to capture the correlations between the query elements.

In addition, the attention mechanism is suitable for dealing with

sets as the order of set elements does not affect the output.

2114

To handle the variable-size queries, we utilize a pooling module

to derive a fixed-sized vector. This vector extracts pertinent infor-

mation from the output of the self-attention mechanism and adapts

its focus based on the operator type of a set-valued query.

Offline training. The training process is divided into two distinct

phases. In the first phase, we employ an unsupervised learning

approach to train the data encoder, requiring only a small subset of

the dataset. In the second phase, we utilize a supervised learning

method to train the query analyzer, using both the query embed-

dings and the distilled matrix generated by the encoder as input.

During this stage, true query cardinalities serve as ground-truth

labels. The entire training procedure leverages stochastic gradient

descent (SGD) optimization [70].

Online estimation. In the pre-processing phase, a well-trained

data encoder can distill the entire dataset into a compact data matrix.

When a new query arrives, we can only utilize the learned query

analyzer to estimate the cardinality efficiently, taking the query

element embeddings and the matrix as input.

4 DATASET FEATURIZATION

When representing the set-valued dataset, PostgreSQL uses his-

tograms to approximate the distribution of the underlying data. A

recent study [59] converts a set into a smaller number of numer-

ical values, models the factorization problem as a graph coloring

problem, and proposes a greedy method to address the NP-hard

problem. However, this method cannot measure the correlation

between the elements in the same partition. Recently, machine

learning techniques have opened the opportunity to learn mod-

els that outperform many traditional methods [42, 102]. Thus, we

aim to learn a model that encodes each set and generates the data

representation. We also design a distillation model such that the

featurization matrix can be effectively used in the attention mecha-

nism. The details are given in Sections 4.1 and 4.2.

4.1 Set Representation

We follow the setting used in existing studies [40, 45] where the

element universe 𝐸 is finite and fixed, meaning each set consists of

known elements. To partition a set into several clusters, the existing

work [59] builds an undirected graph based on the underlying data,

where edges connect two elements that appear in the same set

and uses a greedy algorithm to partition elements into 𝑘 clusters.

Taking the scenario of 𝑘 = 3 as an example, the algorithm proceeds

in two phases. In the first stage, it builds a graph and uses the largest

first algorithm [41] to obtain initial partitions, ensuring that no

elements within a partition are contained in the same set. In the

second stage, the algorithm greedily merges partitions to produce

the result clusters, as illustrated in Figure 2a, where elements of the

same color belong to the same cluster. Although they utilize the

existing works [30, 97] to capture the correlation among clusters,

the correlation between the elements within the same cluster, such

as "Trump" and "Harris", cannot be measured. Unlike the previous

method, we represent the dataset as embeddings so that we can

leverage the machine learning method to capture the correlation

between elements appeared in a query.

However, proposing such a model is non-trivial. As analyzed

in Section 3, the number of combinations of 𝑀 elements equals

2
𝑀 − 1, making it challenging to learn a model that considers all

JD
Vance

Trump

Copa
America Argentina

Yamal

EurosSpain

shot

Harris

debate

Biden

Messi

(a) Element graph

r1

r3

r5

shot

Trump

Harris

Biden

debate
JD

Vance

r4

r2

r7

r6

Spain

Euros

Yamal

Messi

Argentina
Copa

America

(b) Element-set graph

Figure 2: Graph construction approaches.

possibilities. Motivated by existing works [10, 91, 105], we build a

bipartite graph to model the correlation between elements and sets,

as shown in Figure 2b. In this graph, an edge connects an element

to a set if the element appears in that set. Now, the problem shifts

to representing a set 𝑠 when its comprised elements are known.

Following this motivation, we propose an aggregator module

that takes element embeddings as input. A naïve approach is to

adopt pooling methods directly. However, pooling methods discard

considerable amounts of information. For example, max-pooling

only retains the highest value, ignoring the rest. Additionally, pool-

ing methods are non-trainable operations that cannot adapt to

various data, limiting their ability to extract complex representa-

tions and potentially leading to suboptimal feature compression.

Prior studies [24, 86, 99, 104] show that the Multi-Layer Perceptron

(MLP) [28] offers a simple yet effective approach to compute feature

representations for each input. Thus, we utilize an MLP to aggre-

gate the information from elements before performing pooling. The

process of generating the set embedding 𝒔 is described as follows

(where 𝒆𝒋 is the embedding of the element 𝑒 𝑗):

𝒔 = Pool
({
MLP

(
𝒆𝒋

)
, ∀ej ∈ s

})
Given the lack of inherent order among elements, any symmetric

vector function can be used as the pooling operator. Following the

prior work [24], we utilize the simple single-layer architecture with

the mean-pooling operator.

4.2 Dataset Distillation

The above aggregation model can encode each set as a 1 × 𝑑 em-

bedding and we can concatenate them together to obtain an 𝑁 × 𝑑

matrix 𝑺𝒐 representing the dataset, where 𝑁 denotes the number of

sets in the dataset. Motivated by the existing work [50], we aim to

use the attentionmechanism to link query elements with the dataset

representation. However, when dealing with large-scale datasets,

directly using 𝑺𝒐 is unrealistic. As introduced in Section 2.2, the

correlation in the attention mechanism is captured by the dot prod-

uct of 𝑸 and 𝑲𝑻
, meaning that the complexity of the mechanism

is proportional to the size of the dataset matrix. Since the size of

real-world dataset is usually larger than 10
6
, we aim to synthe-

size a small dataset such that models trained on it achieve high

performance on the original large dataset.

A naïve method is to draw a small sample from the original data

matrix. However, the resultant matrix is lossy, and the performance

depends heavily on the sampling quality. Recently, the problem of

dataset distillation has been studied in the field of computer vision.

Existing works [49, 85, 106] introduce different algorithms that

take as input a large real dataset to be distilled and output a small

synthetic distilled dataset, which is evaluated via testing models

trained on this distilled dataset on a separate real dataset. However,

these methods cannot be adopted to solve our problem because the

2115

dataset studied in previous works always has the label information

and they distill the data of the same class into a small dataset. For

example, the image dataset can be represented as� = {
(
��, ��

)
}�
�=1

where � denotes the number of training images, �� and �� denote

the image and its corresponding label, respectively. Then, they pro-

pose various approaches that can compress thousands of training

images into just several synthetic distilled images (e.g. one per class)

and achieve comparable performance with training on the original

dataset. However, our dataset representation lacks the essential

label information. Therefore, we aim to propose a distillation model

that can compress the large unlabeled dataset.

Cross
Attention FFN

K,V

Q Cross
Attention FFNQ Cross

Attention FFN...

K,V K,V

Weights optionally shared

Q

Figure 3: Distillation model.

As shown in the previous work [81], the self-attention mech-

anism allows the model to aggregate information across tokens.

Building on this, we aim to utilize the attention mechanism to com-

press the dataset �� . Since self-attention produces an output matrix

with the same dimensions as its input, we propose an iterative

cross-attention model, as illustrated in Figure 3.

Each cross-attention block consists of a single attention layer

��� , followed by a feed-forward neural network ��� . Initially, we

sample a set of embeddings as the initial value �0� . Then, we project
the distilled matrix to the query � while mapping the original

matrix to the key � and the value � . Note that we adopt residual
connections [29] and layer normalization [4] in our framework.

�̃ �� = LayerNorm
(
�i−1� + Att

(
�i−1� , ��, ��

))
,

� �� = LayerNorm
(
�̃ �� + FFN

(
�̃ ��

))

By iteratively applying the cross-attentionmechanism, ourmodel

can extract useful information from the original matrix while re-

ducing the size of the matrix simultaneously. This model can also

be seen as performing the clustering of the inputs with the la-

tent positions as cluster centers, leveraging highly asymmetric

cross-attention layers. Following previous works [35, 93], we share

weights between each instance of the cross-attention module (ex-

cept the first one) for parameter efficiency. Consequently, we utilize

the smaller �� as input of the following query analyzer.

4.3 Encoder Training

The dataset encoder comprises two distinct modules, each with an

optimization objective. To address this, we propose a combined loss

function that integrates both objectives, allowing training the two

modules simultaneously, in line with previous works [26, 56, 77].

The aggregation module aims to generate the set embeddings

by integrating the information from elements. To achieve this, we

predict whether there is an edge connecting the set and the element

based on their embeddings. Following the previous work [91], we

use the cross entropy (CE) [6] as the loss function to maximize log

probabilities for one-hop structure learning.

�CE =
∑

�

(
−����� + log

(∑
ek∈N (si)∪ej

���
�
�

))
,

where � � ∈ �� and � (��) = {�� | �� ∉ �� } denote the positive sample

and the collection of negative samples, respectively.

Regarding the distillation module, the objective is to compress

the dataset while persevering the knowledge as much as possible.

Motivated by the previous work [101], we use the maximum mean

discrepancy (MMD) [19] as the loss function. The primary purpose

of MMD is to determine whether two distributions are similar by

comparing their samples. This is achieved by mapping the samples

to a high-dimensional feature space using a kernel function and

then computing the mean distance between these features. This

function is particularly useful in transfer learning [57], which needs

to quantify the difference between two sets of data.

�MMD = 1

�2

∑
�, � � (� �ob, �

�
ob) +

1

�2

∑
�, � � (� �cb, �

�
cb) −

2

��

∑
�, � � (� �ob, �

�
cb),

where � is a kernel function (e.g., the Gaussian kernel) while � and

� denote the size of batch data �ob and �cb , respectively.
To train these models, we first split the underlying data based

on the batch size �� . Then, the data batches are divided into two

parts, the training dataset and the testing dataset. Since the element

universe is finite and fixed, we create the fixed representation with

dimension� ×
 , where each row represents one element. For each

training batch, we propose a hybrid training method that minimizes

an overall loss function �, combining ��� and ���� . To prevent

overfitting, we also use the L2 regularization technique.

min

(
� + ��2reg

)
= min

(
�CE + �MMD + � ‖Θ‖2

)
,

where � is the hyper-parameter to adjust the weight.

5 ANALYZER DESIGN

Given a query � and the distilled dataset �� , ACE discovers the

relations between query elements and data. Then, we capture the

correlation between query elements. The key challenge is the at-

tention mechanism [81] used in ACE. To handle the variable-size

input, we also propose an attention-based pooling method. Finally,

we employ a linear regression model to predict the cardinality of �,

taking the fixed-size embedding as the input. Detailed explanations

are provided in Sections 5.1 and 5.2.

5.1 Element Correlation

Before estimating the cardinality of a query �, we need to obtain the

query representation. A naïve method is to leverage the trained ag-

gregator to integrate the information from query elements. Because

the element embeddings are randomly initialized and fixed in the

data encoder, these initial embeddings lack meaningful information.

Additionally, the aggregator cannot capture the correlation between

query elements {�� | �� ∈ �}. Therefore, we need to propose another
method to complete the task.

Considering Figure 2b, each element can also be represented as

the collection of sets containing it. Thus, we propose to learn the

query representation from the underlying data. A simple method is

to flatten �� into a vector and concatenate the vector with embed-

dings of query elements. Then, the vector combining data and query

information can be fed into an MLP to generate the query embed-

ding. However, we observe that an element has a stronger relation

to the sets containing it. Therefore, we leverage the cross-attention

mechanism, which can pay more attention to these sets and learn

better embeddings of query elements based on the distilled dataset

representation.

After obtaining the embeddings, we need to capture the cor-

relations hidden in the embeddings. A simple approach is to use

2116

an MLP to learn the correlations dynamically. However, an MLP

applies the same transformation to all inputs regardless of their

importance and struggles to capture complex correlations. Moti-

vated by the previous work [50, 81], we utilize the self-attention

mechanism, taking these latent embeddings as the input, to capture

the correlations between elements.

Multi-head
Cross Attention

Add & Norm

Feed forward network

Add & Norm

Q K V

Multi-head
Self Attention

Add & Norm

Feed forward network

Add & Norm

Q K V

Figure 4: Hybrid attention framework.

In the first stage, we initialize the query embedding by stacking

query element embeddings and update the query embedding by

considering the information from the dataset. We employ ����

stacked attention layers to capture the correlations between the ini-

tial query embedding �′′0 and the distilled data matrix �� . Each layer
is identical and includes two sub-layers. The first is the multi-head

cross-attention sub-layer ���� where �� is used as � and � while

� uses �′′0 or the output of the last layer. On top of ���� , the feed-

forward sub-layer ��� uses stacked fully connected networks and

nonlinear activation functions, e.g., GeGLU [74], to map �̃′′� into the

latent representation �′′� . To prevent performance degradation and

ease the model training, we also employ a residual connection [29],

followed by layer normalization [4].

�̃′′
� = LayerNorm

(
�′′
i−1 + Att� (�′′

i−1, �� , ��)
)
,

�′′
� = LayerNorm

(
�̃′′
� + FFN (�̃′′

�)
)

The attention sub-layer establishes a bridge between query ele-

ments and data. It obtains element representations by aggregating

information from the most relevant parts of data embeddings �� ,
while diminishing others. The effect of particular attention can be

realized through learnable parameters of different layers.

In the second stage, we discover and measure the correlation

between query elements. We stack �
�� � identical attention lay-

ers. Similar to the first stage, each layer consists of a multi-head

attention sub-layer and a feed-forward sub-layer. Also, residual

connections are employed, followed by layer normalization. Unlike

the first stage, this self-attention sub-layer ���
 takes the same in-

puts of keys, values, and queries. They are either the output of the

first module, denoted as �′0, or the previous stacked layers.

�̃′
� = LayerNorm

(
�′
i−1 + Att� (�′

i−1, �
′
i−1, �

′
i−1)

)
,

�′
� = LayerNorm

(
�̃′
� + FFN (�̃′

�)
)

As introduced above, �′0 can be considered as new embeddings

for query elements, which integrate the information from the un-

derlying dataset. The use of the same input for the keys, values, and

queries makes each element in the output set of a layer attend to all

outputs in the previous layer and thus attend to all elements. More

importantly, the self-attention sub-layer quantitatively ’measures’

the relevance between a pair of elements, enabling the effective

Cross
Attention FFN

V

Q Add &
Norm

Add &
Norm

Average
Pool

K

Figure 5: Attention pooling.

discovery of implicit correlations between elements. Thus, the in-

formation from the data and query is encoded into the final output

embedding �′ that will be processed later.

5.2 Attention Pooling

Through the hybrid attention framework, the query embedding

�′ not only links the query with the underlying dataset but also

includes the correlation information of query elements, which can

be used for the cardinality estimation task. A model for set-input

problems should satisfy two fundamental requirements. First, it

should be permutation invariant, that is, the output of the model

should not change under any permutation of the elements in the

input set, which is inherently satisfied by our hybrid attention

framework. Second, such a model should be able to process input

sets of any size. For example, if the literal of a query is composed of

� elements, the dimension of the output query embedding �′ will
be � ×
 . Generally, three methods address this problem – pooling,

padding, and truncation. Pooling effectively reduces input size

by aggregating information from local regions, thereby reducing

computational load [17]. In contrast, padding increases input size,

while truncation may result in the loss of important information.

Additionally, pooling operations introduce a degree of translation

invariance, enhancing the model’s robustness to changes in the

input position [78]. Motivated by prior works [14, 79], we employ an

attention-based pooling module to generate the fixed-sized query

embedding � for predicting the corresponding cardinality.

As demonstrated in previous work [96], query elements with

varying frequencies can have opposite impacts on the cardinal-

ity of a query depending on the operator type. For example, con-

sider two queries composed of the same elements. In a superset

query, which aims to find sets containing all specified elements, low-

frequency elements have a stronger influence on cardinality than

high-frequency elements. Conversely, in an intersection query, the

resultant sets include at least one of the specified elements, mean-

ing that high-frequency elements have a greater impact on the

cardinality. Thus, the frequency information is first appended to

�′, which generates the (
 + 1)-dim embedding �′
�
, and then the

attention pooling module takes a random initialized embedding

�0 and �′
�
as inputs. After accessing �, the output of the pooling

layer, we use a simple linear regression layer �� to predicate the

cardinality estimation
 . It is noteworthy that we use the logarithm

of the frequency as the appending information and modify the con-

ventional residual connection inspired by the prior work [55, 87].

Figure 5 shows the framework of this module.

�̃ = LayerNorm
(
AvgPool (�′) + Att� (�0, �

′
� , �

′
�)
)
,

� = LayerNorm (�̃ + FFN (�̃)) ,
� = LR(�)

5.3 Analyzer Training

Fine-tuning the parameters of the query analyzer requires a training

dataset of which each record is a 3-tuple (�� , �� ,
�), where �� is the

2117

set-valued query consisting of 𝑘 elements, and 𝑐𝑖 denotes the true

cardinality of 𝑞𝑖 . In practice, collecting the training dataset, which

is split into batches to train our analyzer, is not difficult, and we

only need to collect the feedback of executed queries.

Since each module in the analyzer is differentiable, we train the

analyzer in an end-to-end manner. Here, we use the weighted mean

Q-error functionWMQ(·) as the loss function, which takes input

of the batch cardinality estimates 𝒄 ′
𝒃
and the true cardinalities 𝒄𝒃

as well as their weights𝒘𝒃 with batch size 𝐵𝑞 .

WMQ (𝒄′𝒃 , 𝒄𝒃) =
∑︁𝐵𝑞

𝑖=1
𝑤𝑖 ∗max {1,

𝑐′
𝑖

𝑐𝑖
,
𝑐𝑖

𝑐′
𝑖

},

where 𝑤𝑖 is proportional to log 𝑐𝑖 , i.e. 𝑤𝑖 =
log𝑐𝑖∑
𝑗 log𝑐 𝑗

. We use the

weight in the loss function because it is usually beneficial to em-

phasize the queries with larger true cardinalities [50].

6 ACE UNDER UPDATES

In this section, we first discuss how to leverage our ACE on dynamic

data. Then, we analyze its benefits compared with the state-of-

the-art baseline methods. Notably, we use the same setting when

working with dynamic data, that is, the element universe is finite

and fixed. The update of the element universe is left for future work.

ACE on dynamic data.We focus on dynamic data involving inser-

tions and deletions because one update is equivalent to one deletion

followed by one insertion. Based on the structure of ACE, we take

a two-stage approach to accommodate dynamic data – (1) dataset

representation update and (2) query cardinality estimation.

Given a batch of tuples to be inserted, we first use the aggregator

to represent them. Then, we sample the learned tuple matrix and

regard sampled embeddings as the initial distilled matrix. Next, we

leverage the distiller to update the distilled matrix.

When deleting tuples, considering that our original dataset is

split into a collection of dataset slices based on the batch size 𝐵𝑑 ,

we locate the affected slices and only need to update their cor-

responding distilled matrix by leveraging the trained encoder, as

motivated by the previous work [7]. Additionally, we need to update

the frequency of elements that are affected by the update.

After obtaining the new distilled matrix, we can feed it along

with the embeddings of the queried elements into the trained hy-

brid attention framework to derive the element embeddings that

link the query with the updated dataset and capture the implicit

correlation between elements. Subsequently, we incorporate the

current frequency information of each element and utilize the at-

tention pooling as well as the linear regression models to get the

cardinality estimate for the new dataset.

Comparison and analysis. When working with dynamic data,

PostgreSQL reconstructs the affected histograms to approximate

the distribution of the updated dataset. However, it still relies on the

(partially) independent assumption, which limits its accuracy. The

update process of traditional sampling methods involves sampling

tuples from the inserted dataset or deleting tuples from the existing

samples when encountering insertions or deletions, respectively,

leading to their performance heavily depending on the quality of

the resultant samples. Additionally, they still pay more attention to

elements with high frequency and achieve poor performance on

the query with low-frequency elements.

One prior work [96] proposes the improved sampling method

based on the pre-constructed trie structure. However, this study

does not address how to handle dynamic data updates. Therefore,

we propose a straightforward algorithm to support such updates.

When deleting data, we adhere to the traditional method by check-

ing if the data is part of the sampling results. If it is, we delete it

and re-sample some sets to maintain the sample ratio. When in-

serting data, updating the trie structure is not feasible because it

only retains the most frequent elements. Instead, we first partition

data into several clusters based on the elements they contain. Then,

we use the sample ratio calculated by the original trie to sample

additional sets and update the sampling results. Nonetheless, this

method may not well approximate the distribution of elements

because of the fixed trie structure. Another recent work [59] pro-

poses two conversion methods that transform the set-valued data

into a small number of categorical data and introduces incremental

updating methods for dynamic data. However, a significant issue

with the proposed method persists. The cluster generation process

is based on the dataset before any updates, aiming to alleviate the

effect of the correlation between elements within the same cluster.

As analyzed in Section 5, the correlation between elements is influ-

enced by the corresponding dataset. Thus, the clusters need to be

monitored and reconstructed when necessary because the initial

clusters might not work well, which the proposed methods ignore.

Compared to these baselines, the performance of our ACE is

superior as the data encoder minimizes the information loss when

representing the dataset and the query analyzer effectively captures

the useful correlation to obtain accurate estimates.

7 EXPERIMENTS

This section reports the experiments that compare ACE with SOTA

baselines. All experiments are evaluated on the Katana server [69]

with a 32-core Xeon(R) Gold 6242 CPU @ 2.80GHz, 100GB memory,

and an NVIDIA Tesla V100-SXM2 32GB GPU.

7.1 Datasets and Workloads

Datasets. We use three real-world datasets varying in the number

of sets 𝑁 , the size of the element universe 𝑀 , and the average

number of elements within a set AvgL as described in Table 4. The

GN dataset [59] contains descriptions of natural features, canals,

and reservoirs in the United States, each of which might consist of

its name, class, and location state. The WIKI dataset [82] consists

of the first sentence of each English Wikipedia article extracted in

September 2017. The TW dataset [9] includes tweets posted from

April 2012 to December 2012, which are published in UCR STAR

[18]. We preprocess the latter two datasets and convert each set to

a set of words that do not include stop words.

Table 4: Dataset statistics

Property GN WIKI TW

𝑁 2.2M 5.3M 19.9M

𝑀 89K 858K 559K

AvgL 3 12 5

Workloads.We follow the method from the former work [59] to

generate our workloads. For each subset query, we uniformly draw

5–10 sets from the set-valued dataset and take the union of the

sampled sets as the query. For each superset and overlap query,

2118

we uniformly draw one set from the dataset, and then uniformly

draw 2–4 elements from the set as the query. We also consider the

frequency of query elements. Following the former work [76], we

separate elements into three classes based on their frequency: low

(≤ 0.01%), medium, and high (≥ 0.1%). By default, all elements are

considered in a regular query. For high-frequency queries, we add a

filter to select only high-frequency elements. The generation of low-

frequency queries follows a similar approach. The true cardinality

of each query is obtained by executing it in PostgreSQL. For each

dataset, we generate 1400 queries as the training workload, where

the ratio of regular, high-frequency, and low-frequency queries is

3:2:2, while each testing workload consists of 300 queries.

7.2 Experimental Settings

Implementations. Our ACE is implemented with PyTorch [65]

and we set the embedding dimension 𝑑 = 64. We train ACE us-

ing Adam optimizer [38], with a learning rate of 0.001. We set the

data batch size 𝐵𝑑 = 10000, the distillation ratio 𝑟 = 0.001, and

the query batch size 𝐵𝑞 = 100. The number of layers in the dis-

tillation model 𝑛distill , the cross-attention module 𝑛cross , and the

self-attention module 𝑛self are set to 4, 4, and 8, respectively. When

utilizing the multi-head attention mechanism, we follow the exist-

ing work [50] by setting the number of heads to 8. For all datasets,

we employ negative sampling with 10 samples for each set and per-

form a grid search for the L2 regularization weight 𝜆 ∈ [0, 0.005].
Competitors.We include the following representative methods.

(1) PG is the 1-D histogram-based cardinality estimator used in

PostgreSQL [40]. (2) Sampling uniformly samples a collection

of sets, where we set the sample ratio as 0.01. (3) Greek-S [60]

proposes a different method to calculate the caridnality based on the

statictis of the sampled dataset. (4)OT-S [96] samples a collection of

sets based on the constructed trie structure. For a pair comparison,

the sampling ratio is the same as the previous approach and we

keep the 12 most frequent elements following the setting in the

previous work. (5) Set-Trans [46] is proposed to capture element

correlation and trained in a supervised learning manner. We regard

it as a query-driven estimator. (6) ST and STH [59] convert the

set-valued set into a small number of numerical data and employ

the existing estimators. Based on the observation of the former

work, we use DeepDB [30] and NeuroCard [97] as the employed

estimators for ST and STH, respectively.

Evaluation metrics. We use four metrics to evaluate all meth-

ods. (1) Q-error [61] measures the distance between the estimated

cardinality 𝑐𝑝 and the true cardinality 𝑐 of a query. In particular,

Q-error =𝑚𝑎𝑥{1, 𝑐𝑝𝑐 , 𝑐
𝑐𝑝

}. (2) Building time denotes the construc-

tion time of traditional methods or the training time of Set-Trans

and ACE. For ST and STH, the building time consists of conversion

time as well as offline training time. (3) Storage overhead is the

memory size used by a method. (4) Estimation latency is the

average estimation time per query.

7.3 Overall Performance

We first conduct extensive experiments to evaluate the overall

performance. We do not compare ST and STH on the overlap query

since they are incompatible with this query type.

Estimation Accuracy. Tables 5 - 7 show the estimation error for

various queries. We observe ACE has the best performance com-

pared to other baselines in most cases. The mean Q-error of ACE

in all cases is smaller than 10, and none of the other methods can

reach this level of performance. Moreover, at the 95% quantile, PG,

Sampling, OT-S, ST and STH averagely result in up to 16.7×, 29.6×,
27.7×, 13.5×, 10.2× larger Q-error than that of ACE, respectively.

Table 5: Estimation error for subset queries

Dataset Method

Regular High-frequency Low-frequency

Mean 50% 95% 99% Mean 50% 95% 99% Mean 50% 95% 99%

GN

PG 8.53 6.54 16.9 33.2 4.12 3.87 6.03 10.6 2.75 2.25 6 9

Sampling 1.36 1.21 2.54 3.91 1.11 1.09 1.31 1.45 62.3 13 166 203

Greek-S 1.39 1.14 1.75 8.48 1.32 1.16 1.87 5.48 18.2 14.1 44.4 53.3

OT-S 1.08 1.06 1.21 1.32 1.09 1.07 1.23 1.32 63.7 13 170 203

Set-Trans 1.51 1.33 2.46 3.56 1.77 1.42 4.14 6.57 134 111 325 513

ST 3.81 2.73 9.53 18.9 6.06 4.77 14.2 25.1 21.2 18 48.1 66.1

STH 2.75 2.46 5.69 8.67 1.12 1.09 1.35 1.46 17.1 20.5 32.1 54.5

ACE 1.26 1.13 2.34 4.17 1.69 1.44 3.26 5.22 3.11 2.81 8.56 12.4

WIKI

PG 9.49 5.68 19.7 41.3 4.74 3.51 11.9 14.6 4.14 3.83 7.67 9.51

Sampling 28.1 1.37 188 299 24.5 1.41 151 207 28.7 22.6 54.5 89

Greek-S 2.24 1.85 5.13 8.38 2.73 1.82 7.24 10.7 25.6 18.1 45.5 53.4

OT-S 25.3 1.45 109 215 21.7 1.61 131 189 30.7 23.3 52.1 84

Set-Trans 2.84 1.62 5.97 11.2 2.83 2.14 6.19 12.4 6.97 5.25 17.1 37.8

ST 7.39 1.78 7.05 14.7 5.39 2.33 28.9 35.3 13.8 7.11 54 135

STH 7.32 5.32 19.7 30.8 10.1 8.23 22.8 33.9 12.4 10.2 48.6 89.2

ACE 2.04 1.36 4.93 8.71 2.37 1.77 5.35 7.27 2.43 1.75 5.96 13.5

TW

PG 5.85 4.39 13.8 23.2 4.01 3.19 7.74 12.2 3.69 2.88 9.13 12.7

Sampling 5.04 4.03 12.1 36.2 3.57 3.24 13.5 29.1 19.1 15.4 52 76

Greek-S 1.81 1.42 2.49 3.92 1.93 1.81 3.54 11.9 14.4 11.5 38.1 53.5

OT-S 4.99 3.83 9.67 28.4 4.82 3.55 11.6 31.2 21.9 16.2 60 97

Set-Trans 2.05 1.89 3.72 4.47 2.74 2.54 5.81 9.58 375 260 922 1464

ST 4.38 3.74 8.82 12.4 4.74 3.31 7.32 15.4 30.9 23.1 74 127

STH 5.07 3.24 12.3 15.2 3.11 2.76 5.94 11.1 19.5 4.57 72.7 130

ACE 1.46 1.34 2.17 2.81 1.66 1.53 2.94 4.24 1.88 1.61 3.81 4.92

Table 6: Estimation error for superset queries

Dataset Method

Regular High-frequency Low-frequency

Mean 50% 95% 99% Mean 50% 95% 99% Mean 50% 95% 99%

GN

PG 67.5 4.26 198 1785 96.6 3.5 192 2728 6.73 6 12 17

Sampling 16.7 5 70 187 21.1 2.45 94 229 37.1 35.2 76.7 90.2

Greek-S 12.3 5.93 44.4 53.3 8.05 3.46 33.3 53.3 25.8 17.4 50.6 53.3

OT-S 20.2 6 81 195 17.9 2.21 78 192 36.7 34.5 77.1 91.3

Set-Trans 12.5 5.77 46.9 117 12.4 4.32 46.5 133 7.53 5.22 18.6 33.5

ST 40.2 2.21 52.7 272 18.8 2.12 22.2 100 9.71 7 28.5 37.4

STH 16.3 1.52 34.6 161 10.3 1.45 22.2 150 5.08 5 11 15

ACE 5.19 2.91 17.2 36.1 6.54 2.19 20.9 49.6 2.15 2.11 3.18 3.49

WIKI

PG 175 8 271 2330 439 8.61 703 5479 9.44 3.75 33 89

Sampling 13.3 2.31 65 145 15.1 1.39 71 179 32.9 28.1 83 189

Greek-S 10.9 3.98 38.1 53.4 8.91 2.35 33.4 93.5 15.4 12.4 30.4 53.5

OT-S 14.8 2.57 72 159 11.6 1.51 61 159 33.7 29.3 77 186

Set-Trans 19.2 7.86 80.2 158 15.1 5.43 60.2 108 22.6 10.7 81.8 96.1

ST 130 4.92 245 1570 130 2.77 101 1576 30.6 13.3 118 241

STH 16.1 3.98 69.6 169 9.31 2.58 35.4 143 29.3 11 118 239

ACE 6.44 3.34 17.9 37.4 8.33 3.16 30.8 75.2 2.88 2.67 8.23 11.6

TW

PG 179 2.39 99 1014 128 2.09 48 2323 14.3 4.75 53.5 152

Sampling 17.5 2.31 83 223 10.7 1.32 60 173 173 149 251 380

Greek-S 9.83 3.21 44.5 74.3 9.22 2.43 26.7 80.3 22.7 19.1 47.6 53.3

OT-S 15.6 1.96 87 210 8.91 1.36 44 135 161 137 251 380

Set-Trans 20.2 6.67 82.7 128 13.3 4.67 65.6 118 13.9 10.5 37.2 60.7

ST 49.9 2.37 81.1 578 43.7 2.05 76.6 553 37.9 10 160 347

STH 12.2 2.08 48.6 306 11.7 2.83 44.1 471 37.7 10.1 160 374

ACE 6.79 2.32 22.5 60.7 8.41 2.04 26.8 67.1 3.93 2.61 8.76 11.7

Table 7: Estimation error for overlap queries

Dataset Method

Regular High-frequency Low-frequency

Mean 50% 95% 99% Mean 50% 95% 99% Mean 50% 95% 99%

GN

PG 3.28 1.26 9.82 34.1 2.99 1.31 9.47 27.4 12.7 4.15 68.1 108

Sampling 4.18 1.28 9.95 42.1 2.93 1.32 9.19 29.2 239 2.89 481 5954

Greek-S 4.99 1.33 11.1 75.2 2.99 1.35 8.66 28.1 13.6 2.71 33.3 277

OT-S 3.41 1.28 9.96 30.6 3.01 1.33 8.81 29.8 235 3.08 502 6409

Set-Trans 10.7 4.73 46.2 110 10.9 5.51 22.1 94.7 51.2 30.3 221 346

ACE 3.34 1.46 9.29 18.1 2.66 1.56 6.39 17.6 9.62 2.67 22.7 80.6

WIKI

PG 8.28 1.81 13.1 94.2 4.28 2.32 15.1 40.7 27.1 14.9 165 368

Sampling 4.29 1.88 13.2 43 4.28 2.34 14.2 37.4 43.5 2.49 214 496

Greek-S 4.52 1.93 16.6 38.8 4.31 2.32 13.5 38.5 8.44 3.29 22.9 54.8

OT-S 5.52 1.78 13.1 59.3 4.16 2.26 12.9 37.1 35.5 2.54 196 414

Set-Trans 23.9 11.9 98.7 131 37.7 19.5 108 260 26.6 14.3 104 239

ACE 3.98 1.75 8.99 15.8 2.72 2.14 7.52 10.7 8.01 2.46 22.6 38.5

TW

PG 6.33 2.26 19.5 85.9 4.64 2.38 11.3 37.4 18.3 14.3 134 377

Sampling 6.21 2.26 19.6 82.1 4.67 2.42 10.8 37.6 28.1 2.83 175 473

Greek-S 6.37 2.33 22.4 76.4 4.61 2.41 11.1 36.2 11.6 3.59 20.6 320

OT-S 6.25 2.21 19.3 84.1 4.66 2.35 10.6 37.6 28.6 2.81 167 287

Set-Trans 51.1 16.5 162 446 69.2 28.9 191 580 16.2 8.68 57.7 166

ACE 5.61 2.19 16.4 51.5 2.96 2.21 7.92 13.7 6.72 2.79 17.9 73.3

PG estimates the cardinality of a query based on the indepen-

dence assumption, which often leads to poor performance on reg-

ular and high-frequency queries due to ignoring the correlation

2119

between elements. However, its estimates are more accurate for

low-frequency queries, as the correlation between low-frequency

elements can sometimes be disregarded. Moreover, we observe that

its performance on low-frequency overlap queries is bad because

of insufficient statistics targets.

Sampling, Greek-S and OT-S show the opposite trend compared

to PG. Their performance on regular and high-frequency queries

is better than that on low-frequency queries because they focus

more on high-frequency elements. Greek-S firstly determines the

geometric mean of the upper (𝜔) and lower (𝛼) bounds for the

number of qualifying tuples based on probabilistic estimates, which

is then used to return a more accurate cardinality estimate. OT-S

improves upon the traditional sampling method by leveraging the

trie structure, leading to better performance in most cases. However,

the performance of these methods is not stable across three datasets,

as it heavily depends on the quality of sampling results.

Set-Trans only utilizes the information of the workload, regard-

ing the problem as a supervised learning task. However, its perfor-

mance is unstable across datasets and queries since it is impossible

to enumerate all combinations given limited training data. ST and

STH are SOTA methods that can utilize any data-driven estimator

to predict cardinality based on the constructed clusters and the cor-

responding conversion algorithm. In general, our ACE outperforms

these methods, verifying that the partial independence assumption

in these methods is not reasonable for some scenarios. Additionally,

we observe that the results on low-frequency queries differ signifi-

cantly from those reported in the former work [59], as it first filters

out low cardinality elements before selecting the query element,

thereby ignoring the actual low-frequency elements.

Construction Efficiency. Referring to Table 8, the training time

of ACE is acceptable and shorter than STH and ST in most cases. It

requires less than 2, 7, and 10 minutes to fine-tune its parameters for

the GN, WIKI, and TW datasets, respectively. Although Sampling

and OT-S require less construction time, their Q-error performance

is worse, especially on low-frequency queries. Notably, Greek-S is

excluded from our analysis, as it does not influence the sampling

process. Besides, we observe that the time of Set-Trans and ACE on

different types varies because of the variable-size query, where a

subset query usually has more elements than other types of queries.

Table 8: Building time (minutes) of different methods

Dataset Type Sampling OT-S Set-Trans ST STH ACE

GN

Subset 0.03 0.11 2.76 0.43 4.02 1.88

Superset 0.03 0.11 2.06 0.43 3.94 1.56

Overlap 0.03 0.11 2.03 - - 1.58

WIKI

Subset 0.06 0.61 6.03 10.9 13.2 6.77

Superset 0.06 0.61 1.97 10.9 12.9 2.85

Overlap 0.06 0.61 1.68 - - 2.67

TW

Subset 0.21 1.31 6.16 9.73 11.7 9.35

Superset 0.21 1.31 5.07 9.73 11.4 5.13

Overlap 0.21 1.31 5.14 - - 5.16

Storage Overhead. Table 9 shows the experimental results. We

denote the size of samples as the storage overhead of sampling-

based methods, which increases with the size of datasets. As Greek-

S does not change the sampling process, its results are excluded

from the table. ST and STH need to maintain the parameters of

DeepDB and NeuroCard, respectively, with STH typically incurring

higher space costs due to its more complex structure. In contrast,

Set-Trans maintains a consistent model size across datasets, as its

storage requirements are determined by the embedding dimensions.

However, its overall size is slightly larger than ours due to the

additional inclusion of inducing points. Our ACE demonstrates a

stable storage, exhibiting only a marginal increase as the dataset

size expands, primarily due to the benefits of its distillation process.

Table 9: Storage overhead (MB) of different methods

Dataset Sampling OT-S Set-Trans ST STH ACE

GN 0.28 0.29 10.6 3.31 16.1 8.11

WIKI 3.21 3.33 10.6 29.6 79.7 8.26

TW 4.77 4.79 10.6 11.2 58.1 8.36

Estimation Latency. As illustrated in Table 10, PG needs the least

time to estimate the cardinality but its performance is not accept-

able, while the latency of the sampling-based methods increases

with the size of the dataset because they need to traverse all samples.

Greek-S, in particular, exhibits significantly higher latency than the

other methods, as it involves more computational steps, resulting

in increased time costs. As shown in previous work [59], the time

complexity of ST depends on the number of clusters, which leads

to lower estimation time, while STH reduces the number of nodes

kept on each trie to speed up the prediction process. However, both

methods need to convert the query before estimating the cardinal-

ity, which cannot be executed in GPUs. Set-Trans uses the least

time to predicate the cardinality because it only takes the query as

the input and regards the problem as a supervised learning task.

ACE is a fully learning-based estimator with the best performance

and the most stable latency across three datasets.

Table 10: Estimation latency (ms) of different methods

Dataset PG Sampling Greek-S OT-S Set-Trans ST STH ACE

GN 1.05 124.9 207.2 128.6 2.91 3.86 12.39 4.54

WIKI 3.64 381.1 876.1 392.4 3.28 25.67 83.12 5.17

TW 2.79 1163 7808 1175 3.07 19.57 41.07 6.17

Real-world Cases. In Section 1, we introduce a real-world applica-

tion for set-valued data, i.e., tag search. Privacy policies render user

data confidential in most applications, such as Twitter andWiki. We

utilize the data released by a recipe website (http://www.food.com)

and its real user search queries [52, 58] to show the necessity of

supporting set queries. In this dataset, the total number of keywords

is 632 and there are 500K recipes, each tagged with several key-

words. For the query workload, we extract 10K distinctive queries

for superset and overlap queries supported by this website. For

each query type, we randomly select 1000 and 200 queries for the

training and validation, respectively, while the remaining are used

for testing. As ST and STH cannot support the overlap queries, the

two methods have no corresponding results. As shown in Table 11,

ACE consistently outperforms other baseline methods using the

real-world set-valued data and query workload.

Table 11: Real-world tag search

Method

Superset Overlap

Mean 50% 95% 99% Mean 50% 95% 99%

PG 15.1 4.25 51 186 1.17 1.13 1.74 2.16

Sampling 14.4 4.62 59 122 1.26 1.31 1.88 3.71

Greek-S 4.42 2.31 17.9 17.9 1.21 1.13 1.57 2.11

OT-S 3.68 2.27 12.5 12.8 1.21 1.16 1.44 1.98

Set-Trans 3.41 2.19 8.47 20.9 1.61 1.45 2.24 4.79

ST 4.05 2.29 11.8 23.4 - - - -

STH 10.2 7.07 29.1 50.6 - - - -

ACE 3.18 2.01 7.53 15.2 1.02 1.01 1.05 1.11

2120

http://www.food.com

7.4 Performance on Dynamic Data

We follow previous studies [50, 59] to conduct experiments on

dynamic data. We use about 70% of the sets as the initial dataset

to train our data encoder and the remaining as the collection of

insertion data. The size of each insertion is equal to the data batch

size 𝐵𝑑 . 90% of the insertion is used to train the query analyzer while

the remaining is used to evaluate the performance. Additionally, we

might randomly delete some sets from the current dataset before

any insertions. To simulate the real-world scenarios, the number of

deleted sets is only a small fraction of the entire dataset, meaning

that the number of affected slices is much lower than the others.

Regarding the workload, we only conduct the experiments on

the superset and subset query since ST and STH are incompatible

with the overlap query. To train the query analyzer, we utilize the

generated workload as the base workload. Then, we randomly se-

lect 20 and 10 queries from the base workload as the training and

validation sets, respectively, once an insertion completes. When

evaluating the performance, we generate 100 queries after any in-

sertion as the evaluation queries of the current dataset and finally

report the average value. Note that the true cardinality of a query

might change due to the dynamic data. Thus, we need to use Post-

greSQL to obtain the true cardinality values and filter the queries

without any results in the training or evaluation process.

Table 12: The performance on dynamic data

Dataset Method

Superset Subset

Q-error Update

Time (s)

Q-error Update

Time (s)Mean 50% 95% 99% Mean 50% 95% 99%

GN

PG 69.6 5.01 204 2031 - 8.39 7.23 15.1 35.7 -

Sampling 18.7 7 84 173 0.01 1.37 1.16 3.18 5.28 0.01

Greek-S 15.4 9.21 53.3 64.7 0.01 1.61 1.52 2.89 6.06 0.01

OT-S 24.2 7.2 97.2 258 0.06 1.62 1.59 2.82 6.98 0.06

Set-Trans 28.8 11.3 78.2 211 0.26 5.77 4.83 7.18 9.49 0.34

ST 45.7 4.35 78.1 395 0.16 4.51 3.17 12.7 20.2 0.16

STH 20.5 4.02 49.9 190 0.17 3.88 2.56 8.76 11.5 0.17

ACE 5.35 3.09 15.3 42.7 0.34 1.59 1.51 2.77 5.01 0.41

WIKI

PG 136 6.68 341 3249 - 10.1 4.93 18.2 39.5 -

Sampling 14.8 4.01 71 140 0.01 29.8 1.95 197 371 0.01

Greek-S 11.5 4.17 44.5 53.4 0.01 4.31 1.75 9.42 13.6 0.01

OT-S 18.5 3.22 90 199 0.06 37.9 2.18 163 323 0.06

Set-Trans 28.1 13.7 114 243 0.44 4.79 3.11 8.75 20.4 1.29

ST 145 6.77 358 1994 0.41 9.63 3.55 17.4 31.2 0.41

STH 22.4 5.68 101 274 0.81 8.76 5.88 25.4 32.1 0.81

ACE 8.57 3.17 16.7 29.1 0.68 3.55 1.69 7.54 9.27 1.56

TW

PG 187 3.43 101 1341 - 6.85 4.17 12.6 25.7 -

Sampling 17.3 2.35 81 224 0.01 6.03 5.32 13.1 37.7 0.01

Greek-S 12.4 4.47 48.4 97.1 0.01 3.22 2.83 6.06 10.5 0.01

OT-S 19.5 3.45 109 263 0.06 5.88 4.02 13.5 31.2 0.06

Set-Trans 39.5 9.77 108 190 0.81 4.68 3.06 7.66 10.2 1.54

ST 55.7 3.37 92 768 0.25 7.28 4.96 14.8 22.3 0.25

STH 16.7 2.94 64 320 0.47 8.21 4.04 13.9 30.1 0.47

ACE 10.1 3.22 37.7 84.1 0.97 2.14 1.67 5.28 8.22 1.72

Referring to Table 12, ACE always has the best performance.

Compared to the static data, PG, Sampling, and Greek-S achieve

similar estimation accuracy while the Q-error of other methods

increases when working on dynamic data. Compared to Sampling,

the update progress of OT-S depends on the trie structure built

based on the initial dataset, and this structure does not capture the

distribution of elements well when encountering new data. ST and

STH incrementally update their corresponding trie structure on

dynamic data but fix the generated clusters. However, the latest set

always brings a change in the element correlation. Therefore, the

elements within the same cluster might be heavily correlated when

updating the dataset, leading to performance degradation. In terms

of our ACE, we also observe performance degradation because the

data encoder is trained based on the initial dataset and might not

output the best representation of the updated data. However, its

performance is more stable than others since we utilize the query

information in the query analyzer, which can mitigate this effect.

We also report the average time of each update. Since our ACE is

both data- and query-driven, it requires training the query analyzer

for better performance when the data matrix updates. Compared to

ACE, all baseline methods do not require any training progress, and

thus they need less time to update. However, their representation

abilities are not as powerful as that of ACE.

7.5 End-to-End Query Runtime

We evaluate the performance of ACE in terms of end-to-end query

runtime in PostgreSQL. We utilize the latest IMDb dataset [32] that

includes set-valued attributes and extract another database, Food,

from the published datasets crawled from http://www.food.com [2,

51, 88]. For the query workload, because current benchmarks, such

as JOB [47], do not contain queries with set-valued predicates, we

follow the existing work [59] to generate queries. Specifically, we

firstly use SQLsmith [72] and the AI SQL generator [89] to generate

a query template. Then, we follow the template to generate queries

with various granularities. To guarantee the validity of synthetic

queries, we follow the same process to generate the set-valued

predicates. Note that the set-valued predicate on Food utilize the

real user queries, as described in Section 7.3. For the IMDB dataset,

we generate 30 queries, each containing 4–8 predicates over 3–5

tables, while for the Food dataset, we generate 20 queries, each

containing 3–6 predicates over 3 tables.

To inject cardinalities, our ACE(P) configuration extends the

patch from the previous work [3] to accept external estimates for

set-valued predicates and the existing support for predicates over

categorical and numerical attributes. In addition to the baseline

given by PostgreSQL (PG), we compare with four other baselines.

Because ST and STH naturally support queries containing predi-

cates over set-valued attributes, ST and STH configurations inject

the estimated cardinalities of ST and STH into the query optimizer

for all types of predicates. Note that we use PostgreSQL as the esti-

mator for ST and STH to guarantee a fair comparison. Additionally,

configurations GS(P) and Set(P) utilize the same approach as ACE(P)

but with estimates from Greek-S and Set-Trans, respectively.

Table 13 shows the end-to-end (E2E) running time and Q-error.

Our method, ACE, achieves the best overall performance. Notably,

queries with set-valued predicates show a notable improvement

due to more accurate estimations. We observe that the E2E time

of GS(P) is even longer than that of the PG because the estimation

latency of Greek-S is significantly larger.

Table 13: End-to-end (E2E) time and Q-error

Method

IMDB Food

Mean 50% 95% 99%

E2E

Time (s)

Mean 50% 95% 99%

E2E

Time (ms)

PG 30.3 5.11 113 440 106.9 10.3 3.43 20.5 79 7327.8

GS(P) 17.4 4.66 62.1 139 81.1 9.41 2.78 19.2 75.8 8007.7

Set(P) 19.4 4.86 80.2 158 82.3 8.17 2.44 16.1 59.1 6285.4

ST 12.1 3.39 44.5 93.1 68.2 6.53 2.05 11.5 30.4 4667.4

STH 11.8 3.47 45.1 87.2 66.1 6.77 2.01 13.3 30.7 4528.6

ACE(P) 10.1 2.77 33.7 80.1 40.5 5.53 1.78 9.01 25.2 3004.9

7.6 Ablation Study

As shown in Table 14, we verify the effectiveness of the main com-

ponents in ACE. Here, we conduct extensive experiments on the

WIKI dataset. The results on other datasets are similar and omitted.

2121

http://www.food.com

Table 14: Ablation study

Ablation settings Subset Superset Overlap

AG DS CA SA AP Mean 50% 95% 99% Mean 50% 95% 99% Mean 50% 95% 99%

× ✓ ✓ ✓ ✓ 4.47 2.69 17.2 31.8 12.6 5.34 44.4 147 6.69 2.94 13.4 20.1

✓ × ✓ ✓ ✓ 4.11 2.72 15.6 32.1 13.7 8.41 49.9 162 7.73 3.23 10.5 18.7

✓ ✓ × ✓ ✓ 2.87 1.58 6.26 13.7 8.19 4.14 19.8 45.8 4.31 2.45 9.74 18.3

✓ ✓ ✓ × ✓ 3.31 1.65 5.62 11.4 8.97 3.79 25.8 55.7 5.93 3.11 11.6 22.3

✓ ✓ ✓ ✓ × 2.24 1.63 5.12 10.9 6.94 3.39 19.5 52.3 4.62 2.35 9.68 16.9

✓ ✓ ✓ ✓ ✓ 2.04 1.36 4.93 8.71 6.44 3.34 17.9 37.4 3.98 1.75 8.99 15.8

Aggregator (AG). To replace our aggregator, we can use traditional

methods, such as padding and pooling, to generate the fixed-size set

embedding. Since padding often leads to higher storage overhead,

we leverage the mean-pooling method, which has a similar cost to

our original design. When comparing results, we observe at least

a 60% increase in estimation error at the 50% quantile. This is be-

cause themean-poolingmethod typically treats all elements equally,

which is not powerful enough to obtain high-quality embeddings.

Distillation (DS). To replace the distillation module, we propose

a random sampling method, setting the sample ratio to 0.001 for

a fair comparison. When comparing the results, we observe a sig-

nificant increase in estimation error ranging from 94.1% to 112%.

This is because the sampling method captures only a fraction of the

dataset’s information, whereas the distillation model is designed to

compress the matrix while preserving as much information as pos-

sible. Additionally, since the sampling method give more attention

to high-frequency elements while the low-frequency elements pre-

dominantly influences the accuracy of superset queries, we observe

the most pronounced fluctuations in these queries.

Cross-attention (CA). The stacked cross-attention layers serve

to link data and queries, mapping the query elements into a latent

space to capture their correlation effectively. As the dimensions of

the data matrix 𝑺𝒄 and query element embeddings 𝒒𝒊 are fixed, we
can adopt a straightforward method without the attention mecha-

nism to processing them. For example, we flatten 𝑺𝒄 into a vector

and concatenate the vector with 𝒒𝒊 to generate another vector. Sub-
sequently, the generated vector is fed into a multi-layer perceptron

(MLP)with the same number of layers as in our originalmodel. How-

ever, experiments reveal that this simplified approach yields worse

estimation performance compared to ACE, with a decrease exceed-

ing 16.7%. This performance drop occurs because a straightforward

neural network is not powerful enough to discover the implicit

relations between elements and data. This finding underscores the

necessity and effectiveness of incorporating cross-attention layers.

Self-attention (SA). The stacked self-attention layers are designed

to capture correlations between query elements effectively. To eval-

uate their contribution, we replace this module with a multi-layer

perceptron (MLP). When compared to ACE, the modified frame-

work results in 1.49×, 1.31×, and 1.41× larger Q-error than that of

ACE at the 99% quantile for superset, subset, and overlap queries,

respectively. These results validate the superiority of self-attention

layers in accurately modeling inter-element dependencies, which

ultimately leads to more precise cardinality estimation.

Attention Pooling (AP). The attention pooling module is de-

signed to address the issue of variable-size input while ensuring

permutation invaiance. Since any symmetric function can be used

to solve this problem, we compare the performance of the attention

pooling method with a mean-pooling method. Our analysis veri-

fies the effectiveness of the attention pooling method. Compared

to ACE, the mean-pooling method results in a slight increase in

estimation error, with 1.39×, 1.25×, and 1.07× larger mean Q-error

0.002 0.004

2
3
4
5
6
7

M
ea

n
Q

-e
rro

r

 Superset
 Subset
 Overlap

(a) Varying 𝑟

0 2 4 6 8

2
3
4
5
6
7

M
ea

n
Q

-e
rro

r

 Superset
 Subset
 Overlap

(b) Varying 𝑛distill

2 3 4 5 6

2
3
4
5
6
7

M
ea

n
Q

-e
rro

r

 Superset
 Subset
 Overlap

(c) Varying 𝑛cross

4 6 8 10 12

2
3
4
5
6
7

M
ea

n
Q

-e
rro

r

 Superset
 Subset
 Overlap

(d) Varying 𝑛self

Figure 6: Estimation performance.

0.002 0.004
0

2

4

6

8 Data Size Latency

D
at

a
S

iz
e

(M
B

)

2

4

6

8

 L
at

en
cy

 (m
s)

(a) Varying 𝑟
2 4 6 8

0

1

2

M
od

el
 S

iz
e

(M
B

)

 Model Size Latency

4

5

6

 L
at

en
cy

 (m
s)

(b) Varying 𝑛distill

Figure 7: Size and latency.

for superset, subset, and overlap queries, respectively. This per-

formance degradation occurs because mean-pooling weights each

embedding equally regardless of its importance [100].

7.7 Hyper-parameter Study

To study the effects of important hyper-parameters, we build dif-

ferent ACE versions and observe their performance. Similarly, we

only show the comparison results on the WIKI dataset.

Effects of 𝑟 and𝑛distill .Wefirst study hyper-parameters in our data

encoder. Figure 6a and 7a show the performance varying distillation

ratios 𝑟 . We observe that the size of the distilled matrix is clearly

influenced by 𝑟 . When the value of 𝑟 gets larger, ACE produces more

accurate estimates, but with higher estimation latency. Besides, the

performance improvement becomes marginal when 𝑟 exceeds 0.001.

Another important hyper-parameter is the number of layers

in our distillation model, denoted as 𝑛distill . Figure 6b illustrates

the estimation performance with varying 𝑛distill . We observe that

the Q-error decreases when 𝑛distill is less than 4, after which it

stabilizes. As shown in Figure 7b, the model size remains constant

for 𝑛𝑑𝑖𝑠𝑡𝑖𝑙𝑙 ≥ 2 as we share weights between each layer except the

first one. Moreover, the estimation latency is similar across these

values because the distilled matrices have the same size.

Effects of 𝑛cross and 𝑛self . We also study the effects of hyper-

parameters in our query analyzer. Figures 6c and 6d shows the mean

Q-error with varying the values of these two hyper-parameters. We

observe that increasing 𝑛cross and 𝑛self both lead to better estimates.

This improvement is due to the enhanced ability of more stacked

cross-attention layers to discover the relationship between queries

and the underlying data, while additional self-attention layers help

better capture the correlation between query elements.

2122

2 3 4 5 6
0

4

8

12

B
ui

ld
in

g
Ti

m
e

(m
in

) Superset
 Subset
 Overlap

(a) Building time

2 3 4 5 6

6

7

8

S
iz

e
(M

B
)

 Size Latency

4

5

6

 L
at

en
cy

 (m
s)

(b) Size and latency

Figure 8: Other metrics with varying 𝑛cross .

4 6 8 10 12
0

4

8

12

B
ui

ld
in

g
Ti

m
e

(m
in

) Superset
 Subset
 Overlap

(a) Building time

4 6 8 10 12

6

8

10
 Size Latency

S
iz

e
(M

B
)

4

6

8

 L
at

en
cy

 (m
s)

(b) Size and latency

Figure 9: Other metrics with varying 𝑛self .

The values of 𝑛cross and 𝑛self also affect the building time, the

model size, and the estimation latency. Figures 8 and 9 illustrate

the experiment results of these metrics. We have two observations.

First, larger 𝑛cross or 𝑛self always leads to a more complex structure,

resulting in longer building time, larger model size, and higher

estimation latency. Second, the effect of 𝑛cross is more significant

than that of 𝑛self on these metrics. For example, the building time

for subset queries increases from about 6 minutes (𝑛cross = 2) to

14 minutes (𝑛cross = 6), compared to an increase from 9 minutes

(𝑛self = 4) to 11 minutes (𝑛self = 12). This is because the distilled

matrix with a larger size is used as one input of the cross-attention

sub-module. Therefore, taking into account all aspects, we set the

values of 𝑛cross and 𝑛self to 4 and 8, respectively.

8 RELATED WORK

Cardinality estimators for numerical and categorical data.

Data-driven methods aim to tightly approximate the data distri-

bution by using statistical or machine learning models. Sampling-

based methods [21, 53] estimate cardinality from the sampled data.

The simple yet efficient 1-D Histogram [71] is used in DBMSs

such as PostgreSQL. It maintains a histogram for each attribute.

M-D histogram-based methods [12, 20, 62, 67, 84] build multi-

dimensional histograms to capture the dependency among attributes.

However, the decomposition of the joint attributes is still lossy such

that they need to make partial independence assumptions.

Probability models [23, 80] utilize the Bayesian network (BN)

to model the dependence among attributes, assuming that each at-

tribute is conditionally independent given its parents’ distributions.

BayesCard [92] revitalizes BN using probabilistic programming to

improve its inference and model construction speed. Deep autore-

gressive models [27, 97, 98] decompose the joint distribution to a

product of conditional distributions, which have high accuracy but

low efficiency and require large storage space. DeepDB [30] and

FLAT [109] build upon a Sum-Product Network (SPN) [66] that

approximates the joint distribution using multiple SPNs.

Query-driven methods focus on modeling the relationships be-

tween queries and their true cardinalities. LW-XGB and LW-NN [13]

formulate the cardinality estimation as a regression problem and

apply gradient-boosted trees and neural networks to solve the prob-

lem, respectively. The KDE-based join estimator [37] combines

kernel density estimation (KDE) with a query-driven tuning mecha-

nism. Fauce [54] and NNGP [107] assume that the workload follows

a Gaussian distribution and adopt deep ensembles [44] and neural

Gaussian process [36] to estimate the mean and variance of the

distribution. A few works [50, 90] consider both data and workload.

These approaches are limited to querying numerical and categorical

data, which are difficult to deploy for set-valued data.

Cardinality estimator for set-valued data. PostgreSQL treats

each element as a binary attribute and employs either indepen-

dence assumptions or the probabilistic model [16] to estimate the

cardinality of set-valued queries [40]. Yang et al. [96] improve the

sampling method and propose two estimators: OT-sampling uses a

trie structure to focus on highly frequent elements, which struggles

with low-frequency elements; DC-sampling leverages the work-

load type information and employs a divide-and-conquer strategy,

which is only applicable for the specified types. Hadjieleftheriou et

al. [22] propose a hash sampling algorithm for set similarity queries,

which differs from the problem studied in this paper. Meng et al.

[59] propose two algorithms to convert set-valued data into multi-

column categorical data and use data-driven methods to estimate

the query cardinality. The conversion process can be regarded as ap-

proximately solving the NP-hard graph coloring problem, making

it difficult to well capture the correlation among elements. All these

existing methods only utilize the information of the underlying data.

To the best of our knowledge, there is no learning-based estimator

that leverages the underlying data and workload simultaneously.

Attention applications. The attention mechanism has been ap-

plied to various problems [83, 94, 95, 103, 108]. Recently, it has been

adapted for database optimization [15]. The most closely related

work [50] estimates the cardinality for SPJ (Select-Project-Join)

queries. However, its featurization method is not suitable for our

problem as the number of columns (less than 100) is significantly

smaller than the number of sets (exceeding 10
6
). Thus, our ACE

needs new designs for the data encoder and the query analyzer.

9 CONCLUSION

We presented ACE, a versatile learned cardinality estimation model

that makes high-quality estimates for set-valued queries. We first

propose a distillation-based data encoder to represent the entire

dataset using a compact matrix. To capture correlations between

query elements, we then propose an attention-based query analyzer.

Since query lengths can vary, we employ a pooling module to derive

the fixed-size vector. Extensive experimental results demonstrate

superior performance of ACE compared to the state of the art.

ACKNOWLEDGMENTS

This work is partially supported by Australian Research Council

(ARC) DP230101445, DP230101534 and DP240101006. Jianzhong

Qi is supported by ARC Future Fellowships FT240100170. Wenjie

Zhang is supported by ARC FT210100303. Christian S. Jensen is

supported in part by the Innovation Fund DK centre, DIREC. This

work is also supported in part by Guangdong Talent Program under

Grant 2021QN02X826, and Shenzhen Research Institute of Big Data

under grant SIF20240002.

2123

REFERENCES

[1] Jaan Altosaar, Rajesh Ranganath, and Wesley Tansey. 2021. RankFromSets:

Scalable set recommendation with optimal recall. Stat 10, 1 (2021), e363.
[2] Alvin. 2021. Recipes and Reviews. https://www.kaggle.com/datasets/irkaal/

foodcom-recipes-and-reviews

[3] Mehmet Aytimur, Silvan Reiner, Leonard Wörteler, Theodoros Chondrogiannis,

and Michael Grossniklaus. 2024. LPLM: A Neural Language Model for Cardi-

nality Estimation of LIKE-Queries. Proceedings of the ACM on Management of
Data 2, 1 (2024), 1–25.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normal-

ization. arXiv preprint arXiv:1607.06450 (2016).
[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine

Translation by Jointly Learning to Align and Translate. In ICLR.
[6] Christopher M. Bishop. 2006. Pattern recognition and machine learning. Springer

New York.

[7] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-

grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.

Machine unlearning. In S&P. 141–159.
[8] S. Castro, P. Meena Kumari, S. Muthumari, and J. Suganthi. 2023. Information

Retrieval using Set-based Model Methods, Tools, and Applications in Medical

Data Analysis. Machine Learning for Healthcare Systems: Foundations and
Applications (2023), 187.

[9] Lisi Chen, Gao Cong, Xin Cao, and Kian-Lee Tan. 2015. Temporal spatial-

keyword top-k publish/subscribe. In ICDE. 255–266.
[10] Yankai Chen, Yixiang Fang, Yifei Zhang, and Irwin King. 2023. Bipartite graph

convolutional hashing for effective and efficient top-n search in hamming space.

In WWW. 3164–3172.

[11] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song,

Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin,

Lukasz Kaiser, et al. 2021. Rethinking attention with performers. In ICLR.
[12] Amol Deshpande, Minos Garofalakis, and Rajeev Rastogi. 2001. Independence is

good: Dependency-based histogram synopses for high-dimensional data. ACM
SIGMOD Record 30, 2 (2001), 199–210.

[13] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya,

and Surajit Chaudhuri. 2019. Selectivity estimation for range predicates using

lightweightmodels. Proceedings of the VLDB Endowment 12, 9 (2019), 1044–1057.
[14] Meng Joo Er, Yong Zhang, Ning Wang, and Mahardhika Pratama. 2016. At-

tention pooling-based convolutional neural network for sentence modelling.

Information Sciences 373 (2016), 388–403.
[15] Jia-Ke Ge, Yan-Feng Chai, and Yun-Peng Chai. 2021. WATuning: a workload-

aware tuning system with attention-based deep reinforcement learning. Journal
of Computer Science and Technology 36, 4 (2021), 741–761.

[16] Lise Getoor, Benjamin Taskar, and Daphne Koller. 2001. Selectivity estimation

using probabilistic models. In SIGMOD. 461–472.
[17] Hossein Gholamalinezhad and Hossein Khosravi. 2020. Pooling methods in

deep neural networks, a review. arXiv preprint arXiv:2009.07485 (2020).
[18] Saheli Ghosh, Tin Vu, Mehrad Amin Eskandari, and Ahmed Eldawy. 2019. UCR-

STAR: The UCR Spatio-Temporal Active Repository. SIGSPATIAL Special 11, 2
(2019), 34–40.

[19] Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex

Smola. 2006. A kernel method for the two-sample-problem. In NIPS. 513–520.
[20] Dimitrios Gunopulos, George Kollios, Vassilis J. Tsotras, and Carlotta Domeni-

coni. 2000. Approximating multi-dimensional aggregate range queries over

real attributes. ACM SIGMOD Record 29, 2 (2000), 463–474.

[21] Peter J. Haas, Jeffrey F. Naughton, and Arun N. Swami. 1994. On the relative

cost of sampling for join selectivity estimation. In PODS. 14–24.
[22] Marios Hadjieleftheriou, Xiaohui Yu, Nick Koudas, and Divesh Srivastava. 2008.

Hashed samples: selectivity estimators for set similarity selection queries. Pro-
ceedings of the VLDB Endowment 1, 1 (2008), 201–212.

[23] Max Halford, Philippe Saint-Pierre, and Franck Morvan. 2019. An approach

based on bayesian networks for query selectivity estimation. In DASFAA. 3–19.
[24] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NIPS. 1025–1035.
[25] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Tan Wei Liang,

Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren

Zhou, Jiangneng Li, and Bin Cui. 2022. Cardinality Estimation in DBMS: A

Comprehensive Benchmark Evaluation. Proceedings of the VLDB Endowment
15, 4 (2022), 752–765.

[26] Yu Hao, Xin Cao, Yufan Sheng, Yixiang Fang, and Wei Wang. 2021. KS-GNN:

Keywords Search Over Incomplete Graphs via Graphs Neural Network. In

NeurIPS. 1700–1712.
[27] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,

and Gautam Das. 2020. Deep learning models for selectivity estimation of

multi-attribute queries. In SIGMOD. 1035–1050.
[28] Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, and Jerome H. Friedman.

2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
Vol. 2. Springer.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In CVPR. 770–778.

[30] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-

tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from

Queries! Proceedings of the VLDB Endowment 13, 7, 992–1005.
[31] IBM. 2024. Array Types and Values. https://www.ibm.com/docs/en/db2-for-

zos/13?topic=types-array-values

[32] IMDb. 2024. Non-Commercial Datasets. https://developer.imdb.com/non-

commercial-datasets/

[33] Yannis Ioannidis. 2003. The history of histograms (abridged). In VLDB. 19–30.
[34] Yannis E Ioannidis and Stavros Christodoulakis. 1991. On the propagation of

errors in the size of join results. In SIGMOD. 268–277.
[35] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman,

and Joao Carreira. 2021. Perceiver: General perception with iterative attention.

In ICML. 4651–4664.
[36] Lee Jaehoon, Bahri Yasaman, Novak Roman, Schoenholz Sam, Pennington

Jeffrey, and Sohl-dickstein Jascha. 2018. Deep Neural Networks as Gaussian

Processes. ICLR (2018).

[37] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. 2017. Estimating

join selectivities using bandwidth-optimized kernel density models. Proceedings
of the VLDB Endowment 10, 13 (2017), 2085–2096.

[38] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic

Optimization. In ICLR.
[39] Martin Kleppmann. 2017. Designing Data-intensive Applications: The Big Ideas

Behind Reliable, Scalable, and Maintainable Systems. O’Reilly Media, Inc.

[40] Alexander Korotkov and Konstantin Kudryavtsev. 2016. Selectivity Estima-

tion for Search Predicates over Set Valued Attributes. International Journal of
Database Theory and Application 9, 10 (2016), 285–294.

[41] Adrian Kosowski and KrzysztofManuszewski. 2004. Classical coloring of graphs.

Contemp. Math. 352 (2004), 1–20.
[42] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The case for learned index structures. In SIGMOD. 489–504.
[43] Kenneth A Lachlan, Patric R Spence, Xialing Lin, Kristy Najarian, and Maria

Del Greco. 2016. Social media and crisis management: CERC, search strategies,

and Twitter content. Computers in Human Behavior 54 (2016), 647–652.
[44] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Simple

and scalable predictive uncertainty estimation using deep ensembles. In NIPS.
6405–6416.

[45] Geon Lee, Chanyoung Park, and Kijung Shin. 2022. Set2Box: Similarity Pre-

serving Representation Learning for Sets. In ICDM. 1023–1028.

[46] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and

Yee Whye Teh. 2019. Set transformer: A framework for attention-based

permutation-invariant neural networks. In ICML. 3744–3753.
[47] Viktor Leis, Andrey Gubichev, AtanasMirchev, Peter Boncz, Alfons Kemper, and

Thomas Neumann. 2015. How good are query optimizers, really? Proceedings
of the VLDB Endowment 9, 3 (2015), 204–215.

[48] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander join: Online aggre-

gation for joins. In SIGMOD. 2121–2124.
[49] Guang Li, Ren Togo, Takahiro Ogawa, and Miki Haseyama. 2020. Soft-label

anonymous gastric x-ray image distillation. In ICIP. 305–309.
[50] Pengfei Li, WenqingWei, Rong Zhu, Bolin Ding, Jingren Zhou, and Hua Lu. 2023.

ALECE: An Attention-based Learned Cardinality Estimator for SPJ Queries on

Dynamic Workloads. Proceedings of the VLDB Endowment 17, 2 (2023), 197–210.
[51] Shuyang Li. 2020. Recipes and Interactions. https://www.kaggle.com/datasets/

shuyangli94/food-com-recipes-and-user-interactions

[52] Shuyang Li, Yufei Li, Jianmo Ni, and Julian McAuley. 2022. SHARE: A System

for Hierarchical Assistive Recipe Editing. In EMNLP. 11077–11090.
[53] Richard J. Lipton, Jeffrey F. Naughton, and Donovan A. Schneider. 1990. Practical

selectivity estimation through adaptive sampling. In SIGMOD. 1–11.
[54] Jie Liu, Wenqian Dong, Qingqing Zhou, and Dong Li. 2021. Fauce: Fast and ac-

curate deep ensembles with uncertainty for cardinality estimation. Proceedings
of the VLDB Endowment 14, 11 (2021), 1950–1963.

[55] Tianyi Liu, Minshuo Chen, Mo Zhou, Simon S. Du, Enlu Zhou, and Tuo Zhao.

2019. Towards understanding the importance of shortcut connections in residual

networks. In NeurIPS. 7892–7902.
[56] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-

Task Deep Neural Networks for Natural Language Understanding. In ACL.
4487–4496.

[57] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I. Jordan. 2017. Deep

transfer learning with joint adaptation networks. In ICML. 2208–2217.
[58] Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni, and Julian McAuley.

2019. Generating Personalized Recipes from Historical User Preferences. In

EMNLP-IJCNLP. 5976–5982.
[59] Zizhong Meng, Xin Cao, and Gao Cong. 2023. Selectivity Estimation for Queries

Containing Predicates over Set-Valued Attributes. Proceedings of the ACM on
Management of Data 1, 4 (2023), 1–26.

[60] Guido Moerkotte and Axel Hertzschuch. 2020. alpha to omega: the G(r)eek

Alphabet of Sampling. In CIDR.
[61] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing bad

plans by bounding the impact of cardinality estimation errors. Proceedings of

2124

https://www.kaggle.com/datasets/irkaal/foodcom-recipes-and-reviews
https://www.kaggle.com/datasets/irkaal/foodcom-recipes-and-reviews
https://www.ibm.com/docs/en/db2-for-zos/13?topic=types-array-values
https://www.ibm.com/docs/en/db2-for-zos/13?topic=types-array-values
https://developer.imdb.com/non-commercial-datasets/
https://developer.imdb.com/non-commercial-datasets/
https://www.kaggle.com/datasets/shuyangli94/food-com-recipes-and-user-interactions
https://www.kaggle.com/datasets/shuyangli94/food-com-recipes-and-user-interactions

the VLDB Endowment 2, 1 (2009), 982–993.
[62] M. Muralikrishna and David J. DeWitt. 1988. Equi-depth multidimensional

histograms. In SIGMOD. 28–36.
[63] MySQL. 2017. SET Data Type. http://download.nust.na/pub6/mysql/tech-

resources/articles/mysql-set-datatype.html

[64] Oracle. 2023. PL/SQL Collections and Records. https://docs.oracle.com/en/

database/oracle/oracle-database/23/lnpls/plsql-collections-and-records.html

[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

et al. 2019. PyTorch: An imperative style, high-performance deep learning

library. In NeurIPS. 8026–8037.
[66] Hoifung Poon and Pedro Domingos. 2011. Sum-product networks: A new deep

architecture. In ICCV Workshops. 689–690.
[67] Viswanath Poosala and Yannis E Ioannidis. 1997. Selectivity estimation without

the attribute value independence assumption. In VLDB. 486–495.
[68] PostgreSQL. 2024. Array Functions and Operators. https://www.postgresql.

org/docs/17/functions-array.html

[69] UNSW Sydney PVC (Research Infrastructure). 2010. Katana. (2010).

[70] David Saad. 1998. Online algorithms and stochastic approximations. Vol. 5. 6.

[71] P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A

Lorie, and Thomas G Price. 1979. Access path selection in a relational database

management system. In SIGMOD. 23–34.
[72] Andreas Seltenreich, Bo Tang, and Sjoerd Mullender. 2022. Bug Squashing with

SQLsmith. https://github.com/anse1/sqlsmith

[73] SQL server. 2023. Table-valued Parameters in SQL Server. https:

//learn.microsoft.com/en-us/sql/relational-databases/tables/use-table-valued-

parameters-database-engine?view=sql-server-ver16

[74] Noam Shazeer. 2020. GLU Variants Improve Transformer. arXiv preprint
arXiv:2002.05202 (2020).

[75] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. 2021.

Efficient attention: Attention with linear complexities. InWACV. 3531–3539.
[76] Yufan Sheng, Xin Cao, Yixiang Fang, Kaiqi Zhao, Jianzhong Qi, Gao Cong,

and Wenjie Zhang. 2023. WISK: A workload-aware learned index for spatial

keyword queries. Proceedings of the ACM on Management of Data 1, 2 (2023),
1–27.

[77] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-

shelvam, Marc Lanctot, et al. 2016. Mastering the Game of Go with Deep Neural

Networks and Tree Search. Nature 529, 7587 (2016), 484–489.
[78] Zhou Tao, Chang XiaoYu, Lu HuiLing, Ye XinYu, Liu YunCan, and Zheng

XiaoMin. 2022. Pooling operations in deep learning: from “invariable”’ to

“variable”’. BioMed Research International 2022, 1 (2022), 4067581.
[79] Hugo Touvron, Matthieu Cord, Alaaeldin El-Nouby, Piotr Bojanowski, Armand

Joulin, Gabriel Synnaeve, and Hervé Jégou. 2021. Augmenting Convolutional

networks with attention-based aggregation. arXiv preprint arXiv:2112.13692
(2021).

[80] Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2011. Lightweight

graphical models for selectivity estimation without independence assumptions.

Proceedings of the VLDB Endowment 4, 11 (2011), 852–863.
[81] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you

need. In NIPS. 6000–6010.
[82] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative

knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[83] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang,

Xiaogang Wang, and Xiaoou Tang. 2017. Residual attention network for image

classification. In CVPR. 3156–3164.
[84] Hai Wang and Kenneth C. Sevcik. 2003. A multi-dimensional histogram for

selectivity estimation and fast approximate query answering. In Conference of
the Centre for Advanced Studies on Collaborative research. 328–342.

[85] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. 2018.

Dataset Distillation. arXiv preprint arXiv:1811.10959 (2018).
[86] Zhen Wang, Liqiang Zhang, Liang Zhang, Roujing Li, Yibo Zheng, and Zidong

Zhu. 2018. A Deep Neural Network With Spatial Pooling (DNNSP) for 3-D

Point Cloud Classification. IEEE Transactions on Geoscience and Remote Sensing

56, 8 (2018), 4594–4604.

[87] Benjamin Warner. 2022. Tinkering With Attention Pooling. https://

benjaminwarner.dev/2022/07/14/tinkering-with-attention-pooling.

[88] Alexander Wei. 2024. Recipes with Ingredients and Tags. https://www.kaggle.

com/datasets/realalexanderwei/food-com-recipes-with-ingredients-and-tags

[89] Widenex. 2024. Widenex GPTs. https://gpts.widenex.com/

[90] Peizhi Wu and Gao Cong. 2021. A Unified Deep Model of Learning from both

Data and Queries for Cardinality Estimation. In SIGMOD. 2009–2022.
[91] Xueyi Wu, Yuanyuan Xu, Wenjie Zhang, and Ying Zhang. 2023. Billion-Scale

Bipartite Graph Embedding: A Global-Local Induced Approach. Proceedings of
the VLDB Endowment 17, 2 (2023), 175–183.

[92] Ziniu Wu, Amir Shaikhha, Rong Zhu, Kai Zeng, Yuxing Han, and Jingren Zhou.

2020. BayesCard: Revitilizing Bayesian Frameworks for Cardinality Estimation.

arXiv preprint arXiv:2012.14743 (2020).
[93] Tong Xiao, Yinqiao Li, Jingbo Zhu, Zhengtao Yu, and Tongran Liu. 2019. Sharing

Attention Weights for Fast Transformer. In IJCAI. 5292–5298.
[94] Yuanyuan Xu, Wenjie Zhang, Ying Zhang, Maria Orlowska, and Xuemin Lin.

2024. TimeSGN: Scalable and Effective Temporal Graph Neural Network. In

ICDE. 3297–3310.
[95] Yuanyuan Xu,Wenjie Zhang, Ying Zhang, Xiwei Xu, and Xuemin Lin. 2025. Fast

and Accurate Temporal Hypergraph Representation for Hyperedge Prediction.

In Proceedings of the SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD 2025). ACM.

[96] Yang Yang, Wenjie Zhang, Ying Zhang, Xuemin Lin, and Liping Wang. 2019.

Selectivity estimation on set containment search. Data Science and Engineering
4, 3 (2019), 254–268.

[97] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,

and Ion Stoica. 2021. NeuroCard: One Cardinality Estimator for All Tables.

Proceedings of the VLDB Endowment 14, 1, 61–73.
[98] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi

Chen, Pieter Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica.

2019. Deep Unsupervised Cardinality Estimation. Proceedings of the VLDB
Endowment 13, 3, 279–292.

[99] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale

recommender systems. In KDD. 974–983.
[100] Afia Zafar, Muhammad Aamir, Nazri Mohd Nawi, Ali Arshad, Saman Riaz,

Abdulrahman Alruban, Ashit Kumar Dutta, and Sultan Almotairi. 2022. A

comparison of pooling methods for convolutional neural networks. Applied
Sciences 12, 17 (2022), 8643.

[101] Hansong Zhang, Shikun Li, Pengju Wang, Dan Zeng, and Shiming Ge. 2024.

M3D: Dataset Condensation by Minimizing Maximum Mean Discrepancy. In

AAAI. 9314–9322.
[102] Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai. 2024. PACE:

Poisoning Attacks on Learned Cardinality Estimation. Proceedings of the ACM
on Management of Data 2, 1 (2024), 1–27.

[103] Linhan Zhang, Qian Chen, Wen Wang, Chong Deng, ShiLiang Zhang, Bing Li,

Wei Wang, and Xin Cao. 2022. MDERank: A Masked Document Embedding

Rank Approach for Unsupervised Keyphrase Extraction. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2022. Association for Computational

Linguistics, 396–409.

[104] Yan Zhang, Jonathon Hare, and Adam Prugel-Bennett. 2019. Deep Set Prediction

Networks. In NeurIPS. 3212–3222.
[105] Zeyu Zhang, Jiamou Liu, Kaiqi Zhao, Song Yang, Xianda Zheng, and Yifei Wang.

2023. Contrastive learning for signed bipartite graphs. In SIGIR. 1629–1638.
[106] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2021. Dataset Condensation

with Gradient Matching. In ICLR.
[107] Kangfei Zhao, Jeffrey Xu Yu, Zongyan He, Rui Li, and Hao Zhang. 2022. Light-

weight and accurate cardinality estimation by neural network gaussian process.

In SIGMOD. 973–987.
[108] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. 2020. GMAN:

A graph multi-attention network for traffic prediction. In AAAI. 1234–1241.
[109] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,

Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method

for Cardinality Estimation. Proceedings of the VLDB Endowment 14, 9 (2021),
1489–1502.

2125

http://download.nust.na/pub6/mysql/tech-resources/articles/mysql-set-datatype.html
http://download.nust.na/pub6/mysql/tech-resources/articles/mysql-set-datatype.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/lnpls/plsql-collections-and-records.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/lnpls/plsql-collections-and-records.html
https://www.postgresql.org/docs/17/functions-array.html
https://www.postgresql.org/docs/17/functions-array.html
https://github.com/anse1/sqlsmith
https://learn.microsoft.com/en-us/sql/relational-databases/tables/use-table-valued-parameters-database-engine?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/tables/use-table-valued-parameters-database-engine?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/tables/use-table-valued-parameters-database-engine?view=sql-server-ver16
https://benjaminwarner.dev/2022/07/14/tinkering-with-attention-pooling
https://benjaminwarner.dev/2022/07/14/tinkering-with-attention-pooling
https://www.kaggle.com/datasets/realalexanderwei/food-com-recipes-with-ingredients-and-tags
https://www.kaggle.com/datasets/realalexanderwei/food-com-recipes-with-ingredients-and-tags
https://gpts.widenex.com/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Statement
	2.2 Attention Mechanism

	3 Overview of ACE
	4 Dataset Featurization
	4.1 Set Representation
	4.2 Dataset Distillation
	4.3 Encoder Training

	5 Analyzer Design
	5.1 Element Correlation
	5.2 Attention Pooling
	5.3 Analyzer Training

	6 ACE under Updates
	7 Experiments
	7.1 Datasets and Workloads
	7.2 Experimental Settings
	7.3 Overall Performance
	7.4 Performance on Dynamic Data
	7.5 End-to-End Query Runtime
	7.6 Ablation Study
	7.7 Hyper-parameter Study

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

