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ABSTRACT

Current large language model (LLM)-based Natural Language to
SQL (NL2SQL) approaches typically rely on the database schema
and partial data values for the translation. These approaches are
unable to use sufficient data for accurate database understanding
due to limitations in data selection methods, and they cannot in-
put the entire database due to the limited context window sizes of
LLMs. This insufficient data integration may result in an incomplete
understanding of the database, leading to semantically incorrect
SQL generation. In this paper, we introduce REDSQL, a novel plug-
and-play framework that refines the predicted SQL by utilizing the
entire database in the refinement process. The core idea of REDSQL
is to enhance SQL refinement by identifying potential errors based
on the database content, which is achieved by applying constraints
on the input relations of query operations. LLMs can refine the
SQL using SQL-related information extracted by REDSQL, which
provides concise and informative insights into the database. Addi-
tionally, REDSQL enhances schema semantics by integrating data
profiling for more effective database utilization. Our experiments
demonstrate that REDSQL consistently improves the performance
of existing NL2SQL approaches across five benchmarks. Specifi-
cally, REDSQL elevates the accuracy of CODES to 67.3% (+8.8%)
and PURPLE to 67.7% (+11.1%) on the Bird benchmark.
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1 INTRODUCTION

SQL is a robust yet complex query language used for interacting
with databases. Due to the complexity and non-intuitive nature
of database design, it is challenging for non-professionals to write
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SQL. The Natural Language to SQL (NL2SQL) translation helps
these users easily access database data.

Large language models (LLMs) have improved NL2SQL perfor-
mance [53, 72]. Some works [52, 53] fine-tune LLMs on NL2SQL
corpora for focused SQL translation and high accuracy. Other ap-
proaches [24, 36, 49, 72] use prompting strategies to instruct general-
purpose LLMs to generate SQL without parameter updates.

However, the SQL queries generated by existing approaches may
be incorrect due to a lack of understanding of the database

without sufficiently considering its content. Existing LLM-based
NL2SQL approaches often rely on natural language (NL) questions,
database schema, and a small amount of retrieved database con-
tent for translation. Recent works attempt to improve database
comprehension by integrating advanced database content retrieval
techniques, which assist LLMs inNL2SQL translation [60]. However,
these approaches typically depend on the string and embedding
similarity [53, 59, 60, 83, 89] between NL questions and database
content, which may overlook important database relationships or
fail to retrieve essential information limited by the retrieval method.
This may result in either an incomplete understanding of the data-
base or an overload of irrelevant data, which hinders the accuracy
of NL2SQL translation. Additionally, inputting the entire database
into current LLMs is impractical due to limited context window
sizes and high computational costs.

Figure 1 illustrates a “buggy” NL2SQL translation from the Bird
benchmark [55], caused primarily by insufficient data integration.
Four specific errors are highlighted. Error ① arises from an in-
correct predicate: the value “di Resta” is in the surname column
instead of driverRef in DRIVERS. Consequently, error ② occurs
when the nested query returns NULL, since “di Resta” is not found
in driverRef . This leads to error ③, where an invalid equality com-
parison attempts to match an INTEGER with NULL, causing the
entire query to yield NULL (error ④). It is challenging for LLMs
to discern that “di Resta” is not in driverRef or notice the wrong
equality comparison due to the limited content. Such errors can be
constrained by integrating data accessibility into the refinement
process, allowing for improved database understanding.

It is important but challenging for NL2SQL translation to incor-
porate sufficient database content. To address this issue, we propose
to verify the predicted SQL based on the database content without
providing all content to the LLMs. We notice that existing DBMSs
use constraints on data write operations (insert, update, delete) to
preserve business semantics [4, 6, 84], and the constraints violation
report can help identify the wrong write operations. In this paper,
we propose to use constraints on data for read operations (select),
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Figure 1: An example of NL2SQL translation task from Bird.

ensuring that operations align with business semantics. Such con-
straints can be evaluated based on the entire database, and the
constraints violation report contains information from the database
content to help refine the SQL.

Several studies have explored refinement techniques [18, 66, 83]
for NL2SQL, but they primarily rely on an explanation generated by
LLMs and make the LLMs refine the SQL based on the explanation.
These studies concentrate on the SQL aspects rather than the data
aspects. Additionally, these existing refinement strategies heavily
depend on LLMs, which may limit their reliability and effectiveness
in addressing data-related errors for accurate SQL generation.

There are two challenges in enabling LLMs to refine SQL based
on the database content. The main challenge is: Where are the
errors? Identifying potential errors in SQL based on database con-
tent is challenging. Firstly, most errors are not detectable by the
DBMS (executable but semantically incorrect SQL). Additionally,
LLMs cannot locate errors based on the limited database content,
as discussed above. The other challenge is: How to fix the errors?
LLMs need to address the errors within the SQL. However, some
errors might be complex, requiring specific designs to assist LLMs
in identifying and correcting errors with the help of the data.

In this paper, we aim to refine SQL generated by existing NL2SQL
approaches, focusing on the data content of the database. To tackle
the aforementioned challenges, we introduce REDSQL (REfine by
Data for NL2SQL), a plug-and-play framework designed to detect
potential semantic errors in SQL and prompt LLMs to generate a
refined version. The core idea of REDSQL is that, while we can-
not input all content into the LLMs, we can validate the predicted
SQL based on the entire database. We design a constraints ver-
ification framework that is based on the alignment between
query operations and relational calculus. This framework supports
the customization of constraints for various query operations in
relational databases, and such constraints can help maintain the
business semantics of queries. We implement a general set of con-
straints applicable to diverse workloads, with the flexibility to add
workload-specific constraints in real-world applications. To enable
LLMs to understand potential semantic errors and refine SQL, RED-
SQL incorporates a pipeline to invoke LLMs for SQL refinement.

REDSQL can be integrated with any LLM-based NL2SQL ap-
proach in a plug-and-play style. When introducing a new database,

REDSQL first builds enhanced column annotations. Once integrated
into an existing NL2SQL approach, REDSQL takes the predicted
SQL and validates it against the database content based on the
defined constraints. It then generates a verification report and an
informative context, which guides the LLM to refine the SQL.

The contributions of this work are as follows:

• We propose applying constraints to preserve the business
semantics of queries for NL2SQL, helping LLMs refine pre-
dicted SQL based on the entire database.

• We implement a constraints verification framework for
query operations, including a general set of constraints
suitable for various workloads, with support for adding
workload-specific constraints in real-world applications.
• We introduce REDSQL as a plug-and-play framework for

SQL refinement. REDSQL identifies potential errors using
constraints verification and provides SQL-related context
to assist LLMs in refining SQL.

• Our experiments show that REDSQL consistently improves
the performance of various NL2SQL approaches, achiev-
ing new state-of-the-art (SOTA) performance. Specifically,
REDSQL enhances CODES to 67.3% (+8.8%) and PURPLE to
67.7% (+11.1%) translation accuracy on the Bird benchmark.

This paper is structured as follows: Section 2 introduces related
work; Section 3 provides an overview of REDSQL; Section 4 details
its components; Section 5 presents evaluation experiments; and
Section 6 concludes with future research directions.

2 RELATEDWORK

2.1 NL2SQL

NL2SQL tasks have been studied for decades. Early works [38, 45,
50, 51, 75, 78, 79, 91] focused on mapping NL terms to schemas,
which limited NL understanding and generalization to cross-domain
situations. With the rise of LLMs, most current NL2SQL approaches
are based on LLMs. We categorize these as fine-tuning-based and
prompting-based approaches.

Fine-tuning-based NL2SQL: Works such as [11, 14, 32, 33,
41, 44, 53, 54, 58, 69, 74, 76, 77, 89, 94], adapt pre-trained LLMs
for NL2SQL by fine-tuning. Studies like [28–31, 52, 92] integrate
ranking modules to boost accuracy. However, fine-tuning-based
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methods are limited by model size and training corpus quality,
causing performance drops in shifting workloads.

Prompting-based NL2SQL: Prompting-based approaches are
divided into zero-shot and few-shot, depending on whether demon-
strations are provided. Zero-shot approaches [17, 24, 42, 59] use
hand-crafted instructions to improve translation accuracy. Few-
shot approaches, such as [5, 36, 47, 49, 65, 67, 70, 72, 85, 88], include
NL2SQL demonstrations to enhance SQL generation. However,
these approaches often face limitations due to a small set of demon-
strations, restricting their generalization across diverse workloads.

Existing LLM-based NL2SQL approaches often lack sufficient
data for effective translation and struggle with processing entire
databases. This limited data integration causes inaccuracies in SQL
generation, as LLMs fail to understand database and SQL semantics.

2.2 SQL Semantic Debugging

SQL semantic debugging analyzes and corrects SQL semantics,
going beyond syntax checks. It involves two types: one identifies
discrepancies between a given SQL and a gold SQL, while the other
detects potential semantic errors without the gold SQL. We also
explore how LLMs are used to enhance SQL semantic debugging.

Semantic Debugging with Gold SQL: Identifying errors
based on the gold SQL helps users correct their SQL. Existing
works [16, 19, 37, 43, 61] propose methods for error identification
and correction. However, in NL2SQL applications, access to a gold
SQL for comparison is infeasible.

Semantic Debugging without Gold SQL: Detecting poten-
tial semantic errors is challenging without the gold SQL. Re-
search [12, 87] aims to identify operations that no database model
can satisfy, offering a safe yet sometimes impractical approach for
real-world applications. Considering the actual database content
helps detect more potential bugs. Such techniques are useful in
educational settings and for categorizing common errors among
SQL users [3, 13, 39, 68, 80–82]. These works identify error pat-
terns through empirical analysis, focusing on user SQL rather than
NL2SQL applications. Moreover, some studies [23, 40, 48] use vi-
sualization to explain the SQL execution process. These methods
enhance user understanding of SQL semantics through visual rep-
resentations of data operations. Although beneficial for users, inte-
grating such visual insights into LLMs remains a challenge.

Semantic Debugging by LLMs: Some studies have employed
LLMs for SQL semantic debugging, similar to REDSQL. Existing
methods [15, 18, 66, 83, 88] often delegate the entire debugging pro-
cess to LLMs. These methods involve using LLMs to interpret and
then refine SQL based on the explanations. This direct approach can
slightly enhance translation accuracy. However, identifying bugs
without sufficient data access poses challenges for LLMs. Moreover,
current approaches often depend on prior NL2SQL methods.

3 REDSQL OVERVIEW

Figure 2 provides an overview of REDSQL, including five main
steps, as the SQL Execution, Constraints Verification, Con-
text Expansion, SQL refinement and Documentation. The red
rounded rectangle is the online refinement process, while the blue
rounded rectangle is the documentation process.

Figure 2: Overview of REDSQL.

Before introducing REDSQL, it is important to note that existing
NL2SQL approaches mainly rely on either a Schema Only or a
Schema + Retrieved Data strategy. These strategies fail to fully utilize
the database content, leading to three main disadvantages:

• Inability to Accurately Capture Schema Semantics.

For example, in Figure 1, a wrong predicate such as
driverref = ’di Resta’ occurs due to the incor-
rect interpretation of the column driverref without suffi-
cient enrichment of the database content.

• Failure to Properly Integrate Data Operations. For
example, an incorrect comparison between driverid
(INTEGER) and NULL (executed by the subquery) arises
because LLMs cannot recognize the execution result of the
subquery without knowledge of the database content.

• Incorrect Understanding of SQL Semantics. For exam-
ple, the generated SQL shown in Figure 1 is incorrect and
goes undetected by LLMs because they cannot infer the ex-
ecution process without access to the full database content.

In REDSQL, we address these issues by validating the predicted
SQL against the entire database and then providing LLMs with de-
tected potential errors and the relevant context for SQL refinement.

3.1 Online Refinement Process

The online refinement process of REDSQL consists of four steps:
SQL Execution, Constraints Verification, Context Expansion,
and SQL Refinement. Its inputs include the database, the NL
question, and the initially predicted SQL. In addition, the Docu-
mentation step supplies enhanced column annotations that serve
as the global data context for refinement. When REDSQL is inte-
grated with existing NL2SQL approaches, the SQL can be refined
repeatedly; each iteration uses the previously refined SQL as a new
starting point. The final output is the refined SQL, which usually
achieves higher accuracy than the initial prediction.

SQL Execution: The refinement process starts with the SQL
execution to evaluate its executability. For a non-executable SQL,
its execution results include exceptions reported by the DBMS.
Conversely, for an executable SQL, its execution results become
part of the SQL-related data. Collecting these responses from the
DBMS helps LLMs verify the correctness of the SQL.
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Constraints Verification: In this step, we detect potential se-
mantic errors based on the data. Existing DBMSs primarily re-
port syntax and execution errors but cannot identify semantic er-
rors, which depend on the database data and the behavior of the
corresponding DBMS. For instance, the query ORDER BY with
LIMIT 1 is commonly used to retrieve the minimum value. How-
ever, this operation may yield incorrect results if NULL values are
present in the ranking column since some DBMSs rank NULL first
in an ORDER BY operation. Although the SQL is executable, its se-
mantics can vary depending on the database content (e.g., whether
NULL value in the ORDER BY column). The constraints verifica-
tion validates the SQL by traversing the logical execution tree and
evaluating it based on the database. Specifically, we implement
constraints to the input relations for the operations. Detected con-
straint violations are classified into three levels: INFO,WARNING,
and ERROR. Each violation report includes the violation level,
location, and a detailed description.

Context Expansion: We notice that simply reporting detected
potential errors is insufficient for effective SQL refinement by LLMs.
Offering SQL-related information is beneficial as it provides infor-
mative context for refinement. During this step, we expand on the
schema and values for the LLMs to facilitate the refinement step.

SQL Refinement: In the SQL refinement step, we develop a
prompt in a zero-shot setting for invoking LLMs, preserving the
generalization capability. The prompt includes instructions, the
database schema, the predicted SQL, its execution results, the de-
tected violations, additional expanded context, and enhanced col-
umn annotations. Note that the reported violations are hypothetical;
it is up to the LLMs to decide whether to correct them. The number
of refinement iterations is predefined, and once those iterations are
exhausted, the refined SQL is returned as the final output.

3.2 Documentation Process

Before the SQL refinement tasks, REDSQL creates enhanced an-
notation for the database. The documentation step extracts three
types of data as the source data and summarizes them as the docu-
mentation. The source data include the Metadata of the database,
the Data Profile for the database, and the Annotation from the
data dictionary. The summarized document serves as a global data
context, representing the business semantics of the entire database.

Metadata Retrieval: The metadata includes details about tables,
columns, and keys, providing a structural description of the schema.
Most NL2SQL approaches leverage metadata for SQL translation.

Data Profiling: The data profile establishes a global view of the
database by existing profile tools. Unlike typical NL2SQL methods
that focus on extracting only matched entities from the NL question,
our approach includes summarized statistical information to give
LLMs a broader understanding of the database semantics.

Annotation Retrieval: Because table and column names can
be ambiguous or uninformative, many NL2SQL tasks provide basic
annotations. We collect these annotations to clarify the schema and
support a foundational understanding.

Documentation: REDSQL synthesizes the metadata, data pro-
file, and annotations into an enhanced column annotation. Directly
utilizing raw data for the LLMs would be too verbose, costly, and

Figure 3: Documentation process of REDSQL.

lacking business semantics. Therefore, we generate a concise, se-
mantically rich document through the LLM summarization process.
This documentation serves as the global data context for subsequent
NL2SQL refinement tasks.

4 METHODOLOGIES

In this section, we describe the detailed implementation of RED-
SQL. First, we describe the Documentation step, which produces
a comprehensive database document used in the subsequent refine-
ment. Then, we introduce the refinement process, outlining its four
main steps: SQL Execution, Constraints Verification, Context
Expansion, and SQL Refinement. REDSQL not only includes the
errors raised by DBMS but focuses on identifying semantic errors
in predicted SQL. By expanding SQL-related information, REDSQL
offers LLMs a richer context for more accurate refinement.

4.1 Documentation

The objective of the documentation is to construct a global data con-
text for SQL refinement. Expert SQL developers can write accurate
queries because they understand SQL and the underlying database.
Similarly, we aim to provide LLMs with comparable insights by cre-
ating a global data context for enhanced SQL refinement. Figure 3
illustrates the documentation pipeline.

4.1.1 Data Extraction. Given a database D, we extract metadata
about tables T , columns C, and keys K . This metadata conveys
structural information essential for representing the basic semantics
of the database. We serialize the database schema as 𝑠𝑐ℎ𝑒𝑚𝑎(D)
following the concise representation format in DIN-SQL [66].

To construct the global data context G, we perform data pro-
filing [1, 2, 62] on the entire database contentM. Data profiling
captures statistical information about each column and reveals
inter-column relationships or dependencies. In REDSQL, we use an
existing data profiling tool1 to generate a data profile P. For each
column 𝑐 𝑗

𝑖
in table 𝑡 𝑗 , we obtain a profiling report 𝑝 𝑗

𝑖
.

1https://github.com/ydataai/ydata-profiling [Last accessed: 2025-04-13]
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Database column names typically use abbreviations, resulting
in unclear semantics. Many databases include a data dictionary for
clarification. Therefore, existing NL2SQL approaches often include
a simple data dictionary to annotate the schema. We denote the
annotation of 𝑐 𝑗

𝑖
as 𝑎 𝑗

𝑖
. Although these annotations are simple and

do not convey the business semantics of the database, they play an
important role in constructing the global data context.

For example, as illustrated in Figure 1, the database formula_1
comprises 13 tables. The table DRIVERS has five columns: driverId
(Primary Key), driverRef , number , forename, and surname. The an-
notation for the column driverRef is provided as “driver reference
name”. However, the annotation for number is simply “number”,
offering no additional semantic details.

4.1.2 Global Data Context Documentation. Data profile goes be-
yond raw statistics for data scientists, which can be utilized to infer
potential business semantics. We aim for the LLMs to explicitly
perform this task, ensuring that G contains the data-supported
business semantics of the database. We notice that using metadata,
data profiling, and column annotations to detail all available infor-
mation contains duplicate content and lacks business semantics.
Instead, we employ LLMs to generate a description for each column,
serving as the global data context G. This summary is more efficient
for subsequent SQL refinement tasks since the summarization is
performed offline and only needs to be executed once, making it
reusable across multiple refinement tasks. Unlike traditional data
profiling, which focuses on distribution and numerical summaries,
our approach leverages LLMs to create concise descriptions that
reveal clearer business semantics.

To generate G, we construct a prompt for invoking LLMs as
shown in Figure 3. The prompt contains four main parts: instruc-
tion, schema, data, and formatting. The instruction guides the LLMs
to perform the column description task; the schema provides a
basic structural overview of the database. The data part includes
detailed metadata, profiling, and annotations for each column. The
formatting guides the LLMs in structuring the response in a spe-
cific format, facilitating response parsing. To ensure the generated
documentation sufficiently represents column semantics, we gener-
ate descriptions 𝑛 times for each column and set an upper length
bound 𝜏𝑢 to filter out long entries, which could otherwise consume
excessive tokens in the online tasks.

For example, the global data context generated for the column
driverRef is “A reference name used internally for the driver.”, which
concisely reflects its business semantics. For the numeric column
number in DRIVERS (as shown in Figure 1), the summary is “The
racing number of the driver, if available,” which is not only rich in
business semantics but also indicates that this value can be NULL.

4.2 SQL Execution

REDSQL is a framework that boosts the accuracy of existing LLM-
based NL2SQL approaches without assuming specific implementa-
tion details or designs from prior NL2SQL approaches. Given an NL
questionX and a predicted SQL query S generated by any NL2SQL
approach, REDSQL aims to refine S into S′ such that the execution
results of S′ match those of the gold SQL S∗.

Algorithm 1: Violation Collection Algorithm
Input :Logical execution node 𝑛
Output :Detected violations V

1 Procedure CollectViolation(𝑛, V):
2 V ← []

3 if IsLeaf(𝑛) then
// Leaf nodes do not contain violations

4 return V
5 else

6 for each 𝑐ℎ𝑖𝑙𝑑 ∈ IterChildren(𝑛) do
// Recursively collect violations

7 MergeList(V , CollectViolation(𝑐ℎ𝑖𝑙𝑑))
// Check constraints for the current node

8 MergeList(V , CheckConstraints(𝑛))
9 return V

For the predicted SQLS, we first execute it on the target database.
We record two types of responses: the Exception for non-executable
SQL and the Execution Results for executable SQL, denoted as 𝑒 .

DBMS raises exceptions for non-executable SQL (due to syntax
errors, execution errors, etc.). We capture this response from the
DBMS as errors in the non-executable SQL. We do not perform
further constraints verification on the non-executable SQL since
the SQL can not be executed for verification.

For executable queries, we collect the execution results.We retain
only the first 𝑘 tuples to limit the output size. If more than 𝑘 tuples
are retrieved, we log the first 𝑘 and note how many are omitted.
Although execution results do not convey the complete meaning of
the SQL, this sample is valuable for assessing whether the response
aligns with the NL question.

4.3 Constraints Verification

As previously mentioned, relying solely on the execution result 𝑒
is insufficient for identifying all potential errors, especially those
related to business semantics. Simply incorporating execution feed-
back yields only marginal improvements. A critical challenge lies
in error detection, as LLMs often struggle to identify specific bugs
caused by M without access to the entire database. Therefore,
precise data knowledge is crucial for LLMs to detect and rectify
potential errors in the SQL.

Traditional constraints for relational databases are typically de-
signed for data write operations, ensuring the preservation of busi-
ness semantics and data integrity [6, 8, 9, 25–27]. However, no
constraints are applied to data read operations, as these queries do
not modify the data, and it is assumed that SQL experts understand
the business semantics of the queries. In NL2SQL systems, LLMs
often lack full comprehension of the database semantics, leading to
incorrect SQL generation. To address this, we propose to integrate
constraints into query operations, assisting in finding potential
errors based on database content. Unlike write operations, where
constraints are evaluated post-operation to check for violations,
read operations cannot rely on updated data. Instead, we propose
applying constraints to the input relations of each operation to en-
sure that business semantics are preserved during query execution.

REDSQL provides a framework that supports all relational data-
base operations by aligning them with relational calculus [20, 46,
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Table 1: All constraints implemented inREDSQL. Function type: detects the data type of a value; Function is_null: checkswhether

a value is NULL; Function has_relation: identifies whether two columns have defined relationships; Function compatible:

Determines whether the type of values is compatible with the operation being performed.

Operation Type & Level Formal Definition Description

Predicate

Predicate unsatisfiable

INFO

Predicate node 𝑛
∃𝑡 ∈ 𝑅, (𝑃 (𝑡 ) ) ;

𝑃 denotes the predicate in 𝑛, 𝑅 denotes the input relation of 𝑛.
Constraint: There exists a tuple 𝑡 in 𝑅 that satisfies 𝑃 .

Idle predicate

ERROR

Predicate node 𝑛;
∃𝐴, 𝐵, (𝐴 ≠ 𝐵) ;

𝐴 and 𝐵 denote columns being compared within 𝑛.
Constraint:𝐴 and 𝐵 can not be the same columns.

CAST
Data precision loss

WARNING

CAST operation (to INTEGER) node 𝑛;
∀𝑎 ∈ 𝐴, (type(𝑎) = REAL→ ⌊𝑎⌋ = 𝑎) ;

𝐴 denotes columns involved in the CAST operation of 𝑛.
Constraint: All values 𝑎 in𝐴, if of type REAL, must equal their floor value.

JOIN
predicate

JOIN abnormal

WARNING

JOIN predicate node 𝑛;
has_relationship(𝐴, 𝐵) ;

𝐴 and 𝐵 denote the columns used in the JOIN predicate of 𝑛.
Constraint: There must be a defined relational key constraint between𝐴 and 𝐵.

Wrong JOIN
ERROR

JOIN predicate node 𝑛;
∃𝑎 ∈ 𝐴, ∃𝑏 ∈ 𝐵, (𝑃 (𝑎,𝑏 ) ) ;

𝐴 and 𝐵 denote the columns used in the JOIN predicate 𝑃 of 𝑛.
Constraint: There must be overlapping values between𝐴 and 𝐵.

Query
Output abnormal

WARNING

Query node 𝑛;
(𝑅 ≠ ∅) ∧ (∃𝑡 ∈ 𝑅, (¬𝑖𝑠_𝑛𝑢𝑙𝑙 (𝑡 ) ) )∧
(∀𝑡1, 𝑡2 ∈ 𝑅, (𝑡1 ≠ 𝑡2) ) ;

𝑅 denotes the input relation of 𝑛.
Constraint: The relation 𝑅 must not be empty, contain no NULL tuples, and
have no duplicate tuples.

Calculation
Wrong calculation

ERROR

Calculation node 𝑛;
∀𝐴, 𝐵, (compatible(type(𝐴), type(𝐵) ) ) ;

𝐴 and 𝐵 denote columns or values involved in calculations within 𝑛.
Constraint: Operations between𝐴 and 𝐵 must involve compatible data types.

Comparison
Wrong comparison

ERROR

Comparison node 𝑛;
∀𝐴, 𝐵, (compatible(type(𝐴), type(𝐵) ) ) ;

𝐴 and 𝐵 denote the columns being compared within 𝑛.
Constraint: The data types of𝐴 and 𝐵 must be compatible.

Logical
Predicates inconsistent

ERROR

Logical node 𝑛;
∃𝑡 ∈ 𝑅, (𝑃𝑠 (𝑡 ) ) ;

𝑃𝑠 represents predicates composed within 𝑛; 𝑅 denotes the input relation of 𝑛.
Constraint: There must exist a tuple 𝑡 in 𝑅 that satisfies 𝑃𝑠 .

SELECT Uncertain projection

ERROR

SELECT (with GROUP BY) node 𝑛;
∀𝑡1, 𝑡2 ∈ 𝑅, (𝑡1.𝐴 = 𝑡2.𝐴→ 𝑡1.𝐵 = 𝑡2.𝐵) ;

𝐴 denotes the GROUP BY column of 𝑛, 𝐵 denotes columns in the SELECT
clause of 𝑛; 𝑅 denotes the input relation of 𝑛.
Constraint: For all tuples have the same𝐴 value, they have the same 𝐵 value.

GROUP BY Idle GROUP BY
ERROR

GROUP BY node 𝑛;
∃𝑡1, 𝑡2 ∈ 𝑅, (𝑡1.𝐴 = 𝑡2.𝐴 ∧ 𝑡1 ≠ 𝑡2) ;

𝐴 denotes the GROUP BY column of 𝑛; 𝑅 denotes the input relation.
Constraint: There must exist at least two tuples that have the same value for𝐴.

HAVING Uncertain HAVING
ERROR

HAVING predicate node 𝑛;
∀𝑡1, 𝑡2 ∈ 𝑅, (𝑡1.𝐴 = 𝑡2.𝐴→ 𝑡1.𝐵 = 𝑡2.𝐵) ;

𝐴 denotes the GROUP BY column of 𝑛, 𝐵 denotes columns in the HAVING
predicate of 𝑛; 𝑅 denotes the input relation of 𝑛.
Constraint: For all tuples have the same𝐴 value, they have the same 𝐵 value.

ORDER BY Ranking abnormal

WARNING

ORDER BY node 𝑛;
∀𝑎 ∈ 𝐴, (¬is_null(𝑎) ) ;

𝐴 denote the ORDER BY column of 𝑛.
Constraint: All values 𝑎 in𝐴 must be non-null for valid ranking.

63, 64, 73, 86]. Leveraging this alignment, we model the verification
process as an evaluation of the input relations for each operation.
Specifically, constraints can be defined using logical forms for par-
ticular operations. These logical constraints are then applied to the
corresponding input relations. Additionally, the completeness of
REDSQL for all relational operations is guaranteed through the
coverage of relational calculus across SQL operations.

Each operation 𝑛 in the SQL execution process receives relations
as inputs. The potential errors can be noticed if the added con-
straints are violated. It is important to notice that the constraints
are applied in the execution process, and the constraints do not
really stop the execution but only report the violation.

Algorithm 1 details the process for identifying all constraint
violations in S. The algorithm returns an empty list for the leaf
nodes (tables, columns, aliases, and literal values) in the execution
tree (lines 3-4), because these nodes do not represent operations
requiring validation. For non-leaf nodes, the algorithm recursively
collects violations by iterating through each child node of 𝑛 (lines
5-7), merging detected violations into the violations listV . Subse-
quently, violations of 𝑛 are identified based on the input relations.
To collect all violations in S, REDSQL invokes the CollectViolation
function with the root node of the execution tree.

We list all constraints that we implemented in Table 1. These
constraints primarily focus on discrepancies related to data types,
values, and uncertainties introduced by the DBMS, which is gener-
ally applicable to databases in real-world applications. In formulat-
ing these constraints, we reference studies on semantic debugging
without a gold standard SQL [3, 13, 39, 68, 80–82] and incorpo-
rate common error patterns from LLM-generated SQL as noted in

previous research [49, 66, 93]. These two aspects allow us to ad-
dress errors typically introduced by humans and LLMs, enhancing
the robustness of our approach. Furthermore, REDSQL is designed
as a flexible framework capable of designing more constraints if
only the operations are aligned with relational calculus. We only
implement the constraints that are generally applicable in this
paper. For example, the constraints Uncertain projection, Idle
GROUP BY, andUncertainHAVING address commonGROUP BY
issues. Specifically, Uncertain projection prevents including non-
aggregated columns in a SELECT clause that uses GROUP BY. Idle
GROUP BY removes unnecessary GROUP BY clauses on unique
columns, and Uncertain HAVING ensures predicate columns in a
HAVING clause are either aggregated or deterministic.

In practice, designing specific constraints tailored to a particular
database or business requirement can further improve accuracy.
For example, consider the data type of the column time in the
table LAPTIMES, which is stored as TEXT (as shown in Figure 1).
Sorting this column alphabetically can lead to incorrect results
(e.g., “52:18.842” is smaller than “5:03.706”). A custom constraint
could prohibit ORDER BY on time while it remains of type TEXT,
thereby maintaining business semantics. However, to preserve a
cross-database approach and avoid overfitting, we exclude such
workload-specific constraints, focusing instead on more general
constraints applicable to various workloads.

We classify all violations into three levels: INFO,WARNING,
and ERROR. This classification aligns with common practices in
code compilers, which prioritize bugs based on their impact. The
criteria for categorizing violations are based on the potential of the
relational calculus to cause actual semantic errors.
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Figure 4: Constraints verification example: Green boxes show

no violations; gray, yellow, and red boxes represent INFO,

WARNING, and ERROR level violations, respectively

• INFO: This level is used to collect information about which
operations cannot be satisfied by the input relations. While
not indicating an abnormal or incorrect operation, showing
instances at this level is crucial for identifying potential
sources of higher-level errors.

• WARNING: At this level, we categorize operations that
deviate from normal expectations based on the input. The
operations identified at this level are uncommon in typical
SQL workloads and might indicate potential errors.

• ERROR: This level includes operations that may not be
directly executable but are implicitly handled in a default
manner by the DBMS design. For example, some DBMSs
permit dynamic data type operations (e.g., SQLite), such
as comparing a TEXT column with an INTEGER column,
which can lead to unpredictable results. This level also
includes inherently meaningless operations.

We demonstrate the constraints verification process for the SQL
shown in Figure 1 as an example. Due to space limitations, not all
steps are displayed. Five potential errors were identified in S: The
first violation is in the predicate driverref = 'di Resta',
where there is an INFO-level violation because the value “di Resta”
does not exist in the column driverRef . The second detected viola-
tion isWARNING-level, as the result of the nested SQL is NULL.
All other detected violations are listed in Figure 4.

Discussion: We highlight three key aspects of the violation
verification process. First, although REDSQL flags potential errors
through constraint violations, these issues do not necessarily in-
dicate mistakes. For example, an empty (NULL) result might be
correct, and the violation prompts LLMs to confirm whether the
SQL matches user intent. Second, while constraint evaluation on
input relations can be time-consuming, it typically only takes a
few seconds for large databases in Bird and around ten seconds
for the extremely large ScienceBenchmark [95]. Finally, REDSQL
can integrate workload-specific constraints aligned with particular
business and database requirements, offering a broad design space
to accommodate unique database semantics.

Figure 5: Context Expansion in REDSQL.

4.4 Context Expansion

We recognize that reporting detected violations is crucial for SQL
refinement. However, LLMs sometimes struggle to correct the SQL
adequately, especially when the predicted SQL is largely incorrect.
For example, if the generated SQL omits certain tables required by
the gold SQL, it is difficult for REDSQL to fix this omission based
solely on violation information. To address this issue, REDSQL
expands the context for SQL refinement by incorporating additional
SQL-related information, including schema and values, providing a
richer basis for SQL refinement.

4.4.1 Schema Expansion. Providing high schema recall helps LLMs
choose the correct tables and columns during refinement. How-
ever, including comprehensive information about all tables and
columns in the prompt can increase the cost of invoking LLMs and
complicate schema linking [57, 70, 72, 93]. Unlike existing NL2SQL
approaches, REDSQL aims to refine the S to S′ rather than gener-
ating the SQL from scratch. On the one hand, we should emphasize
the information about the tables and columns referenced in S to as-
sist LLMs in checking if S accurately reflects the intended schema.
On the other hand, these references also provide clues about the
gold tables and columns in S∗ [57, 70, 93]. REDSQL does not solely
rely on S for table and column selection; instead, it expands the
selection to ensure robust schema linking as shown in Figure 5.

Algorithm 2 shows the schema expansion process utilized in
REDSQL. We do not include semantic techniques in this process, as
we assume that S inherently contains semantic information [57].
This algorithm focuses solely on expanding the initially selected
tables T 𝑝 to T 𝑒 and the selected columns C𝑝 to C𝑒 .

For table expansion, we rank tables not initially in T 𝑝 but related
to those in T 𝑝 , based on the count of adjacent tables (lines 4-5).
We add all tables in T 𝑝 to T 𝑒 and then include the top 𝑘1 − |T 𝑝 |
related tables based on neighbor counts.

For column expansion, we focus on the columns belonging to
tables in T 𝑒 . For each 𝑡𝑖 in T 𝑒 , we perform a ValueMatch to identify
matched values between the X and each column 𝑐𝑖 . This matching
uses a coarse-to-fine string matching algorithm based on BM25 and
sentence edit distance [53]. We add all columns in C𝑝 into C𝑒 and
then add the top 𝑘2 − |C𝑝 | columns with the highest priority (lines
7-10). The priority calculation is shown in Table 2.

4.4.2 Value Expansion. Moreover, we utilize the extracted values
in L of Algorithm 2. We incorporate potential gold column hints
by including extracted values from L. Additionally, we enrich L
by expanding maximum and minimum values, as well as NULL, to
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Algorithm 2: Schema Expansion Algorithm
Input : Initial selected tables T𝑝 ; Initial selected columns C𝑝 ;

Database D; NL question X
Output :Expanded tables T𝑒 ; Expanded columns C𝑒 ;

Local data context L
1 Procedure ExpandSchema(T𝑝 , C𝑝 , D, X):
2 T𝑒 ← T𝑝 ; C𝑒 ← C𝑝 ; L ← {};

// Expanding tables

3 for each 𝑡𝑖 ∈ T𝑝 do

4 for each 𝑎𝑑 𝑗 ∈ GetNeighbor(𝑡𝑖) do
5 AddCount(D, 𝑎𝑑 𝑗)
6 MergeList(T𝑒 , GetTopTables(D))

// Expanding columns

7 for each 𝑡𝑖 ∈ T𝑒 do

8 for each 𝑐𝑖
𝑗
∈ 𝑡𝑖 do

9 L[𝑐𝑖
𝑗
] ← ValueMatch(X, 𝑐𝑖

𝑗
)

10 MergeList(C𝑒 , GetTopColumns(L, C𝑖))
// Expanding local data context

11 L ← ExpandData(L)
12 return T𝑒 , C𝑒 , L

Table 2: Column Expansion Priority.

Priority Description Example

Highest Columns in C𝑝 DRIVER.driverRef (used in S)
High Columns in K DRIVER.driverid (primary key)
Medium Columns in L DRIVER.surname (value matched)
Low Other columns in C DRIVER.number

provide a more comprehensive data context related to the columns
in C𝑒 (line 11). The function ExpandData enhances the local data
context by highlighting insightful data within the column. This
approach helps the SQL refinement by providing a richer context
for the LLMs during the refinement process.

4.5 SQL Refinement

The final step is refining SQL S to S′ by invoking LLMs. We de-
sign this step to guide the LLMs in refining S through a structured
prompt. Additionally, we incorporate the database adaptation mod-
ule [72] to process the responses of LLMs.

We design a prompt to facilitate SQL refinement, which is uti-
lized when invoking LLMs. As illustrated in Figure 6, the prompt
consists of four main components: Instruction is consistent for
all refinement tasks and aimed at directing the LLMs regarding the
required actions. Overall Schema aligns with DIN-SQL [66] and
offers a concise representation of the schema to provide structural
information about the database. Refinement Task presents spe-
cific details about the current SQL refinement task, including the
NL question X and the predicted SQL S. This provides the LLMs
with the current task information. RED Prompt comprises the
selected tables T 𝑒 , selected columns C𝑒 , the corresponding global
data context G, the local data contextL, and the violationsV .RED
Prompt is the core of the prompt in REDSQL, as it helps LLMs in
identifying real semantic errors based onM.

Figure 6: SQL Refinement in REDSQL.

There are two refinement strategies in REDSQL: all refinement
and bug-only refinement. All refinement involves refining all re-
ceived SQL, while bug-only refinement focuses on refining only the
SQL containing potential errors, including execution errors and
detected potential semantic errors. These two refinement strategies
can be combined for multi-turn refinements.

We employ a zero-shot prompting strategy to maintain general-
ization. While advanced methods such as few-shot prompting could
potentially enhance performance, the flexibility of constraint viola-
tions in our approach makes it challenging to create representative
demonstrations. Moreover, few-shot methods typically increase the
LLM usage costs. Therefore, REDSQL exclusively utilizes zero-shot
prompting. Exploring advanced few-shot prompting strategies for
REDSQL remains an interesting direction for future research.

5 EXPERIMENTS

In this section, we evaluate REDSQL by integrating it with various
LLM-based NL2SQL approaches. We test the robustness of REDSQL
under different hyperparameters, explore its performance with
multiple foundation LLMs, and perform ablation studies to assess
the contributions of each REDSQL component.

5.1 Experimental Setup

5.1.1 Benchmarks. We primarily evaluate REDSQL on the chal-
lenging Bird benchmark [55]. Most of our experiments use the Bird
development set. We also include the simpler Spider benchmark
[90] and its three variants, Spider-DK (DK) [35], Spider-Realistic
(Realistic) [22], and Spider-SYN (SYN) [34], to explore domain
adaptation and linguistic robustness. Additionally, we evaluate RED-
SQL on complex ScienceBenchmark (Science) [95], converting
the original database to SQLite for consistency with our baselines.

Bird: This benchmark contains 12,751 NL2SQL pairs across 95
large-scale databases, highlighting challenges such as noisy data-
base values and the need for external knowledge. It emphasizes the
importance of understanding database values to generate accurate
queries, aligning with the motivations of REDSQL.

Spider: This benchmark includes 10,181 questions and 5,693
unique SQL queries across 200 multi-table, cross-domain databases.
Spider focuses on evaluating the multi-table database schema un-
derstanding of NL2SQL approaches.
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Spider-DK,Realistic, and SYN: These three Spider variants
investigate different aspects of domain adaptation and linguistic
variation. DK requires domain-specific knowledge, Realistic alters
text-schema alignment by removing direct schema references, and
SYN rephrases questions to evaluate paraphrasing robustness.

Science: This benchmark involves domain-specific knowledge
for real-world application queries based on large databases. We
include it to evaluate REDSQL in complex scenarios further. Since
all baseline methods are implemented in SQLite, we convert the
original database to SQLite for evaluations.

5.1.2 Evaluation Metrics. For all benchmark evaluations, we pri-
marily focus on the EXecution-match accuracy (EX), and we report
the Valid Efficiency Score (VES) for Bird.

EX [55, 90] is the official evaluation metric used across all men-
tioned benchmarks, designed to assess whether the predicted SQL
yields results that align with those of the gold SQL.

VES [55] measures SQL efficiency by comparing the execution
time of predicted queries to that of the gold SQL. We perform
100 execution trials for VES on Bird. Although REDSQL mainly
refines SQL for accuracy, we also investigate whether constraints
can encourage more efficient SQL by leveraging database content.

5.1.3 NL2SQL Approaches. We integrate REDSQL with six LLM-
based NL2SQL approaches, including both prompting-based and
fine-tuning-based strategies. We want to evaluate whether RED-
SQL can consistently enhance the performance of various NL2SQL
methods regardless of their underlying approach. Below are the
selected existing NL2SQL approaches:

RESDSQL [52] employs a fine-tuning strategy for NL2SQL tasks.
RESDSQL introduces a schema ranker and skeleton-aware decoding
to improve the performance of T5 [71] on NL2SQL.

CODES [53] is designed to fine-tune StarCoder [56] using a
collection of SQL data and domain-specific augmented NL2SQL
data to improve the capabilities of StarCoder in NL2SQL tasks. We
utilize the SFT-15B version of CODES for our evaluation.

C3 [24] is a zero-shot prompting approach using ChatGPT, which
employs clear prompts, calibration with hints, and consistency in
output to enhance the performance of LLMs on NL2SQL tasks.

DAILSQL [36] adopts a few-shot prompting strategy. It improves
LLM performance by extracting demonstrations based on the ques-
tion and SQL keywords. We use the self-consistency version of
DAILSQL, which has shown superior performance.

PURPLE [72] also follows a few-shot prompting strategy. PUR-
PLE enhances the SQL writing capabilities of LLMs by extracting
demonstrations based on the composition of SQL logical opera-
tors. We implement PURPLE based on the training set of Bird and
employ Longformer [10] for the larger context window.

SUPERSQL [49] is a hybrid approach that selects modules from
existing NL2SQL techniques to maximize performance. Although
SUPERSQL incorporates a refinement stage, we evaluate whether
REDSQL can further boost its performance.

5.1.4 Other Refinement Frameworks. Several works have proposed
SQL refinement for NL2SQL tasks [15, 66, 83, 88]. These approaches
incorporate the refinement step into their pipeline. For comparison,
we extract and implement the refinement strategies from DIN-
SQL [66], MAC-SQL [88], and CHESS [83].

DIN-SQL [66]: The refinement process in DIN-SQL involves
prompting LLMs to review the generated SQL. DIN-SQL uses a
few-shot prompt and applies refinement to all predicted SQL. The
refiner of DIN-SQL is referred to as DIN-Ref.

MAC-SQL [88]: MAC-SQL refines SQL only if it is invalid or
produces empty (or NULL) results. It utilizes a zero-shot prompting
strategy for the refinement, and its refiner is referred to as MAC-Ref.

CHESS [83]: CHESS refines SQL containing syntactic errors or
yielding empty results. It employs a few-shot prompting strategy for
SQL refinement. We extract its SQL refinement tool for comparison,
referred to as CHESS-Ref.

5.1.5 Implementation Details. We primarily implement REDSQL,
DIN-Ref, MAC-Ref and CHESS-Ref using ChatGPT (gpt-3.5-turbo)2
by default. Additionally, we evaluate the performance of REDSQL
when based on other LLMs, includingDeepSeek (DeepSeek-V2) [21],
DeepSeekCoder (DeepSeek-Coder-V2) [96], LLAMA3 (LLAMA3-
70B-Instruct)3, and QWen-72B-Instruct (QWen) [7], which reflect
the performance of REDSQL on privately deployed LLMs. We also
evaluate based on GPT4 (gpt-4o)4 for higher performance evalua-
tion. Our experiments are conducted on an Ubuntu 18.04 system
with a 64-core CPU, 512GB of memory, and 8 NVIDIA A100 GPUs.

We typically conduct two rounds of refinement on the predic-
tions for Bird. The first round applies all refinement strategy, and
the second round applies bug-only refinement strategy. For the Spi-
der benchmark, we refine only the buggy SQL given the lower
complexity. We set the hyper-parameters for schema expansion at
𝑘1 = 6 and 𝑘2 = 40. Section 5.2 presents a detailed discussion on
hyper-parameter settings.

5.2 Overall Performance

We evaluate the effectiveness of REDSQL by integrating it with
existing NL2SQL approaches across various benchmarks. This eval-
uation allows us to measure the generalization and enhancements
REDSQL brings to different NL2SQL approaches.

We evaluate REDSQL by integrating it with 6 NL2SQL ap-
proaches and reporting the EX and VES on the Bird benchmark, as
shown in Table 3. Across all tested NL2SQL approaches, REDSQL
consistently improved translation accuracy on Bird, with gains
exceeding 5% in all cases. Notably, some NL2SQL approaches that
initially struggled with the Bird benchmark achieved accuracies
above 59%, surpassing the highest existing baseline of 58.5%. Specif-
ically, REDSQL increased the EX for RESDSQL by 18.3%, demon-
strating improvements even when paired with NL2SQL approaches
not designed for Bird. Additionally, with REDSQL, CODES reached
an EX of 66.2%. REDSQL enhances existing NL2SQL approaches
by improving database data understanding, helping LLMs identify
semantic errors in SQL.

DIN-Ref cannot consistently improve the base NL2SQL approach
performance, as the refinement strategy relied on LLMs for error
detection without providing additional data-related information.
This limitation often leaves LLMs without the necessary insights
to identify potential errors effectively, leading to incorrect SQL
refinement. Conversely, MAC-Ref and CHESS-Ref only refine SQL
2https://openai.com/chatgpt/overview/ [Last accessed: 2025-04-13]
3https://ai.meta.com/blog/meta-llama-3/ [Last accessed: 2025-04-13]
4https://openai.com/index/gpt-4/ [Last accessed: 2025-04-13]
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Table 3: Accuracy & Efficiency on Bird Dev.

Refiner Metrics RESDSQL [52] CODES [53] C3 [24] DAILSQL [36] PURPLE [72] SUPERSQL [49]

Baseline

EX 43.9 58.5 50.2 55.9 56.6 58.5
VES 44.2 60.3 50.9 57.2 58.1 60.4

DIN-Ref [66] EX 47.7 (+3.8) 57.7 (-0.8) 49.6 (-0.6) 54.5 (-1.4) 55.5 (-1.1) 57.8 (-0.7)
VES 47.6 (+3.4) 60.8 (+0.5) 50.3 (-0.6) 55.7 (-1.5) 57.5 (-0.6) 59.7 (-0.7)

MAC-Ref [88] EX 47.0 (+3.1) 59.4 (+0.9) 51.1 (+0.9) 56.8 (+0.9) 57.0 (+0.4) 59.8 (+1.3)
VES 47.1 (+2.9) 61.1 (+0.8) 52.0 (+1.1) 58.2 (+1.0) 58.5 (+0.4) 61.6 (+1.2)

CHESS-Ref [83] EX 49.3 (+5.4) 59.6 (+1.1) 52.1 (+1.9) 57.3 (+1.4) 57.5 (+0.9) 60.0 (+1.5)
VES 49.3 (+5.1) 61.5 (+1.2) 52.5 (+1.6) 58.8 (+1.6) 59.7 (+1.6) 61.8 (+1.4)

REDSQL (ours) EX 62.2 (+18.3) 66.2 (+7.7) 59.4 (+9.2) 61.7 (+5.8) 64.0 (+7.4) 63.6 (+5.1)

VES 63.3 (+19.1) 70.4 (+10.1) 61.3 (+10.4) 64.6 (+7.4) 66.3 (+8.2) 67.1 (+6.7)

Table 4: Accuracy on Spider Dev.

NL2SQL Baseline DIN-Ref MAC-Ref CHESS-Ref REDSQL (ours)

RESDSQL 84.1 83.6 (-0.5) 83.9 (-0.2) 84.2 (+0.1) 84.8 (+0.7)

CODES 84.9 83.8 (-1.1) 85.3 (+0.4) 85.5 (+0.6) 85.5 (+0.6)

C3 82.0 80.0 (-2.0) 82.2 (+0.2) 82.2 (+0.2) 82.8 (+0.8)

DAILSQL 83.6 81.3 (-2.3) 83.5 (-0.1) 83.7 (+0.1) 83.8 (+0.2)

PURPLE 84.8 83.2 (-1.6) 84.2 (-0.6) 84.5 (-0.3) 84.8 (+0.0)

SUPERSQL 87.0 84.8 (-2.2) 86.9 (-0.1) 87.1 (+0.1) 87.1 (+0.1)

queries with execution errors or empty results to avoid an obvious
negative impact. The existing SQL refinementmethods lack a deeper
understanding of the target database. The absence of detailed data-
related information in these methods limits their performance.

We observe that REDSQL performs optimally when inte-

grated with NL2SQL approaches that utilize different LLMs.

Specifically, CODES and SUPERSQL initially exhibit similar perfor-
mance levels but show different improvements when augmented
with REDSQL. CODES is fine-tuned based on StarCoder [56] and
shows a larger improvement compared to SUPERSQL, which is
based on GPT.We attribute this difference to the refinement process
acting as a model ensemble technique. Previous research [83, 93]
has explored the benefits of collaborating with different LLMs for
improved NL2SQL performance. REDSQL is a potential way to
achieve the ensemble strategy. For an in-depth analysis of how
different foundational models affect performance, we conduct more
detailed model selection experiments in Section 5.4.

In addition to improving EX, REDSQL also enhances VES for
existing NL2SQL approaches. By incorporating data-related infor-
mation, LLMs generate more precise SQL that often runs more
efficiently. The larger improvement in VES compared to EX sug-
gests that REDSQL helps generate more efficient SQL, boosting
performance in both accuracy and query execution efficiency.

We also evaluate REDSQL on Spider, as shown in Table 4. Given
the lower complexity of Spider, the improvements brought by RED-
SQL are not as obvious as those observed with Bird. This suggests
that the additional data-related information provided by REDSQL
contributes less in simpler scenarios (where database semantics
can be captured by schema information alone). However, REDSQL
consistently outperforms other refinement methods and achieves
the highest translation accuracy.

Figure 7: Accuracy on DK, SYN and Realistic.

To further evaluate whether REDSQL can manage complex sce-
narios based on the Spider, we extend our evaluation to include its
variants: DK, SYN, and Realistic. These variants introduce addi-
tional complexities in refining SQL under challenging conditions.

We evaluated three distinct NL2SQL approaches: CODES (a fine-
tuning approach), C3 (a zero-shot prompting approach), and PUR-
PLE (a few-shot prompting approach), on the three variations of
Spider. Figure 7 shows their EX results in both baseline and refined
forms, comparing three refinement techniques for each approach
and variant. We find that REDSQL consistently helps all evaluated
baseline NL2SQL approaches achieve the highest scores across all
variations of Spider. This success is attributed to the challenge in
data understanding introduced by modifications to the NL ques-
tions in these variations. In contrast, other refinement methods
suffer performance drops because they provide insufficient context
for LLMs to accurately locate SQL errors. Interestingly, DIN-Ref
performs well with CODES on the DK variation. We think this is be-
cause DK focuses more on domain knowledge, and the GPT model
can enhance CODES in domain-specific contexts. MAC-Ref and
CHESS-Ref do not achieve such high accuracy because they only
refine non-executable SQL and SQL with empty results, limiting
the improvement the model ensemble brings.
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Figure 8: Accuracy of REDSQL with various 𝑘1 and 𝑘2.

5.3 Performance and Cost Analysis

We further investigate how different hyper-parameters affect
REDSQL. Specifically, we investigate the schema expansion algo-
rithm that retains the top-𝑘1 tables and top-𝑘2 columns, as well
as the optimal number of refinement iterations. We also evalu-
ate performance–cost trade-offs by measuring prompt preparation
time and prompt length under different refinement strategies. Fur-
thermore, we introduce Science in our cost measurement experi-
ments to assess the performance and cost of REDSQL in large-scale
databases. These experiments are carried out using CODES and
PURPLE, respectively representing the best fine-tuning-based and
prompting-based approaches when integrated with REDSQL.

Figure 8 shows how performance varies with different 𝑘1 and 𝑘2
settings on both Bird and Science. The left side of the figure fixes
𝑘2 = 40 and varies 𝑘1, while the right side fixes 𝑘1 = 6 and varies
𝑘2. In all scenarios, REDSQL consistently improves the baseline
NL2SQL models, indicating that it is robust to hyper-parameter
choices. We attribute this robustness to the strong capacity of the
baseline models to include the correct tables and columns in the
predicted SQL (S). On the more complex Science benchmark, RED-
SQL improves EX of CODES by more than 4.3% (from 50.2%) and
EX of PURPLE by more than 7.3% (from 44.5%). In our experiments,
we set 𝑘1 = 6 and 𝑘2 = 40 by default, effectively balancing high
schema recall with limited token cost. Notably, for strong NL2SQL
approaches such as CODES, a relatively small 𝑘2 works well be-
cause of their high-precision SQL generation. However, a larger
𝑘1 is beneficial, as existing NL2SQL approaches sometimes omit
necessary tables in their generated SQL.

Within REDSQL, we implement two refinement strategies: all
refinement (A) and bug-only refinement (B). In our experiments,
we apply the A strategy first to propagate the global data context
across all queries. The B strategy then follows, focusing on queries
flagged by the constraints verification step.

As shown in Figure 9, higher token consumption generally leads
to improved accuracy. However, CODES and PURPLE each achieve
their highest accuracy under different multi-turn sequences. Specif-
ically, ABB for CODES and AA for PURPLE on Bird, AA and AAB
for CODES and AA, AAB, and ABB for PURPLE on Science. To
balance performance with efficiency and prevent overfitting to any
specific NL2SQL approach, we choose the AB refinement strategy
as the default for REDSQL. We also analyze the prompt lengths of
other refinement strategies for comparison. DIN-Ref exceeds 4,000
tokens, MAC-Ref exceeds 2,000 tokens, and CHESS-Ref exceeds
7,000 tokens. Notably, MAC-Ref and CHESS-Ref require only a few

Figure 9: Accuracy and Cost Trade-Off of REDSQL under

Different Refinement Strategies.

hundred tokens for refinement on average, as they focus solely
on syntactic errors or empty-result SQL. In contrast, REDSQL pro-
vides a more economical and effective approach to SQL refinement,
achieving higher accuracy with balanced token consumption.

We also evaluate the prompt generation time for REDSQL, as
shown at the bottom of Figure 9. On Bird, REDSQL generates
prompts in approximately one second per refinement on average.
For the larger databases in Science, the average prompt generation
time increases to around ten seconds per refinement. Accelerating
the constraints verification process within REDSQL is a promising
research direction, as it could enhance the ability of REDSQL to
handle even larger databases in real-world applications.
5.4 Foundation Model Selection

Some LLM-based approaches are heavily dependent on the choice
of the foundation model. For instance, a strategy that performs well
with ChatGPTmay not work with LLAMA3. In addition, developing
REDSQL based on private LLMs can mitigate the risk of user data
leakage. To investigate whether REDSQL is reliant on any specific
foundational model, we evaluate its performance across a variety
of foundation models. Table 5 displays the performance of REDSQL
when implemented on different foundation models. In addition to
ChatGPT, we include closed-source GPT4 and four open-sourced
LLMs, LLAMA3, QWen, DeepSeek, and DeepSeekCoder.

The results show that REDSQL consistently enhances the per-
formance of the baseline models across all mentioned LLMs, with
improvements exceeding 4.5%. The open-sourced models can iden-
tify potential semantic errors and correct the SQL despite their
limited capacity relative to the closed-source models.

Meanwhile, the open-sourced LLMs with about 70B parameters
cannot achieve a performance similar to ChatGPT. This shows that
REDSQL still relies on the capability of the foundation model to
achieve higher accuracy. This reliance is acceptable, given that the
refinement process requires LLMs to identify semantic errors and
generate correct SQL. However, larger open-sourced models like
DeepSeek and DeepSeekCoder achieve competitive performance
compared to ChatGPT, suggesting that REDSQL can be deployed
privately, reducing the risk of user data leakage.
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Table 5: Different foundation model selection of REDSQL for

accuracy (EX) evaluation based on Bird Dev.

LLM CODES PURPLE

Baseline 58.5 56.6
LLAMA3 63.6 (+5.1) 63.5 (+6.9)
QWen 63.1 (+4.6) 62.3 (+5.7)
DeepSeek 65.1 (+6.6) 64.0 (+7.4)
DeepSeekCoder 66.1 (+7.6) 64.3 (+7.7)
ChatGPT 66.2 (+7.7) 64.0 (+7.4)
GPT4 67.3 (+8.8) 67.7 (+11.1)

We notice that the LLMs all achieve high translation accuracy,
suggesting that REDSQL does not depend on specific foundation
model architectures. Notably, among models with similar architec-
tures, such as DeepSeek and DeepSeekCoder, the code version of
the model, which is specifically tuned for coding tasks, achieves
higher accuracy. The finding is aligned with intuition, indicating
that code-oriented LLMs are well-suited for REDSQL.

We incorporate GPT4 into REDSQL, leveraging its advanced
capabilities to achieve the highest accuracy in our experiments.
The integration of GPT4 not only underscores the adaptability of
REDSQL to work with more advanced LLMs but also enhances
its overall effectiveness. We think that REDSQL can consistently
achieve higher performance with the development of LLMs. Unlike
existing NL2SQL approaches simply based on the schema and par-
tial data, REDSQL provides more comprehensive information about
the database. REDSQL does not rely on the assumption that the
LLMs can rightly infer the semantics of the database just based on
the schema. We explicitly provide the data-related information in
REDSQL, making it possible for LLMs to understand the database.

5.5 Ablation Study

We conduct an ablation study to evaluate the individual contri-
butions of each REDSQL component. Specifically, we remove the
documentation, SQL execution, context expansion, and constraints
verification modules one at a time and measure the effects on ac-
curacy. Additionally, we perform experiments where we integrate
each REDSQL module sequentially, leaving only one module active
at a time to refine the predicted SQL using REDSQL. The results of
this study are presented in Table 6.

The ablation study results indicate that every component of RED-
SQL contributes to its overall performance, as the accuracy drops
when any part is removed. Removing the documentation or SQL
execution modules results in only minor performance declines. This
suggests that while these modules provide supplementary infor-
mation, they are not the core contributor to SQL refinement. This
limited impact reflects their constrained ability to extract sufficient
data, thereby failing to convey the true semantics of SQL fully.

The refinement performance of only integrating the constraints
verification process is still remarkable, reflecting that the core idea
of REDSQL in identifying potential errors by designed constraints
on data is novel. Specifically, REDSQL enhances PURPLE accuracy
by 6% solely through constraints verification, without leveraging
an LLM ensemble effect (both utilize ChatGPT).

Table 6: Ablation Study.

Strategy CODES PURPLE

REDSQL 66.2 64.0
- Documentation 65.7 (-0.5) 63.7 (-0.3)
- SQL Execution 66.0 (-0.2) 63.0 (-1.0)
- Constraints Verification 64.0 (-2.2) 61.9 (-2.1)
- Context Expansion 64.8 (-1.4) 62.5 (-1.5)
Only Documentation 62.3 (-3.9) 58.9 (-5.1)
Only SQL Execution 62.8 (-3.4) 59.3 (-4.7)
Only Constraints Verification 64.3 (-1.9) 62.6 (-1.4)
Only Context Expansion 64.3 (-1.9) 61.2 (-2.8)

Context expansion enables LLMs to make judgments based on
the violation report and within a more informative context, thus
improving overall performance in SQL refinement. It is important
to notice that the accuracy without context expansion is similar
to the only constraints verification configuration. This indicates
that the benefits of the documentation and SQL execution modules
are fully realized only when integrated with the context expansion
module. Providing additional schema information not referenced in
the original SQL allows LLMs to refine based on the documentation
or execution results effectively.

We notice that PURPLE suffers a more substantial accuracy drop
when only one component is included, exceptwhen only constraints
verification is active. This suggests that PURPLE relies heavily on
the data context provided by constraints verification for SQL re-
finement. Since both REDSQL and PURPLE utilize ChatGPT, they
require additional contextual information for effective refinement
without relying on model-specific knowledge inputs. Although
REDSQL does not incorporate prior knowledge of existing NL2SQL
approaches, it would likely benefit from awareness of the founda-
tional model initially used in the previous approach.

6 CONCLUSION AND FUTUREWORK

In this paper, we proposed implementing constraints on query
operations to evaluate their input relations for potential seman-
tic error detection. Our framework verified the predicted SQL for
correctness by identifying and reporting constraint violations. To
further enhance SQL refinement, we enriched the SQL-related con-
text for LLMs, providing more related information. Additionally,
we introduced a documentation process that offers LLMs a global
understanding of the database. REDSQL effectively addressed data
integration challenges and improved the NL2SQL accuracy.

Two future work directions are identified: ① Automatic query

constraints discovery could enable REDSQL to automatically
adapt to specific workloads in databases without pre-defined con-
straints, though it remains challenging as the discovered constraints
must align with business semantics. ② Implementing REDSQL

alongside the SQL execution process could improve its effec-
tiveness by leveraging existing DBMS optimization techniques,
potentially reducing the latency of REDSQL.
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