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ABSTRACT

Natural language (NL)-driven table discovery identifies relevant
tables from large table repositories based on NL queries. While
current deep-learning-based methods using the traditional dense
vector search pipeline, i.e., representation-index-search, achieve re-
markable accuracy, they face several limitations that impede fur-
ther performance improvements: (i) the errors accumulated during
the table representation and indexing phases affect the subsequent
search accuracy; and (ii) insufficient query-table interaction hinders
effective semantic alignment, impeding accuracy improvements.
In this paper, we propose a novel framework Birdie, using a dif-
ferentiable search index. It unifies the indexing and search into
a single encoder-decoder language model, thus getting rid of er-
ror accumulations. Birdie first assigns each table a prefix-aware
identifier and leverages a large language model-based query gener-
ator to create synthetic queries for each table. It then encodes the
mapping between synthetic queries/tables and their correspond-
ing table identifiers into the parameters of an encoder-decoder
language model, enabling deep query-table interactions. During
search, the trained model directly generates table identifiers for a
given query. To accommodate the continual indexing of dynamic
tables, we introduce an index update strategy via parameter isola-
tion, which mitigates the issue of catastrophic forgetting. Extensive
experiments demonstrate that Birdie outperforms state-of-the-art
dense methods by 16.8% in accuracy, and reduces forgetting by over
90% compared to other continual learning approaches.
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Figure 1: An example of NL-driven table discovery.

1 INTRODUCTION

Tables are a prevalent format for data storage across governmental
institutions [40], businesses [35], and the Web [11]. They contain
vast amounts of information that can drive decision-making [6].
However, the sheer volume of tabular data complicates the pro-
cess for users to locate relevant tables in large repositories or data
lakes [12]. In response, the data management community has de-
veloped table discovery methods that allow users to search for
tables based on various query formats, such as keywords [3, 5],
base tables [14, 16], and natural language queries [23, 53]. Natural
language (NL) queries, in particular, are user-friendly and empower
non-technical users to express their needs more precisely. As an
example shown in Figure 1, assume that a user wants to know
who starred in the movie “on golden pond”. NL-driven table dis-
covery aims to identify 𝑇1 from the large table repository, as it
contains a cell to answer this query. Once table𝑇1 is retrieved, tools
like NL2SQL [59] or Large Language Models [61] can be used to
formulate a response to the query.

The success of deep learning techniques in various fields has led
to the emergence of the state-of-the-art (SOTA) NL-driven table
discovery methods [23, 53], which typically follow the traditional
dense vector search pipeline involving representation, indexing and
search. As illustrated in Figure 2(a), a bi-encoder system is trained
for representation, comprising a table encoder and a query encoder.
The table encoder transforms each table into a fixed-dimensional
embedding, and the indexes are constructed on these embeddings.
During the search phase, the query embedding is generated using
the query encoder, and the nearest neighbor search (NNS) or approx-
imate NNS (ANNS) is conducted to locate table embeddings that
closely resemble the query embedding, leveraging pre-constructed
indexes. Although this paradigm has significantly outperformed
sparse methods (e.g. BM25) [53], it faces two major limitations.
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Figure 2: Traditional dense pipeline vs. DSI pipeline.

• Cumulative Errors from the Multi-Stage Process. The sep-
aration of representation, indexing, and search results in the
accumulation of errors from one stage to the next. First, cap-
turing the rich and complex information within tables using a
single vector remains a challenge [4, 10]. Insufficient table rep-
resentations degrade the effectiveness of search results. Second,
the choice of indexing techniques can greatly impact the search
results; for instance, discrepancies between the inverted index
and ANNS index can negatively affect the accuracy [16].

• Insufficient Query-Table Interactions. Encoding the query-
table pair using a cross-encoder enables deep query-table in-
teractions, thus enhancing semantic alignment and improving
accuracy [60]. However, it is computationally intensive. For on-
line search efficiency, current dense search methods typically
encode the query and table independently, and rely on basic
similarity computations (e.g., cosine similarity) between their
embeddings [23, 53], which inadequately capture the nuanced
query-table interactions necessary for effective retrieval.
To overcome these limitations, this paper introduces Birdie, a

novel framework for NL-driven table discovery using a Differen-
tiable Search Index (DSI) [49]. Birdie unifies both indexing and
search into an encoder-decoder Transformer [51] architecture. In
this framework, indexing is integrated into the model training pro-
cess, while search is conducted through model inference, as shown
in Figure 2(b). Specifically, each table in the given table repository is
assigned a unique table identifier (tabid), represented as a sequence
s = (𝑠1, 𝑠2, . . . , 𝑠𝑑 ). During the training (indexing) phase, the model
learns to map each table to its corresponding tabid, and associates
generated synthetic queries with the tabids of relevant tables. This
design encodes the table informationwithin themodel’s parameters,
ensuring an end-to-end differentiable training process. Additionally,
training with synthetic queries and tabids fosters deep interactions
between queries and tables through encoder-decoder attention [51].
During the inference (search) phase, the trained model receives a
query and directly generates tabids token by token. Despite some
successful attempts of DSI in certain applications [32, 46, 54], three
primary challenges emerge in developing an effective table discov-
ery approach based on DSI:
Challenge I: How to design prefix-aware tabids to capture the com-
plex semantics in tabular data? The tabid generation during the
search phase is autoregressive, as shown in Figure 2(b). Thus, it is
crucial to design prefix-aware tabids so that tabids of similar tables
share similar prefixes, thereby enhancing accuracy. However, exist-
ing ID generation methods [49, 58, 67] are designed for flattened,

short documents and are not capable of capturing the complex,
hierarchical semantics inherent in tabular data. To this end, we
propose a two-view-based clustering algorithm, i.e., metadata-view
and instance-data-view, to generate tabids for each table. Through
inter-view and intra-view hierarchical modeling, we derive prefix-
aware semantic tabids for each table.
Challenge II: How to automatically collect NL queries tailored to
tabular data for model training? Collecting high-quality, diverse,
and table-specific queries and associating them with tabids during
the training (indexing) phase effectively simulates the subsequent
search phase [67], thus improving search accuracy. However, col-
lecting queries for large table repositories manually is intractable.
Although some synthetic query generation methods have been pro-
posed, they either focus on flattened text paragraphs [42, 54] or rely
on a two-stage transformation (table-to-SQL and SQL-to-NL) [53].
The former overlooks the structured and non-continual semantics
of tabular data, while the latter suffers from quality issues due to
the error accumulations across two transformation stages. To tackle
this, we train a query generator tailored to tabular data using pow-
erful Large Language Models (LLMs), and design a table sampling
strategy to generate diverse and high-quality NL queries.
Challenge III: How to continually index new tables while alleviating
the catastrophic forgetting? When new tables are added to the repos-
itory, they require new tabids and updates to the parameters of the
existing model to incorporate new information. Training the model
from scratch using all the tables whenever the repository changes
is resource-intensive, while updating model with only new tables
can lead to catastrophic forgetting. Although recent studies [7, 38]
suggest replaying some old data during continual training, we still
observe several catastrophic forgetting (see experiments in Sec-
tion 6.4). To tackle this, we design an incremental algorithm for
efficient tabid assignment, and a parameter-isolation method to
maintain trained model unchanged while training a memory unit
for each new batch of tables.
Solution. Incorporating techniques that address these challenges,
we present Birdie, a novel framework for natural language-driven
table discovery via differentiable search index. The main contribu-
tions of this paper are summarized as follows:

• Differentiable framework. We propose Birdie, an end-to-end dif-
ferentiable framework for NL-driven table discovery. To the best
of our knowledge, it is the first attempt to perform table discovery
using differentiable search index, which completely subverts the
convention of previous representation-index-search methods.

• Prefix-aware tabid construction. We design a simple yet effective
two-view-based clustering approach to model both explicit and
implicit hierarchical information embedded in tabular data. Based
on this, we assign a prefix-aware tabid to each table, which is
well-suited for the autoregressive decoding.
• LLM-powered query generator. We continually refine an open-

source LLM for better understanding of tabular data, and con-
struct a tailored query generator with a table sampling strategy
to create high-quality and diverse NL queries for model training.

• Effective continual indexing.We design an incremental method
for tabid assignment that avoids re-clustering, and introduce
a parameter isolation-based strategy to effectively index new
tables while mitigating catastrophic forgetting.
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• Extensive experiments.Our extensive experiments on three bench-
mark datasets demonstrate the superiority of Birdie, achieving
significant accuracy improvements against SOTA methods.
The remainder of this paper is organized as follows. Section 2

provides the preliminaries related to our work. Section 3 presents
the overview of Birdie. Section 4 and Section 5 introduce indexing
from scratch and index update, respectively. Section 6 reports ex-
perimental results and our findings. Section 7 provides a case study,
Section 8 reviews related works, and Section 9 concludes the paper,
with directions for future work.

2 PRELIMINARIES

In this section, we first provide the problem statement, and then
introduce the backgrounds of large language models and the low-
rank adaptation technique.
Problem Statement. Let 𝑇 be a relational table with a schema
𝑆 = {𝐴1, 𝐴2, · · · , 𝐴𝑛}, where each 𝐴𝑖 represents an attribute (col-
umn). The table may also have a caption (title) 𝐶 , which is a brief
description summarizing its content. 𝑇 consists of𝑚 tuples, with
each tuple 𝑡𝑖 ∈ 𝑇 containing 𝑛 cells, denoted as 𝑒𝑖 𝑗 = 𝑡𝑖 [𝐴 𝑗 ]. A table
repository 𝐷 = {𝑇1,𝑇2, · · · ,𝑇𝑁 } is a collection of such tables.

Definition 1. (NL-Driven Table Discovery). Given a natural lan-
guage query 𝑞 and a table repository 𝐷 , NL-Driven Table Discovery
aims to search for a table 𝑇 ∗ ∈ 𝐷 that contains the answer to the
query. The answer may be a specific cell within 𝑇 ∗ or derived from
the reasoning across multiple cells in 𝑇 ∗.

The objective of NL-driven table discovery is to locate a table
relevant to the given query. We leave the scenario where the answer
spans multiple tables for future work. Another line of research
focuses on ranking a small set of candidate tables based on the
query using cross-encoders [52, 60], which typically serves as a
post-retrieval step and can be time-consuming. While Solo [53]
proposed a re-ranking model after retrieval, this paper focuses on
the retrieval stage, allowing for any existing ranking techniques to
be applied after Birdie returns a list of tables.

Definition 2. (Differentiable Search Index). Given a query space
𝑄 and a table repository 𝐷 , a differentiable search index is defined as
a function I𝜃 : 𝑄 → 𝐷 , which is differentiable w.r.t. the parameters
𝜃 , allowing optimization via gradient-based methods.

In traditional search indexes, the mapping I(𝑞), 𝑞 ∈ 𝑄 , is typi-
cally based on predefined, discrete, and non-differentiable opera-
tions or structures (e.g., inverted index). In contrast, a Differentiable
Search Index parameterizesI𝜃 as a neural model, making the search
index differentiable w.r.t. 𝜃 and enabling end-to-end optimization.
Large Language Models. Due to the outstanding ability to handle
sequential data and capture complex dependencies, Transformer [51]
has become the main backbone for most large language models
(LLMs). It consists of an encoder and a decoder, with both compo-
nents relying on layers of multi-head attention and feed-forward
neural (FFN) networks. Transformer-based LLMs typically adopt
one of three architectures: encoder-only, decoder-only, and encoder-
decoder. Encoder-only models, such as BERT [13], utilize only the
encoder part of the Transformer. These models focus on generating
latent embeddings of input text and have found extensive appli-
cations in data management [18, 62]. Decoder-only models, such

as GPT-4 [43] and Llama [50], excel in diverse generative tasks,
including question answering [63] and NL2SQL [36]. In this pa-
per, we choose Llama, a widely used open-source decoder-only
model, as the base model for query generation. Finally, encoder-
decoder models, also known as sequence-to-sequence models, such
as BART [30] and T5 [45], use an encoder to create a latent represen-
tation of the input, which is then passed to the decoder to generate
a new sequence. Birdie uses this encoder-decoder model to con-
struct the differentiable search index, with the encoder processing
tables and queries while the decoder generates the corresponding
tabids, facilitating a sequence-to-sequence process.
Low-Rank Adaptation. As the parameter size of LLMs grows
rapidly, full-parameter fine-tuning has become impractical due
to the significant resource and time costs involved. To address
this, parameter-efficient fine-tuning (PEFT) techniques have been
proposed. Low-Rank Adaptation (LoRA) [25], one of the most rec-
ognized PEFT techniques, adjusts the weights of additional rank
decomposition matrices and demonstrates comparable effective-
ness across various downstream tasks. Specifically, for a pre-trained
weight matrix W0 ∈ R𝑑1×𝑑2 , LoRA constrains the update ΔW by
representing it as a low-rank decompositionW0 + ΔW = W0 + BA,
where B ∈ R𝑑1×𝑑𝑟 and A ∈ R𝑑𝑟 ×𝑑2 , with 𝑑𝑟 ≪ 𝑚𝑖𝑛(𝑑1, 𝑑2). Let
h = W0x, then the modified forward pass is: h′ = W0x + ΔWx =

W0x + BAx. During training, the pre-trainedW0 remains frozen,
with only the low-rank matrices B and A being learnable. As B
and A are much smaller thanW0, the fine-tuning costs for LLMs
are significantly reduced. The trained LoRA weights can either be
merged with the pre-trained weights or used as a plug-and-play
module during inference, without altering the original model.

3 OVERVIEW OF BIRDIE

The overview of Birdie is illustrated in Figure 3. Birdie supports
both indexing from scratch and updating the index with newly
added tables.

Given a table repository 𝐷 , the two-view-based tabid assign-
ment module generates a prefix-aware tabid for each table 𝑇 ∈ 𝐷
by constructing a clustering tree. The tabid s = (𝑠1, 𝑠2, . . . , 𝑠𝑑 ) is
a numerical sequence, ensuring that semantically similar tables
share similar (or identical) prefixes. The tables in the repository
are also taken by the LLM-based query generator to produce syn-
thetic queries for each table. Both the generated queries and the
serialized tables are input to the encoder-decoder architecture. The
encoder transforms these inputs into latent representations, cap-
turing the essential semantics and information of the sequences.
The decoder then uses these latent representations, along with a
special beginning-of-sequence token, to generate tabids token by
token, until the end-of-sequence token is produced. The model is
trained to align the predicted tabids with the true tabids for each
table/query using a sequence-to-sequence language modeling loss.
After training, we obtain a trained DSI modelM. During the search
(inference) phase, the trained model takes a user’s query as input
and generates tabids token by token. To produce a list of prob-
able tabids, Birdie adopts beam search [56], exploring multiple
decoding paths by maintaining a set of the most promising partial
sequences at each decoding step. Ultimately, the corresponding
tables are returned to the user.
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Figure 3: The framework of Birdie.

When a new batch of tables 𝐷𝑢 (𝑢 > 0) arrives, Birdie performs
an index update. First, the incremental tabid assignment strategy
assigns a tabid for each table𝑇𝑢

𝑖
∈ 𝐷𝑢 , accounting for the semantics

of all previous tables while preserving existing tabids. Next, the
query generator generates queries for the new tables. Based on
the modelM trained from the original repository 𝐷 , a memory
unit 𝐿𝑢 is trained on the new tables 𝐷𝑢 and the generated queries,
using LoRA techniques. During this training, the parameters of
M remain frozen, while only the LoRA weights being trainable.
During search, all existing models (includingM and all the memory
units) generate tabids in parallel. A query mapping strategy is then
employed to select the final tables from the model outputs.

4 INDEXING FROM SCRATCH

In this section, we first present the two-view-based tabid assignment
mechanism, which assigns a semantic and prefix-aware tabid to
each table in the repository. Then, we introduce the LLM-based
query generation method to generate synthetic NL queries for DSI
training. Finally, we outline the training and inference processes.

4.1 Two-view-based Tabid Assignment

Given that a table typically contains many rows and columns, it is
impractical for the DSI model to generate the contents of a table
directly in response to a given input query. Instead, a practical
strategy is to first assign a unique tabid to each table and guide the
model to generate the corresponding tabid. The method of tabid
assignment is crucial for effective model learning.

Tabids can take the form of numerical sequences or textual de-
scriptions (e.g. a brief abstract of a table). While textual tabids
align more closely with the Transformer’s pre-training process,
ensuring their uniqueness can be challenging, especially in large
and dynamic table repositories or data lakes. Therefore, we choose
numerical tabids to guarantee uniqueness. A straightforward ap-
proach is to assign each table a unique atomic identifier, such as
0, 1, . . . , 𝑁 − 1. However, this method results in tabids that lack se-
mantic relationships, which limits the Transformer-based model’s
ability to fully leverage its semantic capture capabilities and compli-
cates the indexing process. Additionally, since the tabid generation

process of the decoder is autoregressive, each tabid is generated
in multiple steps, with each step influenced by previously gener-
ated tokens. Considering these factors, we design a two-view-based
tabid assignment strategy that ensures (i) tabids encapsulate the
semantics of the corresponding tables, and (ii) tables with similar
tabid prefixes exhibit higher semantic similarity, which enhances
the autoregressive decoding process.
Two Views of Table Semantics. We extract two views of each
table 𝑇 . The first view 𝑉1 (𝑇 ) contains high-level semantics about
the primary topic of the table. Since the metadata of a table often
provides essential context or properties related to its subject or
usage, we utilize this metadata as the first view. Specifically, we
extract the table’s caption 𝐶 and schema 𝑆 = {𝐴1, 𝐴2, . . . , 𝐴𝑛},
concatenating them to form a sequence: 𝑉1 (𝑇 ) := 𝐶,𝐴1, 𝐴2, . . . , 𝐴𝑛 .
Note that metadata can sometimes be incomplete in real-world
table repositories. To tackle this, one approach could be to train a
metadata generation model to augment the tables with additional
information. However, in this paper, wewill simply skip anymissing
elements during serializing.

The second view 𝑉2 (𝑇 ) is derived by concatenating the cell val-
ues of each table, providing a more fine-grained perspective. To
enhance the understanding of different columns, we also include the
attribute names in the cell value sequence:𝑉2 (𝑇 ) = 𝐴1 : 𝑒11, . . . 𝐴𝑛 :
𝑒1𝑛 . . . , 𝐴1 : 𝑒𝑚1, . . . , 𝐴𝑛 : 𝑒𝑚𝑛 .

Subsequently, we employ a pre-trained language model [41] to
encode both 𝑉1 (𝑇 ) and 𝑉2 (𝑇 ), yielding the semantic embeddings
h1 and h2 for each table.
Clustering Algorithm. Building on the two-view embeddings, we
design the two-view-based clustering algorithm (TCA). The core
idea is to perform clustering based on the semantic embeddings
from both views. The first view captures high-level semantics, al-
lowing us to group tables with related topics into the same cluster.
We iteratively perform clustering based on {h1} for 𝑙 iterations.
Then, we switch views, utilizing the fine-grained embeddings {h2}
to further differentiate tables that share similar topics but contain
different contents. The pseudocode of TCA is presented in Algo-
rithm 1. Given a collection of tables {𝑇𝑖 }𝑁𝑖=1 with their semantic
embeddings {h1

𝑖
}𝑁
𝑖=1 and {h

2
𝑖
}𝑁
𝑖=1, along with the desired number
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Algorithm 1: Two-view-based Clustering Algorithm (TCA)

Input: the embeddings {h1
𝑖
}𝑁
𝑖=1 and {h2𝑖 }𝑁𝑖=1 of each table {𝑇𝑖 }𝑁𝑖=1,

the number 𝑘 of clusters, the maximum size 𝑐 of leaf
clusters, and the maximum depth 𝑙 of the first view

Output: the root C𝑅 of the clustering tree
1 𝑙𝑒𝑣𝑒𝑙 ← 0, C𝑅 ← {h1𝑖 }𝑁𝑖=1
2 HClus (C𝑅 , 𝑘 , 𝑐 , 𝑙𝑒𝑣𝑒𝑙 )
3 Procedure HClus(C, 𝑘 , 𝑐 , 𝑙𝑒𝑣𝑒𝑙 ):
4 if 𝑙𝑒𝑣𝑒𝑙 = 𝑙 then C ← {h2

𝑖
|h1

𝑖
∈ C} // view switching

5 C1:𝑘 ← 𝑘-means(C, 𝑘 ) , C.addChild(C1:𝑘 )
6 foreach i ∈ {1, . . . , 𝑘 } do
7 if | C𝑖 | > 𝑐 then HClus(C𝑖 , 𝑘 , 𝑐 , 𝑙𝑒𝑣𝑒𝑙 + 1)
8 return C𝑅

of clusters 𝑘 , the maximum depth 𝑙 for the first view, and the max-
imum size 𝑐 for leaf clusters, TCA initializes the current level as
0, sets the root C𝑅 to {h1

𝑖
}𝑁
𝑖=1, and invokes the clustering proce-

dure HClus (lines 1–2). Within HClus, the algorithm performs view
switching to use the embeddings {h2

𝑖
} from the second view if the

current clustering level reaches 𝑙 (line 4). Next, tables are grouped
into 𝑘 clusters C1:𝑘 based on their embeddings from the current
view, which are then inserted into the child nodes C (line 5). For
each child C𝑖 , if it contains more than 𝑐 tables, HClus is recursively
applied within that cluster (lines 6–7). Finally, TCA returns the root
of the clustering tree (line 8).

This approach enables TCA to construct a clustering tree (as
shown in Figure 4) and captures hierarchical relations in two ways:
firstly, through view switching, which explicitly incorporates hier-
archical structures using metadata and instance data; and secondly,
through recursive clustering within each view, which provides an
implicit hierarchical structure that refines semantic representations
from coarse to fine-grained levels.
Tabid Assignment. Based on the two-view clustering tree, we
assign a unique tabid to each table. Specifically, we assign a unique
number ranging from 0 to 𝑘 − 1 to each cluster at every level of
the clustering tree. For each leaf node containing 𝑐 tables or fewer,
we assign each table within that cluster a unique number from 0 to
𝑐 − 1. Consequently, each table receives a tabid s = (𝑠1, . . . 𝑠𝑑 ) that
represents its unique path from the root to the leaf node in which
it resides, where 𝑠𝑖 ∈ [0, 𝑘 − 1] for 𝑖 < 𝑑 and 𝑠𝑑 ∈ [0, 𝑐 − 1].

Example 1. Figure 4 illustrates an example of a clustering tree
where 𝑘 = 𝑐 = 𝑙 = 2. The blue nodes represent clusters obtained using
the embeddings h1

𝑖
, while the green nodes represent cluster derived

from h2
𝑖
. Each branch is assigned a number within the range [0, 𝑘−1],

while each table within a leaf node is assigned a number within the
range [0, 𝑐 − 1]. Accordingly, 𝑇2 is assigned the tabid 01000, while 𝑇5
receives the tabid 01001.

To optimize memory usage, we design a tree compression (TC)
method that uses a compact structure to retain only the essential
information for each cluster (node) in the clustering tree. Specifi-
cally, each node in the clustering tree maintains the cluster radius
𝑟 , cluster cohesion 𝛿 , cluster center c, and the view 𝑣 (1 or 2) of the
embeddings used to generate this cluster. The radius 𝑟 and cohesion
𝛿 of a cluster C are defined as follows:

𝑟 (C) = maxh𝑗 ∈C dist
(︁
c, h𝑗

)︁
, 𝛿 (C) = 1

| C |
∑︂|C|

𝑗=1
dist

(︁
c, h𝑗

)︁
(1)
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Figure 4: An example of a two-view-based clustering tree.

where c is the center of the cluster, and dist(·) is a distance function.
This approach allows us to manage the tabid assignments dynam-
ically (to be detailed in Section 5.1) without the need to store all
high-dimensional embeddings h1 and h2 for large table repositories.

4.2 LLM-based Query Generation

Unlike previous query generation methods that either focus on
flattened text paragraphs [42] or rely on manually-designed SQL
templates [53], we leverage the powerful generative capabilities of
decoder-only LLMs to directly produce NL queries for tables. While
powerful closed-source LLMs like GPT-4 [43] could be used, the
costs of API calls and the privacy concerns [47] often restrict its
usage. Consequently, we aim to train a local query generator based
on the open-source LLMs.
Training TLlama3. We adopt the Llama-3.1-8b [2] as our base
model. Since LLMs are mainly pre-trained on textual data, they
may struggle to comprehend tabular structures [31]. To tackle this,
we first fine-tune the basemodel on seven fundamental table-related
tasks listed in Table 1 that range in difficulty. Specifically, we adopt
LoRA technique to tune it with a mixture of data derived from
these seven tasks. We then merge the trained LoRA module with
the original pre-trained weights of Llama to create TLlama3. This
process allows TLlama3 to develop a fundamental understanding
of tables, enabling it to perform more complex and specific table
tasks through further fine-tuning.
Query Generation. Building on TLlama3, we construct instruc-
tion data to train a query generator tailored to tabular data, as
shown in Figure 5. The instruction requires the model to gener-
ate NL queries that can be answered by specific cells in the given
table, or derived through reasoning with aggregation operators.
It is important to note that some NL queries may lack sufficient
specificity for table search tasks. For example, given the table 𝑇1
titled “On Golden Ponds” (see Figure 1), the LLM might generate
the query “Who directed this film?”. While this is a common query
for a closed-domain QA, it is ambiguous due to the phrase “this
film”, making it less effective for searching tables in repositories.
Therefore, we prompt the LLM to generate more explicit queries
by including necessary table information. The table is transformed
into markdown format, and the output consists of a labeled query.

Using our constructed instruction data, we adopt LoRA to fine-
tune TLlama3, resulting in a plug-and-play LoRAmodule that can be
integrated with the weights of TLlama3 to form our query generator
G. Subsequently, we use the trained query generator G to generate
multiple NL queries𝑄𝑖 for each table𝑇𝑖 ∈ 𝐷 using the same prompt
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Table 1: Table-related tasks used to continue to train Llama3

Task Name Task Description Datasets Difficulty Size

Table Size Recognition Identify the number of rows and columns given a table TSR [64] Easy 1.5k
Table Cell Extraction Extract the specific cell in a table given the row and column IDs TCE [64] Easy 1.5k

Table Row/Column Extraction Extract the specific row (column) in a table given the row (column) ID RCE [64] Easy 1.5k
Table Cell Retrieval Answer the row and column IDs of a given cell in a table TCR [64] Medium 1.5k

Table to Text Generate a textual description of a given table WikiBIO [29] Medium 5k
Table Fact Verification Verify whether a textual hypothesis holds given tabular data as evidence TABFACT [8] Hard 5k

Table Question Answering Answer the question based on a given a table WTQ [44] Hard 5k

Instruction: 
Generate the probable question a user would ask based on this table, 
ensuring the answer can be found in the table cells or derived using 
operators such as (Max, Min, Avg, Count). The question should 
contain the explicit information of this table (such as the information of 
the caption) so that given the question and a repository of tables, this 
table can be successfully found.
Input:
Caption: <Table Caption>
Table: <Markdown Format of Table>
Output:
Question: <NL Question>

Figure 5: Instruction data for query generator training.

shown in Figure 5. We restrict the maximum input length to 2048
tokens. To reduce query generation time, G is allowed to generate
multiple queries per invocation; however, this can decrease the
diversity of the generated queries. Specifically, we noticed that
certain cells weremore frequently included in the generated queries,
which may be attributed to word frequency bias [22] during the
pre-training phase of LLMs.

To mitigate this issue, we design a table sampling algorithm
(TSA) to enrich the generated queries and maximize the coverage of
table contents. The key idea behind TSA is to divide the table into
several sub-tables and invoke the generator G multiple times for
each sub-table. This approach allows G to focus on each sub-table
individually. The pseudo-code for TSA is presented in Algorithm 2.
Given a table 𝑇𝑖 , the number 𝐵 of required synthetic queries, and
the number 𝑏 of queries generated per invocation of G, TSA first
computes the number 𝑟𝑠 of rows for each sampling process, and
initializes the row set 𝑅𝑖 and query set 𝑄𝑖 (line 1). TSA then itera-
tively performs table sampling and query generation until 𝐵 queries
are collected. Specifically, TSA re-initializes 𝑅𝑖 to include all rows
from 𝑇𝑖 if 𝑅𝑖 contains fewer than 𝑟𝑠 rows (line 3). It next randomly
samples 𝑟𝑠 rows from 𝑅𝑖 and removes the sampled 𝑆 (𝑅𝑖 ) from 𝑅𝑖
(lines 4–5) to prevent repeated sampling, which increases the cov-
erage of table information. TSA then uses the sampled 𝑆 (𝑅𝑖 ) to
invoke the query generator G, generating candidate queries 𝑄𝑐𝑎𝑛𝑑
(line 6). Given the potential for hallucinations in LLMs, candidate
queries may exhibit quality issues. To address this, TSA implements
quality checks on 𝑄𝑐𝑎𝑛𝑑 via Filter function that establishes two
rules: i) ensure the output format is consistent with “Question:
<NL Question>” (as shown in Figure 5), as we found that many
low-quality outputs exhibit formatting errors; and ii) check for
duplication with existing queries 𝑄𝑖 , and perform deduplication if
necessary. TSA adds the filtered 𝑄𝑐𝑎𝑛𝑑 to the query set 𝑄𝑖 (line 7).
Finally, TSA returns the query set 𝑄𝑖 (line 8).

Algorithm 2: Table Sampling Algorithm (TSA)
Input: a table𝑇𝑖 , the number 𝐵 of required queries, and the

number 𝑏 of generated queries per invocation
Output: the generated query set𝑄𝑖

1 𝑛𝑣 ← |𝐵 |/|𝑏 | , 𝑟𝑠 ← |𝑇𝑖 |/𝑛𝑣 , 𝑅𝑖 ← 𝑇𝑖 ,𝑄𝑖 ← ∅
2 while |𝑄𝑖 | < B do

3 if |𝑅𝑖 | < 𝑟𝑠 then 𝑅𝑖 ← 𝑇𝑖

4 𝑆 (𝑅𝑖 ) ← SampleRows(𝑅𝑖 , 𝑟𝑠 )
5 𝑅𝑖 ← remove 𝑆 (𝑅𝑖 ) from 𝑅𝑖

6 𝑄𝑐𝑎𝑛𝑑 ← Gen(G, 𝑆 (𝑅𝑖 ), 𝑏 )
7 𝑄𝑖 ← 𝑄𝑖 ∪ Filter(𝑄𝑐𝑎𝑛𝑑 )
8 return𝑄𝑖

4.3 Model Training and Inference

After generating the query set 𝑄𝑖 and tabid s𝑖 for each table 𝑇𝑖 , we
outline the process of constructing differentiable search indexes
through model training. We leverage an encoder-decoder modelM
as the backbone. The model is fine-tuned to associate each table 𝑇𝑖
with its corresponding tabid s𝑖 , and generate the tabid s𝑖 based on
an input synthetic query derived from table𝑇𝑖 . The model is trained
using a standard sequence-to-sequence objective that employs a
teacher forcing policy [55] and minimizes the cross-entropy loss:

L =
∑︂

𝑇𝑖 ∈𝐷
(︁
log𝑝 (s𝑖 | M𝜃 (𝑇𝑖 ) ) +

∑︂
𝑞𝑖 𝑗 ∈𝑄𝑖

log𝑝
(︁
s𝑖 | M𝜃 (𝑞𝑖 𝑗 )

)︁ )︁
(2)

Here, 𝑄𝑖 represents the set of queries relevant to table𝑇𝑖 generated
by our query generator G, and 𝜃 denotes the trainable parameters
of modelM. For input representation, the table is serialized into a
sequence by concatenating its caption, attributes, and cells.

In the search (inference) phase, given an input user query 𝑞, the
fine-tuned model outputs the tabid token by token:

𝑝 (s | 𝑞, 𝜃 ) =
∏︂𝑑

𝑗=1
𝑝
(︁
𝑠 𝑗 | M𝜃 (𝑞, 𝑠0, 𝑠1, . . . , 𝑠 𝑗−1 )

)︁
(3)

Here, s is the output tabid corresponding to the user query 𝑞, 𝑠 𝑗 rep-
resents the 𝑗-th token of tabid s, 𝑠0 is a special start token indicating
the beginning of the decoding process, and 𝜃 denotes the fine-tuned
parameters of modelM. We employ beam search [56] during the
decoding process. This technique explores multiple decoding paths
by maintaining a set of the most promising partial sequences at
each decoding step, ultimately generating a list of probable tabids.
Note that, beam search allows us to attach a probability to each
generated tabid, serving as an effective ranking mechanism without
incurring the additional computational cost of re-ranking. With the
valid tabid set obtained through two-view-based tabid assignment,
we can effectively filter out invalid output tabids during inference.
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5 INDEX UPDATE

After training on the table repository 𝐷 , we obtain a model M
that encodes all the information of tables in 𝐷 . Since table repos-
itories are typically dynamic, it is crucial to continuously index
new tables. We consider a scenario that 𝑍 batches of new tables
{𝐷1, 𝐷2, . . . , 𝐷𝑍 } arrive sequentially, with each 𝐷𝑖 consisting of
newly encountered tables {𝑇 𝑖1 ,𝑇

𝑖
2 , . . . ,𝑇

𝑖
𝑁𝑖
}. The original 𝐷 is as-

sumed to be significantly larger than the incoming batches, and the
new batches generally align with the distribution of 𝐷 . We employ
a lazy update strategy [38], where updates are triggered only when
accumulated data exceeds a predefined threshold. For clarity, we
refer to the original repository as 𝐷0 and the model asM0.

In a dynamic table repository, tables are either inserted or re-
moved.When a table is removed from the repository, its correspond-
ing tabid is also removed from the valid tabid set. Consequently,
any invalid tabids produced by the decoder can be easily filtered out
during search. Thus, table deletion is a straightforward operation
that does not impact model accuracy, unlike table insertion. There-
fore, the remainder of this paper focuses on updating the index for
table insertion. In the following, we present the incremental tabid
assignment algorithm, and illustrate how to index new tables by
parameter isolation and search for tables under this scenario.

5.1 Incremental Tabid Assignment

When a new batch 𝐷𝑢 (𝑢 > 0) of tables arrives, the first step is to as-
sign tabids to each new table. ReIndex, a naive method, re-clusters
all tables in

⋃︁𝑢
𝑖=0 𝐷

𝑖 to account for table semantics and ensure
unique tabids using Algorithm 1, and re-assigns tabids. However,
ReIndex has two main drawbacks: (i) re-clustering is computation-
ally expensive and time-consuming, and (ii) previously assigned
tabids become invalid as clusters change, necessitating a complete
retraining of themodel from scratch to index all the tables in∪𝑢

𝑖=0𝐷𝑖 .
To overcome these challenges, we propose an incremental algorithm
that assigns tabids to new tables without affecting existing ones.

We assume that the existing clustering tree is T, and we illustrate
the insertion of one new table with embedding h𝑛𝑒𝑤 . First, we find
the child node C∗ of the root of T that is closest to h𝑛𝑒𝑤 :

C∗ = argminC dist(C.c, h𝑛𝑒𝑤 ) (4)

where C represents the child node of the root of T, dist(·) is a dis-
tance metric implemented by Euclidean distance, and C.c denotes
the center c of cluster C. We then compute the distance𝑑 from h𝑛𝑒𝑤
to the center C∗ .c. For simplicity, we denote the radius, cohesion,
and center of cluster C as 𝑟 , 𝛿 , and c, respectively. We elaborate on
the following three cases when inserting h𝑛𝑒𝑤 into T.
Case I: Inserting without updates. If ℎ𝑛𝑒𝑤 is sufficiently close to
cluster C∗, its inclusion has a negligible impact on the properties
of C∗. To enhance the efficiency of incremental tabid assignment,
updates to the properties can be omitted when 𝑑 ≤ 𝛿 , i.e., the
distance fromℎ𝑛𝑒𝑤 to the cluster center does not exceed the average
distance from existing embeddings to the center. In such cases, we
directly insert h𝑛𝑒𝑤 to cluster C∗ without updates.
Case II: Inserting with updates. When 𝛿 < 𝑑 ≤ 𝑟 , it suggests that
h𝑛𝑒𝑤 belongs to C∗ but is farther from the cluster center than
average. In this case, we insert h𝑛𝑒𝑤 into C∗ and update the center
c, cohesion 𝛿 , and radius 𝑟 of C∗. We denote the updated values as

c′, 𝛿 ′ and 𝑟 ′, with c′ and 𝛿 ′ calculated as follows:

c′ =
| C∗ | · c + h𝑛𝑒𝑤
| C∗ | + 1 , 𝛿 ′ =

| C∗ | · 𝛿 + 𝑑
| C∗ | + 1 (5)

where |C∗ | denotes the size of C∗ after the insertion of h𝑛𝑒𝑤 . How-
ever, computing the radius 𝑟 ′ by calculating the distance between
the new center and all table embeddings is not feasible, as the clus-
tering tree does not retain table embeddings to save storage, as
stated in Section 4.1. Therefore, we present the following lemma to
estimate the radius 𝑟 ′:

Lemma 1. The upper and lower bounds of the radius 𝑟 ′ are given
by 𝑟 + dist(c, c′) and dist(h𝑛𝑒𝑤 , c′), respectively.

The proof can be found in our technical report [19]. Accordingly,
we can estimate 𝑟 ′ by sampling uniformly between its lower and
upper bounds:

𝑟 ′ = Uniform(dist(h𝑛𝑒𝑤 , c′ ), 𝑟 + dist(c, c′ ) ) (6)

Case III: Constructing a new cluster. The final case occurs when h𝑛𝑒𝑤
is too distant from the center of the nearest cluster, indicating that
h𝑛𝑒𝑤 should be assigned to a new cluster. Specifically, if 𝑑 > 𝑟 , we
create a new cluster with h𝑛𝑒𝑤 as its center, initializing its radius
and cohesion to the average values of all child nodes of the root,
ensuring consistency with the scale and density of existing clusters
at the same hierarchical level.

After inserting the new embedding h𝑛𝑒𝑤 into an existing node
or a newly created node, the insertion process is recursively applied
until a leaf node is reached, at which point a tabid is assigned to
the new table. This process is repeated for each new table. The
detailed incremental tabid assignment procedure (ITA) is outlined
in Algorithm 3. If the current node is a leaf, ITA generates and
returns the tabid (lines 1–3). Otherwise, ITA continues with embed-
ding insertion, determining which embedding view to use (lines
4–5), identifying the closest cluster C∗ using Eq. (4) (line 6), and
calculating the distance 𝑑 from the new embedding to the center
of cluster C∗ (line 7). Based on the value of 𝑑 , one of the following
actions is taken: i) if 𝑑 does not exceed the cohesion of C∗, the
embedding is inserted directly into C∗ and the insertion process
continues recursively (line 9); ii) if 𝑑 falls between the cohesion and
the radius of C∗, the embedding is inserted into C∗ with cluster
information updated, followed by recursive insertion (lines 11–13);
and iii) otherwise (𝑑 exceeds 𝑟 ), a new cluster is created and the
embedding is inserted (lines 15–16).

5.2 Continual Indexing via Parameter Isolation

When tabids of new tables in 𝐷𝑢 are obtained, a straightforward
method to update indexes is to use new tables or combine themwith
key tables from previous batches to continually train the model [7].
However, this strategy can lead to catastrophic forgetting, where
the model loses information about older tables that are not included
in the continual training process. To tackle this issue, we propose a
method that isolates the parameters of the modelM0 trained on
𝐷0 from those learned continually.
Construction of Memory Units. For each batch of tables 𝐷𝑢 (𝑢 >

0), we train a LoRA module 𝐿𝑢 to index the new tables based on the
existing modelM0. The intuition behind this approach is thatM0

has already been trained on 𝐷0, which we assume to be a relatively
large repository compared to the incoming batches. As a result,M0
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Algorithm 3: Incremental Tabid Assignment (ITA)
Input: the current node C, the embeddings h1𝑛𝑒𝑤 and h2𝑛𝑒𝑤 of a

new arrival table𝑇𝑛𝑒𝑤
Output: tadid of𝑇𝑛𝑒𝑤

1 if C is a leaf node then
2 tabid← path from the root to C,
3 return tabid
4 if C.𝑐ℎ𝑖𝑙𝑑.𝑣 = 1 then h𝑛𝑒𝑤 ← h1𝑛𝑒𝑤
5 else h𝑛𝑒𝑤 ← h2𝑛𝑒𝑤
6 find the child node C∗ of C that is closest to h𝑛𝑒𝑤 // Eq. (4)
7 𝑑 ← dist(C∗ .c, h𝑛𝑒𝑤 )
8 if 𝑑 ≤ C∗ .𝛿 then

9 insert h𝑛𝑒𝑤 to C∗, ITA(C∗, h1𝑛𝑒𝑤 , h2𝑛𝑒𝑤 )
10 else if C∗ .𝛿 < 𝑑 ≤ C∗ .𝑟 then
11 insert h𝑛𝑒𝑤 to C∗
12 update the information of C∗ // Eq.(5) and Eq.(6)
13 ITA(C∗, h1𝑛𝑒𝑤 , h2𝑛𝑒𝑤 )
14 else

15 create a new child node C𝑛𝑒𝑤 under C centered at h𝑛𝑒𝑤
16 insert h𝑛𝑒𝑤 to C𝑛𝑒𝑤

has developed the capability to understand, index, and search for
tables effectively. Therefore, we only need to train a LoRA module
𝐿𝑢 as a memory unit based onM0, which is more efficient than
performing full fine-tuning. Unlike previous studies [34, 59] that
typically add LoRA matrices to the weights of self-attention layers
in each Transformer block to acquire new capabilities, we argue that
this is not optimal for our context. Our goal is to encode information
of new tables into the LoRA modules rather than to acquire new
abilities. Inspired by the earlier research [17] suggesting that the
FFN in Transformer operates as a memory, we add LoRA modules
to FFN in each Transformer block. This allows each batch of new
tables 𝐷𝑢 (𝑢 > 0) to have its own dedicated LoRA memory unit 𝐿𝑢 .

We store all these units along with the initial modelM0 in a
memory hub. These model parameters remain isolated, preventing
them from affecting one another. After training the LoRA module
𝐿𝑢 on the newly arrived tables 𝐷𝑢 (𝑢 > 0), the model hub contains
the following modelsM𝑖 , where eachM𝑖 indexes tables from a
sub-repository 𝐷𝑖 (0 ≤ 𝑖 ≤ 𝑢) and

⨁︁
denotes the plug-and-play of

𝐿𝑖 during inference.

M𝑖 =

{︄
M0 if 𝑖 = 0
M0⨁︁𝐿𝑖 if 1 ≤ 𝑖 ≤ 𝑢

Search Stage.During the search phase, each modelM𝑖 takes a user
query𝑞 as input and performs inference using beam search either se-
rially or in parallel, depending on available memory resources. After
that, each model obtains the candidate tables T 𝑖 = {𝑇 𝑖1 , . . . ,𝑇

𝑖
𝐾
} ⊂

𝐷𝑖 , with 𝐾 a user-defined parameter that controls the number of
tables returned. However, not all results are equally reliable, as
relevant tables for the query 𝑞 may reside in a few sub-repositories.
To effectively select candidate tables from {T 0, . . . ,T𝑢 }, we imple-
ment a simple yet effective query mapping strategy. For each T 𝑖 ,
we first compile the synthetic queries generated during training
into a query set Q𝑖 = 𝑄𝑖1 ∪ · · · ∪ 𝑄

𝑖
𝐾
, where 𝑄𝑖

𝑗
represents the

synthetic queries for table 𝑇 𝑖
𝑗
∈ 𝐷𝑖 . These query sets collectively

form a small query pool Q0 ∪ . . .Q𝑢 . Next, we encode all queries
in the query pool, along with the user query 𝑞, using a pre-trained
semantic-aware encoder [1]. We then identify the top-𝑛𝑞 queries
of 𝑞 in the query pool that are most similar to 𝑞. Finally, we select
the query set Q𝑧 that includes the largest number of queries found
among the top-𝑛𝑞 similar queries, and random selection is used as
the tiebreaker. The corresponding candidate tables T 𝑧 ⊂ 𝐷𝑧 are
then returned as the results for table discovery. An extremely small
𝑛𝑞 may lead to incorrect selection due to the randomness of the
synthetic queries, while a large 𝑛𝑞 will consider the contributions
of many less relevant queries. Therefore, we set 𝑛𝑞 to ⌊ 𝐵4 ⌋ in our
experiments, where 𝐵 is the number of synthetic queries generated
for each table 𝑇 𝑖

𝑗
, as specified in Algorithm 2.

Discussion.Current mainstream libraries (e.g., PEFT [37]) typically
merge each LoRA module individually into the base model before
inference, leading to multiple full-model copies being loaded into
GPU memory during parallel inference. One potential optimization
is to load a single base model alongside all LoRA modules. During
inference, for a given input x, the output of the base modelM0 (x)
and the output of each LoRA module 𝐿𝑖 (x) = B𝑖A𝑖x are computed
in parallel. The output of each LoRA module is subsequently added
toM0 (x) to getM𝑖 (x). A recent study [48] explores this optimiza-
tion for parallel inference with multiple LoRAs, utilizing tensor
parallelism strategy and highly optimized custom CUDA kernels
to efficiently support inference of thousands of LoRA modules on
a single GPU. However, it is currently limited to decoder-only ar-
chitectures and does not support our encoder-decoder DSI model.
Extending it to encoder-decoder architectures is outside the scope
of this paper but remains an avenue for future work.

6 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate
the efficacy of our proposed Birdie.

6.1 Experimental Setup

Datasets. The experiments were conducted on three real-world
datasets, with statistics summarized in Table 2. (i) NQ-Tables [23]
is a widely used benchmark for table retrieval. Each table in NQ-
Tables includes a brief caption, though many tables with the same
caption differ in schema and content. The dataset contains some
inconsistencies, making it relatively noisy. Following the previous
work [53], we use only the 952 test queries that have a single
ground truth table. (ii) FetaQA [39] contains clean tables and test
NL queries designed for free-form table question answering. Each
test query is paired with a unique ground truth table containing
the answer. (iii) OpenWikiTable [28] is built upon two closed-
domain table QA datasets WikiSQL and WikiTableQuestions. Table
descriptions (i.e. page title, section title, caption) are manually re-
annotated and then added to the original queries, ensuring this
dataset can be applicable to table discovery task.
Baselines. To demonstrate the efficacy of our proposed Birdie, we
compare it with the following baseline methods. 1) BM25 is a widely
used sparse retrieval method. 2)DPR (Dense Passage Retriever [26])
is the SOTA dense retrieval method for open-domain QA of pas-
sages. We serialize each table to text and use bert-base-uncased [13]
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Table 2: Statistics of the datasets used in experiments.

Dataset # Tables Quality # Train # Test
NQ-Tables 169,898 dirty 9,534 952
FetaQA 10,330 clean 7,326 2,003
OpenWikiTable 24,680 clean 53,819 6,602

for both query and text encoders, training them with in-batch neg-
atives on the training splits. Mean pooling is adopted to obtain
both the query and table embeddings. 3) DPR-T is an extension of
DPR to incorporate table structure information. Following [28], we
add special tokens like [Caption], [Header], [Rows] during table
serialization, using the embedding of the first [CLS] token as the
table embedding. 4) OpenDTR [23] is a learning-based table discov-
ery method using TAPAS [24] for both query and text encoders. 5)
Solo-Ret is the first-stage retrieval module of Solo [53], which is a
SOTA learning-based NL-driven table discovery system comprising
two stages: retrieval and ranking. To ensure a fair comparison, we
focus solely on the retrieval module Solo-Ret. 6) Solo [53] reranks
results from Solo-Ret. We follow its original implementation to
retrieve the top-250 triplets, then apply second-stage ranking.
Evaluation metrics. To evaluate the effectiveness, we follow the
previous study [53] to adopt the precision-at-𝐾 (𝑃@𝐾 ) metric, ag-
gregated over the test queries. 𝑃@𝐾 measures the proportion of
test queries for which the ground truth table appears among the
top-𝐾 results returned by each method. Since each query in our
benchmark dataset has a single ground truth table, precision alone
suffices for evaluating the effectiveness [53]. In addition, we mea-
sure runtime to assess efficiency.
Implementation details. Birdie is implemented in PyTorch. For
tabid assignment, we use the encoder of pre-trained Sentence-
T5 [41] to obtain the embeddings, and fit as much of the second
view as possible within the default 512-token limits. The number
𝑘 of clusters and the maximum size 𝑐 of leaf clusters are set to
32 for NQ-Tables and 20 for FetaQA and OpenWikiTable, while
the depth 𝑙 of the first view is set to 2 for all three datasets. For
training the query generator, we fine-tune TLlama3 using LoRA
on the training split of each dataset, adding LoRA to the attention
layers with a rank 𝑑𝑟 of 8. We generate 𝐵 = 20 queries per table
by default. We use mT5-base [57] as the backbone for Birdie, and
set the maximum length of the input data to 64 tokens. The batch
size is set to 64, and the learning rate is set to 5e-4. For training
the memory units, we add LoRA to FFNs of both the encoder and
decoder with 𝑑𝑟 = 8. During inference (search), we adopt beam
search with a beam size of 20. All experiments were conducted
on a server with an Intel(R) Xeon(R) Silver 4316 CPU (2.30GHz), 6
NVIDIA 4090 GPU (24G each), and 256GB of RAM. All programs
were implemented in Python.

6.2 Evaluation of Indexing from Scratch

Table 3 summarizes the 𝑃@1, 𝑃@5, and the search time (Time) for
Birdie and the baseline methods, averaged across all test queries.
Effectiveness. Several key observations can be made as follows. (i)
BM25 exhibits poor accuracy on NQ-Tables but performs notably
better on FetaQA and OpenWikTable. This disparity arises because
the queries tested in NQ-Tables are brief, providing insufficient
context for effective sparse retrieval. In contrast, queries in the
other two datasets, especially OpenWikiTable, are more detailed,

Table 3: Performance of Birdie compared to other baselines.

Methods NQ-Tables FetaQA OpenWikiTable
𝑃@1 𝑃@5 𝑇 (s) 𝑃@1 𝑃@5 𝑇 (s) 𝑃@1 𝑃@5 𝑇 (s)

Sparse BM25 17.31 31.07 0.053 45.38 70.59 0.034 49.88 75.39 0.039

Dense

DPR 23.15 51.30 0.296 49.93 73.69 0.024 64.31 87.59 0.046
DPR-T 13.24 36.50 0.297 40.89 68.20 0.022 57.16 84.22 0.045

OpenDTR 37.37 64.28 0.296 54.22 76.93 0.020 90.90 98.90 0.102
Solo-Ret 36.18 53.70 3.532 79.28 88.72 1.151 90.37 94.38 1.724

Rerank Solo 41.92 70.49 4.398 81.43 91.51 1.857 94.71 96.59 2.541
Ours Birdie 46.64 73.21 0.097 86.27 92.56 0.145 97.20 99.06 0.105

Table 4: Memory/storage usage (GB) on NQ-Tables.

Phases DPR OpenDTR Solo-Ret Solo Birdie
Training (GPU Memory) 5.83 5.86 – 7.61 10.83
Indexing (Disk Storage) 0.49 0.49 16.10 16.10 2.30
Inference (GPU Memory) 0.97 2.18 1.46 7.27 2.33

which benefits the performance of sparse methods. (ii) OpenDTR
outperforms DPR and DPR-T. Interestingly, DPR-T, which incorpo-
rates special tokens to denote different table structures, performs
worse than DPR. (iii) The multi-vector dense method (Solo-Ret)
does not consistently outperform single-vector dense methods. For
instance, Solo-Ret surpasses OpenDTR on FetaQA but underper-
forms it on NQ-Tables. This behavior can be explained by Solo-Ret’s
fine-grained representation of cell-attributes-cell triplets, which
tends to overemphasize local information of some specific triplets,
but sometimes overlooks the important global semantics of the
table. (iv) Birdie outperforms all existing dense methods. For exam-
ple, Birdie achieves an average improvement of 16.8% in 𝑃@1 over
the best-performing dense method on NQ-Tables and FetaQA. This
demonstrates the effectiveness of Birdie’s differentiable search in-
dex, which addresses the limitations of the existing dense methods
using traditional representation-index-search pipeline. (v) Birdie
even outperforms the SOTA retrieval-rerank method Solo. This
underscores Birdie’s superiority as an end-to-end solution, where
beam search serves as an effective ranking mechanism. (vi) All
methods perform better on OpenWikiTable than the other two
datasets. This can be attributed to: 1) the queries of OpenWikiTable
contain detailed title-relevant information of ground truth tables,
making it easier to locate the relevant table; and 2) a remarkable
99.8% of tables in OpenWikiTable have unique titles, simplifying the
task of identifying the correct table using title information alone.
Efficiency. In terms of online search efficiency, BM25 demonstrates
short time across all the datasets, as shown in Table 3. However,
for dense methods, search time increases with the size of the table
repository. The difference in search time is less pronounced for
Solo-Ret, as its efficiency depends more on the number of triplets
extracted from tables rather than the number of tables themselves.
Solo requires the most time due to its reranking process. Birdie
shows an average of 20× and 27× shorter search time on the three
datasets compared with Solo-Ret and Solo, respectively. Note that,
Birdie maintains stable efficiency across varying sizes of table
repositories, presenting a significant advantage.
Memory/Storage Usage. Table 4 presents the memory/storage
usage during the key phases. For fairness, we set the batch size to 1
for all methods during training and inference. Birdie requires 10.83
GB of memory for training, more than baseline methods due to its
larger encoder-decoder model. Solo-Ret, using a pre-trained model
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Figure 6: Scalability of tabid assignment and model training.

for retrieval, requires no extra training. In contrast, Solo requires
training the re-ranker. For indexing, dense methods require storing
the table/triplet embeddings on disk, while Birdie requires only 2.3
GB to store the DSI model. For inference, Birdie uses just 2.33 GB
of memory, making it highly cost-efficient for deployment.
Scalability.We evaluate the scalability of clustering-based tabid
assignment and DSI model training. For clustering, we implement
mini-batch𝑘-meanswith a batch size of 1k to construct the semantic
tree for large repositories. By expanding the NQ-Tables dataset
through table duplication up to 1 million, we analyze memory
usage with or without the mini-batch optimization, as shown in
Figure 6(a). The results indicate that memory usage scales linearly
with the repository size, andmini-batch𝑘-means effectively reduces
memory requirements. For model training, memory requirements
are directly influenced by batch size and can be reduced using
gradient accumulation (GA) [33]. Figure 6(b) illustrates the GPU
memory usage for varying batch sizes, including a scenario with a
per-device effective batch size of 16 and GA applied.

6.3 Ablation Study

We conduct an ablation study with results presented in Table 5.
Table ID Assignment. First, we replace our semantic tabids with
simple atom IDs (0, 1, . . . , 𝑁 − 1) for each table. This change results
in significant accuracy drop on NQ-Tables. This is attributed to the
atom IDs’ lack of semantic context, which complicates the training
(indexing) process. The smaller performance drops on FetaQA and
OpenWikiTable can be attributed to (i) their smaller repository
sizes compared to NQ-Tables (170k), which reduce the indexing
burden on the DSI model; and (ii) the test queries being more spe-
cific and semantically rich, making it easier to generate correct IDs
and narrowing the performance gap between atom and semantic
IDs. Next, we remove the instance view (view2) used in tabid gener-
ation, resulting in a decrease in accuracy across three datasets. This
underscores the importance of instance data in capturing essential
table information. Finally, we remove the metadata view (view1),
leaving only the instance data for tabid generation. This change
also leads to a decline in accuracy, confirming the critical role of
metadata in understanding tabular data.
Query Generation. First, we replace our LLM-based query gener-
ator with the method proposed by Solo [53], which generates SQL
queries based on pre-defined SQL templates and subsequently con-
verts them to NL queries using the pre-trained SQL2Text [65] model.
This method results in significant accuracy drops on NQ-Tables
and FetaQA. The decline is likely due to error accumulation across
the two phases of query generation and the lack of fine-tuning
of the SQL2Text model for the specific domain of our datasets.

Table 5: P@1 and P@5 of Birdie and its variants.

Stages Strategies NQ-Tables FetaQA OpenWikiTable
𝑃@1 𝑃@5 𝑃@1 𝑃@5 𝑃@1 𝑃@5

– Birdie 46.64 73.21 86.27 92.56 97.20 99.06

Tabid
Assignment

Atom ID 17.75 42.54 83.58 90.81 94.29 98.53
w/o view2 44.12 70.48 86.07 92.41 94.33 97.01
w/o view1 45.16 70.59 84.62 91.91 96.91 98.99

Query
Generation

Solo-based 16.60 31.83 24.06 36.10 93.80 97.82
Textual-based 30.15 62.19 72.78 87.52 95.12 98.30

w/o TS 33.19 63.34 58.76 74.34 95.75 98.23

Then, we apply the textual-based method docT5query [42] to train
a query generator using training splits, treating tables as flattened
text. This approach results in an average decrease of 26% in 𝑃@1
and 10% in 𝑃@5 on NQ-Tables and FetaQA, further confirming the
superiority of our LLM-based query generator specifically tailored
to tabular data. Finally, removing the table sampling (TS) module
from the LLM-based query generation process reduces accuracy
across datasets, underscoring the importance of TS in generating
high-quality synthetic queries. Note that the performance drops on
OpenWikiTable with these ablations are small due to the nature of
its test queries. As long as the generated synthetic queries include
title information, the accuracy remains high.

6.4 Evaluation of Index Update

Setting. To simulate a dynamic scenario, we randomly sample 70%
of the tables from the original dataset to create the initial repository
𝐷0. We then randomly sample 10% of the remaining tables to form
a new batch, repeating this process three times to generate batches
𝐷1, 𝐷2, and 𝐷3. For each dataset 𝐷𝑖 (𝑖 ∈ [0, 3]), we construct the
query set𝑇𝑒𝑠𝑡𝑖 by filtering queries from the original testing queries
whose ground truth tables are included in 𝐷𝑖 .
Competitors.We adapt two existing continual learning methods
for document retrieval via DSI: CLEVER [7] and DSI++ [38], for
table discovery. CLEVER samples old tables with similar tabids, and
combines them with the new batch 𝐷𝑢 to continually train the DSI
model. In contrast, DSI++ randomly samples an equal number of
old tables as CLEVER. Additionally, we compare a naive yet time-
consuming solution, Full, which uses all tables in ∪𝑢

𝑖=0𝐷
𝑖 during

continual training. All three methods adopt our incremental tabid
assignment strategy for new tables, and continually train the model
from the last checkpoint. Lastly, we include ReIndex, which re-
clusters all tables in ∪𝑢

𝑖=0𝐷
𝑖 to reassign tabids, and re-trains the

model from scratch, serving as a theoretical upper bound.
Metrics. Following previous studies [7, 38], we employ three met-
rics: (i) average performance (𝐴𝑃@𝐾 ) to measure the average per-
formance on all existing tables, (ii) forgetting (𝐹𝑇@𝐾) to mea-
sure the performance decline on old tables after learning from
a new batch 𝐷𝑢 ; and (iii) learning performance (𝐿𝑃@𝐾) to mea-
sure the ability to learn after indexing a new batch of tables 𝐷𝑢 .
Formally, we denote 𝑃@𝐾 on 𝐷𝑤 (tested by 𝑇𝑒𝑠𝑡𝑤 ) after indexing
the new batch 𝐷𝑢 as 𝑃𝑢,𝑤@𝐾 , and 𝑃@𝐾 on ∪𝑢

𝑤=0𝐷
𝑤 (tested by

∪𝑢
𝑤=0𝑇𝑒𝑠𝑡

𝑤 ) after indexing 𝐷𝑢 as 𝐴𝑃@𝐾 . The other two metrics
are defined as follows: 𝐿𝑃@𝐾 = 1

𝑢

∑︁𝑢
𝑤=1 𝑃𝑤,𝑤@𝐾 , and 𝐹𝑇@𝐾 =

1
𝑢

∑︁𝑢−1
𝑤=0max𝑤′∈{0,· · · ,𝑢−1}

(︁
𝑃𝑤′,𝑤@𝐾 − 𝑃𝑢,𝑤@𝐾

)︁
. Note that, since

ReIndex re-trains the model from scratch instead of continual learn-
ing, we only report its 𝐴𝑃 values.
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Figure 7: Performance of index update under dynamic scenario.
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Figure 8: Runtime and memory usage of online search.

Effectiveness. The results are illustrated in Figure 7. In terms of
𝐴𝑃 (the higher the better), Birdie outperforms both CLEVER and
DSI++, approaching the performance of Full and ReIndex, which
use all previous tables. Interestingly, DSI++, which employs ran-
dom sampling of old tables during continual learning, surpasses
CLEVER, which utilizes a similarity-based sampling approach. Re-
garding 𝐹𝑇 (the lower the better), Birdie reduces forgetting by over
90% compared to CLEVER and DSI++. Additionally, as new batches
are introduced, forgetting intensifies for CLEVER and DSI++, since
each model update can lead to the forgetting of some old tables,
accumulating with ongoing parameter updates. In contrast, Birdie
implements parameter isolation, which keeps memory units inde-
pendent, resulting in reduced forgetting. For 𝐿𝑃 (the higher the
better), Birdie demonstrates comparable 𝐿𝑃@1 and slightly lower
𝐿𝑃@5 compared to other continual-learning-based methods. The
higher 𝐿𝑃 of CLEVER and DSI++ indicates that replaying only a
portion of old tables during continual learning tends to favor new
table retention. This prioritization of new tables leads to increased
forgetting, ultimately resulting in poorer average performance. In
contrast, Birdie strikes a promising balance between 𝐹𝑇 and 𝐿𝑃 ,
yielding higher 𝐴𝑃 .
Memory Usage. Table 6 reports memory usage on NQ-Tables. ITA
w/o TC refers to ITA without TC optimization presented in Sec-
tion 4.1. Results show that our TC optimization effectively reduces
memory usage by 5×. For training, we evaluate memory usage
with the default batch size of 64. The training process on 𝐷1–𝐷3 is

Table 6: Memory usage (GB) on NQ-Tables for index update.

Phases 𝐷0 𝐷1 𝐷2 𝐷3

ITA (CPU Memory) 1.31 0.46 0.48 0.51
ITA w/o TC (CPU Memory) 1.31 2.16 2.52 2.74
Training (GPU Memory) 15.19 8.04 8.04 8.04

Inference-Serial (GPU Memory) 2.33 2.33 2.33 2.33
Inference-Parallel (GPU Memory) 2.33 4.67 7.00 9.47

memory-efficient with LoRA techniques. Depending on available
memory resources, Birdie supports two inference paradigms: the
serial paradigm, which requires constant memory, and the parallel
paradigm, which scales linearly with the number of updates.
Scalability. To evaluate the scalability during online search, we
use the NQ-Tables dataset to create six incremental batches. Specif-
ically, we sample 40% of the tables from NQ-Tables as 𝐷0, and the
remaining 60% tables are evenly divided into six batches {𝐷𝑖 }6𝑖=1.
Figure 8 illustrates the memory usage and runtime. In low-resource
scenarios with serial inference, memory usage remains constant,
while runtime scales linearly with the number of models. Con-
versely, in rich-resource scenarios with parallel inference, runtime
remains relatively stable, while memory usage scales linearly with
the number of models. This is because multiple copies of the base
model are loaded into memory simultaneously, as discussed in Sec-
tion 5.2. The number of synthetic queries per candidate table is a
small constant 𝐵 (e.g., 20 in our implementation), and each model
generates only a limited number of candidate tables, making query
mapping process both time and memory efficient.

7 CASE STUDY

We present a case of using Birdie, Solo, and OpenDTR to retrieve
the top table from NQ-Tables in response to a given NL query.
GPT-4o is then employed as a reasoning tool through the OpenAI
API to answer the query based on the contents in the retrieved
table. Figure 9 illustrates the case. Note that we only show the row
relevant to the answer due to space limitation.
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Query: When did refrigerator perry play for the bears?
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Figure 9: A case of NL-driven table discovery and the results of table QA using GPT-4o.

It is observed that only Birdie successfully retrieves the correct
table, and GPT-4o provides the correct answer only when it receives
the correct table. Solo encodes each cell-attribute-cell triplet as an
embedding and measures similarity between the query and triplet
embeddings. In this instance, the triplet in the table “List of NFL
nicknames” exhibits high similarity to the query. However, it lacks
time information, rendering it incapable of answering the user’s
query. This highlights the limitation of dense methods that do not
facilitate deep query-table interactions. OpenDTR, which encodes
the entire table as a single vector, struggles to capture detailed
table information. As a result, the table “Chicago Bears” shows a
higher similarity to the query than the correct table. In contrast,
Birdie optimizes both the indexing and search processes jointly
and engages in deep query-table interactions during model training.
Therefore, it comprehensively understands the given NL query and
successfully identifies the correct table.

8 RELATEDWORK

Table Discovery. Table discovery has been extensively researched
within the data management community [15, 21]. A prevalent line
of table discovery is query-driven discovery, which includes: (i)
keyword-based table search [3, 5] that aims to identify web tables
related to specified keywords, utilizing metadata such as table head-
ers and column names; (ii) table-driven search which locates target
tables within a large data lake that can be joined [14, 20, 66] or
unioned [16, 27, 40] with a given query table; and (iii) NL-query-
driven table search [23, 28, 53].

NL-driven table discovery offers a user-friendly interface that
allows users to express their needs more precisely. Existing NL-
driven table discovery methods [23, 28, 53] typically follow a tra-
ditional representation-index-search pipeline. The encoder in the
representation phase plays a crucial role in search accuracy. For
instance, OpenDTR [23] uses TAPAS [24] as the backbone for its bi-
encoder. OpenWikiTable [28] offers various options for query and
table encoders. However, representing a table as a single vector can
sometimes be insufficiently expressive. To address this, Solo [53]
encodes each cell-attributes-cell triplet within the table into a fixed-
dimensional embedding and retrieves similar triplet embeddings to
the query embedding, followed by aggregation of triplets-to-table.
However, the lack of deep query-table interactions during retrieval
hinders further performance improvements.

Another line of NL-based table search literature focuses on the
re-ranking [9, 52, 60]. Utilizing a cross-encoder, they input both the
query and candidate table to obtain embeddings for each query-
table pair. This process enhances accuracy due to the deep query-
table interactions but lacks of scalability for first-stage retrieval.

Differentiable Search Index.Differentiable search index (DSI) [49]
sparks a novel search paradigm that unifies the indexing and search
within a single Transformer architecture. It was initially proposed
for document retrieval [49, 54, 67] and has been applied in scenarios
like retrieval-augmented generation (RAG) [32], recommendation
systems [46], etc. To the best of our knowledge, Birdie is the first
attempt to perform table discovery using DSI, taking into account
the unique properties of tabular data to automate the collection of
training data. Real-world applications often involve dynamically
changing corpora. However, in DSI, which encodes all corpus in-
formation into model parameters, indexing new corpora inevitably
leads to the forgetting of old ones. To mitigate catastrophic forget-
ting, some recent studies [7, 38] propose replay-based solutions
that sample some old data and combine it with new data for con-
tinual learning. However, these methods often struggle to balance
indexing new data and retaining old memories, resulting in subop-
timal average performance. In contrast, Birdie designs a parameter
isolation method that ensures the independence of each memory
unit, thus achieving a promising average performance.

9 CONCLUSIONS

We present Birdie, an effective NL-driven table discovery frame-
work using a differentiable search index. We first introduce a two-
view-based tabid assignment method to assign a unique table iden-
tifier to each table, considering the semantics of both the metadata
and instance-data of tables. Then, we propose a LLM-based query
generation method tailored for tabular data to construct synthetic
NL queries for DSI model training. To accommodate the continual
indexing of dynamic tables, we design an index update strategy
via parameter isolation. Comprehensive experiments confirm that
Birdie significantly outperforms the SOTA methods, and our pa-
rameter isolation strategy alleviates catastrophic forgetting and
achieves better average performance than competitors. In the fu-
ture, we would like to support efficient parallel inference for multi-
ple LoRAs in dynamic scenarios, further reducing memory costs
while enhancing Birdie’s efficiency.
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