
SkyStore: Cost-Optimized Object Storage Across
Regions and Clouds

Shu Liu1, Xiangxi Mo1∗, Moshik Hershcovitch2∗, Henric Zhang1, Audrey Cheng1

Guy Girmonsky2, Gil Vernik2, Michael Factor2, Tiemo Bang1, Soujanya Ponnapalli1
Natacha Crooks1, Joseph E. Gonzalez1, Danny Harnik2, Ion Stoica1

1UC Berkeley 2IBM Research

ABSTRACT
Modern applications span multiple clouds to reduce costs, avoid
vendor lock-in, and leverage low-availability resources in another
cloud. However, standard object stores operate within a single cloud,
forcing users to manually manage data placement across clouds,
i.e., navigate their diverse APIs and handle heterogeneous costs for
network and storage. This is often a complex choice: users must
either pay to store objects in a remote cloud, or pay to transfer
them over the network based on application access patterns and
cloud provider cost offerings. To address this, we present SkyStore,
a unified object store that addresses cost-optimal data management
across regions and clouds. SkyStore introduces a virtual object and
bucket API to hide the complexity of interacting with multiple
clouds. At its core, SkyStore has a novel TTL-based data placement
policy that dynamically replicates and evicts objects according to
application access patterns while optimizing for lower cost. Our
evaluation shows that across various workloads, SkyStore reduces
the overall cost by up to 6× over academic baselines and commer-
cial alternatives like AWS multi-region buckets. SkyStore also has
comparable latency, and its availability and fault tolerance are on
par with standard cloud offerings.

PVLDB Reference Format:
Shu Liu1, Xiangxi Mo1∗, Moshik Hershcovitch2∗, Henric Zhang1, Audrey
Cheng1, Guy Girmonsky2, Gil Vernik2, Michael Factor2, Tiemo Bang1,
Soujanya Ponnapalli1, and Natacha Crooks1, Joseph E. Gonzalez1, Danny
Harnik2, Ion Stoica1 . SkyStore: Cost-Optimized Object Storage Across
Regions and Clouds. PVLDB, 18(7): 2084 - 2096, 2025.
doi:10.14778/3734839.3734846

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/lynnliu030/vldb25.

1 INTRODUCTION
In the rapidly evolving landscape of cloud computing, applications
increasingly span multiple regions and clouds. Organizations adopt
multi-cloud software to reduce costs, avoid vendor lock-in, im-
prove fault tolerance, increase the availability of specific capabil-
ities beyond a single region or cloud, or support geo-distributed
services [34, 51, 54]. For instance, deploying a model serving service
∗Equal contribution. This work is licensed under the Creative Commons BY-NC-ND
4.0 International License. Visit to view a copy of this license. For any use beyond
those covered by this license, obtain permission by emailing info@vldb.org. Copyright
is held by the owner/author(s). Publication rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 7 ISSN 2150-8097.
doi:10.14778/3734839.3734846

on multiple clouds reduces monetary costs by up to 50% on low-
availability resources (e.g., GPUs) compared to a single cloud [53].
Today, these applications rely on object storage services (e.g., Ama-
zon S3, Google Cloud Storage, Azure Blob Storage, and IBM Cloud
Object Store [11–14]) to manage vast amounts of data.

Unfortunately, existing object stores operate within their respec-
tive clouds and typically limit their operations to specific regions;
commercial systems like AWS and GCP only support multi-region
but not multi-cloud replication [17]. As a result, users manually
handle data placement across clouds or regions, and their solutions
cluster around two extremes: store locally or replicate everywhere.
While storing all data in a single region simplifies data management
and reduces storage costs, it increases egress expenses when data
is accessed from another cloud region [2, 3, 8, 51]. On average, data
transfers across clouds cost 23× more compared to transfers within
the same cloud. On the other hand, replicating data to multiple re-
gions and clouds [19, 32, 37, 48] may reduce network access fees, but
can significantly increase storage expenses. For instance, storing the
training data for a Llama3 model with 15 trillion training tokens (60
TB in size) [36] in AWS, GCP, and Azure standard storage buckets
across different regions costs up to $300K per month [2, 3, 8].

A plethora of academic solutions have been proposed to address
data storage in multi-region and multi-cloud settings. However,
these solutions are optimized to reduce latency [15, 49, 50] and of-
ten ignore data transfer costs, which become prohibitive across mul-
tiple clouds. The most relevant work in this area is SPANStore [52],
a multi-cloud storage system considering cost and latency trade-
offs. However, SPANStore does not account for replication costs
and assumes that data access patterns do not change over time,
significantly limiting its practical applicability.

Consequently, there is a need for a multi-region, multi-cloud
data placement solution that minimizes the total monetary cost for
various cloud applications. The key challenge in developing such a
system is that cloud applications are highly diverse, and their data
access patterns vary across several dimensions: object size, location
distribution, and the recency and frequency of data accesses. For
instance, for applications that perform repeated reads, like model
training, it is cheaper to replicate data to accessed regions and
avoid additional network costs for subsequent reads. In contrast,
for applications that read infrequently, like satellite imagery, it is
more cost-effective to pay for network transfers occasionally.

In this paper, we present SkyStore, a cost-optimized multi-cloud
object store that adapts to the diverse and dynamic access patterns
of applications. SkyStore provides a single uniform API that em-
ulates a local object store and transparently manages data across
clouds and regions while minimizing cost. In a nutshell, SkyStore
provides an overlay cloud service on top of existing object stores

2084

https://doi.org/10.14778/3734839.3734846
https://github.com/lynnliu030/vldb25
mailto:info@vldb.org
https://doi.org/10.14778/3734839.3734846
https://www.acm.org/publications/policies/artifact-review-and-badging-current

that operate in specific regions and clouds. It decides where an
object should be stored and the locations it should be replicated to,
if at all, and consistently manages these data copies.

At a high level, SkyStore solves a caching problem: it decides to
“cache” (i.e., replicate objects to their accessed cloud region) and
to “evict” (i.e., remove object copies from cloud regions if they are
unlikely to be re-accessed) based on application access patterns.
Unlike traditional caches that optimize for performance and have
a finite capacity, SkyStore minimizes monetary costs as capacity
is virtually unlimited; it accounts for the non-trivial network and
storage costs incurred to cache objects.

Accordingly, SkyStore needs to make two decisions: (i) when to
cache (i.e., replicate) an object and (ii) when to evict an object. First,
SkyStore adopts a store-local and copy-on-read replication policy.
When a user writes an object, SkyStore stores it in the local region
to minimize cost and latency. If a user reads this object from another
cloud region, SkyStore replicates it from an available region with
the lowest transfer fees and ensures that network costs are only
incurred for objects that are accessed.

Second, SkyStore leverages a novel adaptive Time-To-Live (TTL)-
based eviction policy that balances the cost of storing and transfer-
ring an object if the object is accessed again. Our policy reduces
costs by adapting the TTL assigned to objects based on the current
workload and attempts to learn the optimal TTL for each replica.
SkyStore captures past workload access patterns to estimate TTL
costs and periodically updates these values while remaining robust
to workload variance compared to traditional TTL-based methods
(Section 6). We also show in Section 3.3.2 how latency considera-
tions can be incorporated into our cost-centric framework, gener-
alizing it to hybrid clouds [4, 37] and clouds without explicit cost
models [6].

We implement SkyStore to seamlessly integrate with existing
clouds (e.g., Azure Blob, AWS S3, and GCS). SkyStore offers a virtual
bucket and virtual object abstraction via a standard S3-compatible
API, allowing users to manage data as if all their data were in
a single region. SkyStore provides the same consistency guaran-
tees [21, 40, 46] as its underlying object stores and similar fault
tolerance guarantees as existing services. We evaluate SkyStore on
various workloads retrieved from IBM object store traces in the
Storage Networking Industry Association (SNIA). Our prototype
has comparable latency relative to the state-of-the-art systems, and
our simulations show that SkyStore achieves up to 6× cost savings.
In summary, our contributions are as follows:

(1) We design a novel cost-optimized data replication policy
that can adapt to diverse workload patterns in the multi-
region, multi-cloud setting.

(2) We implement SkyStore, a cost-efficient multi-cloud storage
system that provides virtual object and bucket abstractions,
seamlessly integrating with S3, GCS, and Azure Blob Stor-
age as storage backends.

(3) We evaluate against state-of-the-art replication policies,
showing that SkyStore’s policy can substantially reduce
cost by up to 6× over SNIA object store traces [30] compared
to TTL-CC[24], SPANStore[52], and commercial systems
like AWS Multi-Region Replication[17] and JuiceFS[35].

2 SKYSTORE PLACEMENT POLICY
We first provide an overview of SkyStore. SkyStore seeks to mini-
mize dollar cost given a particular cloud pricing model (Section 2.1)
and modes of operations (Section 2.2). To do so, it adopts an on-
demand approach to object placement and leverages a simple write-
local policy for data storage, which it combines with a read-driven
policy for data replication (Section 2.3)

2.1 Cloud Pricing Models
Cloud pricing consists of data storage, network, and operational
charges [2]. Most cloud vendors charge storage per GB per month
based on the geographic region, provider, and storage class. For
example, standard storage in gcp:southamerica-east1 costs 1.75×
more than S3 standard storage in aws:us-east-1. The cloud provider
also charges network (egress) costs based on the volume of data
moved out of a particular cloud region [3]. This can differ by up
to 15× within the same cloud and 19× between different clouds.
Operations made to the cloud storage service are also charged: this
cost is usually much cheaper than storage and network charges,
with an average of 0.04 cents per thousand requests. Thus, we will
mainly consider storage and network pricing in our discussion.

2.2 Modes of Operations
We explore two modes of object replication and eviction. In the
Fixed Base (FB) mode, each object has a designated primary region
where its replica is never evicted. For example, data initially stored
in AWS remains there permanently, while additional replicas are
added or removed in other cloud regions based on demand. Alterna-
tively, the Free Placement (FP) mode allows replicas to be placed
in any region, with the only requirement being that at least 𝑘 copies
are always maintained (e.g., we explore 𝑘 = 1).

2.3 SkyStore Overview
SkyStore, as a multi-cloud storage system, must fundamentally an-
swer these questions: where to write objects, where to read objects
from, and how to replicate. We briefly describe them in turn.
Write Policy. SkyStore adopts a write-local strategy. For data stor-
age, SkyStore stores data in the region where the write request
originates. This minimizes write latency and reduces egress costs
for write operations, ensuring data is immediately available in the
local region. In the fixed base mode, we set the base region of the
object to the initial local write location. Consecutive write to the
objects creates a new object with an updated version in its write
location, where versioning is managed by SkyStore control plane
(Section 4.2).
Read and Replication Policy. SkyStore adopts a replicate-on-
read strategy. Upon receiving a read request, SkyStore selects the
cheapest region where the replica resides to retrieve the data and
creates a local replica to optimize future reads. Replicate-on-read
contrasts with proactive replicate-on-write methods used in AWS
Multi-Region bucket and SPANStore [17, 52], which pushes all data
to a predicted set of regions upon write operations. Unless the
prediction is accurate, such a model can lead to high egress costs
and storage charges (Section 3.2). SkyStore reactively replicates
to reduce future egress costs and performs eviction described in
Section 3 to keep storage costs in check.

2085

3 SKYSTORE EVICTION POLICY
In this section, we discuss a cost-minimized cache eviction problem
in a two-region base and cache setting (Section 3.1). We then intro-
duce our cost-aware eviction policy (Section 3.2) and show how it
extends to multiple regions and clouds (Section 3.3).

3.1 2-Region, Base and Cache Problem
Consider a two-region setup: a base region storing all the ob-
jects that never get evicted, and a cache region that reads from
the base and replicates on read. We denote 𝑆 as the storage cost
($/GB*Month) in the base region and 𝑁 as the egress cost ($/GB)
for moving an object over the network between the base and the
cache region1. Aggressive replication in the cache region can lead
to prohibitively high storage costs, especially as replicas accumu-
late over time. Thus, we now explore how to cost-effectively evict
replicas in the cache region under this simple 2-region setup.

3.1.1 The Clairvoyant Greedy Policy (CGP). We measure ourselves
against a cost-optimal policy that is given access to an oracle that
knows exactly when an object will be read in the future (if at all) in
the cache region. This is akin to the Belady cache eviction algorithm
[23], but adapted to our problem setup. A key parameter in the
clairvoyant strategy is the break-even time. This is the duration in
which the cost of storing an object equals the cost of evicting it and
fetching it again across the network (i.e., the storage cost equals
the egress cost). We denote this as 𝑇even, where:

𝑇even = 𝑁 /𝑆 (1)
For example, we have Coststorage = $0.026 per GB per month

for aws:us-west1 and Costegress = $0.02 per GB between aws:us-
east1 and aws:us-west1. Thus, 𝑇even ≈ 0.77 months for the edge
between these two regions.2

Since the eviction of one object is independent of others, it is
clear that the best one can do is to cache an object as long as the
cost of storage is lower than the cost of bringing it again over the
network and vice versa. Every time an object is read, the clairvoyant
policy accesses an oracle that returns the time duration until this
object will next be read. We denote 𝑇next (𝑜, 𝑖) as the time between
the 𝑖𝑡ℎ and 𝑖 + 1 reads of object 𝑜 . The strategy then compares
𝑇next with the break-even time 𝑇even and decides whether to evict
the object. An object with no next GET is immediately evicted. In
summary, the clairvoyant policy upon the 𝑖𝑡ℎ access to object 𝑜
works as follows:

𝐶𝑙𝑎𝑖𝑟𝑣𝑜𝑦𝑎𝑛𝑡 (𝑜, 𝑖) =
{

evict : 𝑇next (𝑜, 𝑖) > 𝑇even
keep : 𝑇next (𝑜, 𝑖) ≤ 𝑇even

3.1.2 The 𝑇even-policy. A simple policy (𝑇even-policy) will be set-
ting TTL to the break-even time 𝑇even = 𝑁

𝑆
and refresh upon each

access. It has the following properties:
(1) The cost of the𝑇even-policy is at most twice the clairvoyant

policy.
(2) ∀ eviction policy ∃ a workload for which the policy costs

twice as much as the clairvoyant policy.
1For simplicity, we are ignoring the associated operation costs (e.g., cost for every PUT
or GET) that are typically lower than the storage and egress costs.
2Prices taken in Sept. 2023.

Proof for (1). The cost per GB for a single object under the optimal
clairvoyant policy includes paying network cost 𝑁 for initial GET,
storage cost 𝑇next (𝑖) · 𝑆 for storing the object until the next access,
and network cost 𝑁 for re-fetching the object after eviction:

𝑁 +
∑︁

𝑖 |𝑇next (𝑖)≤𝑇even

𝑇next (𝑖) · 𝑆 +
∑︁

𝑖 |𝑇next (𝑖)>𝑇even

𝑁

The cost of the 𝑇even-policy policy is:

𝑁 +
∑︁

𝑖 |𝑇next (𝑖)≤𝑇even

𝑇next (𝑖) · 𝑆 +
∑︁

𝑖 |𝑇next (𝑖)>𝑇even

(𝑁
𝑆

· 𝑆 + 𝑁) + 𝑁

𝑆
· 𝑆

The first two parts are identical. However, for 𝑇next (𝑖) > 𝑇even,
𝑇even-policy needs to pay additional storage cost until the break-
even point𝑁

𝑆
· 𝑆 , evict it, and pay for network cost to re-fetch. The

last 𝑁
𝑆
· 𝑆 accounts for keeping this object around after its last GET.

Thus, 𝑇even-policy is bounded by 2× that of the optimal.

Proof for (2). We claim that for any eviction strategy, an adversar-
ial workload exists that costs more than twice that of the optimal
strategy. Consider a single object. After its first access, the eviction
policy 𝑃 must decide when to evict. If 𝑃 decides to evict the object
after more than 𝑇even time, then the workload never asks for this
object again. In such a case, the optimal cost (costoptimal) is just the
initial GET cost, 𝑁 , while the cost for policy 𝑃 (costP) is greater
than 𝑁 +𝑇even · 𝑆 = 2𝑁 , double the optimal.

Alternatively, if policy 𝑃 evicts the object earlier (at 𝑡 < 𝑇even),
the workload issues a new GET shortly after 𝑡+𝜀, where 𝑡+𝜀 < 𝑇even.
The optimal cost costoptimal = 𝑁 + (𝑡 + 𝜀) · 𝑆 in this case , while
the costP becomes 2𝑁 + 𝑡 · 𝑆 . Since the object is in the cache again,
this process can repeat. After 𝑘 iterations, we have costoptimal =
𝑁 + (∑(𝑡𝑖 +𝜀))𝑆 whereas costP = (𝑘 +1)𝑁 + (∑ 𝑡)𝑆 . Their difference
grows as costP − costoptimal = 𝑘𝑁 + 𝑘𝜀. For large enough 𝑘 , since
costoptimal < (𝑘 + 1)𝑁 , 𝑘𝜀 > 𝑁 will cause costP − costoptimal >

costoptimal and give us a ratio ≥ 2.
These two properties demonstrate that if nothing is known apri-

ori about the workload, then the 𝑇even-policy is the safest strategy
one could hope for. However, distributions are not chosen adver-
sarially in reality. Quite a bit can be learned about the distributions
of the workload at hand, which should be used to reduce costs.

3.2 SkyStore 2-Region Base & Cache Eviction
Now we discuss how SkyStore policy learns workload distributions
over time and aims to set the cost-optimal TTL for objects in the
2-region setup.

3.2.1 TTL-based eviction. Inspired by 𝑇even, SkyStore assigns each
replica (i.e., a copy of an object) a TTL (Time To Live) value. For the
free-placement (FP) mode, if the replica is not accessed within TTL
time, it will be evicted as long as it is not the sole remaining replica.
In fixed-base (FB) mode like the 2-region setup (Section 3.2), the
replica can only be evicted if it is not in the base location.

There are two common TTL-based eviction methods. The first,
used in CDNs [22], invalidates a cached object after its TTL expires,
regardless of access frequency, to prevent stale data. SkyStore takes
a different approach and resets the TTL on each access to reduce
network costs and avoid evicting frequently accessed objects. SkyS-
tore eviction policy periodically scans and evicts objects that have

2086

Parameter Description

𝑟𝑎𝑛𝑔𝑒 (𝑗) Time interval of the 𝑗𝑡ℎ cell
𝑡 (𝑗) Maximum time in 𝑟𝑎𝑛𝑔𝑒 (𝑗)
𝑡̂ (𝑗) Mean time in 𝑟𝑎𝑛𝑔𝑒 (𝑗)
ℎ𝑖𝑠𝑡 (𝑗) Bytes re-read after time 𝑡 ∈ 𝑟𝑎𝑛𝑔𝑒 (𝑗)
𝑙𝑎𝑠𝑡 (𝑗) Bytes not read in 𝑡 ∈ 𝑟𝑎𝑛𝑔𝑒 (𝑗)

Table 1: Eviction parameters in SkyStore.

not been accessed within TTL time. The policy for evicting object
𝑜 at region 𝑅 is as follows:

𝑃𝑜𝑙𝑖𝑐𝑦 (𝑜, 𝑅) =


evict : time since last access > TTL(𝑜, 𝑅)
& not sole copy

keep : otherwise

3.2.2 Adaptive TTL. The crux of SkyStore’s approach is setting the
right TTLs for replicas. The main statistic we use to adapt TTL is
the time between accesses of objects, represented as a distribution
of 𝑇next at the cache region. We build a weighted histogram where
each cell corresponds to a time range, and the weight reflects the
total size of GETs within 𝑇next in that range. This histogram is
collected per region per workload. We define relevant notations in
Table 1. The value in each histogram cell is denoted as:

ℎ𝑖𝑠𝑡 (𝑗) =
∑︁

𝑜,𝑖 |𝑇next (𝑜,𝑖) ∈𝑟𝑎𝑛𝑔𝑒 (𝑗)
𝑠𝑖𝑧𝑒 (𝑜)

This histogram accounts for all re-reads in the cache region for the
workload. However, it does not account for what happens to objects
after their last access. For this, we use an additional histogram called
𝑙𝑎𝑠𝑡 to track the latest access time. Given these histograms and a
TTL value, we compute the expected cost for the TTL as:
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑠𝑡 (𝑇𝑇𝐿) =

∑︁
𝑜∈𝑅

Requested

𝑆𝑖𝑧𝑒 (𝑜) · I[Fetched remotely] · 𝑁

+
∑︁

𝑗∈ℎ𝑖𝑠𝑡
𝑡 (𝑗)≤TTL

ℎ𝑖𝑠𝑡 (𝑗) · 𝑡̂ (𝑗) · 𝑆

+
∑︁

𝑗∈ℎ𝑖𝑠𝑡
𝑡 (𝑗)>TTL

ℎ𝑖𝑠𝑡 (𝑗) · (𝑁 + TTL · 𝑆)

+
∑︁

𝑗∈𝑙𝑎𝑠𝑡
𝑙𝑎𝑠𝑡 (𝑗) · TTL · 𝑆

The first term accounts for the initial read cost of all objects
requested from the region 𝑅, using an identity function over remote
reads. If it is a local read, the cost would be 0; if fetched remotely,
the cost would be 𝑁 . The second accounts for hits – objects that
are re-read and exist in the region. The third accounts for misses –
objects that are evicted and brought into the region with additional
network cost, and the last term accounts for storage costs of objects
that have not yet been re-read. We iterate over possible TTL values
at the same granularity as the histogram and select the one with
the lowest expected cost.

The best TTL chosen is influenced by the specific workload and
the network and storage costs. Figure 1 shows an example of the
expected cost as a function of TTL for an IBM trace with different
pricing choices. A lower value of 𝑇even indicates that storage costs

Figure 1: The expected cost as a function of TTL on a trace
with an hourly histogram. The dashed line shows the optimal
policy cost, and the dot marks the minimum cost point.

are higher (relative to the network costs) and means that shorter
TTLs would fare better, as seen in the example.

3.2.3 Granularity of Histogram. In prior discussions, we collected
a histogram to study cache region access distribution. In object
stores, bucket-level granularity often reflects the workload access
patterns of all objects in the bucket of a particular region over time.
Object-level statistics, however, can be misleading. For instance,
in one IBM trace, there are bursts of 2-8 consecutive GETs to the
same object within 10 minutes of each other, followed by no further
access to that object. Methods that focus on learning each object’s
pattern separately [39] or assume Poisson-like distributions [24] fail
to capture this bursty behavior. SkyStore generalize bucket-level
patterns and assign a TTL that ensures replicas remain available
during bursts but are evicted soon after. We show a variant of Sky-
Store that collects object-level statistics instead of bucket-level and
show that it does not work very well in evaluated workloads (Sec-
tion 6.3). Future work can study how to cluster objects with similar
distribution (e.g., folders within a bucket) and collect histogram
statistics separately for groups of objects.

The granularity of the histogram is also directly related to our
possible choices for setting the TTL. A more granular histogram
gives us additional information and allows us to choose TTLs more
accurately, achieving better cost savings. On the other hand, a large
histogram burdens the memory and computation requirements
of the system. Recall that the histogram should potentially cover
a time duration of many months, yet at times, the best eviction
policy calls for evicting objects within minutes or even seconds. To
balance this tradeoff, we support a variable range for histogram
cells and attempt to have high granularity for small TTL values
and low granularity for larger ones. For the first minute, we use a
per-second granularity (taking up 60 cells). Beyond that, we employ
a logarithmic base granularity with a low base of 1.02. This ensures
that the ratio between two consecutive potential TTL values is no
more than 2%. In turn, the difference in storage cost between two
consecutive TTLs is also bounded at 2% as the cost is linear in the
time the replicas are stored. Using 740 cells at this log granularity
covers (1.02)740 minutes, which amounts to almost 2 years. An
additional 60 cells cover the first minute, and we thus manage to
cover nearly 2 years with an 800-cell histogram.

To account for changing workload distributions and application
behavior over time, we opt to periodically collect a new histogram

2087

 3

Gc europe-west2-a Aw us-east-1

 westus

TTL (GS, AZ)

TTL (AZ, GS) TTL (AZ, S3)

TTL (S3, AZ)

TTL (GS, S3)

TTL (S3, GS)

S3

AZ

GS

Figure 2: The multi-cloud setting as a directed graph with a
TTL assigned per each directed edge.

(while still keeping the previous histogram). Once the new his-
togram has a sufficiently long history, the old histogram can be
discarded. Our investigations indicate that the histogram should be
longer than the 𝑇even time to be effective.

3.3 SkyStore Multi-Region Eviction
3.3.1 Choosing adaptive TTLs. We tackle the multi-region setting
by breaking the problem into a pairwise problem similar to the
2-region setup; then, we set the TTL for each pair of source and
target regions. Namely, we view the multi-region setting as a fully
directed graph where each node is a region, and for each directed
edge, we compute a TTL corresponding to this edge (as shown in
Figure 2).

The TTL assigned to an object at a specific region is then deduced
from the TTLs of the edges directed at this region. We denote
TTL(𝑅𝑖 , 𝑅 𝑗) as the chosen TTL value for the edge from region 𝑅𝑖
to region 𝑅 𝑗 and TTL(𝑜, 𝑅 𝑗) as the TTL assigned to an object 𝑜 at
region 𝑅 𝑗 . The eviction TTL of an object depends on the relevant
regions that hold a replica of the object 𝑜 . The TTL of the object at
each region is then chosen to be the minimal TTL of edges from all
such relevant regions. Namely:

TTL(𝑜, 𝑅 𝑗) = min
𝑖 |𝑜∈𝑅𝑖

TTL(𝑅𝑖 , 𝑅 𝑗)

The TTL of an edge is assigned as a function of the incoming
network cost, so the cheaper the cost, the lower the TTL. Since
we use the cheapest available source in case of a cache miss, this
corresponds to the minimal TTL. Our method for calculating an
edge’s TTL is detailed in Section 3.2: we take the storage cost at the
target, the network cost from some source region to the target, and
statistics histograms of the workload in the target region as input.
This final component is what makes our choice of TTLs adaptive.
As time goes by, we learn from the access patterns of the workloads
and change the associated TTLs accordingly.

Our approach assigns a local TTL to each object, which is the
minimum of all relevant edge TTLs where the source region has
replicas. This assumes a remote replica will still exist after the
local TTL expires, enabling cost-efficient retrieval. However, since
TTLs are set independently, this assumption may not always hold.
To ensure correctness, we filter out cases where the local TTL
plus storage start time exceeds the remote replica’s eviction time,
calculated as the replica’s start time plus its TTL. This prevents
reliance on replicas that may already be evicted.

3.3.2 Latency Considerations. A cost-centric policy could implic-
itly model performance, as resources often have associated price

 Rāgion

S3

EnĀ Usār Appliÿýtion

S3 Proxy Sārviÿā

Býtÿh Anýlytiÿs WorkloýĀ

S3 Proxy Sārviÿā

Dýtý Býÿkup

S3 Proxy Sārviÿā

 Rāgion

GS

 Rāgion

AZ

 Rāgion

S3

 Rāgion

GS

 Rāgion

AZ

MātýĀýtý Sārvār Highly Avýilýþlā RDMSS3
API

GS
API

AZ
API

S3 API

Figure 3: The system architecture of SkyStore.

tags. However, we observe that incorporating latency into a cost-
driven framework is particularly challenging since it requires as-
signing a cost value to read performance, which is specific to users,
applications, and objects.

We propose a potential solution to model the price of cache
hits and ask how much a customer is willing to pay for cache
hits. Namely, if all objects are equally important, how much cost
would the user be willing to pay for additional low-latency local
read? We denote this value as user performance value or 𝑈perf-val,
in dollar cost per byte. We incorporate this into our methodology
of carefully choosing a TTL as follows: After finding the value
of TTL that promises the lowest expected cost, we check if there
is a higher TTL value for which the 𝑈perf-val bounds the average
cost per additional cache hit. More formally, if TTL′ represents the
eviction time that achieves the lowest expected cost, we choose the
highest TTL value such that

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑠𝑡 (TTL) − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑠𝑡 (TTL′)
object byte count between TTL and TTL′ ≤ 𝑈perf-val

In this model, users pay for objects until they are evicted, and
their TTLs are reset upon the next access. We plan to compare the
effectiveness of this approach to SkyStore’s cost-centric policy and
estimate its cost and latency tradeoffs in the future.

4 SKYSTORE ARCHITECTURE
Building a cost-efficient multi-cloud object store requires addressing
several key challenges. Such an object store must offer (1) a cohesive
view of global objects stored across multiple regions and clouds, and
(2) consistency across clouds and regions. Currently, consistency
is typically guaranteed only within single-region object stores. (3)
reliable data recovery in the event of failures, with guarantees
comparable to single-region object stores.

SkyStore is designed as an overlay layer on top of existing cloud
object storage systems, including AWS S3 [12], Google Cloud Stor-
age [13], and Azure Blob Storage [11]. It consists of a client proxy
service and a control plane, as shown in Figure 3. The client proxy
fetches objects and supports the AWS S3 wire protocol [1], allowing
users to seamlessly port applications using the S3 interface. The
control plane, a stateless web server backed by a database, tracks
object locations and redirects requests across cloud regions. We
elaborate on the design of these components in Sections 4.1-4.3. We
then summarize SkyStore’s consistency guarantees (§4.4), and fault
tolerance (§4.5).

2088

4.1 API: Virtual Object & Bucket Abstraction
In object stores, objects are binary blobs identified by a key within
a specific bucket. A bucket, serving as a namespace, is a collection
of objects and the unit for placement and permission management.
Traditionally, objects and buckets are confined to specific regions
and clouds. As such, clients need to know the location and cloud
of an object before accessing it. SkyStore abstracts this away with
virtual object and virtual bucket that appear global to the user, with
their physical locations managed transparently by SkyStore. This
abstraction simplifies interaction with diverse cloud APIs by lever-
aging common concepts across providers. Users manage and access
objects as if they were local, while SkyStore efficiently handles the
routing and storage of these objects across regions and clouds.

4.2 Control Plane: SkyStore Metadata Server
The SkyStore metadata server acts as the central coordinator for
routing requests across multiple regions and clouds. Importantly,
the control plane does not handle actual object data, eschewing any
potential bottlenecks. The metadata stored for each virtual object
includes key information such as object size, last modified time,
entity tag, and version ID. SkyStore also manages the mapping
between virtual objects and their physical locations in each cloud
region. A key component of this system is the Policy interface,
which determines where to store objects on PUTs and where to
fetch them on GETs. This interface supports various placement and
eviction policies described in Section 6.2.2.

Eviction Process The metadata server collects𝑇𝑛𝑒𝑥𝑡 statistics into
histograms to assist with SkyStore decision-making. A background
process runs periodically (once per day) to scan for objects exceed-
ing their TTLs and initiates DELETE requests in the respective cloud
object stores. This process is computationally lightweight since it
only involves handling metadata, with the actual deletion handled
by the cloud providers, so no data transfer occurs. In practice, this
method incurs minimal overhead, as shown in Section 6.6. Alterna-
tively, configuring lifecycle policies [20] for objects in each bucket
could remove the need for SkyStore to track TTLs, although these
policies are typically limited to 1000 rules per bucket.

4.3 Data Plane: S3-Proxy
The data plane handles user requests by interfacing with physical
object stores through a S3-Proxy. Requests are processed according
to AWS S3 protocols [1], which we choose to implement due to
its widespread popularity and market share [9]3. The workflow
of a single request proceeds as follows. First, a request is issued
by client and received from the client proxy. Then, the proxy con-
tacts the metadata server to determine the appropriate location for
processing the request. Lastly, once the metadata server provides
necessary information, the proxy interacts with the designated
storage providers to issue the request and perform any required
read or write operations. The stateless design of S3-Proxy ensures
horizontal scalability.

4.4 Consistency
3We support 14 common object store operations, including create, delete, list of
buckets, and head, get, put, delete(s), list, copy, and multipart-upload related
operations. In our experience, this is sufficient to support almost all cloud workloads.

SkyStore employs a centralized metadata server to maintain global
knowledge of data versions, enabling read-after-write and eventual
consistency as supported by many existing cloud providers [21,
40, 46]. This approach simplifies consistency management while
supporting the most generic consistency guarantees but incurs
overheads that will be discussed in Section 6.7.
Read-After-Write Consistency ensures that after a write (PUT),
the latest version of an object is immediately available for reads
(GET). This model is critical for applications requiring fresh data,
such as e-commerce systems [43]. As SkyStore tracks versions and
locations of each logical object write with a centralized metadata
server, read-after-write consistency can be trivially achieved by
retrieving the last write location from the database to satisfy any
read requests.
Eventual Consistency allows faster, local reads by serving pos-
sibly stale data. This approach minimizes network overheads and
improves access speed when real-time consistency is not required,
such as backup systems and non-critical analytics [45]. In SkyStore,
eventual consistency is also achieved through the centralized server,
which provides information about the closest region containing
replicas of a logical object, even if those replicas are stale.

4.5 Fault Tolerance
SkyStore fault tolerance consists of two components: data fault
tolerance and metadata fault tolerance.

Data Fault Tolerance For a single region, SkyStore ensures the
same data fault tolerance guarantees as a typical cloud object store,
assuming the bucket is fault-tolerant in this region. For region
failures or provider outages, users can specify manual replication
regions via SkyStore replication API for periodic backup.

Metadata Fault Tolerance SkyStore metadata server maintains
object metadata and mappings of logical objects to their physical
locations in the cloud object stores. To handle data plane failures
(e.g., S3-proxy or network disruptions), SkyStore employs a two-
phase commit protocol across the data plane and control plane to
prevent metadata and object data corruption. The protocol logs
intended actions and commits only after successful object writes,
rolling back changes in case of errors.

For control plane (metadata) failures, SkyStore never loses the
data. It maintains metadata fault tolerance (to discover the data)
via a checkpoint and rollback mechanism. Metadata is periodically
checkpointed to an object store bucket. The checkpoint location
can be configured to a local region for server-level fault tolerance
or a remote region for regional fault tolerance. If a metadata server
fails, recovery involves re-provisioning the metadata server (which
typically takes 5 minutes) and restoring metadata from the latest
checkpoint. Any metadata lost between checkpoints is recovered by
scanning objects in the bucket. Efficient recovery is achieved using
prefix search on epoch-prefixed object names, which is faster than a
full scan and is widely supported by storage providers. Alternatively,
services like S3 Inventory [25] provide cost-effective daily metadata
reports. We discuss the overheads of this approach in Section 6.7.

5 IMPLEMENTATION
We prototype SkyStore as described in Section 4 to compare the
end-to-end latency of SkyStore against other policies. SkyStore’s

2089

(a) (b) (c) (d) (e)

Figure 4: Trace Analysis: We showcase object sizes (a), access frequency (b), burstiness or the fraction of GETs over time (c), the
recency of GETs (d), and the PUT to GET ratio (d), for five representative IBM traces. Days: (D) and months: (M).

metadata server is implemented in 3.5K lines of Python code to sup-
port various policies. It stores the metadata in a Postgres database
by default [5] and can be configured to support an SQLite back-
end [47]. The S3-proxy is implemented in about 9k lines of Rust
code, connecting to AWS S3 [12], Google Cloud Storage [32], and
Azure Blob Storage [11]. In our experiments, we host the metadata
server on m5d.8xlarge instance in aws:us-east-1. It contains
32 vCPUs, 128 GiB of memory, and 2 x 600 GB NVMe SSDs. We
instantiate a S3-proxy on each client VM that uses m5.8xlarge,
Standard_D32ps_v5, and n2standard32 instance types on AWS,
Azure, and GCP, respectively. These client VMs contain 32 vCPUs,
128 GiB of memory, and 64 GB of storage. We also implement all
policies outlined in Section 6.2.2 in 1.9k lines of Python code to
estimate the total cost across traces. Our simulations are run on
a standard VM like n4-standard-4 with 4 vCPUs, 16GB memory,
and 32GB of storage.

6 EVALUATION
In our evaluation, we answer the following questions:
(1) What are the cost benefits of SkyStore’s replication policy across

two regions within a single cloud?
(2) Do the cost savings from SkyStore’s policy scale to multiple

regions across multiple clouds?
(3) What are the end-to-end latency and cost savings of SkyStore

in a real multi-cloud deployment?

6.1 Workloads: Multi-Region and Multi-Cloud
We describe the object store traces we use (Section 6.1.1), outline
their diverse characteristics (Section 6.1.2), and discuss our method-
ology to carefully generate multi-cloud workloads from these traces.
This step is necessary as there are no publicly available multi-cloud
traces to the best of our knowledge.

6.1.1 Workload generation from traces. Our workloads are drawn
from the SNIA IBM Object Store traces [10]. These traces record a
week of RESTful operations (e.g., GET, PUT, HEAD, DELETE) for
a single region within the IBM cloud [31]. These traces effectively
capture diversity across various dimensions: object sizes, recency,
and frequency of accesses (as detailed in Section 6.1.2). However,
object stores are typically designed for long-term data retention
where objects are stored for several months to years [18]. Since
these short, week-long traces inadequately capture the life of objects
in the cloud, we expand a day in each trace to a month for single
cloud experiments and to three months for multi-cloud settings
without changing their inherent characteristics like read-to-write
ratio or request distributions.

We pick five representative traces with salient characteristics in
recency, frequency, size, burstiness, and PUT and GET distributions.
We outline their characteristics and the key insights that inform the
generation of multi-region and multi-cloud workloads. In the inter-
est of space, we use multi-region, multi-cloud workloads generated
from these representative traces for all of our experiments.

6.1.2 Trace characteristics. Cloud applications have unique access
patterns across dimensions like object sizes, PUT to GET ratios,
access frequency, recency, and burstiness, as shown in Figure 4. We
summarize these characteristics in Table 2.
• Object sizes: We categorize objects in four size ranges: tiny (<1KB),

small (1KB to 1MB), medium (1MB to 1GB), and large (>1GB).
As seen in Figure-4a, most of the objects accessed are small or
medium in size, some are tiny, and very few are large. Most traces
have <0.5% of tiny objects except two traces (T29 and T65) with
30–45% of tiny objects. All traces have >35% of small objects
and notably, three traces (T15, T29 and T78) have a majority (56–
97%) of small objects. About 34% and >60% of objects in T65 and
T79 are medium-sized, while less than 20% of the other traces
have medium-sized objects. None of the traces have large objects
except T65 and T79, which rarely have large objects (<0.4%).

• Access frequency and one-hit wonders: We categorize objects ac-
cessed in our traces as one-hits (1 GET), cold (1-10 GETs), warm
(10-100 GETs), hot (100-1000 GETs), and super hot (>1K GETs).
As seen in Figure 4b, our traces significantly differ in their distri-
bution of repeated reads. Two traces (T15 and T29) are almost
entirely composed of objects that are one-hits (98% and 2% re-
spectively) or cold (52% and 98% respectively). In contrast, T78
has a majority (>51%) of warm objects and T65 has a majority
(>67%) of hot objects. None except two traces (T65 and T78) have
super hot objects in very small proportions (<0.1%).

• Burstiness: We define burstiness as the fraction of GETs over
time. As seen in Figure 4c, our traces have distinct burst patterns
over time with different spikes. While one trace (T15) has an
even distribution of accesses and has no accesses in the last
two months, another trace (T78) has a burst with 60% of GETs
within the last two months. In the rest of the traces, about 50%
of accesses arrive in the last two months. Three traces (T29,
T65, and T79) nearly have an equal distribution of GETs, with a
noticeable spike, where 30% of objects are accessed in short time
intervals.

• Recency of accesses: Our traces also have varying recency, i.e.,
the time interval between consecutive GETs, as shown in Figure-
4d. Two traces (T15 and T78) have inter-arrival times within a
day. In contrast, T65 and T79 show about 10% of GET intervals

2090

falling between one day and one month. In T29, >80% objects are
read between one day and up to two months, and the remaining
intervals even exceed two months.

• Ratio of GET and PUT operations: Our traces also capture read
and write dominant workload patterns. Three traces (T65, T78,
and T79) are read-heavy, as shown in the Figure 4e. The rest (T15
and T29) are write-heavy with 42% and 30% of PUTs. Note that
T29 has >12M requests in total.

6.1.3 Multi-region, Multi-cloud workload generation. To address
the lack of multi-cloud workloads, we use our five traces to syn-
thetically generate such workloads in three steps.
Step 1: From one to two regions within a cloud. We first explore
the single-cloud, two-region base and cache setup (as described in
Section 3.1). This setup represents a popular approach [41] where
data is already located in one region, but the computation is run
elsewhere, for instance, due to low resource availability (e.g., geo-
distributed model serving service on GPUs). Recall that our traces
are from a single region within the IBM cloud. To support this setup,
we generate a workload in which PUT operations are directed to
the base region and GET operations to the cache region.
Step 2: To multiple regions and clouds. Next, we generate multi-
region and multi-cloud workloads. Our synthesis of multi-cloud
workloads is informed by our conversations with industry experts
and their observations, which highlight the following patterns:
(1) Uniform Workloads (Type A): Applications like networks of IoT

sensors [42] and e-commerce websites [33] have uniformly
random access patterns. For this workload, we distribute PUTs
and GETs randomly across regions and clouds.

(2) Region-Aware Workloads (Type B): Applications like satellite
image analysis [7], disaster recovery [29], and cloudburst [27],
ingest data in one but consume the data from another region.
For this workload, we assign unique PUT and GET regions for
each object and distribute requests accordingly.

(3) Aggregation Workloads (Type C): Applications that collect data
(like regional sales information, logs, etc.) at different regions [28]
but access or analyze this data from a central region. For this
workload, we distribute PUTs across regions, allowing data
ingestion across regions, and dedicate GETs to a single region.

(4) Replication Workloads (Type D): Applications like CDN [38],
container registry [26], and geo-distributed model serving [16]
typically write to a single region and read from multiple other
regions. For this workload, we assign a dedicated PUT region
for each object and distribute GETs across other regions.

Step 3: Multi-cloud workloads. We combine our multi-cloud
workloads into a single workload (Type E) for a single trace (T65)
for our end-to-end experiments with real cloud deployments. This
is necessary as each workload above stores and accesses 6.7 TB of
data on average, and it would cost about 0.2M dollars to evaluate
SkyStore against all workloads and setups in the cloud.

6.2 Deployment Settings and Baselines
We evaluate SkyStore’s policy in two deployment settings (Sec-
tion 6.2.1) and compare against several baselines (Section 6.2.2).

6.2.1 Deployment settings and metrics. Policies can operate in one
of two modes: fixed base (FB) and free placement (FP). SkyStore

assumes FB mode by default, where each object has a fixed, non-
evictable base region. In FP mode, any replicas can be evicted,
but at least one always remains. Since our closest related work,
SPANStore operates only in FP mode, SkyStore supports both modes
and compares against SPANStore in FP mode. We assume read-after-
write consistency with version enabled, where each read accesses
the latest data version.
Multi-cloud deployment settings. Our multi-cloud deployments
span across AWS S3, Azure Blob Storage, and GCS clouds. We run
3-region4, 6-region5, and 9-region6 experiments where we select 1,
2, and 3 regions from each cloud provider, respectively.
Metrics. We compare SkyStore against other baselines on cost and
latency metrics. We measure the total monetary cost of running a
workload based on the standard storage offerings and bi-directional
network costs between cloud regions. We also measure the average,
p90, and p99 latency for GET and PUT requests.

6.2.2 Baselines. We compare against the following baselines:
• Always Store / Always Evict policy always replicates objects

to regions where GET is initiated and never evicts, or stores each
object in a single storage location and never replicates.

• TTL-based Eviction policies include (a) TTL = 𝑇even (Section 1),
(b) TTL-CC [24], a dynamic policy that stochastically sets TTL
based on the cached object’s behavior. (c) TTL-CC-Obj, a variant
of TTL-CC to update fine-grained TTL based on per-object hits.

• Clairvoyant Greedy Policy (CGP) (Section 3.1.1) is an oracle
that decides to store or evict given future access times of each
object. CGP is cost-optimal in the two-region setup.

• EWMA uses an Exponentially Weighted Moving Average [39]
to predict the next access time per object and chooses whether
to evict it accordingly. We set the decay factor 𝛼 to be 0.5.

• SPANStore is a multi-cloud replication policy [52] that replicates
objects each hour to minimize access costs. SPANStore does not
fix a storage location and hence, we evaluate it only in the free
placement (FP) mode.

• Industrial Baselines include AWS Multi-Region Buckets [17]
(and similarly, GCP Multi-Region Bucket [32]) and JuiceFS [35].
Upon PUT, an object is asynchronously replicated to the pre-
configured secondary region(s). We evaluate AWS in a two-
region setup and JuiceFS in a multi-cloud setup, assuming the
object is replicated to all other regions.

• SS-Obj includes a simple SkyStore policy variant that updates
TTL using per-object histogram statistics..

6.3 Single-Cloud Two Regions: Base and Cache
We now evaluate SkyStore in a two-region base and cache setup
and showcase its merit as a standalone caching policy. SkyStore
consistently maintains low costs across traces, while its alternatives
have low or comparable costs in specific cases and become prohibi-
tively more expensive in others. On average, SkyStore has 1.4–20×
lower costs compared to six baselines (Section-6.2.2) across five
traces, as shown in Figure 5.
4aws:us-east-1, azure:eastus, gcp:us-east1-b
5aws:us-east-1, aws:us-west-2, azure:eastus, azure:westus, gcp:us-east1-
b, gcp:us-west1-a
6aws:us-east-1, aws:us-west-2, aws:eu-west-1, azure:eastus, azure:westus,
azure:wasteurope, gcp:us-east1-b, gcp:us-west1-a, gcp:europe-west1-b

2091

Always Evict Always Store Teven TTL-CC TTL-CC-Obj EWMA AWS Multi-Region
Bucket

SS-Obj

23

27

Co
st

sv
.s.

Sk
yS

to
re

1.3
4

1.7 1.1 1.2 1.3
6

1.10.99 2 2 1.7 0.98 0.99
3 0.98

73

0.97 0.97 1

7 10

0.98
7

23

1.5 1.2 2

12
3 2

6
2 3

1.1 2 1.7 1.7 3 1.6

T15 T29 T65 T78 T79

Figure 5: 2-Region, Fixed Base (FB): Ratio between baseline cost vs. SkyStore. On average across traces, SkyStore is 1.4-20.0×
cheaper than other baselines.

Size (%) Read Frequency (%) Request Arrival Recency Number of RequestsIBM Trace
Number # Tiny

(<1kB)
Small

(1KB-1MB)
Medium
(1MB-1GB)

Large
(>1GB)

Avg.
(KB)

One-Hit
Wonders

Cold
(1–10)

Warm
(10–100)

Hot
(100-1K)

Super Hot
(>1K)

Avg.
#GETs

%in first 3
months

%in last 4
months

Avg. GET Tail
months

Avg.
days

GET
(%)

PUT
(%)

Total
(M)

T15 0 80 20 0 628 48 52 0 0 0 3 42 58 2.3 0.6 57 43 1.6
T29 44 56 0 0 3 2 98 0 0 0 3 57 43 3.5 41.6 70 30 13
T65 31 34 34 0.03 1,536 2 9 22 67 0.1 93 52 48 3 1.3 99 1 0.3
T78 0 98 2 0 578 6 31 51 11 0.1 26 22 78 0.8 2.6 95 5 2.4
T79 0 40 60 0.35 48,386 17 61 22 0 0 9 60 40 4.1 8.3 89 11 0.1

Table 2: IBM Trace Characteristics: each trace with characteristics highlighted with bold and underscore.

AlwaysEvict is effective on one-hit-dominant traces, as it avoids
unnecessary storage costs for objects never accessed again. For in-
stance, in T15 where 48% of objects are accessed only once (Table 2),
AlwaysEvict incus only 30% higher costs than SkyStore. It results
in slightly higher network costs for the remaining cold objects
accessed more than once in this trace. In traces like T29, where
there is longer average recency between GETs (beyond 𝑇even), the
cost of storing data outweighs the cost of fetching it again on the
subsequent access. In such cases, AlwaysEvict can even outperform
SkyStore by 1% , as SkyStore reactively caches objects and requires
time to adjust to a lower TTL. On the other hand, on traces like T65
and T78 with warm and hot accesses and shorter access recency,
AlwaysEvict incurs 23–73× higher costs due to repeated network
transfers on reads. Surprisingly, in T79 where 89% of objects are
one-hits or cold, AlwaysEvict still costs 2× more than SkyStore.
This is primarily due to the large average object size (48MB), which
amplifies the network cost penalties from cache misses. On average,
SkyStore is 20× cheaper than AlwaysEvict.

Always Store replicates objects on GETs and exhibits behavior
that almost contrasts with AlwaysEvict. On traces with lots of hot
objects such as T65, AlwaysStore outperforms SkyStore by 3%, as
SkyStore may evict a few hot objects and incur higher network costs
during the initial histogram warmup phase. However, on traces
with more infrequent or sporadic access patterns like T29 and T15,
AlwaysStore incurs 2–4× higher costs than SkyStore. Interestingly,
on traces with frequent repeated reads, such as T79 where 80% of
the objects are accessed multiple times, Always Store remains 3×
more expensive than SkyStore. This is because 60% of the objects
in T79 have a GET tail longer than 4.1 months (as seen in Table 2),
which causes AlwaysStore to retain objects long after their last
access. SkyStore evicts unaccessed objects earlier and outperforms
AlwaysStore by 1.5–3× on T78 and T79. On average, SkyStore is
2.2× cheaper than Always Store.

𝑇even is a static TTL-based policy (Section 3.1.2) that stores ob-
jects until re-fetching them becomes less expensive and balances
storage with network costs. In our setup, the TTL for 𝑇even policy
is one month, calculated as the ratio between average network
cost and standard S3 prices across 22 AWS regions. 𝑇even performs

well when all GETs occur within a month (as in T65), enabling
timely evictions and slightly outperforming SkyStore in this case.
However, for infrequent accesses like in T15 and T29, it stores
objects for a full one-month TTL, leading to 1.7-2× higher costs
compared to SkyStore. In traces with moderate access frequency
and short recency (like T15 and T29), 𝑇even strikes a reasonable
balance. However, SkyStore still outperforms it by 1.4× as, unlike
𝑇even, SkyStore is aware of object access patterns and can reduce
network costs with its adaptive TTL. On average, SkyStore is 1.4×
more cost-effective than 𝑇even.

TTL-CC policy[24] computes TTLs stochastically based on cache
hits, assuming a Poisson distribution, and dynamically updates the
TTL of all objects. This policy’s cost is within 10% of the total
cost of SkyStore for traces with hot- or one-hit-dominant objects
(like T15 and T65). However, for mixed traces with warm and cold
objects like T78 and T79, TTL-CC has 2× higher cost than SkyStore.
TTL-CC also tends to store sporadically accessed objects for longer
in T29 and incurs 1.7× higher cost. In summary, TTL-CC results
emphasize that dynamic TTL-based policies are a better fit for
cloud applications. However, access patterns in the cloud are more
complex than Poisson distributions. Overall, SkyStore is more cost-
efficient than TTL-CC by 1.6× on average.

TTL-CC-Obj policy is a variance of TTL-CC that computes TTLs
per object based on individual object hits. While this approach can
quickly adjust TTLs for individual objects that are unlikely to be
accessed again, it lacks sufficient hit/miss data to accurately fit
the access distribution and adjust TTLs effectively for other cases.
It behaves like Always Evict in T15 and T29. In T65 and T78, it
misjudges hit patterns, evicting objects too early and performing
worse than TTL-CC (Always Store). Overall, TTL-CC-Obj average
cost is 4.5× higher than SkyStore policy.

EWMA predicts object access times using exponentially weighted
moving averages and stores objects with shorter access times. This
policy can quickly evict one-hits and cold objects and reduces stor-
age costs by 0.99–1.3× for traces T29 and T15, respectively. How-
ever, it carries this aggressive eviction strategy over to traces with
hot and super-hot objects (T65, T78, and T79) and incurs 1.7–10×
higher costs. Fine-tuning EWMA policy parameters, such as the

2092

decay factor, could potentially reduce these overheads. On average,
EWMA is 3.5× more expensive than SkyStore.

AWSMulti-Region Bucket [17] and similar commercially-available
services behave like AlwaysStore but proactively replicate data on
writes rather than reads. This leads to higher storage costs when
GET appears later; in traces T15, T29, and T78, on average, objects
are accessed 1–1.5 months after they are written, incurring 2–6×
higher cost than SkyStore. For traces with more immediate reads
(like T65 and T79), AWS multi-region buckets incur 0.98–3× higher
costs than SkyStore. Overall, AWS Multi-Region Bucket is 3.1×
more expensive than SkyStore on average.

SkyStore per-object histogram (SS-Obj). We also explore SkyStore
with per-object statistics. This policy often results in frequent evic-
tions, similar to EWMA, because a single object statistics might be
mis-leading compared to bucket-level from each region. On average,
SS-Obj is 3.3× more expensive than SkyStore.

Optimal CGP. We also compare SkyStore to CGP, an oracle with
optimal cost policy (Table 3). On average, SkyStore operates within
15% of optimal, while others incur 1.6–22× higher costs. Its higher
cost stems from bucket-granularity statistics, leading to 1.2–1.3×
worse performance on traces (T78, T79) with mixed access patterns.
However, 𝑇even remains empirically within 2× of optimal cost, as
proven in Section 3.1.2.

Policy Cost vs. Optimal
T15 T29 T65 T78 T79 Avg

Always Evict 1.4 1.0 77.5 27.8 3.1 22.15
Always Store 3.9 2.3 1.0 1.9 3.4 2.49
Teven 1.9 2.2 1.0 1.4 1.5 1.59
TTL-CC 1.2 1.7 1.1 2.7 2.7 1.87
TTL-CC-obj 1.5 1.0 7.5 7.2 2.2 3.88
EWMA 1.4 1.0 11.0 3.8 2.3 3.90
AWS Multi-Region Bucket 6.3 3.5 1.0 2.8 3.8 3.49
SS-Obj 1.2 1.0 7.9 7.0 2.1 3.84
SkyStore 1.1 1.0 1.1 1.2 1.3 1.14

Table 3: Two-Region Base and Cache: Cost vs. Optimal across
individual traces and their average.

6.4 Multi-Cloud: 3 Regions across 3 Clouds
We extend our evaluation to a multi-cloud setup with three regions
across three clouds (Section 6.2.1). We use four workloads, i.e., uni-
form, region-aware, aggregation, and replication workloads (Sec-
tion 6.1.3). Across these workloads, SkyStore consistently achieves
lower costs compared to other baselines by 1.3–18.4× on average.

Policy
Type A

(Uniform)
Type B
(Region)

Type C
(Aggregation)

Type D
(Replication) Average

Always Evict 9.3 29.8 24.0 10.4 18.4×
Always Store 1.8 1.7 1.7 1.9 1.8×
𝑇even 1.3 1.3 1.3 1.3 1.3×
TTL-CC 1.7 1.2 1.3 1.8 1.5×
EWMA 2.9 4.9 4.4 3.0 3.8×
JuiceFS 4.8 1.9 1.9 4.8 5.7×

Table 4: 3-Region Fixed Base: baseline cost over SkyStore
(×), averaged across traces and workload types. On average,
SkyStore is 1.3 to 18.4× cheaper than six other baselines.

Table 4 summarizes the baseline’s cost over SkyStore’s, and aver-
ages it across traces and workload types. We compare SkyStore
with JuiceFS instead of AWS Multi-Region Bucket as the latter does
not operate across clouds. All policies in this experiment are run in
the fixed base (FB) mode.

At a high level, 3-region multi-cloud results largely mirror the
2-region setup. Major trends across traces remain the same, but the
absolute cost improvements differ from the two-region setup across
each workload. This is primarily due to higher (1.8×) network fees
in multi-cloud compared to a single-cloud setup. We highlight and
explain outlier trends in costs for SkyStore and other baselines.

AlwaysEvict is 9.3–29.8× more expensive than SkyStore on aver-
age. AlwaysEvict has higher costs (29.8× and 24.0×) in region-aware
and aggregation workloads; for read-heavy traces like T65, it can
be 120× worse due to high cross-cloud network fees. AlwaysEvict
performs slightly better (9.3× and 10.4×) than SkyStore on uni-
form and replication workloads. As GETs per object are distributed,
policies have uniformly high network costs of cold misses in each
region, narrowing their performance gap.

EWMA has similar costs to AlwaysEvict except that it retains
objects for slightly longer in read-heavy traces, costing 2.9 – 4.9×
more than SkyStore on average.

AlwaysStore and JuiceFS are 1.7–1.9× and 1.9–4.8× more ex-
pensive than SkyStore on average, respectively. Decreasing access
frequency and increasing recency reduces caching benefits. Thus,
AlwaysStore incurs low costs (1.7× of SkyStore) in region-aware
and aggregation workloads and higher costs (1.8 – 1.9×) with uni-
form and replication workloads. Surprisingly, AlwaysStore beats
SkyStore by 4-6% on read-heavy traces (T65) as SkyStore incurs
higher network costs during initial metadata warmup periods. In
contrast, JuiceFS has 2.7× higher costs than AlwaysStore on aver-
age because JuiceFS proactively replicates objects to all regions on
PUTs and incurs high costs for infrequently read objects. However,
if read locations are predictable, such as region-aware and aggrega-
tion workloads, JuiceFS is auto-configured to replicate to specific
regions and incurs similar costs as AlwaysStore.

TTL-CC costs 1.2–1.8× more than SkyStore on average, adjusting
TTLs based on cache hit rates. It has lower costs (1.2–1.3× vs. SkyS-
tore) for region-aware and aggregation workloads, but higher costs
(1.7–1.8×) for uniform or replication workloads. As an exception
occurs in trace T79, where TTL-CC incurs 1.6× lower costs for uni-
form and replication workloads due to a high fraction (61%) of cold
objects, leading to shorter TTLs. However, it struggles when reads
are concentrated in specific locations, evicting warmer objects and
incurs higher network costs.

The 𝑇even policy incurs low costs consistently, i.e., 1.3× higher
than SkyStore on average. It balances storage and network costs in
multi-cloud setups and maintains low costs across different request
distributions. 𝑇even has up to 1.7× higher costs than SkyStore as it
stores objects even if they are not read in the future.

6.5 Scalability: To 9 Regions across 3 Clouds
We now evaluate how SkyStore’s cost savings scale in the multi-
cloud setup with an increasing number of regions. Across three
clouds, we compare cost savings of SkyStore in three, six, and
nine regions relative to the other baselines. Note that we evaluate

2093

(a) Type A (Uniform) (b) Type B (Region-Aware) (c) Type C (Aggregation) (d) Type D (Replication)015 029 065 078 079
Trace Name

1

2

3

N
or

m
al

iz
ed

To
ta

lC
os

t

3 region 6 region 9 region

015 029 065 078 079

1

2

3

N
or

m
al

iz
ed

To
ta

lC
os

t
3 region 6 region 9 region

015 029 065 078 079

1

2

3

N
or

m
al

iz
ed

To
ta

lC
os

t

3 region 6 region 9 region

015 029 065 078 079

1

2

3

N
or

m
al

iz
ed

To
ta

lC
os

t

3 region 6 region 9 region

015 029 065 078 079

1

2

3

N
or

m
al

iz
ed

To
ta

lC
os

t

3 region 6 region 9 region

Figure 6: SkyStore Total Cost Normalized over 3-Region on 3, 6, and 9 Regions across Workloads A-D: SkyStore costs remain
similar when scaling to more regions.

Policy 3-Region (FB) 6-Region (FB) 9-Region (FB)

Avg Std Dev Avg Std Dev Avg Std Dev

Always Evict 18.4 31.6 15.0 27.0 12.9 23.9
Always Store 1.8 0.7 2.0 0.8 2.1 0.8
Teven 1.3 0.3 1.4 0.3 1.4 0.3
TTL-CC 1.5 1.0 1.3 0.5 1.4 0.7
EWMA 3.8 4.7 3.2 3.4 3.1 3.4
JuiceFS 3.4 2.9 7.3 7.2 8.6 10.9

Policy 3-Region (FP) 6-Region (FP) 9-Region (FP)

Avg Std Dev Avg Std Dev Avg Std Dev

Always Evict 11.9 21.1 11.4 22.4 11.4 23.4
Always Store 1.3 0.2 1.4 0.2 1.5 0.2
JuiceFS 1.7 0.6 3.0 1.8 3.5 2.8
SPANStore 1.4 0.2 1.5 0.2 1.6 0.3

Table 5: 3, 6, 9-Region, 5 traces, Type A-D, Fixed Base (FB)
and Free Placement (FP): Average and standard deviation of
cost of baselines over SkyStore.

SPANStore only in FP mode as it does not support FB mode. Across
9 regions, SkyStore is 1.4–12.9× and 1.5–11.4× more cost-efficient
than other baselines in FB and FP modes, respectively.

Table 5 summarizes how scaling affects baseline costs relative
to SkyStore, so lower cost relative to SkyStore showcases better
scalability. SkyStore remains consistent and incurs low costs when
scaling regions. AlwaysEvict and EWMA (in FB mode) incur lower
costs on increasing the number of regions from 3 to 9 (18.4 to
12.9×, 3.8 to 3.1×, respectively). On the other hand, AlwaysStore
and JuiceFS incur higher costs (1.8 to 2.1×, 3.4 to 8.6×, respectively)
compared to SkyStore as regions increase. This is primarily because
the number of data replicas is proportional to the number of regions,
and these policies incur high storage costs from extensive replica-
tion. Recall that JuiceFS proactively replicates data to all regions
on PUT requests and pays for higher storage and network costs
as regions scale. Both 𝑇even and TTL-CC remain fairly consistent
(1.3-1.4× and 1.3-1.5×), and show slight fluctuations in relative cost
compared to SkyStore when scaling from 3 to 9 regions.

SkyStore and other policies have relatively lower costs in FP
relative to FB mode as they incur no additional costs for the base
region’s storage. SPANStore has comparable costs to AlwaysStore
as it does not effectively evict objects that remain unread for long
time intervals. SPANStore incurs even higher costs for traces with
a majority of one-hits and cold objects (like traces T29 and T79).
In our evaluation, SPANStore’s solver has access to an oracle with
knowledge of workloads and showcases its costs in the best case.

Across workloads and traces, SkyStore is 1.4–1.6× more cost effi-
cient than SPANStore on average, with 9 regions across 3 clouds.

SkyStore’s cost savings scale from 3 to 9 regions across workload
types and traces in FB mode, as seen in Figure-6. On region-aware
and aggregation-workloads (Figures 6b, 6c), SkyStore has minimal
cost variations with more regions. In these workloads, GETs of ob-
jects are concentrated in a single region independent of the number
of regions. As an exception, aggregation workloads for trace T65
experience higher costs on scaling to 6 and 9 regions due to a par-
ticular cloud region (aws:us-east-1), which has higher network
ingress costs from all other regions. For uniform and replication
workloads (Figure 6a, 6d), SkyStore’s cost remains relatively stable
as regions increase. This trend is evident in traces with cold objects
(T15, T29, and T79), where scaling to 9 regions yields similar costs.
However, for traces with warm and hot objects SkyStore’s cost
increases with the number of regions (like 1.5× and 1.2× for traces
T65 and T78) as GETs are distributed across more regions which
makes previously warm objects now colder, and increases network
costs from evicting such objects.

6.6 Multi-Cloud: End-to-End Benchmark

Policy GET
Latency (ms)

PUT
Latency (ms)

GET Lat.
vs. AS

Cost ($)
vs. AS

Avg P90 P99 Avg P90 P99

Always Store 172 235 340 840 562 784 1.00× 1.00×
Always Evict 278 440 762 800 507 715 1.61× 76.78×
SkyStore 184 230 408 822 520 782 1.06× 1.05×

Table 6: End-to-End System Evaluation on T65.

We now discuss the end-to-end cost and latency of SkyStore
against AlwaysStore and AlwaysEvict baselines for a multi-cloud
workload (Type E) on a single trace (T65) due to the prohibitively
high cost (2M dollars) of evaluating all workloads and configura-
tions (Section-6.1.3). We run SkyStore and baselines on 3 regions
across 3 clouds. As seen in Table 6, SkyStore has comparable aver-
age and p99 latency as AlwaysStore, with 3% higher average GET
latency due to its metadata overheads from maintaining per-bucket
statistics as histograms and periodically updating them in the back-
ground. PUT latency remains similar across policies, as writes are
local. AlwaysEvict, which avoids caching, incurs 1.6× higher GET
latency. SkyStore and AlwaysStore maintain low costs, aligning
with our cost simulations (Section 6.4), while AlwaysEvict sees up
to 75× higher costs and increased end-to-end latency.

6.7 Discussions: Overheads & Trade-offs

2094

Operation Object Size
(Single Region)

Object Size
(Remote Region)

Object Size
(Far Remote Region)

128KB 43MB 1GB 128KB 43MB 1GB 128KB 43MB 1GB

PUT 20% 1.6% 0.07% 88% 11.2% 0.4% 2× 21.7% 1.0%
GET 17% 1.0% 0.03% 57% 6.3% 0.2% 1.6× 12.1% 0.5%

Table 7: Evaluation of SkyStore metadata latency overhead
vs. AWS APIs, across client-server setups and object sizes.
6.7.1 Cost overheads. The cost of running SkyStore includes the
S3-proxy, a client-side library with no extra cost, and the metadata
server, hosted on an m5d.8xlarge VM at $1.81 per hour, comparable
to typical cloud service operational costs. The cost of fault tolerance
in SkyStore is modest. Metadata storage requires approximately
267 bytes per object and 92 bytes per bucket, enabling a single
instance with two 600GB NVMe SSDs to store metadata for up to
4.4 billion objects across 10k buckets. Periodically checkpointing
for 4.4B object metadata states costs around $27 per checkpoint in
storage for a month. At the same time, recovery operations incur
$0.01 per 1,000 LIST requests or $11 for listing all 4.4B objects using
services like S3 Inventory [25] reports.
6.7.2 SystemOverheads. Every request in SkyStore to goes through
a centralized metadata server. We measure this metadata overhead
for PUT and GET operations on 500 objects (128KB, 43MB, to 1GB)
across setups where client and metadata servers are in the same
region (us-west-1), remote regions (us-west-1 and us-west-2), and
far remote region (us-west-1 and us-east-1). We select 43MB as a
representative medium size based on the average object size from
98 real-world IBM SNIA object store traces [14].

As shown in Table 7, metadata overhead is minimal for large
objects and remains modest for medium ones. In a single-region
setup, it accounts for 17-20% of access time for small objects, 1.0-
1.6% for medium, and <0.1% for large. Overhead increases in multi-
region setups, reaching up to 88% for small objects but staying
below 0.4% for large ones. In far-remote region cases, overhead is
very high for small objects, but remains under 21.7% and 1.0% for
medium and large objects. We note that PUT incurs slightly more
latency overhead due to its two-phase commit protocol to ensure
fault tolerance (Section 4.5). To minimize latency, particularly for
small objects, future work could explore metadata replication with
a replicated state machine or local metadata caching for looser
consistency, such as eventual consistency.
6.7.3 Overheads with scaling regions and buckets. SkyStore is de-
signed to scale effectively with the increasing number of regions
and buckets. Histograms are generated periodically (once or twice
a day) for each bucket. The complexity of generating histograms is
linear in size. For each bucket, the system calculates point-to-point
access patterns. If there are ten regions, this results in 102 = 100
edges per bucket. For 1000 buckets, this scales to 100,000 edges,
which becomes manageable with daily or periodic updates.
6.7.4 How does SkyStore incorporate latency considerations? We
illustrate latency considerations (Section 3.3.2) with an example.
Storing an object costs $0.026/GB per month, with a $0.02/GB egress
fee. A TTL of 0.77 months (𝑇even = 𝑁 /𝑆) caches objects accessed
within that period. If a user values faster access at $0.005/GB, ex-
tending TTL to 1 month adds $0.006/GB in storage cost – exceeding
the benefit, making it unjustified. Reducing TTL to 0.5 months

saves more in storage than re-fetching, favoring shorter caching.
Users with higher latency tolerance may lower𝑈perf-val, while time-
sensitive applications may increase it to retain objects longer.
6.7.5 Real-World Use Cases. In collaboration with IBM, SkyStore
has been prototyped to enable seamless multi-cloud storage with
Kubernetes environments []. One example workload involves train-
ing a model on a Kubernetes cluster in Spain, which interacts with
a nearby region object store for model snapshots and training data.
Periodically, when the model accuracy is high enough, the model
snapshot then needs to be accessed in another region in Venice.
There, the model is read and cached automatically to serve clients
from a local Kubernetes cluster, helping orchestrate massive evac-
uations during emergencies. This setup, classified as replication
workloads mentioned in Section 6.1.3, highlights SkyStore’s ability
to transparently cache remote data locally and reduce egress and
storage costs in a distributed cloud.

7 RELATEDWORK
Geo-distributed Cloud Storage. Existing commercial offerings
are mostly single-cloud and require manual placement. AWS [19]
and GCP multi-region buckets[32] focus on disaster recovery rather
than workload-aware replication. Cloudflare R2 [6] provides a
global object store but also requires manual configuration. Vol-
ley and Nomad [15, 50] optimize data placement for geo-distributed
applications but minimize access latency instead of monetary cost.
SPANStore [52] does optimize multi-cloud object placement for
cost, but performs proactive replication on writes and does not con-
sider eviction and replication costs. It also requires apriori workload
knowledge and cannot react to evolving workload patterns.
Traditional Caching Algorithms. A range of traditional cache
eviction algorithms have been developed based on object statistics
such as recency, frequency or size (e.g., LRU, LFU, GDSF, FIFO).
However, these algorithms consider cache space as the primary
driver for eviction. Object must thus be ranked; objects with the
lowest ranking are evicted when the cache becomes full. In contrast,
the cache in multi-cloud is not constrained by size but by cost. Each
caching decision can thus be made independently for each object.
TTL-based Caching and Cloud Caching. TTL-based approaches
have been used for cloud caching, setting a TTL per cache item
according to object read frequency. Tokeep et al. [44] keeps an item
for𝑇even time and evicts it if it has shown no hits. This is equivalent
to the𝑇even-policy we evaluate. Carra et al. [24] offers an approach
closer to our two-region approach of a single dynamic TTL for all
items in a workload. They use a stochastic approach that modifies
the TTL by tracking hits of each new item in the cache. Both prior
works assume that object reads occur according to set distributions.
In contrast, SkyStore adapts to changing workloads.

8 CONCLUSION
This paper explores the problem of designing a cost-optimized
object store across regions and clouds. We propose a TTL-based
cost-aware replication policy in the multi-region and multi-cloud
setting and build a global object store as an overlay that sits on
top of multiple existing cloud services. Our evaluation shows that
SkyStore can achieve up to 6× cost savings over state-of-the-art
baseline policies and systems in a real cloud setup.

2095

REFERENCES
[1] Actions - Amazon Simple Storage Service — docs.aws.amazon.com. https:

//docs.aws.amazon.com/AmazonS3/latest/API/API_Operations.html. [Accessed
18-04-2024].

[2] All networking pricing. Virtual Private Cloud. Google Cloud — cloud.google.com.
https://cloud.google.com/vpc/network-pricing#standard-pricing. [Accessed
14-04-2024].

[3] AWSâĂŹs Egregious Egress — blog.cloudflare.com. https://blog.cloudflare.com
/aws-egregious-egress. [Accessed 14-04-2024].

[4] Ceph Object Gateway Ceph Documentation — docs.ceph.com. https://docs.ceph.
com/en/quincy/radosgw/. [Accessed 20-04-2024].

[5] Chapter 27. High Availability, Load Balancing, and Replication — postgresql.org.
https://www.postgresql.org/docs/current/high-availability.html. [Accessed
18-04-2024].

[6] Cloudflare R2 | Zero Egress Fee Distributed Object Storage | Cloudflare — cloud-
flare.com. https://www.cloudf lare.com/developer-platform/r2/. [Accessed
14-04-2024].

[7] Landsat data Âă|Âă Cloud Storage Âă|Âă Google Cloud — cloud.google.com.
https://cloud.google.com/storage/docs/public-datasets/landsat. [Accessed
14-04-2024].

[8] Pricing - Bandwidth | Microsoft Azure — azure.microsoft.com. https://azure.mi
crosoft.com/en-us/pricing/details/bandwidth/. [Accessed 14-04-2024].

[9] Comparing AWS, Azure, GCP — digitalocean.com. https://www.digitalocean.c
om/resources/article/comparing-aws-azure-gcp, 2023. [Accessed 20-04-2024].

[10] SNIA: IOTTA repository. http://iotta.snia.org/traces/key-value/36305, 2023.
[11] Azure Blob Storage | Microsoft Azure — azure.microsoft.com. https://azure.micr

osoft.com/en-us/products/storage/blobs, 2024. [Accessed 20-04-2024].
[12] Cloud Object Storage - Amazon S3 - AWS — aws.amazon.com. https://aws.amaz

on.com/s3/, 2024. [Accessed 20-04-2024].
[13] Cloud Storage — cloud.google.com. https://cloud.google.com/storage?hl=en,

2024. [Accessed 20-04-2024].
[14] Cloud Storage Services | IBM — ibm.com. https://www.ibm.com/cloud/storage,

2024. [Accessed 20-04-2024].
[15] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, and

Harbinder Bhogan. Volley: Automated data placement for geo-distributed cloud
services. In Proceedings of the 7th USENIX Conference on Networked Systems
Design and Implementation, NSDI’10, page 2, USA, 2010. USENIX Association.

[16] Nawras Alkassab, Chin-Tser Huang, and Tania Lorido Botran. Deepref: Deep
reinforcement learning for video prefetching in content delivery networks, 2023.

[17] Amazon s3 multi-region access points. https://aws.amazon.com/s3/features/mul
ti-region-access-points/. Accessed on 12/15/2022.

[18] Amazon s3 pricing. https://aws.amazon.com/s3/pricing/. Accessed on 09/29/2024.
[19] Aws cross-region replication. https://docs.aws.amazon.com/AmazonS3/latest/us

erguide/replication.html. Accessed on 12/15/2022.
[20] aws-lifecycle-policy. https://docs.aws.amazon.com/AmazonS3/latest/userguide/

intro-lifecycle-rules.html.
[21] Microsoft Azure. Managing concurrency in Blob storage - Azure Storage —

learn.microsoft.com. https://learn.microsoft.com/en-us/azure/storage/blobs/con
currency-manage. [Accessed 19-04-2024].

[22] Soumya Basu, Aditya Sundarrajan, Javad Ghaderi, Sanjay Shakkottai, and Ramesh
Sitaraman. Adaptive ttl-based caching for content delivery. IEEE/ACM transac-
tions on networking, 26(3):1063–1077, 2018.

[23] Laszlo A. Belady. A study of replacement algorithms for a virtual-storage com-
puter. IBM Systems journal, 5(2):78–101, 1966.

[24] Damiano Carra, Giovanni Neglia, and Pietro Michiardi. Ttl-based cloud caches.
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pages
685–693, 2019.

[25] Cataloging and analyzing your data with s3 inventory. https://docs.aws.ama
zon.com/AmazonS3/latest/userguide/storage-inventory.html. Accessed on
12/15/2022.

[26] Jun Lin Chen, Daniyal Liaqat, Moshe Gabel, and Eyal de Lara. Starlight: Fast
container provisioning on the edge and over the WAN. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 22), pages 35–50,
Renton, WA, April 2022. USENIX Association.

[27] Cloud bursting. https://aws.amazon.com/what-is/cloud-bursting/. Accessed on
09/29/2024.

[28] Databricks lakehouse use cases. https://www.databricks.com/blog/2020/01/30/w
hat-is-a-data-lakehouse.html. Accessed on 09/29/2024.

[29] Disaster recovery workloads. https://docs.aws.amazon.com/whitepapers/late
st/disaster-recovery-workloads-on-aws/disaster-recovery-options-in-the-
cloud.html. Accessed on 09/29/2024.

[30] Ohad Eytan, Danny Harnik, Effi Ofer, Roy Friedman, and Ronen Kat. IBM object
store traces (SNIA IOTTA trace set 36305). In Geoff Kuenning, editor, SNIA
IOTTA Trace Repository. Storage Networking Industry Association, July 2019.

[31] Ohad Eytan, Danny Harnik, Effi Ofer, Roy Friedman, and Ronen I. Kat. It’s Time
to Revisit LRU vs. FIFO. In HotStorage 2020, 2020.

[32] Gcp multi-region bucket. https://cloud.google.com/storage/docs/locations#loca
tion-mr. Accessed on 12/15/2022.

[33] Ilija Hristoski and Pece Mitrevski. Evaluation of business-oriented performance
metrics in ecommerce using web-based simulation. Journal of Emerging research
and solutions in ICT, 1(1):1âĂŞ16, April 2016.

[34] Paras Jain, Sam Kumar, Sarah Wooders, Shishir G Patil, Joseph E Gonzalez, and
Ion Stoica. Skyplane: Optimizing transfer cost and throughput using cloud-aware
overlays. arXiv preprint arXiv:2210.07259, 2022.

[35] Juicefs data synchronization. https://juicefs.com/docs/community/guide/sync#
distributed-sync. Accessed on 09/29/2024.

[36] llama3 details. https://ai.meta.com/blog/meta-llama-3/.
[37] Inc. MinIO. MinIO | S3 & Kubernetes Native Object Storage for AI — min.io.

https://min.io/. [Accessed 14-04-2024].
[38] Leonardo Peroni and Sergey Gorinsky. An end-to-end pipeline perspective on

video streaming in best-effort networks: A survey and tutorial, 2024.
[39] Marcus Perry. The Exponentially Weighted Moving Average. 06 2010.
[40] Google Cloud Platform. Consistency | Cloud Storage | Google Cloud —

cloud.google.com. https://cloud.google.com/storage/docs/consistency.
[Accessed 19-04-2024].

[41] Adam Prout. "learnings from snowflake and aurora: Separating storage and
compute for transaction and analytics". https://www.singlestore.com/blog/separ
ating-storage-and-compute-for-transaction-and-analytics/, 2021. [Accessed
26-08-2024].

[42] Asmad Bin Abdul Razzaque and Andrea Baiocchi. Analysis of status update in
wireless networks with successive interference cancellation, 2024.

[43] s3-consistency-model. https://aws.amazon.com/s3/consistency/. Accessed on
10/01/2024.

[44] Nicolas Le Scouarnec, Christoph Neumann, and Gilles Straub. Cache policies
for cloud-based systems: To keep or not to keep. In 2014 IEEE 7th International
Conference on Cloud Computing, pages 1–8, 2014.

[45] Scylladb eventual consistency. https://www.scylladb.com/glossary/eventual-
consistency/. Accessed on 10/01/2024.

[46] Amazon Web Services. Amazon S3 | Strong Consistency | Amazon Web Services
— aws.amazon.com. https://aws.amazon.com/s3/consistency/. [Accessed
19-04-2024].

[47] sqlite-usecases. https://www.sqlite.org/features.html. Accessed 10-01-2024.
[48] stevenmatthew. Data redundancy - Azure Storage — learn.microsoft.com. https:

//learn.microsof t.com/en-us/azure/storage/common/storage-redundancy.
[Accessed 14-04-2024].

[49] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrish-
nan, Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service
level agreements for cloud storage. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, page 309âĂŞ324, New
York, NY, USA, 2013. Association for Computing Machinery.

[50] Nguyen Tran, Marcos K. Aguilera, and Mahesh Balakrishnan. Online migration
for geo-distributed storage systems. In 2011 USENIX Annual Technical Conference
(USENIX ATC 11), Portland, OR, June 2011. USENIX Association.

[51] Sarah Wooders, Shu Liu, Paras Jain, Xiangxi Mo, Joseph E. Gonzalez, Vincent
Liu, and Ion Stoica. Cloudcast: High-Throughput, Cost-Aware overlay multicast
in the cloud. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24), pages 281–296, Santa Clara, CA, April 2024. USENIX
Association.

[52] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V.
Madhyastha. Spanstore: Cost-effective geo-replicated storage spanning multiple
cloud services. In Proceedings of the Twenty-Fourth ACM Symposium on Oper-
ating Systems Principles, SOSP ’13, page 292âĂŞ308, New York, NY, USA, 2013.
Association for Computing Machinery.

[53] Tian Xia, Zhanghao Wu, Ziming Mao, and Zongheng Yang. Introducing SkyServe:
50https://blog.skypilot.co/introducing-sky-serve/. [Accessed 14-04-2024].

[54] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil Bhardwaj,
Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam Mittal, Scott Shenker,
and Ion Stoica. SkyPilot: An intercloud broker for sky computing. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23), pages
437–455, Boston, MA, April 2023. USENIX Association.

2096

https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations.html
https://cloud.google.com/vpc/network-pricing#standard-pricing
https://blog.cloudflare.com/aws-egregious-egress
https://blog.cloudflare.com/aws-egregious-egress
https://docs.ceph.com/en/quincy/radosgw/
https://docs.ceph.com/en/quincy/radosgw/
https://www.postgresql.org/docs/current/high-availability.html
https://www.cloudflare.com/developer-platform/r2/
https://cloud.google.com/storage/docs/public-datasets/landsat
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://www.digitalocean.com/resources/article/comparing-aws-azure-gcp
https://www.digitalocean.com/resources/article/comparing-aws-azure-gcp
http://iotta.snia.org/traces/key-value/36305
https://azure.microsoft.com/en-us/products/storage/blobs
https://azure.microsoft.com/en-us/products/storage/blobs
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://cloud.google.com/storage?hl=en
https://www.ibm.com/cloud/storage
https://aws.amazon.com/s3/features/multi-region-access-points/
https://aws.amazon.com/s3/features/multi-region-access-points/
https://aws.amazon.com/s3/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/intro-lifecycle-rules.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/intro-lifecycle-rules.html
https://learn.microsoft.com/en-us/azure/storage/blobs/concurrency-manage
https://learn.microsoft.com/en-us/azure/storage/blobs/concurrency-manage
https://docs.aws.amazon.com/AmazonS3/latest/userguide/storage-inventory.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/storage-inventory.html
https://aws.amazon.com/what-is/cloud-bursting/
https://www.databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://www.databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-options-in-the-cloud.html
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-options-in-the-cloud.html
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-options-in-the-cloud.html
https://cloud.google.com/storage/docs/locations#location-mr
https://cloud.google.com/storage/docs/locations#location-mr
https://juicefs.com/docs/community/guide/sync#distributed-sync
https://juicefs.com/docs/community/guide/sync#distributed-sync
https://ai.meta.com/blog/meta-llama-3/
https://min.io/
https://cloud.google.com/storage/docs/consistency
https://www.singlestore.com/blog/separating-storage-and-compute-for-transaction-and-analytics/
https://www.singlestore.com/blog/separating-storage-and-compute-for-transaction-and-analytics/
https://aws.amazon.com/s3/consistency/
https://www.scylladb.com/glossary/eventual-consistency/
https://www.scylladb.com/glossary/eventual-consistency/
https://aws.amazon.com/s3/consistency/
https://www.sqlite.org/features.html
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://blog.skypilot.co/introducing-sky-serve/

	Abstract
	1 Introduction
	2 SkyStore Placement Policy
	2.1 Cloud Pricing Models
	2.2 Modes of Operations
	2.3 SkyStore Overview

	3 SkyStore Eviction Policy
	3.1 2-Region, Base and Cache Problem
	3.2 SkyStore 2-Region Base & Cache Eviction
	3.3 SkyStore Multi-Region Eviction

	4 SkyStore Architecture
	4.1 API: Virtual Object & Bucket Abstraction
	4.2 Control Plane: SkyStore Metadata Server
	4.3 Data Plane: S3-Proxy
	4.4 Consistency
	4.5 Fault Tolerance

	5 Implementation
	6 Evaluation
	6.1 Workloads: Multi-Region and Multi-Cloud
	6.2 Deployment Settings and Baselines
	6.3 Single-Cloud Two Regions: Base and Cache
	6.4 Multi-Cloud: 3 Regions across 3 Clouds
	6.5 Scalability: To 9 Regions across 3 Clouds
	6.6 Multi-Cloud: End-to-End Benchmark
	6.7 Discussions: Overheads & Trade-offs

	7 Related Work
	8 Conclusion
	References

