
SimRN: Trajectory Similarity Learning in Road Networks based
on Distributed Deep Reinforcement Learning

Danlei Hu

Zhejiang University

dlhu@zju.edu.cn

Yilin Li

Zhejiang University

yilin.23@intl.zju.edu.cn

Lu Chen

Zhejiang University

luchen@zju.edu.cn

Ziquan Fang

Zhejiang University

zqfang@zju.edu.cn

Yushuai Li

Aalborg University

yusli@cs.aau.dk

Yunjun Gao

Zhejiang University

gaoyj@zju.edu.cn

Tianyi Li

Aalborg University

tianyi@cs.aau.dk

ABSTRACT
Trajectory similarity computation in road networks is crucial for

data analytics. However, both non-learning-based and learning-

based methods face challenges. First, they suffer from low accuracy

due to manual parameter selection for model training and the omis-

sion of key spatio-temporal features in road networks. Second, they

have low efficiency, stemming from the high time complexity of

similarity computation and the time-consuming training process.

Third, learning-based methods struggle with poor model generality

due to the small size of available training samples.

To address these challenges, we propose an effective and effi-

cient trajectory similarity learning framework for road networks,

called SimRN. To our knowledge, SimRN is the first deep rein-

forcement learning (DRL) approach for trajectory similarity com-

putation. Specifically, SimRN consists of three key modules: the

spatio-temporal prompt information extraction (STP) module, the

trajectory representation based on DRL (TrajRL) module, and the

graph contrastive learning (GCL) module. The STP module cap-

tures spatio-temporal features from road networks to improve the

training of the trajectory representation. The TrajRL module auto-

matically selects optimal parameters and enables parallel training,

improving both trajectory representation and the efficiency of sim-

ilarity computations. The GCL module employs a self-supervised

contrastive learning paradigm to generate sufficient samples while

preserving spatial constraints and temporal dependencies of tra-

jectories. Extensive experiments on two real-world datasets, com-

pared with three state-of-the-art methods, show that SimRN: (i)
improves accuracy by 20%–40%, (ii) achieves speedups of 2–4x, and

(iii) demonstrates strong generality, enabling effective similarity

learning with very small sample sizes.

PVLDB Reference Format:
Danlei Hu, Yilin Li, Lu Chen, Ziquan Fang, Yushuai Li, Yunjun Gao,

and Tianyi Li. SimRN: Trajectory Similarity Learning in Road Networks

based on Distributed Deep Reinforcement Learning. PVLDB, 18(7): 2057 -

2069, 2025.

doi:10.14778/3734839.3734844

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment. Tianyi Li is the corresponding author.

Proceedings of the VLDB Endowment, Vol. 18, No. 7 ISSN 2150-8097.

doi:10.14778/3734839.3734844

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/ZJU-DAILY/SimRN.

1 INTRODUCTION
With the rapid development of location acquisition technologies

in the urban Internet of Things (IoT), massive amounts of vehicle

trajectory data are being collected. For instance, in 2022, Uber, the

world’s largest ridesharing company, captured up to 131 million

vehicle trajectories daily [42]. This data volume enables advanced

trajectory analysis and applications. Trajectory Similarity Com-
putation (TSC), which measures the similarity or distance between

two trajectories, is a key function in trajectory analysis such as tra-

jectory retrieval [36, 41], clustering [21, 29], classification [20, 25],

route planning [31, 57], and outlier detection [27, 28].

Various trajectory similarity computation methods have been

proposed, such as Dynamic Time Warping Distance (DTW) [26, 34,

52], Longest Common Subsequence (LCSS) [37, 44], Edit Distance

on Real Sequence (EDR) [7, 11], Frechet distance [1, 46], and deep

learning based NEUTRAJ [51]. While these methods effectively

compute similarities for trajectories in free space, they struggle with

handling vehicle trajectories constrained by urban road networks.

Recently, researchers have proposed solutions for road network-

constrained trajectories, which can be categorized into non-learning-

based and learning-based methods. Non-learning-based methods

compute point-to-point distances between two trajectories manu-

ally [24, 39, 45, 56], aligning points from one trajectory with consec-

utive points from another [19]. This results in quadratic time com-

plexity, limiting scalability. Although distributed methods [40, 47]

have been introduced to improve efficiency through pruning tech-

niques and parallel processing, their time complexity remains qua-

dratic, which is still not efficient enough. To enhance efficiency,

many studies [13, 18, 30, 51, 58] leverage neural networks to mea-

sure trajectory similarities under road network constraints. These

learning-based methods typically use Graph Convolutional Net-

works (GCNs) and Recurrent Neural Networks (RNNs) to transform

high-dimensional trajectory data into low-dimensional represen-

tations. The similarity between these representations can then be

efficiently calculated using Euclidean distance [30], reducing time

complexity from quadratic to linear. However, these road network

oriented learning-based methods still face three key challenges.

Challenge I: Low accuracy of similarity computation. Exist-
ing learning-based methods suffer from accuracy. Table 1 reports

2057

https://doi.org/10.14778/3734839.3734844
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3734839.3734844
https://github.com/ZJU-DAILY/SimRN

Figure 1: A motivating example

the accuracy and efficiency of three state-of-the-art similarity com-

putation methods: GTS [18], ST2Vec [13], and GRLSTM [60]. As

observed, HR@50 of the three methods are suboptimal, with values

below 0.6 (a higher HR@50 indicates better performance [19]). The

underlying reasons include two key aspects.

First, similarity learning models rely on various network param-

eters (e.g., number of layers and learning rates), which directly

impact their ability to approximate trajectory similarities. For ex-

ample, in the upper part of Figure 1(b), two different parameter sets,

M1 andM2, capture different key points from the same trajectories

𝑇1 and𝑇2, leading to different representation vectors. Existing stud-

ies [50] rely on manual parameter tuning, which makes it difficult

to optimize model performance. However, finding the proper pa-

rameters for training is challenging because of the many variables

that need to be set in advance. Only a limited number of parame-

ter combinations are typically tested due to the high time costs of

tuning, which leads to missed opportunities for optimal tuning.

Second, existing methods focus solely on trajectory features for

similarity computation, ignoring essential spatio-temporal features

of road networks, such as road direction and travel time. These

features are vital for accurate similarity measurement. As shown in

the lower part of Figure 1(b), when performing a Top-1 similarity

search for 𝑇2, 𝑇1 appears as the result without considering road

direction and travel time. However, the road segments between

them are impassable, and the travel time is too long (i.e., traveltime
= 100𝑡). In reality,𝑇3 or𝑇4 are much more similar to𝑇2 compared to

𝑇1. Unfortunately, extracting these features presents two challenges:

(i) the direction and travel time of each road are discovered from

trajectory datasets, which may not fully cover all roads, leaving

some features unknown; and (ii) travel times are dynamic, varying

throughout the day due to fluctuating traffic conditions.

Challenge II: Low efficiency of model training. Although
learning-based methods offer linear time complexity for similarity

computation, the training process remains time-intensive, espe-

cially for large datasets or complex models. For example, as shown

in Table 1, GRLSTM’s training time is 4580.16 seconds, hundreds

of times longer than its similarity computation time, emphasizing

the critical need for enhanced training efficiency. To deal with this

issue, a natural idea is to utilize distributed techniques to train the

Table 1: Accuracy and efficiency of similarity computation
using three state-of-the-art learning-based methods on the
T-Drive dataset, where (i) TP [39] is the similarity measure;
(ii) HR@50 represents the hitting ratio for Top-50 similar-
ity search; (iii) “Training” represents training time; and (iv)
“Computing” represents the similarity computation time via
trained model.

Methods HR@50 Training Computing
GTS [18] 0.5609 1782.00s 28.92ms

ST2Vec [13] 0.5767 2418.32s 20.11ms

GRLSTM [60] 0.4379 4580.16s 29.77ms

model in parallel for improving efficiency. Nevertheless, it is non-

trivial to keep load balance of multiple computing GPUs because

of the complex model parameters. Therefore, effective distributed

partition strategies are needed to ensure balanced load distribution

in the similarity learning framework.

Challenge III: Poor model generality caused by insufficient
samples. Learning-based methods typically require large amounts

of training data, which is often unavailable in real-world road net-

works with fewer acquisition devices, leading to reduced accuracy.

A straightforward solution is to generate more data using augmenta-

tion techniques such as random flipping and rotation. However, it is

challenging because trajectories have both spatial constraints (road

network constraints) and temporal dependencies (timestamps are

sequential), making it difficult to generate trajectory samples while

preserving these relationships. Therefore, it is crucial to design

methods that can achieve good performance with limited samples.

Overall, inspired by the strong decision-making ability of deep

reinforcement learning (DRL) [10, 38, 53], we propose SimRN, the
first distributed DRL-based trajectory similarity learning frame-

work for road networks. To tackle Challenge I, we leverage DRL
to automatically select optimal parameters for similarity learning

models by transforming trajectory similarity computation into a

decision-making problem, thereby enhancing accuracy. We also

extract spatio-temporal features from road networks using data

completion and period partitioning, then augment the network to

include these features. The augmented network is subsequently

used as input for the GCN model during training.

To tackle Challenge II, we develop an actor-learner scheme

that processes model training in parallel by assigning decision-

making steps to multiple actors and learners, respectively. This

supports distributed computingwith varying parameters. To further

improve SimRN’s efficiency, we incorporate an experience replay

pool to guide parameter selection and prune invalid parameters.

To tackle Challenge III , we present a self-supervised contrastive

learning paradigm. Specifically, we propose a positive and negative

sample generation method using sub-graph enhancement to create

sufficient training samples while preserving the spatial constraints

and temporal dependencies of trajectories. Moreover, we extend

the standard GCN layer into a multi-channel GCN model to capture

spatial constraints, and combine it with an LSTM model to capture

temporal correlations, improving similarity learning.

Overall, this paper makes the following contributions.

• We propose SimRN, a novel trajectory similarity learning frame-

work for road networks. To our knowledge, it is the first dis-

tributed DRL-based model for trajectory similarity computation.

2058

Figure 2: Road network constrained trajectories
• To enhance similarity computation accuracy, we transform tra-

jectory similarity computation into a decision-making problem,

enabling automatic selection of optimal parameters. Moreover,

we extract spatio-temporal features from the road network to

improve SimRN’s training.
• To enhance the training efficiency, we develop an actor-learner

scheme for parallel and distributed model training. Moreover, we

employ an experience replay pool to store training experiences,

guiding parameter selection and pruning invalid parameters.

• To deal with insufficient training samples, we present a self-

supervised contrastive learning paradigm to generate sufficient

samples while preserving spatial constraints and temporal de-

pendencies of trajectories. In addition, we design a multi-channel

GCN combined with an LSTM to capture spatio-temporal con-

straints for similarity learning.

• We conduct extensive experiments on two real-life datasets, com-

paring with three state-of-the-arts. The results show that SimRN:
(i) improves accuracy by 20%–40%; (ii) achieves speedups of 2–4x;

and (iii) demonstrates high model generality, enabling effective

similarity learning with very small sample sizes.

The rest of the paper is organized as follows. Section 2 presents

preliminaries. Section 3 then details our framework and methods.

The experimental results are reported in Section 4. Section 5 reviews

related work. Finally, Section 6 concludes the paper.

2 PRELIMINARIES
Definition 1. (GPS Point) A GPS point 𝑝 = (𝑥,𝑦, 𝑡) records the

longitude 𝑥 and the latitude 𝑦 at time 𝑡 .

Here, longitude 𝑥 and the latitude𝑦 are spatial information, while

time 𝑡 is temporal information.

Definition 2. (Raw Trajectory) A raw trajectory 𝑇 is an time-
ordered sequence of GPS points, i.e., 𝑇 = ⟨𝑝𝑖 |1 ≤ 𝑖 ≤ 𝑛⟩, where 𝑝𝑖 is
the 𝑖𝑡ℎ GPS point of 𝑇 .

Definition 3. (Road Network) A road network is represented
as a directed graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is a set of road intersections
or end points, and 𝐸 is a set of directed edges. An edge 𝑒𝑖, 𝑗 = (𝑣𝑖 , 𝑣 𝑗)
connects 𝑣𝑖 to 𝑣 𝑗 .

The direction between two vertices 𝑣𝑖 and 𝑣 𝑗 (𝑣𝑖 , 𝑣 𝑗 ∈ 𝐺) is
denoted as dir𝑖, 𝑗 , where dir𝑖, 𝑗 = 0 indicates that the road is blocked,

dir𝑖, 𝑗 = 1 indicates a one-way road, and dir𝑖, 𝑗 = 2 indicates a two-

way road. We aim to learn dir𝑖, 𝑗 for each edge 𝑒𝑖, 𝑗 = (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 to

enrich road network information.

Definition 4. (RoadNetworkConstrainedTrajectory)Given
a road network 𝐺 = (𝑉 , 𝐸) and a raw trajectory 𝑇 = ⟨𝑝𝑖 |1 ≤ 𝑖 ≤ 𝑛⟩,

The road network constrained trajectory of 𝑇 is a sequence of con-
nected edges, denoted as Tr.

Example 1. In Figure 1 (a),𝑇1 = ⟨𝑝i |1 ≤ 𝑖 ≤ 6⟩ is a raw trajectory.
In Figure 2, the corresponding road network constrained trajectory for
𝑇1 is Tr1 = ⟨𝑒12, 𝑒13, 𝑒19, 𝑒25, 𝑒20, 𝑒15, 𝑒16⟩.

Note that, this paper focuses on road network constrained trajec-

tories. For simplicity, we refer to them as “trajectories” throughout

the rest of the paper.

Definition 5. (Trajectory Similarity Measure) A trajectory
similarity measure is a function 𝑓 (𝑇𝑖 ,𝑇𝑗) to measure the distance
between two trajectories 𝑇𝑖 and 𝑇𝑗 .

We perform Top-𝑘 trajectory similarity search to evaluate the

performance of trajectory similarity computation.

Definition 6. (Top-𝑘 Similarity Search) Given a query tra-
jectory T, a set of trajectories T = T𝑖 | 1 ≤ 𝑖 ≤ |T |, and a similarity
measure 𝑓 (·, ·), a Top-𝑘 similarity search returns a set of trajectories
S such that S ⊆ T , |S| = 𝑘 , and for all T𝑠 ∈ S and all T𝑜 ∈ T − S,
𝑓 (T, T𝑠) ≥ 𝑓 (T, T𝑜).

Example 2. Continuing Example 1, given a query trajectory Tr2
and the similarity measure LORS [45], SimRN returns S = Tr4 for a
Top-1 similarity search, as Tr2 and Tr4 have the highest similarity.

Building on these concepts, we define the trajectory similarity

learning problem as follows.

Definition 7. (Trajectory Similarity Learning) Given two
trajectories T𝑖 and T𝑗 , trajectory similarity learning aims to learn (i)
representation vectors 𝑟𝑖 , 𝑟 𝑗 ∈ R𝑑 for T𝑖 and T𝑗 , and (ii) an approxi-
mation function F (·, ·) such that:

argminM | F (𝑟𝑖 , 𝑟 𝑗) − 𝑓 (T𝑖 , T𝑗) |, (1)

where 𝑓 (T𝑖 , T𝑗) is the true similarity between T𝑖 and T𝑗 based on a
given similarity measure, andM represents the parameter sets of the
neural networks.

3 FRAMEWORK
3.1 Framework Overview
Figure 3 illustrates the framework of SimRN, which consists the

spatio-temporal prompt information extraction (STP) module, the

trajectory representation based on DRL (TrajRL) module, and the

graph contrastive learning (GCL) module.

• STP Module. This module is decipted in the yellow box of Fig-

ure 3. The trajectory dataset contains GPS points, while the cor-

responding road network includes vertices and edges with their

lengths. STP extracts spatio-temporal features (i.e., direction and

travel time) from this data as prompt information.

• TrajRL Module. This module is decipted in the blue box of

Figure 3. To find the optimal model parameters for trajectory

similarity learning, TrajRL transforms trajectory similarity rep-

resentation into a decision-making problem and solves it using

DRL. Moreover, TrajRL employs an actor-learner scheme for

distributed processing to improve efficiency.

• GCL Module. This module is decipted in the green box of Fig-

ure 3. GCL performsmodel training based on the prompt informa-

tion from STP and parameter selection from TrajRL. Specifically,

2059

Figure 3: SimRN Framework
GCL uses graph contrastive learning to train the neural networks

with a small training sample size.

3.2 STP Module
In real life, roads have distinct features [5] (i.e., directions and travel

times), and the travel time of a particular road varies throughout

the day due to changing traffic flows. Existing studies [9, 13, 18, 50]

treat all vertices and edges in road networks uniformly, which can

negatively impact the accuracy of trajectory similarity computation.

To address this, STP has two main goals: (i) road network feature

extraction, and (ii) road network augmentation.

Road Network Feature Extraction. Given a road network 𝐺 and

the corresponding road network-constrained trajectories T , we ex-
tract spatial features (road directions) and temporal features (travel

times). For spatial features, the direction between two vertices 𝑣𝑖
and 𝑣 𝑗 (𝑣𝑖 , 𝑣 𝑗 ∈ 𝐺) dir𝑖, 𝑗 only has three valid values 0, 1, and 2

(cf. Section 2). For temporal features, to capture fluctuations in

travel time due to varying traffic conditions (e.g., rush hours and

off-peak periods), we use flexible temporal segmentation. The day

is divided into 𝜖 equal periods, where 𝜖 is an adjustable parame-

ter. This equal segmentation reduces data bias and inconsistency

by ensuring all time intervals are equally represented, enhancing

the robustness of the analysis. Without such segmentation, certain

intervals (e.g., rush hours) may dominate the data, introducing

bias, while others may be under-sampled, leading to inconsisten-

cies. Smaller values of 𝜖 (e.g., 𝜖 = 4) produce broader intervals

(e.g., morning, afternoon, evening, night), while larger values (e.g.,

𝜖 = 24) yield finer-grained hourly segments. In this paper, we de-

fine 9:00–12:00 and 18:00–21:00 as rush hours following existing

studies [3, 17]. Accordingly, we set 𝜖 = 8 in our experiments to

divide the day into eight periods (0:00–3:00, 3:00–6:00, 6:00–9:00,

9:00–12:00, 12:00–15:00, 15:00–18:00, 18:00–21:00, and 21:00–24:00),

ensuring adequate coverage of rush hours.

Using the above process, we get the direction set Dir and travel

time set Travel, respectively (with dir𝑖, 𝑗 ∈ Dir, travel𝑖, 𝑗 ∈ Travel).
Next, we obtain the spatio-temporal features of road networks,

named prompt information, by fusing the direction setDir and travel
time set Travel, i.e., Prompt = Dir + Travel, where Prompt ∈ R𝑛𝑒
denotes the prompt information. However, the trajectories in the

dataset do not fully cover the entire road network, leaving some

roads with unknown directions and travel times. To address this, we

impute the missing directions and travel times of unknown roads

using nearby roads through the following four steps. (i) We identify

the roads 𝐸unkn with unknown directions and travel times and

initially set both values to 0. (ii) We obtain the set of roads having

prompt information, denoted as 𝐸kn, and compute the average

speeds (i.e., vectors with directions) from the lengths and travel

times of four time periods of the roads. (iii) In a road network, a

vertex is typically connected to multiple edges. This motivates us

to use overlapping vertices between 𝐸unkn and 𝐸kn to fill in the

missing road information. We assign the average speeds of vertices

in 𝐸kn to the corresponding vertices in 𝐸unkn. With the average

speed (𝑠𝑝) and the length (𝑙𝑒𝑛), we calculate the travel times and

directions for four time periods for each road in 𝐸unkn using Travel
= 𝑙𝑒𝑛/𝑠𝑝 . (iv) We update 𝐸kn and 𝐸unkn and repeat the above three

steps until all roads in the network have prompt information.

RoadNetworkAugmentation.Weupdate the edge set𝐸 of𝐺 (𝑉 , 𝐸)
with the extracted prompt information to create the augmented

road network 𝐺𝑝 = (𝑉 , 𝐸𝑝) by 𝐸𝑝 = 𝐸 + Prompt.

3.3 TrajRL Module
Given the training samples, the trajectory representation is in-

fluenced by model parameters. Therefore, selecting optimal pa-

rameters is crucial for accurately capturing trajectory similarities.

This motivates us to transform trajectory similarity learning into a

decision-making problem for parameter selection, aimed at finding

the best parameters to generate representations that describe tra-

jectory similarities. However, the manual parameter selection used

in existing studies [9, 18, 50] is extremely time-consuming and im-

practical for complex models or large datasets. To address this, we

introduce TrajRL, a distributed DRL agent designed to optimize pa-

rameter selection for trajectory similarity learning. TrajRL consists

of three components: (i) the DRL paradigm, (ii) the actor-learner

scheme, and (iii) the experience replay pool.

DRL Paradigm. General DRL models [38, 53, 54] contain two

components: agent and environment, which interact to optimize

decision-making. The agent performs an “Action” (denoted as 𝑎) to

reach a certain “State” (denoted as 𝑠), and the environment, com-

posed of neural networks, returns a “Reward” (denoted as re) based

2060

Figure 4: Deep reinforcement learning

on 𝑎—the better the action, the higher the reward. This trial-and-

error process allows the agent to improve its decision-making, as

shown in Figure 4(a).

Inspired by general DRL models, we design the first DRL agent,

TrajRL, for trajectory similarity learning in road networks, which

intelligently and automatically selects optimal parameters. Since

our goal is to tune the neural network parameters, we treat the

environment as part of the agent, as shown in Figure 4 (b). Thus,

in our DRL paradigm, parameter selection with TrajRL becomes a

self-learning process. Moreover, we devise other key elements in

the DRL paradigm as follows.

• Action. The set of parametersM = {𝑚𝑖 |0 ≤ 𝑖 ≤ 6} used for

training the model includes seven key parameters: the number of

network layers (denoted as𝑚0), the number of neurons per layer

(denoted as𝑚1), learning rate (denoted as𝑚2), training epochs

(denoted as𝑚3), batch size (denoted as𝑚4), optimizer (denoted

as𝑚5), and activation function (denoted as𝑚6).

• State. The state 𝑠 is the representation generated by training the

model using the parameters in action 𝑎.

• Reward. We set the state 𝑠 as the query trajectories and set the

reward re as the average rank of their positive samples in the

Top-𝑘 similarity search results. The positive sample refer to the

most similar trajectory to the query. A reward closer to 1 means

the positive sample ranks higher on average, indicating better

state and action choices.

Based on the key elements above, we outline the learning pro-

cedure of the TrajRL agent. First, TrajRL obtains the state 𝑠𝑡 and

reward re𝑡 at time 𝑡 , then selects an action 𝑎𝑡 based on 𝑠𝑡 and re𝑡
according to a given policy. Next, TrajRL performs the action 𝑎𝑡
and receives the next state 𝑠𝑡+1 and reward re𝑡+1 from the environ-

ment. This process repeats iteratively until the agent reaches an

optimal state with sufficient rewards. The process is mathematically

represented as follows.

𝑎𝑡 = 𝜋 (𝑠𝑡 , re𝑡), (2)

𝑠𝑡+1 = NetworkM (𝑎𝑡), (3)

re𝑡+1 = Reward(𝑠𝑡+1), (4)

where 𝜋 denotes the action selection policy and Reward(·) denotes
the reward function. 𝑠𝑡+1 is determined by the output of the trained

networksNetworkM , based on the parametersM. The initial action

𝑎0 is either randomly or manually set.

Actor-Learner Scheme.To improve efficiency inmodel training, we

expand the DRL paradigm to distributed computing and introduce

an actor-learner scheme.

As shown in Figure 5, the DRL training is divided into acting and

learning. Actors generate rewards from the environment (cf. Eq.4),

while learners handle action selection, model training, and state

computation via model inference (cf. Eqs.2 and 3). Neural networks

in the learners perform gradient calculations and training, while

other tasks (e.g., Top-𝑘 trajectory similarity search) are handled

by the actors. This significantly improves computation efficiency.

Moreover, since each learner operates independently, the actor-

learner scheme can be easily applied to distributed learning.

We propose a partition strategy for efficient distributed simi-

larity learning, where each learner trains a set of network layers.

Instead of evaluating a single action at a time, we perform mul-

tiple actions in parallel to optimize decision-making—parameter

selection. Specifically, given a set of actions and several distributed

computational nodes, trajectory similarity learning in the actor-

learner scheme follows three key steps. First, we construct and

organize the neural network layers based on action information,

such as the number of layers and neurons per layer, identifying

any overlapping layers. This allows shared layers across different

models to be trained only once, enhancing efficiency.

Next, we apply a dynamic programming algorithm [12] to parti-

tion the layers among nodes for training, with the state transition

equation defined as follows.

𝑑𝑝 [𝑖] [𝑗] = min

0≤𝑘<𝑖
(dp[𝑘] [j-1] + cost(𝑐 [𝑘 + 1], 𝑐 [𝑘 + 2], . . . , 𝑐 [𝑖])), (5)

where 𝑐 [𝑖] denotes the computational complexity of the 𝑖𝑡ℎ net-

work layer (i.e., the number of neurons in that layer), and 𝑐𝑜𝑠𝑡 (𝑐 [𝑘+
1], 𝑐 [𝑘+2], . . . , 𝑐 [𝑖]) denotes the load cost of assigning layers𝑘 + 1𝑡ℎ
to 𝑖𝑡ℎ to the 𝑗𝑡ℎ computational node. Finally, the trained neural net-

work layers are selectively aggregated based on the model structure

for each action to generate the final model and trajectory represen-

tation, which is then sent to the actors for reward computation.

Experience Replay Pool. The core task of TrajRL is to find an opti-

mal action selection policy that maximizes the reward. To achieve

this, we set up a prioritized experience replay pool to store experi-

ences during the agent’s learning process. We record the execution

trajectory 𝜏 of TrajRL to help update the policy, represented as:

𝜏 = ⟨𝑠0, 𝑎0, re0, 𝑠1, 𝑎1, re1, ...⟩, where (𝑠𝑖 , 𝑎𝑖 , re𝑖) denotes an experi-

ence at time 𝑖 . Next, we prioritize experiences with higher re, allow-
ing them to be reused more frequently to improve policy updates.

The action selection policy, which determines the preferred action

for a given state, is dynamic and evolves as the agent learns, since

the priorities of actions change with new experiences.

3.4 GCL Module
In real-life scenarios, there may not be enough trajectories for

effective model training. Therefore, achieving good performance

with small training samples is crucial. We apply contrastive learn-

ing methods to address this. While most studies [13, 18, 60] use

GCN and RNN models to capture spatial and temporal correlations,

general GCNs focus on node features and only handle edge fea-

tures with one-dimensional attributes. Since 𝐺𝑝 produced by the

STP module has multi-dimensional edge features (cf. Section 3.2),

2061

Figure 5: Actor-learner scheme
general GCNs are inadequate. To address this, we design the GCL

module with two key goals: (i) expanding the training sample size

and (ii) improving model training for similarity representation.

Training Sample Size Expanding. Contrastive learning learns fea-
ture representations by comparing similar (positive) and dissimilar

(negative) samples. To expand the sample size, we propose a strategy

that generates positive and negative samples based on sub-graphs,

then applies contrastive learning for trajectory similarity repre-

sentation. Specifically, we treat each trajectory with road network

constraints as a sub-graph of the road network. For each anchor

sub-graph GT, we sample three sub-sub-graphs (sub-trajectories)

with more than half the vertices of GT. The sub-sub-graphs of

GT are used as positive samples, while three sub-sub-graphs from

other anchor sub-graphs are selected as negative samples. For each

trajectory 𝑇𝑎 , we generate three triplets (𝑇𝑝 ,𝑇𝑎,𝑇𝑛), consisting
of a positive sample, an anchor trajectory, and a negative sample,

which are used for contrastive learning. This effectively expands the

training sample size, while preserving the spatial constraints and

temporal dependencies of road network-constrained trajectories.

Model Training for Trajectory Representation Learning. Using
the triplets generated by our positive and negative sample strategy,

we perform contrastive learning to embed trajectory representa-

tion vectors that preserve trajectory similarities. To enhance this,

we introduce spatial embedding, temporal embedding, and spatio-

temporal fusion for model training.

Spatial Embedding. We design a multi-channel GCN layer to re-

place the traditional GCN for spatial embedding. Specifically, we

use three channels for edge features: length, direction, and travel

time. Each channel serves as a constraint matrix to help model learn

spatial information, and their outputs are combined to produce the

final result. The multi-channel GCN function is defined below.

X𝑙+1 = [X𝑙+1
0
, X𝑙+1

1
, ..., X𝑙+1

𝑞] = GCN(·)

= 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒

[︃
∥
(︃
D˜ −

1

2 C˜ 𝑙𝑞D−
1

2 X𝑙W𝑙
𝑞

)︃]︃
,

(6)

where X represents the output from each channel of the network

layer, 𝑙 is the layer number, and 𝑞 is the number of channels. D is

the unified degree matrix, C is the constraint matrix, andW is the

weight matrix. ∥ denotes vector concatenation, and 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒 is the
activation function of the model.

Temporal Embedding. To account for time-periodic features, we use

the date2vec [22] model to convert timestamps in year-month-day

format into representation vectors (𝑡 ′
𝑖
). These vectors are then input

into the LSTM model to capture temporal sequence correlations,

with the output denoted asY. The process is formulated as follows.

𝑡 ′𝑖 = date2vec(timestamp𝑖), (7)

Y𝑖 = LSTM

(︁
𝑡 ′𝑖 ,Y𝑖−1, 𝑖𝑖 , 𝑓𝑖 , 𝑜𝑖 ,𝑚𝑖

)︁
, (8)

where 𝑖𝑖 , 𝑓𝑖 , 𝑜𝑖 , and𝑚𝑖 represent the input gate, forget gate, output

gate, and memory cell, respectively. Moreover, Y𝑖+1 is the state of
the (𝑖 + 1)-th hidden layer, updated based on Y𝑖 .
Spatio-Temporal Fusion. We use the spatial embedding X and tem-

poral embeddingY for feature fusion. Following the spatio-temporal

fusion method [13], we apply an LSTM layer to combine these spa-

tial and temporal features. This captures spatio-temporal sequence

correlations and embeds the trajectory similarity representation

vectors, as formulated below.

𝑟 = LSTM (X,Y) (9)

Note that in Eq. 3, Network refers to the models for spatio-

temporal embedding, andM denotes their respective parameters.

Model Training Process. We train the model by the following steps.

First, we generate triplets (𝑇𝑝 ,𝑇𝑎,𝑇𝑛) and perform spatial embed-

ding, temporal embedding, and spatio-temporal fusion to obtain

their representation vectors (𝑇𝑝 ,𝑇𝑎,𝑇𝑛) → (𝑟𝑝 , 𝑟𝑎, 𝑟𝑛). Next, we
train the model using the infoNCE [43] loss, as shown below.

L𝑖𝑛𝑓 𝑜𝑁𝐶𝐸 = − 1

𝑁

𝑁∑︂
𝑖=1

log

⎛⎜⎜⎜⎜⎝
exp

(︃
𝑟𝑎
𝑖
·𝑟𝑝
𝑖

𝜖

)︃
∑︁𝑁

𝑗=1 exp

(︃
𝑟𝑎
𝑖
·𝑟𝑛
𝑗

𝜖

)︃ ⎞⎟⎟⎟⎟⎠
, (10)

where 𝑁 is the number of training samples, and 𝜖 is a hyperparam-

eter that controls the convergence speed.

3.5 Novelty
We summarize the key contributions of SimRN to highlight its

technical novelty. In addition, we provide a theoretical analysis of

how each component—STP, TrajRL, and GCL—contributes to the

overall performance.

3.5.1 Technical Novelty.

• Prompt extraction. Unlike existing methods that ignore the

essential features of road network, we propose a prompt extrac-

tion method by designing a time segmentation strategy, which

augments the road network information for similarity learning.

2062

• Reinforcement learning agent. We innovatively combine tra-

jectory similarity learning with decision-making problem to sup-

port automatically parameter selection, addressing the deficiency

of manual tuning in existing methods. Based on this, we propose

the first reinforcement learning agent for trajectory similarity

learning by developing an effective actor-learner scheme.

• Experience replay.We introduce an effective experience replay

pool for the designed agent to provide experiences with higher

priority for efficient parameter selection.

• Sub-graph augmentation. To deal with insufficient training

samples, we devise a sub-graph-based augmentation method to

generate both negative and positive samples. The augmentation

method can generate large amounts of positive and negative sam-

ples for graph contrastive learning in an unsupervised way. This

reduces reliance on large training datasets while significantly

lowering the computational cost of similarity matrix computa-

tion and sample selection of existing supervised methods, which

would otherwise require quadratic time complexity.

• Multi-channel GCN layer. Rather than utilizing the single-

channel GCN model that can only handle limited features, we

propose a multi-channel GCN layer to extract prompt informa-

tion from road networks, capturing comprehensive and essential

data while filtering out noise and irrelevant information. This

enhances data representation, simplifies model training, and im-

proves accuracy in similarity learning.

3.5.2 Theoretical Analysis.
STP component. Existing methods ignore the extraction of essen-

tial information in road networks, which train the model by directly

using the raw road network data containing noise. Assuming that

𝐵 is the raw data, which consists of essential information (denoted

as 𝐼) and irrelevant noise (denoted as 𝐶), i.e., 𝐵 = 𝐼 +𝐶 . As a result,
the noise 𝐶 hinders the accuracy of trajectory similarity learning.

STP component aims to extract the essential spatio-temporal

features in road network as prompt information. The feature ex-

traction function 𝐷 (·) is presented as 𝐷 (𝐵) = 𝐷 (𝐼) + 𝐷 (𝐶). Since
noise𝐶 is random and independent of 𝐼 , its expectation is 0 [8] (i.e.,

E|𝐷 (𝐶) | = 0,𝐷 (𝐵) ≈ 𝐷 (𝐼) where E denotes the expectation). Thus,

the noise can be eliminated through feature extraction, and 𝐷 (𝐵)
is compact and discriminative for spatio-temporal properties [55].

| 𝑓true (𝑇1,𝑇2) − F1 | ≤ | 𝑓true (𝑇1,𝑇2) − F2 |, (11)

whereF1 = F (𝑟1 (𝐷 (𝐵)), 𝑟2 (𝐷 (𝐵))),F2 = F (𝑟1 (𝐵), 𝑟2 (𝐵)). 𝑓true (𝑇1,𝑇2)
denotes the ground truth distance between two road network con-

strained trajectories 𝑇1 and 𝑇2. 𝑟1 and 𝑟2 denote the representation

vectors of 𝑇1 and 𝑇2. F (·, ·) is the distance measure between rep-

resentation vectors. Lower values of 𝑓true and F indicate higher

similarities. As a result, the extracted features can help to enhance

the similarity representation [60], which improves accuracy.

TrajRL component. Traditional learning-based methods manually

tune the parameters for model training, i.e., 𝜃∗ = argmin𝜃 L(𝜃)
where 𝜃 denotes the model parameters, and 𝜃∗ denotes the tuned
optimal parameters. This static method only test limited number

of parameter combinations, leading to local optimal solutions and

missed opportunities for global optimal tuning.

TrajRL component incorporates a deep reinforcement learning

(DRL) agent, which is designed to optimize model parameters for

long-term performance. The agent dynamically interacts with simi-

larity computation results during training and uses a deep neural

network to approximate the action selection policy 𝜋 . This is due to

General Approximation Theorem [15], that deep neural networks

can approximate any continuous function including the action selec-

tion policy. This allows the agent to iteratively updating parameters

using rewards, ultimately converging to identify the most optimal

parameters for accurate similarity learning.

∇𝛾 𝐽 (𝛾) = E𝜋
[︁
∇𝛾 log𝜋 (𝑎𝑡 , 𝑠𝑡 ;𝛾) · re𝑡

]︁
,𝛾 ← 𝛾 + 𝛼∇𝛾 𝐽 (𝛾), (12)

𝜃∗ = 𝑎𝑡 = 𝜋 (𝑠𝑡 , re𝑡 ;𝛾), (13)

where 𝐽 (𝛾) is the policy optimization function to find the proper

updating policy 𝜋 (𝑎, 𝑠;𝛾). re denotes the reward (i.e., similarity

computation results). 𝛾 is the selection policy updating parameter.

𝛼 is the learning rate of policy updating. 𝑎 represents the action

(i.e., selected parameters 𝜃) of agent. 𝑠 is the state (i.e., the model

trained with selected parameters) when executing 𝑎.

Moreover, the process of model training is very inefficient, where

the whole model training time is denoted as: 𝑇tra = 𝑇re + 𝑇𝜋 +
𝑇Network where 𝑇re denotes the time of computing rewards, which

is very time-consuming with quadric time complexity. 𝑇𝜋 denotes

the time of updating policy and selecting parameters (cf. Eqs. 12

and 13). 𝑇Network represents the model training time using selected

parameters.

To address this, TrajRL component employs an actor-learner

scheme, enabling computation parallelization. Specifically, we as-

sign the time-consuming rewards computation to actors, while

perform parameter updating and model training on learners. Next,

we utilize distributed techniques to enable computation paralleliza-

tion, reducing the whole training time:

𝑇 ∗tra =
𝑇re
NA
+
𝑇𝜋 +𝑇Network

NL
+ 𝑐 < 𝑇tra, (14)

where NA and NL denote the number of actors and learners, re-

spectively. 𝑐 denotes the communication time, which can be safely

ignored (cf Section 4.3.2 of the revised paper).

Further, we introduce an experience replay pool, which contains

various experiences with priority for updating policy. Assuming

that there are 𝑁 ∗ experiences in the replay pool, where𝑀∗ of them
are with high priority (i.e.,𝑀∗ ≪ 𝑁 ∗). The probability of choosing

a proper experience for policy updating is denotes as below.

𝑃priority (𝑖) =
𝑝𝑖∑︁𝑁 ∗

𝑘=1
𝑝𝑘
≈ 𝑝𝑖

𝑀∗ · 𝑝𝑖
=

1

𝑀∗
≫ 1

𝑁 ∗
, (15)

where 𝑝𝑖 denotes the priority of the 𝑖-th experience. Note that,

the experience replay pool increases the probability of finding the

useful experiences for policy updating, improving the efficiency.

GCL component. Traditional methods fail to deal with essential

features, as they only use single-channel GCN layer for feature

extraction: 𝐻 = Activate(𝐴𝑋𝑊), where 𝐴, 𝑋 , and𝑊 are adjacent

matrix, feature matrix, and weight matrix of the graph, respectively.

Activate is the activation function. GCL component integrates a

multi-channel GCN layer to extract prompt information from road

networks as: 𝐻∗ = Activate
(︂∑︁𝐾

𝑘=1
𝐴𝑘𝑋𝑊𝑘

)︂
, where 𝐾 denotes the

number of channels. As a result, multi-channel GCN layer can

capture more features, enhancing the capability of model represen-

tation and improving accuracy.

2063

Table 2: Statistics of datasets
Dataset RN Sampling Interval Duration Avg. Length
T-Drive Beijing 177 seconds 2 weeks 150

Porto Porto 15 seconds 7 weeks 60

Rome Rome 7 seconds 4 weeks 15

SF San Francisco 10 seconds 3 weeks 10

In addition, GCL also incorporates a sub-graph-based augmen-

tation method to generate large amounts of positive and negative

samples for graph contrastive learning.

| Tnew | = | Toriginal | + | T+ | + | T− | ≫ |Toriginal | (16)

Here, T denotes the trajectory dataset. According to Eq 16, GCL

expands the training dataset and supports robust model training,

even with limited original samples.

4 EXPERIMENT
In this section, we evaluate SimRN through a series of experiments

on two real-life datasets, aiming to answer the following questions:

• Q1: How does SimRN’s accuracy in trajectory similarity compu-

tation compare to other learning-based methods?

• Q2: How efficient and scalable is SimRN?
• Q3: How does SimRN perform when training with different

sample sizes?

• Q4: How do the individual modules impact trajectory similarity

computation and model training?

4.1 Experimental Settings
4.1.1 Datasets. We evaluate SimRN on four real-world datasets:

T-Drive, Porto, Rome, and SF.

• T-Drive1 contains 1.5 million GPS points collected from 10,357

taxis in Beijing, from Feb. 2 to Feb. 8, 2008.

• Porto2 contains 1.7 million GPS points collected from 442 taxis

in Porto, Portugal, from Aug. 2011 to Apr. 2012.

• Rome3 contains 1.7 million GPS points collected from 320 taxis

in Rome, Italy, from Feb. 1 to Mar. 2, 2014.

• SF4 contains 1.0 million GPS points collected from 500 taxis in

San Francisco, USA, from May 17 to Jun. 10, 2008.

Detailed information of both datasets is summarized in Table 2,

where “RN” is the city corresponding to each dataset. Note that

the trajectories from both datasets are collected as raw trajecto-

ries. We remove those with fewer than 5 GPS points and randomly

select 10,000 trajectories from each dataset for evaluation. We ob-

tain the road networks of Beijing, Porto, Rome and San Francisco

from OpenStreetMap [33].Map-matching is an essential step to

align raw trajectories with road networks and convert them into

road network-constrained trajectories [40]. We employ a KD-Tree-

based map-matching algorithm [4] for its low time complexity of

𝑂 (|𝑉 | log |𝑉 |), where |𝑉 | is the total number of vertices in the road

network. Each dataset is processed through map-matching only

once [9, 13, 18, 60]. Thus, these preprocessing overheads (about

2316s for T-Drive, 2058s for Porto, 750s for Rome, and 520s for SF)

are not included in the following experimental reports.

1
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-

sample/

2
https://archive.ics.uci.edu/dataset/339/

3
https://ieee-dataport.org/open-access/crawdad-romataxi

4
https://ieee-dataport.org/open-access/crawdad-epflmobility

4.1.2 Baselines. We compare SimRN with three state-of-the-art

learning-based methods: GTS, ST2Vec, and GRLSTM, and six state-

of-the-art non-learning-based methods: NetDTW, NetEDR, NetERP,

TP, LORS, and LCRS.

• GTS [18] employs a GCN based trajectory-aware random walk

scheme to learn the representation of each POI.

• ST2Vec [13] captures fine-grained spatial and temporal correla-

tions between trajectory pairs using GCN and LSTM models.

• GRLSTM [60] builds a knowledge graph to capture the correla-

tions between GPS points and road network for representation.

• NetDTW [48] finds the optimal alignment between two trajec-

tories by minimizing the distance between mapped points, while

respecting the spatial constraints of the road network.

• NetEDR [24] measures trajectory similarity by counting the

minimal number of edits required to match one trajectory to

another while considering spatial constraints.

• NetERP [24] calculates the minimal transformation cost (i.e.,

insertions, deletions and substitutions) between two trajectories.

• TP [39] consider both spatial and temporal correlations to cap-

ture the pattern changes and finer spatio-temporal relationships.

• LORS [45] computes trajectory similarity by identifying and

comparing overlapping edges.

• LCRS [56] identifies the longest common road segment between

two trajectories consisted of road segments.

All baselines are designed for trajectory similarity computation

in road networks. Learning-based baselines are trained using the

hyperparameters specified in their original papers. The goal of

them is to approximate non-learning-based methods for computing

trajectory similarity. For NetEDR, the similarity threshold is set to 1

km. For NetERP, the gap point is set to the centroid of the bounding

rectangle enclosing the dataset.

4.1.3 Evaluation Metrics. We compare SimRN with three state-

of-the-art baselines in terms of accuracy, efficiency, scalability, and

model generality. For accuracy and model generality, we use two

metrics: HR@k and Rk@t [30]. HR@k (hitting ratio of Top-𝑘 similar-

ity search) measures the overlap between the Top-𝑘 results and the

ground truth, while Rk@t (Top-𝑡 recall for the Top-𝑘 ground truth)

is the fraction of the Top-𝑘 ground truth included in the Top-𝑡 re-

sults. Higher values of HR@k and Rk@t (closer to 1) indicate better

performance. In our experiments, we evaluate HR@10, HR@50, and
R10@50. The ground truth is derived using a non-learning-based

similarity measure 𝑓 (·, ·) to compute the Top-10 and Top-50 re-

sults for a query trajectory T. We consider six non-learning-based

measures: NetDTW, NetEDR, NetERP, TP, LORS, and LCRS. For

efficiency and scalability, we measure the average training time per

epoch (𝑇tra) and the similarity computation time (𝑇com).

4.1.4 Experimental Settings. The initial setting ofM (i.e., initial

parameters) is based on two key features of datasets: data distribu-

tion and sampling interval.

• Data distribution. For evenly distributed datasets, it is able for

the model to update gradients and learn features stably with

few overfitting and rapid convergence. Thus, a higher number

of network layers, neurons per layer and learning rate should

be set for capturing deeper features. Moreover, optimizers (e.g.,

SGD [16]) and activation functions (e.g., ReLU [14]) that ensure

2064

Table 3: Accuracy evaluation, with bold numbers highlighting the highest accuracy

Measures Methods T-Drive Porto Rome SF
𝐻𝑅@10 𝐻𝑅@50 𝑅10@50 𝐻𝑅@10 𝐻𝑅@50 𝑅10@50 𝐻𝑅@10 𝐻𝑅@50 𝑅10@50 𝐻𝑅@10 𝐻𝑅@50 𝑅10@50

NetDTW

GTS 0.3814 0.5609 0.7480 0.4532 0.5726 0.8069 0.4096 0.5574 0.6930 0.3991 0.5393 0.7131

ST2Vec 0.4051 0.5767 0.7783 0.3633 0.5983 0.7540 0.3403 0.5478 0.7057 0.2143 0.5512 0.6739

GRLSTM 0.2715 0.4379 0.7541 0.3197 0.5395 0.7985 0.2830 0.3791 0.6160 0.3846 0.5749 0.7241

SimRN 0.4841 0.6195 0.8220 0.5457 0.6308 0.8654 0.4607 0.6733 0.8215 0.4321 0.6775 0.8544

NetEDR

GTS 0.5267 0.6656 0.7838 0.4018 0.5765 0.7547 0.3660 0.5373 0.7830 0.3423 0.5891 0.7550

ST2Vec 0.2346 0.2405 0.2463 0.2502 0.25982 0.2765 0.2772 0.3142 0.3715 0.3216 0.3502 0.4191

GRLSTM 0.5301 0.6117 0.7479 0.3875 0.5168 0.8050 0.3714 0.5901 0.7713 0.3180 0.4707 0.7357

SimRN 0.5792 0.7139 0.8489 0.4933 0.6574 0.8148 0.5614 0.7361 0.8815 0.5426 0.6911 0.7567

NetERP

GTS 0.3621 0.4970 0.7416 0.4604 0.6665 0.8165 0.3210 0.4814 0.7096 0.311 0.5172 0.7303

ST2Vec 0.3465 0.5071 0.7589 0.3605 0.5309 0.7190 0.3286 0.5789 0.7185 0.3141 0.6051 0.7076

GRLSTM 0.3738 0.5386 0.7762 0.3294 0.5066 0.8130 0.3593 0.4911 0.6726 0.4057 0.5697 0.7627

SimRN 0.5421 0.6722 0.8144 0.5815 0.7354 0.8841 0.5324 0.7269 0.8258 0.5472 0.7122 0.8679

TP

GTS 0.2736 0.4524 0.7402 0.2933 0.4452 0.6450 0.3774 0.5251 0.6997 0.2929 0.4381 0.6885

ST2Vec 0.4417 0.6227 0.8029 0.3754 0.5969 0.7683 0.4268 0.6492 0.7799 0.3554 0.6372 0.7037

GRLSTM 0.3279 0.4013 0.5035 0.3824 0.4862 0.6343 0.3389 0.5013 0.4983 0.3243 0.5556 0.5943

SimRN 0.5097 0.6992 0.8528 0.4417 0.6661 0.8266 0.5850 0.6687 0.8514 0.4982 0.6595 0.7731

LORS

GTS 0.4190 0.5824 0.7590 0.4452 0.5138 0.7596 0.4439 0.5149 0.7267 0.3934 0.5270 0.7264

ST2Vec 0.1326 0.3234 0.4139 0.1613 0.1876 0.2099 0.1589 0.2834 0.3189 0.2321 0.3283 0.4497

GRLSTM 0.4323 0.6714 0.7809 0.3370 0.5105 0.7639 0.3533 0.5481 0.7431 0.3546 0.5819 0.7329

SimRN 0.5213 0.7570 0.8422 0.5348 0.6239 0.8873 0.4794 0.6029 0.7459 0.4350 0.6241 0.7913

LCRS

GTS 0.3169 0.4926 0.7301 0.3732 0.5454 0.7766 0.3382 0.4241 0.6619 0.3194 0.4847 0.6973

ST2Vec 0.1499 0.1814 0.2332 0.4004 0.4021 0.7999 0.1710 0.3402 0.4502 0.1877 0.3618 0.4223

GRLSTM 0.4081 0.6424 0.7197 0.3800 0.6546 0.7967 0.3170 0.4540 0.6787 0.2439 0.4096 0.6580

SimRN 0.5254 0.7390 0.8274 0.5478 0.6847 0.9303 0.5371 0.6708 0.8584 0.4854 0.5347 0.7566

Table 4: Overall training time of learning-based methods
Methods T-Drive Porto Rome SF

GTS 1782.00s 856.10s 882.40s 842.10s

ST2Vec 2418.32s 5157.10s 2073.34s 1010.90s

GRLSTM 4580.16s 2317.24s 2263.98s 1387.75s

SimRN 1122.25s 744.62s 751.94s 626.82s

Table 5: Efficiency evaluation of non-learning-basedmethods
𝑇com NetDTW NetEDR NetERP TP LORS LCRS

T-Drive 184.29s 170.31s 160.21s 155.58s 192.87s 182.74s

Porto 161.46s 198.51s 131.37s 133.91s 125.31s 187.40s

Rome 179.54s 156.48s 143.61s 142.64s 134.34s 161.28s

SF 191.51s 181.49s 164.10s 167.07s 179.27s 193.89s

quick model convergence and consistent updates without in-

troducing significant oscillations or deviation are best suited

for stable gradients. On the contrary, for unevenly distributed

datasets, the gradients of the model vary greatly during training

process, which can easily result in overfitting and local optimal

solutions. Thus, it is necessary to keep strong generalization abil-

ity for model, which requires less network layers and neurons

per layer, and lower learning rate. In addition, optimizers (e.g.,

Adam [23]) and activation functions (e.g., LeakyReLU [49]) that

stabilize gradient updates and mitigate vanishing or exploding

gradients are most suitable for handling varying gradients.

• Sampling interval. For data with low sampling interval which

contains more sufficient information, a higher number of net-

work layers, training epochs, and batch size can help to deal with

large amount of information data. On the contrary, for data with

high sampling interval, lower parameters are required. Note that,

optimizers and activation functions primarily affect gradient sta-

bility and convergence speed, which depend on data distribution

rather than sampling intervals.

Based on the above guidelines, for datasets with a uniform distri-

bution and a low sampling interval (less than 60 seconds) such as

Porto, Rome, and SF, we set the initial parameters toM0={3, 128,
0.001, 150, 128, SGD, ReLU}. For datasets with an uneven distribu-

tion and a high sampling interval, such as T-Drive, we set the initial

parameters toM0={1, 64, 0.0001, 120, 64,Adam, LReLU}.

4.1.5 Implementation Details. For non-learning-based base-

lines, we conduct experiments on an 8-core Intel Xeon E5-2640

v4 @ 2.40GHz CPU. For learning-based methods, we split each

dataset into training, validation, and test sets in a 3:1:6 ratio, and

run the experiments on a 4-node cluster, each node equipped with

a GeForce RTX 3090 GPU, 2.40GHz processor, and 24GB RAM.

It is worth mentioning that, SimRN is designed for distributed

environments. First, it implements a distributed training scheme

that scales across multiple machines to handle large-scale data,

going beyond parallel computation limited to a single machine.

This is achieved using an actor-learner architecture and a dynamic

model partitioning strategy, ensuring efficient and scalable training.

Second, distributed communication primitives (e.g., all-reduce) are

integrated to facilitate node-to-node communication [32]. In the

experiments, we simulate a 4-node cluster on a single machine

equipped with four GPUs. Following [2, 35, 59], each GPU is treated

as an independent node.

4.2 Accuracy Evaluation (Q1)
We evaluate the accuracy performance of four learning-based meth-

ods. The results are reported in Table 3.

(i) Learning-based methods vary in their ability to approximate

different non-learning-based similaritymeasures. Specifically, ST2Vec

outperforms GTS and GRLSTM when approximating NetDTW,

NetERP, and TP distances but performs poorly with NetEDR, LORS,

2065

GTS ST2Vec GRLSTM SimRN0

7

14

21

28

35

42

49

56

63

 NetDTW NetEDR NetERP TP LORS LCRS Number of epochs

T c
om

 (m
s)

Methods

GTS ST2Vec GRLSTM SimRN0
9

18
27
36
45

T t
ra

 (s
)

Methods

GTSST2VecGRLSTMSimRN

60
70
80
90
100
110

N
um

be
r o

f e
po

ch
s

(a) 𝑇tra/T-Drive

GTS ST2Vec GRLSTM SimRN0

20
40

60

80

T t
ra

 (s
)

Methods

GTSST2VecGRLSTMSimRN

30

45

60

75

90

N
um

be
r o

f e
po

ch
s

(b) 𝑇tra/Porto

GTS ST2Vec GRLSTM SimRN0
6

12
18
24
30

T t
ra

 (s
)

Methods

GTSST2VecGRLSTMSimRN

60
70
80
90
100
110

N
um

be
r o

f e
po

ch
s

(c) 𝑇tra/Rome

GTS ST2Vec GRLSTM SimRN0
6

12
18
24
30

T t
ra

 (s
)

Methods

GTSST2VecGRLSTMSimRN

0

30

60

90

N
um

be
r o

f e
po

ch
s

(d) 𝑇tra/SF

GTS' ST2Vec'GRLSTM'
SimRN'0

9

18

27

T t
ra

 (s
)

Methods

GTS'ST2Vec'GRLSTM'SimRN'

0

30

60

90

(e) 𝑇tra/T-Drive/Distributed

GTS ST2Vec GRLSTM SimRN0
7

14
21
28
35

T c
om

 (m
s)

Methods

GTSST2VecGRLSTMSimRN

60
70
80
90
100
110

(f) 𝑇com/T-Drive

GTS ST2Vec GRLSTM SimRN0
6

12
18
24
30

T c
om

 (m
s)

Methods

GTSST2VecGRLSTMSimRN

60
70
80
90
100
110

(g) 𝑇com/Porto

GTS ST2Vec GRLSTM SimRN0
3
6
9

12
15

T c
om

 (m
s)

Methods

GTSST2VecGRLSTMSimRN

60
70
80
90
100
110

(h) 𝑇com/Rome

GTS ST2Vec GRLSTM SimRN0
4
8

12
16
20

T c
om

 (m
s)

Methods

GTSST2VecGRLSTMSimRN

60
70
80
90
100
110

(i) 𝑇com/SF

GTS' ST2Vec'GRLSTM'
SimRN'0

9

18

27

T c
om

 (m
s)

Methods

GTS'ST2Vec'GRLSTM'SimRN'

0

30

60

90

(j) 𝑇com/T-Drive/Distributed

Figure 6: Efficiency evaluation of learning-based methods

Table 6: Scalability evaluation on # of distributed nodes
of Distributed T-Drive Porto Rome SF

Nodes 𝑇tra 𝑇com 𝑇c 𝑇tra 𝑇com 𝑇c 𝑇tra 𝑇com 𝑇c 𝑇tra 𝑇com 𝑇c
1 37.00s 23.75ms / 25.10s 14.70ms / 31.21s 12.92ms / 38.87s 13.72ms /

2 25.18s 22.47ms 1.60s 19.88s 10.12ms 0.82s 18.39s 11.03ms 0.22 18.87s 10.72ms 0.17s

4 16.75s 19.47ms 2.27s 12.01s 8.60ms 1.22s 9.17s 6.65ms 0.34s 10.11s 6.85ms 0.28s

and LCRS distances. This is because GTS and GRLSTM are specifi-

cally proposed for spatial constraints of road networks, whereas

ST2Vec considers both spatial and temporal correlations. However,

NetEDR, LORS and LCRS distances are much more dependent on

road network information, making the temporal information ig-

nored by ST2Vec when measuring the similarity.

(ii) SimRN achieves the best accuracy on all of the six non-

learning-based methods. This is because, it not only captures spatio-

temporal features of trajectories, but also extracts prompt informa-

tion: directions and travel times of road networks, which enhances

the model’s ability to better capture trajectory similarities. More-

over, the proposed TrajRL module automatically selects optimal

parameters for model training, resulting in much better trajectory

representation vectors than all baselines.

4.3 Efficiency and Scalability Evaluation (Q2)
Wefirst study the efficiency on both non-learning-based and learning-

based methods. Next, we evaluate their scalability by varying data

cardinality and the number of distributed nodes.

4.3.1 Efficiency Evaluation. First, we evaluate the abilities of
four learning-based methods to approximate the six non-learning-

based methods. The results are reported in Figure 6. Specifically,

Figures 6(a)–6(e) report the training time per epoch (𝑇tra) and the

average number of epochs of each model. Figures 6(f)–6(j) present

the computation time (𝑇com) of performing Top-50 similarity search

for 3,000 trajectories on four datasets. Table 4 shows the overall

training time of learning-based methods. Table 5 reports the com-

putation time (𝑇com) of six non-learning-based methods. We further

evaluate the impact of utilizing distributed techniques in SimRN
on model efficiency. Since no existing parallel implementation for

trajectory similarity learning is available, to enable a more compre-

hensive comparison, we havemanually extended the learning-based

methods GTS, ST2Vec, and GRLSTM to distributed methods (i.e.,

GTS
′
, ST2Vec

′
, and GRLSTM

′
). These methods include a model

training process that benefits from distributed training by paral-

lelizing computations across nodes. In contrast, non-learning-based

methods lack a training process, making distributed implementa-

tion less relevant. The results on the T-Drive dataset are reported

in Figures 6(e) and 6(j). The observations are as below.

(i) The computation time𝑇com of learning-basedmethods is much

less than non-learning-based methods. This is because, the time

complexity of non-learning-based methods are all quadratic–𝑂 (𝑛2)
(where 𝑛 is the number of GPS points in the trajectories), while

the vectors computation of learning-based methods is Euclidean

distance, reducing the time complexity of learning-based meth-

ods to linear–𝑂 (𝑑) (where 𝑑 refers to the dimensionality of the

representation vectors of trajectories).

(ii) The training procedure of learning-based methods is very

time-consuming (i.e., 𝑇tra > 15s). This is because, the features cap-

turing process during model training needs much time cost.

(iii) SimRN achieves the lowest training time per epoch (𝑇tra),

computation time (𝑇com), and overall training time compared to

learning-based baselines. This is because, first, SimRN leverages

distributed techniques for parallel training, resulting in less 𝑇tra
and 𝑇com. Second, SimRN incorporates an experience replay pool

with prioritization, enabling to efficient select better actions.

(iv) As shown in Figures 6(e) and 6(j), the parallelized versions,

GTS
′
, ST2Vec

′
, and GRLSTM

′
, demonstrate improved efficiency

compared to their standalone counterparts due to the benefits of

distributed computing. Notably, SimRN consistently outperforms

all baselines in both standalone and distributed settings. This is

attributed to SimRN’s support for dynamic partitioning during

distributed model training and similarity computation, making it

highly adaptable to varying trajectories and model parameters.

4.3.2 Scalability Evaluation. Figure 7 reports the computation

time 𝑇com of the six non-learning-based and four learning-based

methods on four datasets when varying the cardinality of trajecto-

ries (i.e., 20%, 40%, 60%, 80%, and 100%). Table 6 presents the training

2066

0.01

0.04

50

100

150

200

80%60%40% 100%

 NetDTW NetEDR NetERP TP LORS LCRS GTS ST2Vec GRLSTM SimRN

T c
om

 (s
)

Data Cardinality (%)

20%

0.01
0.04

50
100
150
200

80%60%40% 100%

T c
om

 (s
)

Data Cardinality (%)
20%

(a) T-Drive

0.01
0.04

50
100
150
200

80%60%40% 100%

T c
om

 (s
)

Data Cardinality (%)
20%

(b) Porto

0.01
0.04

50
100
150
200

80%60%40% 100%

T c
om

 (s
)

Data Cardinality (%)
20%

(c) Rome

0.01
0.04

50
100
150
200

80%60%40% 100%

T c
om

 (s
)

Data Cardinality (%)
20%

(d) SF

Figure 7: Scalability evaluation on varying data cardinality

0.0

0.2

0.4

0.6

0.8

1.0

80%60%40% 100%

 GTS HR@10 ST2Vec HR@10 GRLSTM HR@10 SimRN HR@10 GTS HR@50 ST2Vec HR@50
 GRLSTM HR@50 SimRN HR@50 GTS R10@50 ST2Vec R10@50 GRLSTM R10@50 SimRN R10@50

A
cc

ur
ac

y

Training Sample Size (%)

20%

0.0
0.2
0.4
0.6
0.8
1.0

80%60%40% 100%

A
cc

ur
ac

y

Training Sample Size (%)
20%

(a) T-Drive

0.0
0.2
0.4
0.6
0.8
1.0

80%60%40% 100%

A
cc

ur
ac

y

Training Sample Size (%)
20%

(b) Porto

0.0
0.2
0.4
0.6
0.8
1.0

80%60%40% 100%

A
cc

ur
ac

y

Training Sample Size (%)
20%

(c) Rome

0.0
0.2
0.4
0.6
0.8
1.0

80%60%40% 100%

A
cc

ur
ac

y

Training Sample Size (%)
20%

(d) SF

Figure 8: Model generality evaluation on varying training samples size

Table 7: Model generality evaluation on incremental training

Methods T-Drive SF
HR@10 HR@50 R10@50 HR@10 HR@50 R10@50

SimRN 0.4305 0.6731 0.8126 0.4817 0.6506 0.7654

GRLSTM* 0.3341 0.3928 0.5195 0.3684 0.5516 0.6143

SimRN* 0.4519 0.7020 0.8442 0.5209 0.7393 0.8708

time 𝑇tra, computation time 𝑇com and communication overhead 𝑇𝑐
per epoch of SimRNwhen varying the number of distributed nodes

(i.e., 1, 2, and 4). “/ ” indicates no communication overhead. Due

to limited space, we mainly report the results on TP distance. The

observations are as below.

(i) As shown in Figure 7, computation times for all methods

increase as the cardinality of trajectories grows. Non-learning-based

methods show a sharp increase due to the time required for point-

matching distance calculations, whereas learning-based methods

grow more slowly because they use pre-trained models for Top-𝑘

similarity search with linear time complexity.

(ii) As depicted in Table 6, for SimRN, its scalability performance

improves with the growth of the number of distributed nodes, for

the reason that more distributed nodes provide more computing

resources, reducing computational load and improving efficiency.

(iii) As shown in Table 6, during distributed training, 𝑇𝑐 is much

smaller than the training time 𝑇tra, which can be considered negli-

gible. This is because, we use a 4-node cluster (i.e., 4 GPUs on one

machine) for distributed learning, where communication overhead

minimized by the high-speed bus [32]. This setup is significantly

more efficient than network-based communication. As a result, the

communication overhead, which is orders of magnitude smaller

than the epoch training time, can be safely ignored.

4.4 Model Generality Evaluation (Q3)
We evaluate the model generality of each learning-based method by

varying the size of training samples. For the test sets of four datasets,

we apply the models trained on different training sample sizes (i.e.,

20%, 40%, 60%, 80%, and 100% of the training sets), and report the

Table 8: Ablation study on the T-Drive dataset
Components 𝐻𝑅@10 𝐻𝑅@50 𝑅10@50 𝑇tra (s) 𝑇com (ms)

GCL w/o MC-GCL 0.3811 0.5619 0.8002 35.24 21.98

GCL 0.3977 0.5841 0.7930 35.54 22.60

GCL+STP 0.4432 0.6120 0.8202 35.70 22.95

GCL+STP+DRL 0.5088 0.6893 0.8499 37.00 23.75

GCL+STP+TrajRL 0.5097 0.6992 0.8528 16.75 19.47

accuracy by performing Top-10 and Top-50 similarity search using

the same steps in Section 4.2. Here, we only use the ground-truth

of TP distance due to the limited space. Figure 8 depicts the results

on the four datasets. The observations are as below.

(i)SimRN The HR@10 and HR@50 of ST2Vec, GRLSTM, and gen-

erally improve as the training sample size increases, as the models

capture more comprehensive information from additional samples.

However, in Figure 8, SimRN shows accuracy deterioration. This

occurs because the model adjusts its parameters to adapt to the

growing data, which can sometimes lead to a very large number

of network layers and neurons per layer. In such cases, the model

captures more irrelevant information and noise, which may result

in overfitting and cause accuracy to decline.

(ii) SimRN achieves the highest accuracy across all training sam-

ple sizes, particularly with smaller sizes (20% and 40%). This is

because its positive and negative sample generation strategy pro-

vides more samples for contrastive learning than other methods.

As a result, SimRN maintains strong and stable accuracy across

various sample sizes, demonstrating excellent model generality.

Further, we explore the generality performance of our SimRN
when dealing with incoming new data. We compare SimRN with

GRLSTM, the state-of-the-art method that outperforms all base-

lines on T-Drive and SF datasets. Table 7 reports the accuracy.

SimRN refers to the original method without model updates for

new data, while GRLSTM* and SimRN* are the incrementally up-

dated versions of GRLSTM and SimRN. We observe that SimRN*
can incrementally update the model with new data while maintain-

ing better stability and accuracy. This is because, unlike GRLSTM*,

2067

our method efficiently selects parameters that adapt to changing

data by utilizing experiences stored in the experience replay pool,

enabling effective gradient computation for updates. Moreover,

SimRN achieves strong performance even without incremental up-

dates. This is due to the GCL module, which expands the training

sample size using the original data, enhancing generalization and

adaptability for similarity computation with new data.

4.5 Ablation Study (Q4)
We conduct ablation studies by studying the effectiveness and effi-

ciency (i.e.,HR@10,HR@50, R10@50,𝑇tra, and𝑇com) of four key com-

ponents (i.e., GCL, GCL+STP, GCL+STP+DRL, GCL+STP+TrajRL)

embedded in SimRN. Specifically, GCL is the proposed trajectory

similarity model with multi-channel GCN and LSTM; GCL+STP

is the model with prompt information extracted; GCL+STP+DRL

applies the DRL-based framework for GCL+STP to automatically

select the model parameters; and GCL+STP+TrajRL is processed by

applying actor-learner scheme for distributed computing, which

is SimRN essentially. In addition, to further evaluate the impact

of multi-channel GCN, we introduce a new variant GCL w/o MC-

GCL, which replaces the multi-channel GCN in GCL with a single-

channel GCN. Note that, directly removing the multi-channel GCN

is not feasible because both spatial and temporal embeddings are

required. We calculate the ground truth for similarity trajectories

on the T-Drive dataset using TP distance. The results are reported

in Table 8, and the observations are as follows.

(i) GCL, which serves as the baseline trajectory similarity model

with a multi-channel GCN and LSTM, achieves higher accuracy

(HR@10, HR@50, R10@50) compared to GCL w/o MC-GCL. This

is because the multi-channel GCN captures fine-grained spatial

and temporal correlations from trajectories and road networks,

preserving richer information for similarity learning.

(ii) GCL+STP and GCL+STP+DRL outperform the GCL in terms

of computation accuracy, which indicates that our proposal of

prompt information extraction is effective for trajectory similar-

ity learning. In addition, GCL+STP+TrajRL (SimRN) has greatly
improved the efficiency (i.e., 𝑇tra, and 𝑇com) of GCL+STP+DRL, be-

cause the introducing of actor-learner scheme supports efficient

distributed training and processing, which reduces the time cost.

Overall, this set of experiments validate the great performance

of four key components of SimRN.

5 RELATEDWORK
5.1 Non-learning-based Methods
Early trajectory similarity measures [24, 48] in road networks ex-

tend raw trajectory measures. These methods first perform map

matching to convert raw trajectories into road network-constrained

trajectories, consisting of road vertices or segments. They then de-

fine similarity measures by adapting classic distance metrics such as

DTW [52], EDR [7], and ERP [6], typically by aggregating shortest

path distances between vertices or segments of two trajectories.

Later studies introduce new distance measures specifically for road

network-constrained trajectories, including LORS [45], LCRS [56],

and TP [39]. LORS measures distance based on the length of over-

lapping edges, while LCRS identifies the longest common edge

between two trajectories. Unlike these, TP accounts for both spatial

and temporal similarity, while others focus only on spatial distance.

However, non-learning-based methods often have quadratic time

complexity (𝑂 (𝑐2)), limiting their scalability for large-scale trajec-

tory analysis. Moreover, distance measures rely on manual point

matching to compute the similarity between two road network

constrained trajectories, making non-learning-based methods fail

to capture deeper features hidden in the data.

5.2 Learning-based Methods
Recently, deep representation learning for trajectory similarity com-

putation has gained attention due to its powerful approximation

capabilities. Learning-based methods use neural networks to ap-

proximate distance functions for non-learning-basedmeasures. Typ-

ically, GCNs are used to capture road network information, while

RNNs (e.g., GRU and LSTM) represent trajectories by transforming

high-dimensional data into low-dimensional vectors, reducing time

complexity to linear. Note that, the learning-based methods are

also required to perform map matching to obtain road network con-

strained trajectories for similarity learning. Specifically, Han et al.

[18] introduced GTS, the first model for spatial trajectory similarity

learning in road networks. Fang et al.[13] developed ST2Vec, the

first to learn temporal trajectory similarity in road networks. Zhou

et al. [60] proposed GRLSTM, extending LSTM to road networks by

incorporating a trajectory knowledge graph to capture sequence fea-

tures. While these methods enable trajectory similarity learning in

road networks, they do not fully account for road network-specific

features, and rely on manually tuned parameters, which negatively

impact effectiveness. Moreover, these methods train neural net-

works sequentially and require large training datasets, leading to

inefficient similarity computation.

6 CONCLUSION
In this paper, we propose SimRN, an efficient and effective trajecto-

ries similarity learning framework in road networks based on DRL,

which is the first distributed DRL-based model for trajectory simi-

larity computation. We transform trajectory similarity computation

into a decision-making problem to select the proper model parame-

ters automatically, with the spatio-temporal features extracted from

the road network for improving the accuracy. To efficiently com-

pute the trajectory similarity, we develop an actor-learner scheme

for parallelized computation, and introduce an experience replay

pool to store training experiences and guide the parameters selec-

tion. In addition, we present a self-supervised contrastive learning

paradigm to generate sufficient samples and a multi-channel GCN

combined with an LSTM model for similarity learning, enabling to

deal with insufficient training samples. Extensive experiments using

two public real-life datasets confirm that SimRN outperforms the

state-of-the-art methods in terms of computation accuracy, training

efficiency, and model generality. In the future, it is of interest to ex-

tend SimRN for streaming trajectory similarity learning, to develop

its potential for automatically online analyses in urban scenarios.

7 ACKNOWLEDGEMENT
This work was supported by the NSFC under Grants No. (62472377,

62402422, 62025206, U23A20296). Tianyi Li is the corresponding

author of this paper.

2068

REFERENCES
[1] Helmut Alt and Michael Godau. 1995. Computing the Fréchet distance between

two polygonal curves. Int. J. Comput. Geom. Appl. 5 (1995), 75–91.
[2] Muhammed Fatih Balin, Kaan Sancak, and Umit V. Catalyurek. 2023. MG-GCN:

A Scalable multi-GPU GCN Training Framework. In Proceedings of the 51st
International Conference on Parallel Processing. Article 79, 11 pages.

[3] Mattia Belloni, Davide Tarsitano, and Edoardo Sabbioni. 2024. An experimental

analysis of driver influence on battery electric bus energy consumption. In VPPC.
1–5.

[4] Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. 2005. On

Map-Matching Vehicle Tracking Data. PVLDB, 853–864.
[5] Bo Chen, Huaijie Zhu, Wei Liu, Jian Yin, Wang-Chien Lee, and Jianliang Xu.

2021. Querying Optimal Routes for Group Meetup. Data Sci. Eng. 6, 2 (2021),
180–191.

[6] Lei Chen and Raymond T. Ng. 2004. On The Marriage of Lp-norms and Edit

Distance. In VLDB. 792–803.
[7] Lei Chen, M. Tamer Özsu, and Vincent Oria. 2005. Robust and Fast Similarity

Search for Moving Object Trajectories. In SIGMOD. 491–502.
[8] Yitian Chen, Yanfei Kang, Yixiong Chen, and Zizhuo Wang. 2020. Probabilistic

forecasting with temporal convolutional neural network. Neurocomputing 399

(2020), 491–501.

[9] Zhen Chen, Dalin Zhang, Shanshan Feng, Kaixuan Chen, Lisi Chen, Peng Han,

and Shuo Shang. 2024. KGTS: Contrastive Trajectory Similarity Learning over

Prompt Knowledge Graph Embedding. In AAAI. 8311–8319.
[10] Chris J. Maddison Arthur Guez Laurent Sifre et al David Silver, Aja Huang. 2016.

Mastering the game of Go with deep neural networks and tree search. Nat. 529,
7587 (2016), 484–489.

[11] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn J.

Keogh. 2008. Querying and mining of time series data: experimental comparison

of representations and distance measures. PVLDB 1, 2 (2008), 1542–1552.

[12] Chenguang Fang, Shaoxu Song, and Yinan Mei. 2022. On Repairing Timestamps

for Regular Interval Time Series. Proc. VLDB Endow. 15, 9 (2022), 1848–1860.
[13] Ziquan Fang, Yuntao Du, Xinjun Zhu, Danlei Hu, Lu Chen, Yunjun Gao, and

Christian S. Jensen. 2022. Spatio-Temporal Trajectory Similarity Learning in

Road Networks. In SIGKDD. 347–356.
[14] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. In AISTATS, Vol. 15.

315–323.

[15] A. N. Gorban and D. C. Wunsch Ii. 1998. The general approximation theorem. In

IEEE World Congress on IEEE International Joint Conference on Neural Networks.
[16] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor

Shulgin, and Peter Richtárik. 2019. SGD: General Analysis and Improved Rates.

In Proceedings of the 36th International Conference on Machine Learning, Vol. 97.
5200–5209.

[17] Priyanshu Gupta, Swagata Payra, R. Bhatla, and Sunita Verma. 2024. WRF-

Chem modeling study of heat wave driven ozone over southeast region, India.

Environmental Pollution 340 (2024), 122744.

[18] Peng Han, Jin Wang, Di Yao, Shuo Shang, and Xiangliang Zhang. 2021. A Graph-

based Approach for Trajectory Similarity Computation in Spatial Networks. In

SIGKDD. 556–564.
[19] Danlei Hu, Lu Chen, Hanxi Fang, Ziquan Fang, Tianyi Li, and Yunjun Gao. 2024.

Spatio-Temporal Trajectory Similarity Measures: A Comprehensive Survey and

Quantitative Study. IEEE Trans. Knowl. Data Eng. 36, 5 (2024), 2191–2212.
[20] Danlei Hu, Ziquan Fang, Hanxi Fang, Tianyi Li, Chunhui Shen, Lu Chen, and

Yunjun Gao. 2024. Estimator: An Effective and Scalable Framework for Trans-

portation Mode Classification over Trajectories. TITS (2024).
[21] Zhang Xiong Jia Wen, Chao Li. 2011. Behavior pattern extraction by trajectory

analysis. Frontiers of Computer Science 5, 1 (2011), 37.
[22] Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet

Sahota, Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus

Brubaker. 2020. Time2Vec: Learning a Vector Representation of Time. In ICLR.
[23] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In ICLR.
[24] Satoshi Koide, Chuan Xiao, and Yoshiharu Ishikawa. 2020. Fast Subtrajectory

Similarity Search in Road Networks under Weighted Edit Distance Constraints.

PVLDB 13, 11 (2020), 2188–2201.

[25] Ioannis Kontopoulos, AntoniosMakris, Dimitris Zissis, and Konstantinos Tserpes.

2021. A computer vision approach for trajectory classification. InMDM. 163–168.

[26] D. Kumar, S. Rajasegarar, M. Palaniswami, X. Wang, and C. Leckie. 2015. A

Scalable Framework for Clustering Vehicle Trajectories in a Dense Road Network.

In SIGKDD.
[27] Jae-Gil Lee, Jiawei Han, and Xiaolei Li. 2008. Trajectory Outlier Detection: A

Partition-and-Detect Framework. In ICDE. 140–149.
[28] Jae-Gil Lee, Jiawei Han, and Xiaolei Li. 2008. Trajectory Outlier Detection: A

Partition-and-Detect Framework. In ICDE. 140–149.
[29] Tianyi Li, Lu Chen, Christian S Jensen, Torben Bach Pedersen, Yunjun Gao,

and Jilin Hu. 2022. Evolutionary clustering of moving objects. In ICDE. IEEE,
2399–2411.

[30] Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S. Jensen, and Wei Wei. 2018.

Deep Representation Learning for Trajectory Similarity Computation. In ICDE.
617–628.

[31] Shuo Ma, Yu Zheng, and Ouri Wolfson. 2013. T-share: A large-scale dynamic

taxi ridesharing service. In ICDE. 410–421.
[32] Xupeng Miao, Xiaonan Nie, Yingxia Shao, Zhi Yang, Jiawei Jiang, Lingxiao Ma,

and Bin Cui. 2021. Heterogeneity-Aware Distributed Machine Learning Training

via Partial Reduce. In SIGMOD. 2262–2270.
[33] OpenStreetMap. 2022. https://master.apis.dev.openstreetmap.org/. (2022).

[34] Punit Rathore, Dheeraj Kumar, Sutharshan Rajasegarar, Marimuthu Palaniswami,

and James C. Bezdek. 2019. A Scalable Framework for Trajectory Prediction.

TITS 20, 10 (2019), 3860–3874.
[35] Aswathy Ravikumar and Harini Sriraman. 2023. Computationally Efficient Neu-

ral Rendering for Generator Adversarial Networks Using a Multi-GPU Cluster

in a Cloud Environment. IEEE Access 11 (2023), 45559–45571.
[36] Yehezkel S. Resheff. 2016. Online trajectory segmentation and summary with

applications to visualization and retrieval. In IEEE BigData. 1832–1840.
[37] M. T. Robinson. 1990. The temporal development of collision cascades in the

binary collision approximation. Nucl. Instrum. Methods Phys. Res. Sect. B 48, 1-4

(1990), 408–413.

[38] Mohammad Reza Samsami and Hossein Alimadad. 2020. Distributed Deep

Reinforcement Learning: An Overview. CoRR abs/2011.11012 (2020). https:

//arxiv.org/abs/2011.11012

[39] Shuo Shang, Lisi Chen, Zhewei Wei, Christian S. Jensen, Kai Zheng, and Panos

Kalnis. 2017. Trajectory Similarity Join in Spatial Networks. PVLDB 10, 11 (2017),

1178–1189.

[40] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. 2018. DITA: Distributed In-Memory

Trajectory Analytics. In SIGMOD. 725–740.
[41] Yu Suzuki, Jun Ishizuka, and Kyoji Kawagoe. 2008. A Similarity Search of

Trajectory Data Using Textual Information Retrieval Techniques. In DASFAA,
Vol. 4947. 627–634.

[42] Uber. 2022. https://expandedramblings.com/index.php/uber-statistics/. (2022).

[43] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation Learning

with Contrastive Predictive Coding. CoRR abs/1807.03748 (2018).

[44] Michail Vlachos, Dimitrios Gunopulos, and George Kollios. 2002. Discovering

Similar Multidimensional Trajectories. In ICDE. 673–684.
[45] Sheng Wang, Zhifeng Bao, J. Shane Culpepper, Zizhe Xie, Qizhi Liu, and Xiaolin

Qin. 2018. Torch: A Search Engine for Trajectory Data. In SIGIR. 535–544.
[46] T. U. Wien, T. Eiter, T. Eiter, H. Mannila, and H. Mannila. 1994. Computing

discrete Fréchet distance. Technical report, Citeseer 64, 3 (1994), 636–637.
[47] Dong Xie, Feifei Li, and Jeff M. Phillips. 2017. Distributed Trajectory Similarity

Search. PVLDB 10, 11 (2017), 1478–1489.

[48] Xingzhe Xie, Wilfried Philips, Peter Veelaert, and Hamid K. Aghajan. 2014. Road

network inference from GPS traces using DTW algorithm. In ITSC. 906–911.
[49] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. 2015. Empirical Evaluation of

Rectified Activations in Convolutional Network. CoRR abs/1505.00853 (2015).

[50] Peilun Yang, Hanchen Wang, Defu Lian, Ying Zhang, Lu Qin, and Wenjie Zhang.

2022. TMN: Trajectory Matching Networks for Predicting Similarity. In ICDE.
1700–1713.

[51] Di Yao, Gao Cong, Chao Zhang, and Jingping Bi. 2019. Computing Trajectory Sim-

ilarity in Linear Time: A Generic Seed-Guided Neural Metric Learning Approach.

In ICDE. 1358–1369.
[52] Byoung-Kee Yi, H. V. Jagadish, and Christos Faloutsos. 1998. Efficient Retrieval

of Similar Time Sequences Under Time Warping. In ICDE. 201–208.
[53] Qiyue Yin, Tongtong Yu, Shengqi Shen, Jun Yang, Meijing Zhao, Wancheng Ni,

Kaiqi Huang, Bin Liang, and Liang Wang. 2024. Distributed Deep Reinforcement

Learning: A Survey and a Multi-player Multi-agent Learning Toolbox. Mach.
Intell. Res. 21, 3 (2024), 411–430.

[54] Sha Liu Lanning Wang Haohuan Fu Xin Liu Zuoning Chen Yizhou Yang,

Longde Chen. 2025. Behaviour-diverse automatic penetration testing: a coverage-

based deep reinforcement learning approach. Frontiers of Computer Science 19, 3
(2025), 193309.

[55] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-Temporal Graph Con-

volutional Networks: A Deep Learning Framework for Traffic Forecasting. In

IJCAI. 3634–3640.
[56] Haitao Yuan and Guoliang Li. 2019. Distributed In-memory Trajectory Similarity

Search and Join on Road Network. In ICDE. 1262–1273.
[57] Haitao Yuan and Guoliang Li. 2021. A Survey of Traffic Prediction: from Spatio-

Temporal Data to Intelligent Transportation. Data Sci. Eng. 6, 1 (2021), 63–85.
[58] Hanyuan Zhang, Xinyu Zhang, Qize Jiang, Baihua Zheng, Zhenbang Sun,Weiwei

Sun, and Changhu Wang. 2020. Trajectory Similarity Learning with Auxiliary

Supervision and Optimal Matching. In IJCAI. 3209–3215.
[59] Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, and George Karypis.

2022. Distributed Hybrid CPU and GPU training for Graph Neural Networks on

Billion-Scale Heterogeneous Graphs. In SIGKDD. 4582–4591.
[60] Silin Zhou, Jing Li, Hao Wang, Shuo Shang, and Peng Han. 2023. GRLSTM:

Trajectory Similarity Computation with Graph-Based Residual LSTM. In AAAI.
4972–4980.

2069

https://arxiv.org/abs/2011.11012
https://arxiv.org/abs/2011.11012

	Abstract
	1 Introduction
	2 Preliminaries
	3 Framework
	3.1 Framework Overview
	3.2 STP Module
	3.3 TrajRL Module
	3.4 GCL Module
	3.5 Novelty

	4 Experiment
	4.1 Experimental Settings
	4.2 Accuracy Evaluation (Q1)
	4.3 Efficiency and Scalability Evaluation (Q2)
	4.4 Model Generality Evaluation (Q3)
	4.5 Ablation Study (Q4)

	5 Related Work
	5.1 Non-learning-based Methods
	5.2 Learning-based Methods

	6 Conclusion
	7 Acknowledgement
	References

