
Efficient Discovery of Relaxed Functional Dependencies
Mengran Li

School of Computer Science, Fudan University, China
mrli22@m.fudan.edu.cn

Zijing Tan
School of Computer Science, Fudan University, China

Shanghai Key Laboratory of Data Science
zjtan@fudan.edu.cn

Honghui Yang
School of Computer Science, Fudan University, China

22212010046@m.fudan.edu.cn

Shuai Ma
SKLSDE Lab, Beihang University, China

mashuai@buaa.edu.cn

ABSTRACT
This paper studies the discovery of relaxed functional dependen-
cies (RFDs). We consider RFDs that relax restrictions in both value
equality and constraint satisfaction: treating values as equal if their
distance is less than a given similarity threshold, and consider-
ing RFDs with violations below a given error threshold as valid.
As a highly non-trivial extension of the row-based approach to
functional dependency (FD) discovery, we present the first algo-
rithm capable of discovering all valid and minimal RFDs. We extend
the structure called “difference-set” for predicates that are combina-
tions of attributes and similarity thresholds. We present an efficient
method for difference-set construction, incorporating optimizations
for both time and space complexity. When inferring RFDs from
difference-sets, we enumerate RFDs based on the subsumption rela-
tionship of their right-hand-side predicates to share computations.
An extensive experimental evaluation verifies that the proposed
discovery algorithm is faster than baseline methods up to orders of
magnitude and effective in finding hidden FDs from dirty data.

PVLDB Reference Format:
Mengran Li, Zijing Tan, Honghui Yang, and Shuai Ma. Efficient Discovery
of Relaxed Functional Dependencies. PVLDB, 18(7): 2044-2056, 2025.
doi:10.14778/3734839.3734843

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/YukinoMR/FastRFD.

1 INTRODUCTION
As an important part of data profiling [1, 2], dependency discovery
methods for identifying hidden dependencies from data have re-
ceived consistent and extensive attention. Functional dependency
(FD) is one of the most important types of dependency. Formally,
an FD 𝑋 → 𝐴 states that whenever two tuples in an instance 𝑟
share the same values for the set of attributes 𝑋 , they also agree
in their values in attribute 𝐴. In practice, real-world data are often
dirty [16, 21], which hinders the validity of FDs. Relaxations of FDs,
known as relaxed FDs (RFDs) [9, 52], have been proposed to deal
with such situations. In this paper, we study the problem of RFD

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 7 ISSN 2150-8097.
doi:10.14778/3734839.3734843

discovery, and consider RFDs that relax restrictions in value equality
and constraint satisfaction simultaneously. The formal definition
of such RFDs will be provided in Section 3. In what follows, we first
given an illustrative example.
Example 1: Relational instance 𝑟 in Table 1 is about hospitalized
patients, where attribute Acuity refers to the level of care required
by patients, and attribute Los denotes the length of stay in a hos-
pital. There are some data issues in the attribute Department: the
values in 𝑡3 and 𝑡4 should both be “Internal Medicine”, and the
value in 𝑡9 should be “Eye Clinic”. There is also an error in the
attribute RoomNumber of 𝑡6, where the correct value should be
“205”. RoomNumber no longer determines Department due to these
issues, affecting the validity of the FD RoomNumber→ Department.

We propose a RFD: 𝑅𝑜𝑜𝑚𝑁𝑢𝑚𝑏𝑒𝑟 (0)
0.1−→ 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 (1) , which

relaxes the previous FD by allowing for similarity instead of strict
equality and permitting fewer violations. This RFD states that for
two tuples with the same room number, the difference between their
values in Department should be no more than 1. The absolute value
and string edit distance are used to calculate the distance between
numeric and string values respectively, and similarity threshold
0 is used to represent equality, while threshold 1 is the distance
between two very similar values in Department. This RFD is allowed
to be violated by partial data, with an error threshold set at 0.1. The
criterion 𝑔1 [25] is employed to measure the degree of violation,
which is defined as the proportion of violating tuple pairs (ignoring
reflexive pairs). Among the 90 tuple pairs, 8 pairs violate the RFD
with relaxation only in value equality. Since the 𝑔1 value falls below
the threshold 0.1, this RFD is considered valid on the instance 𝑟 .

Both relaxations are necessary. RFDs with relaxations in value
equality are suitable to handle minor spelling errors, different ab-
breviation forms, or small errors in numerical values. However,
errors resulting from more complex causes may also exist, as seen
in tuples 𝑡4 and 𝑡6. If relaxation in constraint satisfaction is not
allowed, then a high similarity threshold on attribute Department
is required to tolerate errors, potentially causing many different
data values to be considered the same. Conversely, ignoring the
relaxation of value equality can lead to an overestimation of the
RFD violation, causing it to be overlooked during the discovery. □

The example shows that data errors may distort inherent data
constraints to some extent. With relaxations in both value equality
and constraint satisfaction, RFDs are capable of effectively capturing
hidden data constraints present in dirty data. Although desirable,
manually designing RFDs is more challenging than FDs, which are
already known to be difficult [5, 38, 39, 57]. This motivates the

2044

https://doi.org/10.14778/3734839.3734843
https://github.com/YukinoMR/FastRFD
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3734839.3734843
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Instance 𝑟 with hospitalized patients.

Department (DEP) Name Gender Age Symptoms (SYM) RoomNumber (RN) Acuity Los
𝑡1 Internal Medicine Lisa Female 69 Heart Arrhythmia 101 3 96
𝑡2 Internal Medicine Tom Male 53 Heart Arrhythmia 102 2 82
𝑡3 Internal Madicine (Medicine) Jack Female 32 Heart Hurt 101 1 29
𝑡4 Orthopaedics (Internal Medicine) Cloud Male 45 Heart Arrhythmia 102 2 72
𝑡5 Pulmonology Tina Female 46 Shortness of breath 205 2 23
𝑡6 Pulmonology Aerith Female 46 Shortness of breath 118 (205) 2 26
𝑡7 Eye Clinic Root Male 71 Cataract 118 2 28
𝑡8 Eye Clinic Frank Male 23 Trachoma 118 1 20
𝑡9 Ey (Eye) Clinic Halley Female 80 Cataract 118 2 35
𝑡10 Eye Clinic Schneider Male 36 Trachoma 117 1 26

research on discovery methods for RFDs. Discovering RFDs is nec-
essarily much more difficult than FDs due to a significantly larger
search space resulting from combinations of attributes and similar-
ity thresholds, with multiple thresholds possible per attribute, as
well as additional computations for measuring value similarity and
quantifying violations. To our best knowledge, most methods for
RFD discovery [8, 14, 15, 20, 26] only consider RFDs relaxing in one
aspect. The only work [10] that aims to discover RFDs relaxing in
both aspects can only approximate the discovery result without a
guarantee of completeness (details are discussed in Section 2). This
work aims to provide an effective and efficient solution for RFD
discovery, addressing the limitations of previous research.

Contributions & Organization.
(1) RFD discovery framework. For RFDs allowing for value similarity
and fewer violations quantified with measure 𝑔1 (Sections 3), we
present a discovery framework (Section 4), which can be regarded
as a highly non-trivial extension of the row-based approach to FD
discovery [18, 37, 58]. A structure, called as difference-set, is built to
encode similarity between attribute values within tuple pairs, and
minimal and valid RFDs are inferred from this structure.
(2) Discovering RFDs. (a) We give an efficient method to construct
difference-set (Section 5). Difference-set is kept in a condensed
representation to reduce space complexity, and computations are
organized column-wise, combined with caching and clustering tech-
niques to reduce time complexity. (b) We present the first method
capable of discovering the complete set of minimal and valid RFDs
(Section 6). We enumerate RFDs based on the subsumption relation-
ship of their right-hand-side (RHS) predicates and introduce several
novel pruning rules. (c) Our method is adapted to find top-𝑘 RFDs
based on a utility function involving multiple factors.
(3) Experimental study (Section 7). We verify the following. Our
method (a) can be orders of magnitude faster than row-based and
column-based baseline methods; (b) significantly outperforms [10]
that also aims for RFDs with relaxations in both aspects; and (c) can
effectively identify FDs hidden in dirty data.

2 RELATEDWORK
Discovery techniques have been studied for different dependen-
cies, such as order dependencies (ODs) [11, 23, 24, 28, 31, 53–55],
denial constraints (DCs) [12, 33, 40, 41, 43, 59] and differential de-
pendencies (DDs) [27, 50]. ODs and DCs subsume FDs, but not RFDs
with relaxation in value equality. DDs can specify constraints on

differences with operators “≤” and “>”. DDs generalize RFDs with
relaxation in value equality but not in constraint satisfaction.

Discovery methods for FDs and its variants have been well re-
searched. Most methods aim for the complete set of minimal and
valid FDs, while some works [4, 22, 32] only approximate the result,
i.e., trading correctness and (or) completeness for efficiency. An-
other line of research [34–36, 42, 61] adopts information-theoretic
or probabilistic interpretations, and only aims for top FDs. The
method for discovering embedded FDs from data withmissing values
is presented in [56]. There are also studies on the discovery of con-
ditional FDs [17, 19, 44, 45], for identifying conditions to generate
partial data and discovering FDs that hold within them. From a dif-
ferent perspective, most methods consider the static setting, where
FDs are found in a dataset 𝑟 . In contrast, some methods [6, 7, 48, 60]
consider the dynamic setting, aiming to find FDs from 𝑟 + △𝑟 in
response to a set △𝑟 of updates, based on the known FD set on 𝑟 .

The goal of this study is to find the complete set of minimal and
valid RFDs under the static setting. In the rest of this section, we
investigate works that are close to ours.

Discovery methods for FDs. Discovery methods for FDs have
been well studied and can be roughly divided into three categories.
Column-based approaches [3, 20] traverse the space of FDs accord-
ing to a lattice structure, validate FDs and prune the search space by
leveraging found valid FDs. Row-based approaches [18, 37, 58] build
a data structure by comparing attribute values of tuple pairs, and
then infer valid FDs from it. Hybrid approaches [5, 39, 57] adopt the
row-based strategy on sample data to identify candidate FDs, and
then refine them for the final result by applying the column-based
strategy. A previous evaluation [38] indicates that column-based
methods often exhibit good scalability w.r.t. the number of tuples,
while row-based methods typically scale well with the number
of attributes. Hybrid methods integrate the strengths of both ap-
proaches, thus offering better performance in most cases.

As previously noted, the RFDs we consider differ significantly
from FDs and introduce many challenges to the discovery problem.

Discovery methods for RFDs. Different definitions of RFDs and
related discovery methods have been proposed. [15, 20, 26] consider
RFDs with relaxation in satisfaction (also known as approximate
FDs). The error measure 𝑔1 [25] adopted in [26] is computed as
the proportion of violating tuple pairs, while the measure 𝑔3 [25]
considered in [15, 20] represents the proportion of tuples that need
to be removed to make a violated FD hold. Regarding the error

2045

threshold setting, [20, 26] apply the same threshold across all RFDs,
while [15] allows for different thresholds for different RFDs, under
the assumption that the upper bound on the proportion of errors is
known for each attribute. Different from these works, [8] considers
RFDs relaxing from value equality to similarity, allowing multiple
optional similarity thresholds for each attribute. The methods in [8],
[15, 20], and [26] can be broadly categorized as row-based methods,
column-based methods, and hybrid methods, respectively.

To our best knowledge, [10] presents the only method to discover
RFDs relaxing in both aspects. It first builds a distance matrix where
each entry records the distance between a tuple pair on a specific at-
tribute, and then employs a column-based strategy that enumerate
RFDs and validates them using the matrix. This work differs in the
following. (1) We use the same similarity threshold settings as in [8],
while [10] uses the same single threshold for all attributes. Since
different thresholds can denote varying degrees of similarity, our
setting significantly enhances the expressiveness of RFDs. (2) We
use criterion 𝑔1 to measure the satisfaction of RFDs, as opposed to
criterion 𝑔3 used by [10]. A RFD considered valid under 𝑔1 may not
be valid under 𝑔3, and vice versa. The computation of 𝑔3 becomes
intractable when the restriction in value equality is simultaneously
relaxed [10], preventing [10] from ensuring the completeness of
discovery result. The inability to guarantee completeness can signif-
icantly impact the effectiveness, as will be experimentally studied.
In contrast, computing 𝑔1 value for a RFD relaxing in both aspects
can be done in polynomial time, allowing us to efficiently offer the
complete result.

3 PRELIMINARIES
In this section, we provide the definition of RFD. Let 𝑅 denote a
relational schema: an attribute set {𝐴1, . . . , 𝐴 |𝑅 | } where |𝑅 | is the
size of 𝑅. Let 𝑟 denote an instance of 𝑅 and |𝑟 | its size. Let 𝑡 and 𝑠
denote tuples in 𝑟 , and 𝑡𝐴 denote the value of attribute 𝐴 in tuple 𝑡 .

Distance and threshold. Distance functions measure the simi-
larity of values. The attribute domain can suggest an appropriate
function, such as the absolute difference for numerical values and
the edit distance for strings. More sophisticated functions can also
be used. For example, the distance between two synonyms in a
specific domain can be defined as very small. We use Φ𝐴 to denote
the function used for attribute 𝐴 and do not depend on specific
functions. Φ𝐴 (𝑡, 𝑠) returns the distance between 𝑡𝐴 and 𝑠𝐴 .

Two values are considered similar if their distance is no larger
than a similarity threshold. Each attribute requires its own threshold
setting due to variations in data types and distributions [8, 47].
Appropriate thresholds for an attribute can be set by users or be
automatically identified, e.g., the distance between two similar and
frequently occurring strings in a dataset. Such techniques have been
well studied [8, 47, 50, 51] and are not the focus of this research. We
consider multiple thresholds possible for each attribute and do not
depend on specific techniques to determine them. In the following,
we assume (1) a set of similarity thresholds for each𝐴 ∈ 𝑅, denoted
by𝑇ℎ𝑟𝐴 , is determined in a pre-processing step and an input of our
discovery method; and (2) 0 ∈ 𝑇ℎ𝑟𝐴 for every 𝐴; Φ𝐴 (𝑡, 𝑠) = 0 iff 𝑡

and 𝑠 have the same value in 𝐴. Similar to [8, 10], we use absolute
values as thresholds, which facilitates comparison. Normalization
can also convert absolute values to establish thresholds.

Table 2: The set P of all predicates

𝑝1: 𝐷𝐸𝑃 (1) 𝑝2: 𝐷𝐸𝑃 (0) 𝑝3: 𝑁𝑎𝑚𝑒 (0) 𝑝4:𝐺𝑒𝑛𝑑𝑒𝑟 (0)
𝑝5: 𝐴𝑔𝑒 (20) 𝑝6: 𝐴𝑔𝑒 (10) 𝑝7: 𝐴𝑔𝑒 (0) 𝑝8: 𝑆𝑌𝑀(3)
𝑝9: 𝑆𝑌𝑀(0) 𝑝10: 𝑅𝑁 (1) 𝑝11: 𝑅𝑁 (0) 𝑝12: 𝐴𝑐𝑢𝑖𝑡𝑦 (0)
𝑝13: 𝐿𝑜𝑠 (10) 𝑝14: 𝐿𝑜𝑠 (0)

Predicates. The combination of Φ𝐴 and a threshold 𝜃 from 𝑇ℎ𝑟𝐴
constitutes a predicate on 𝐴, denoted by 𝐴𝜃 when Φ𝐴 is clear from
the context. A tuple pair (𝑡 , 𝑠) satisfies 𝐴𝜃 , written as (𝑡 , 𝑠) ≍ 𝐴𝜃 , if
Φ𝐴 (𝑡, 𝑠) ≤ 𝜃 . We say 𝐴𝜃𝑖 subsumes 𝐴𝜃 𝑗 , written as 𝐴𝜃𝑖 ≻ 𝐴𝜃 𝑗 , if 𝜃𝑖
> 𝜃 𝑗 . It is easy to see that (𝑡 , 𝑠) ≍ 𝐴𝜃𝑖 , if (𝑡 , 𝑠) ≍ 𝐴𝜃 𝑗 and 𝐴𝜃𝑖 ≻ 𝐴𝜃 𝑗 .
We write 𝐴𝜃𝑖 ⪰ 𝐴𝜃 𝑗 if 𝐴𝜃𝑖 ≻ 𝐴𝜃 𝑗 or 𝜃𝑖 = 𝜃 𝑗 .

We extend the subsumption relation to predicate sets. For two
distinct sets 𝑋 , 𝑌 of predicates, 𝑋 subsumes 𝑌 , written as 𝑋 ≻ 𝑌 ,
if for each predicate 𝑝∈𝑋 , there exists a predicate 𝑝′∈𝑌 such that
𝑝 ⪰ 𝑝′. It can be seen that (𝑡 , 𝑠) satisfies all the predicates of 𝑋 , if
(𝑡 , 𝑠) satisfies all the predicates of 𝑌 ; the subsumption relationship
between 𝑋 and 𝑌 expresses the inclusion relationship of the sets of
tuple pairs that satisfy 𝑋 and 𝑌 . We write 𝑋 ⪰ 𝑌 if 𝑋 ≻ 𝑌 or 𝑋 = 𝑌 .
Example 2: Recall Table 1. In the following examples, we abbreviate
attributes Department, Symptoms, and RoomNumber as 𝐷𝐸𝑃 , 𝑆𝑌𝑀 ,
and 𝑅𝑁 , respectively. Let 𝑈 = {𝐷𝐸𝑃 (0) , 𝐴𝑔𝑒 (20) , 𝑅𝑁 (1) } and 𝑈 ′ =
{𝐷𝐸𝑃 (1) , 𝑅𝑁 (1) }. We have𝑈 ′ ≻ 𝑈 , since 𝐷𝐸𝑃 (1) ≻ 𝐷𝐸𝑃 (0) . □

Relaxed functional dependencies (RFDs). Our RFD definition is
adapted from [8, 10]. With a given instance 𝑟 of 𝑅, A RFD 𝜆 is of

the form 𝐴𝑖
𝜃𝑖
, . . . , 𝐴

𝑗

𝜃 𝑗

Ψ, 𝜖−−−→ 𝐴𝑘
𝜃𝑘

, where 𝐴𝑖
𝜃𝑖
, . . . , 𝐴

𝑗

𝜃 𝑗 , 𝐴𝑘
𝜃𝑘

are pred-
icates on attributes 𝐴𝑖 , . . . , 𝐴 𝑗 , 𝐴𝑘 , respectively, and 𝐴𝑖 , . . . , 𝐴 𝑗 , 𝐴𝑘

are distinct. Ψ is a function that quantifies the satisfaction of 𝜆,
and 𝜖 is a given error threshold. A tuple pair (𝑡, 𝑠) satisfies 𝜆, writ-
ten as (𝑡, 𝑠) |= 𝜆, iff (𝑡 , 𝑠) ≍ 𝐴𝑘

𝜃𝑘
if (𝑡 , 𝑠) ≍ 𝐴𝑖

𝜃𝑖
∧ . . . ∧ (𝑡 , 𝑠) ≍

𝐴
𝑗

𝜃 𝑗 . Otherwise, (𝑡, 𝑠) violates 𝜆, written as (𝑡, 𝑠) ̸ |= 𝜆. Ψ is defined
based on 𝑔1 [25], a common measure to quantify dependency viola-
tions [12, 23, 26, 33, 40, 59]. For 𝑟 and 𝜆, Ψ(𝜆, 𝑟) is the ratio of the
number of tuple pairs violating 𝜆 to the total number of tuple pairs
in 𝑟2 (ignoring reflexive tuple pairs).

Ψ(𝜆, 𝑟) = | { (𝑡,𝑠) | (𝑡,𝑠) ∈ 𝑟
2 ∧ 𝑡≠𝑠 ∧ (𝑡,𝑠) ̸ |=𝜆} |

|𝑟 |2−|𝑟 |

Example 3: Consider 𝜆 = 𝑅𝑁 (0)−→𝐷𝐸𝑃 (1) . Although we relax the
equality constraint on attribute 𝐷𝐸𝑃 , (𝑡6, 𝑡7) still violates 𝜆, because
the difference between the value of 𝑡6 and that of 𝑡7 in DEP is larger
than 1. So are (𝑡6, 𝑡8), (𝑡6, 𝑡9) and (𝑡2, 𝑡4). We have Ψ(𝜆, 𝑟) = 0.089. □

Valid and minimal RFD. For 𝑟 and 𝜆 = 𝐴𝑖
𝜃𝑖
, . . . , 𝐴

𝑗

𝜃 𝑗

Ψ, 𝜖−−−→ 𝐴𝑘
𝜃𝑘
,

(1) 𝜆 is valid on 𝑟 , iff Ψ(𝜆, 𝑟) ≤ 𝜖 .
(2) 𝜆 is minimal on 𝑟 , iff there does not exist a distinct RFD 𝜆′ such
that (a) 𝜆′ is valid on 𝑟 ; (b) 𝜆′ has 𝐴𝑘

𝜃𝑘
′ as its RHS predicate and 𝜃𝑘

′

≤ 𝜃𝑘 ; and (c) for each left-hand-side (LHS) predicate 𝐴𝑚
𝜃𝑚
′ of 𝜆′, 𝜆

has 𝐴𝑚
𝜃𝑚

on the LHS and 𝜃𝑚 ≤ 𝜃𝑚′ .

Example 4: (Example 3 continued.) 𝜆 = 𝑅𝑁 (0)
0.1−→ 𝐷𝐸𝑃 (1) is valid

since 0.089 < 0.1. Consequently, 𝑅𝑁 (0) , 𝑆𝑌𝑀(0)
0.1−→ 𝐷𝐸𝑃 (1) is not

minimal, because its LHS predicate set contains that of 𝜆 and it has
the same RHS as 𝜆. Suppose all the available predicates are given in

2046

Table 2. Since neither 𝑅𝑁 (1)
0.1−→ 𝐷𝐸𝑃 (1) nor 𝑅𝑁 (0)

0.1−→ 𝐷𝐸𝑃 (0) is
verified to be valid, 𝜆 is minimal. □

Remarks. The definition of a minimal RFD involves both the con-
tainment of predicate sets and the subsumption relationship be-
tween predicates, while the definition of a minimal FD only involves
the containment of attribute sets; thus, minimal FDs are a special
case of minimal RFDs. The definition adheres to the semantics of
logical implication: if a RFD 𝜆 is not minimal due to the existence
of 𝜆′, then the validity of 𝜆′ implies that of 𝜆 on any instance 𝑟 .

RFD discovery. Given an instance 𝑟 of 𝑅, a set 𝑇ℎ𝑟𝐴 of similarity
thresholds for each attribute 𝐴 ∈ 𝑅, and an error threshold 𝜖 , the
problem of RFD discovery is to find all minimal valid RFDs on 𝑟 .

4 FRAMEWORK FOR RFD DISCOVERY
In this section, we provide our RFD discovery algorithm framework,
which can be seen as a highly non-trivial extension of the row-
based approach to FD discovery [18, 37, 58]. Let P denote the set
of predicates in all attributes of 𝑅 and |P | its size. For a RFD 𝜆, let
𝐿𝐻𝑆𝜆 and 𝑅𝐻𝑆𝜆 denote its LHS and RHS predicate sets, respectively.
Table 3 summarizes the frequently used notations in this paper.

We extend the concept of “difference-set” to RFDs based on predi-
cates, while the original definition for FDs is based on attributes [58].

Difference-set. With the set P of predicates, the difference-set
𝐷𝑆 (𝑡, 𝑠) for two distinct tuples 𝑡 and 𝑠 is the set of predicates violated
by (𝑡, 𝑠), i.e., 𝐷𝑆 (𝑡, 𝑠) = {𝐴𝜃 | 𝐴𝜃 ∈ P ∧ Φ𝐴(𝑡, 𝑠) > 𝜃 }.
Example 5: In Table 2, we give P for the instance 𝑟 in Table 1.
It can be verified that 𝐷𝑆 (𝑡1, 𝑡2) = {𝑁𝑎𝑚𝑒 (0) , 𝐺𝑒𝑛𝑑𝑒𝑟 (0) , 𝐴𝑔𝑒 (10) ,
𝐴𝑔𝑒 (0) , 𝑅𝑁 (0) , 𝐴𝑐𝑢𝑖𝑡𝑦 (0) , 𝐿𝑜𝑠 (10) , 𝐿𝑜𝑠 (0) }. □

Whether a given RFD 𝜆 is satisfied by a pair (𝑡, 𝑠) can be deter-
mined based on 𝐷𝑆 (𝑡, 𝑠), which further facilitates the computation
of the 𝑔1 value of 𝜆. The formal results are stated as follows.
Proposition 1: (1) ∀𝑡, 𝑠 ∈ 𝑟 (𝑡 ≠ 𝑠), (𝑡, 𝑠) ̸ |= 𝜆, iff (a) 𝑅𝐻𝑆𝜆 ∈ 𝐷𝑆 (𝑡, 𝑠);
and (b) 𝐿𝐻𝑆𝜆 ∩ 𝐷𝑆 (𝑡, 𝑠) = ∅.
(2)Ψ(𝜆, 𝑟) = | { (𝑡,𝑠) | 𝑡,𝑠∈𝑟 (𝑡≠𝑠) ∧ 𝑅𝐻𝑆𝜆∈𝐷𝑆 (𝑡,𝑠) ∧ 𝐿𝐻𝑆𝜆 ∩ 𝐷𝑆 (𝑡,𝑠) = ∅} |

|𝑟 |2−|𝑟 |

Proof: (1) (𝑡, 𝑠) ̸ |= 𝜆, iff (𝑡, 𝑠) satisfies all the LHS predicates, but does
not satisfy the RHS predicate . (2) This directly follows from (1). □
Example 6: Recall Table 1. For any RFD 𝜆 with 𝐷𝐸𝑃 (1) on the
RHS, a tuple pair whose difference-set does not contain 𝐷𝐸𝑃 (1) , e.g.,
(𝑡1, 𝑡2), never violates 𝜆. As a counterexample, 𝐷𝑆 (𝑡1, 𝑡4) contains
𝐷𝐸𝑃 (1) . To make 𝜆 satisfied by (𝑡1, 𝑡4), 𝜆 needs at least one predicate
from 𝐷𝑆 (𝑡1, 𝑡4) on its LHS. For instance, (𝑡1, 𝑡4) does not violate 𝜆 =
𝑅𝑁 (0)−→𝐷𝐸𝑃 (1) as 𝑅𝑁 (0) ∈ 𝐷𝑆 (𝑡1, 𝑡4). □

A naive row-based discovery method. The connection between
difference-sets and valid RFDs motivates a naive discovery method
as follows: (1) Enumerate every tuple pair to generate its difference-
set. (2) Enumerate all RFDs by choosing one RHS predicate and
several LHS predicates, and for each RFD, remove difference-sets
that do not contain the RHS predicate or contain at least one of
the LHS predicates. A RFD is valid if the proportion of the remain-
ing difference-sets to all difference-sets is below the given thresh-
old 𝜖 . (3) Remove non-minimal RFDs. However, this naive method
is highly expensive. It takes both time and space complexity of
𝑂 (|𝑟 |2) to construct difference-sets. Candidate RFD enumeration

Table 3: Notations

Symbol Description Section
Φ𝐴 (𝑡, 𝑠) the distance between 𝑡𝐴 and 𝑠𝐴 Section 3
𝑇ℎ𝑟𝐴 the set of similarity thresholds used for 𝐴 Section 3
𝐴𝜃 a predicate on 𝐴 using threshold 𝜃 Section 3

𝑋 ≻ 𝑌 , 𝑋 ⪰ 𝑌 subsumption relation between predicate sets Section 3
P the predicate set for 𝑅 Section 4

𝐿𝐻𝑆𝜆 , 𝑅𝐻𝑆𝜆 the LHS and RHS predicate sets of 𝜆 Section 4
𝐷𝑆 (𝑡, 𝑠) the difference-set of a tuple pair (𝑡, 𝑠):

the set of predicates violated by (𝑡, 𝑠) Section 4
𝐷𝑆 (𝑟) the set of all the distinct difference-sets Section 5

𝐷𝑆 (𝑡𝑖 , ·) the set of difference-sets of (𝑡𝑖 , 𝑡 𝑗)
for a given 𝑡𝑖 and every 𝑡 𝑗 (𝑖 < 𝑗) Section 5

𝐷𝑆𝐴 (𝑡𝑖 , ·) the part of 𝐷𝑆 (𝑡𝑖 , ·) regarding 𝐴 Section 5
𝐷𝑆𝐴

𝜃𝑖
(𝑟) difference-sets within 𝐷𝑆 (𝑟) that contain 𝐴𝜃𝑖 Section 6

𝐷𝑆𝐴 (𝑟) ∪𝜃𝑖 ∈𝑇ℎ𝑟𝐴
𝐷𝑆𝐴

𝜃𝑖
(𝑟) Section 6

is in 𝑂 (∑︁𝐴∈𝑅 2(| P |− |𝑇ℎ𝑟𝐴 |) |𝑇ℎ𝑟𝐴 |). Validating each RFD directly
on difference-sets takes 𝑂 (|𝑟 |2) time. Finally, performing pairwise
minimality checks on the set Ω of all valid RFDs takes𝑂 (|Ω |2) time.

Overview of our optimizations. (1) A well-designed difference-
set construction method can have far better space and time com-
plexity (Section 5). There is no need to store the difference-sets of
all tuple pairs, but only those distinct difference-sets and the num-
ber of tuple pairs that generate each difference-set. As many tuple
pairs indeed generate the same difference-set, the actual storage
required is often small. By constructing difference-sets column-
wise and combining techniques such as clustering and caching, the
number of distance calculations between attribute values can also
be significantly reduced. (2) The efficiency of the enumeration and
minimality check process can be greatly improved, by considering
the subsumption relationship of the RHS predicates of RFDs, employ-
ing difference-sets to refine RFDs instead of validating RFDs with
difference-sets, and introducing effective pruning rules (Section 6).

5 DIFFERENCE-SET CONSTRUCTION
In this section, we give a method for difference-set construction.
In the following, we assume that each tuple is uniquely identified,
ranging from 1 to |𝑟 |, and use 𝑡1 . . . , 𝑡 |𝑟 | to denote tuples.

Algorithm.We present our algorithm, referred to as DiffBuilder
(Algorithm 1), for difference-set construction on 𝑟 . It outputs the
set 𝐷𝑆 (𝑟) of distinct difference-sets where each difference-set has a
count representing the number of tuple pairs that lead to it. From a
high-level workflow,DiffBuilder enumerates every 𝑡𝑖 and computes
the difference-sets produced by pair (𝑡𝑖 , 𝑡 𝑗) for every 𝑡 𝑗 where 𝑖 <
𝑗 ≤ |𝑟 |; the set of these difference-sets is denoted by 𝐷𝑆 (𝑡𝑖 , ·) (lines
4-16). Merging 𝐷𝑆 (𝑡𝑖 , ·) for all 𝑡𝑖 ∈ 𝑟 results in 𝐷𝑆 (𝑟) (line 17), as
(𝑡𝑖 , 𝑡 𝑗) and (𝑡 𝑗 , 𝑡𝑖) share the same difference-set. The computation of
𝐷𝑆 (𝑡𝑖 , ·) is conducted column-wise: each time a partial difference-
set for an attribute 𝐴 ∈ 𝑅 is built (lines 5-15), denoted by 𝐷𝑆𝐴 (𝑡𝑖 , ·),
which carries values only in 𝐴. 𝐷𝑆 (𝑡𝑖 , ·) is obtained by combining
together 𝐷𝑆𝐴 (𝑡𝑖 , ·) for every 𝐴 ∈ 𝑅 (line 16).

In what follows, we introduce the supporting techniques of
DiffBuilder in detail and show illustrative examples in Figure 1.
Representation of difference-set. The difference-set of a tuple pair is
defined as the set of violated predicates, but a more efficient storage

2047

Algorithm 1: DiffBuilder
Input: instance 𝑟 of schema 𝑅
Output: 𝐷𝑆 (𝑟): the set of distinct difference-sets for tuple pairs

from 𝑟 , where each difference-set has a count representing
the number of tuple pairs that produce the difference-set

1 𝑐𝑎𝑐ℎ𝑒 ← ∅
2 𝐷𝑆 (𝑟) ← ∅
3 foreach tuple 𝑡𝑖 ∈ r do
4 𝐷𝑆 (𝑡𝑖 , ·) ← ∅
5 foreach 𝐴 ∈ 𝑅 do
6 if 𝑐𝑎𝑐ℎ𝑒𝐴 .contains(𝑡𝑖 [𝐴]) then
7 tempResult← 𝑐𝑎𝑐ℎ𝑒𝐴 (𝑡𝑖 [𝐴])
8 𝐷𝑆𝐴 (𝑡𝑖 , ·) ← remove tuple identifier 𝑡𝑘 from

tempResult for all 𝑘 ≤ 𝑖

9 if 𝑙𝑎𝑠𝑡𝑇𝑢𝑝𝑙𝑒 (𝑐𝑙𝑢𝑠𝐴 (𝑡𝑖)) = 𝑡𝑖 then
10 𝑐𝑎𝑐ℎ𝑒𝐴 .remove (𝑡𝑖 [𝐴])
11 else 𝑐𝑎𝑐ℎ𝑒𝐴 .update(𝑡𝑖 [𝐴], 𝐷𝑆𝐴 (𝑡𝑖 , ·))
12 else
13 𝐷𝑆𝐴 (𝑡𝑖 , ·) ← call Algorithm AttBuilder with 𝑡𝑖 and 𝐴
14 if 𝑡𝑖 ≠ 𝑙𝑎𝑠𝑡𝑇𝑢𝑝𝑙𝑒 (𝑐𝑙𝑢𝑠𝐴 (𝑡𝑖)) then
15 𝑐𝑎𝑐ℎ𝑒𝐴 .add(𝑡𝑖 [𝐴], 𝐷𝑆𝐴 (𝑡𝑖 , ·))
16 𝐷𝑆 (𝑡𝑖 , ·) ← combine 𝐷𝑆𝐴 (𝑡𝑖 , ·) into 𝐷𝑆 (𝑡𝑖 , ·)
17 𝐷𝑆 (𝑟) ← merge 𝐷𝑆 (𝑡𝑖 , ·) into 𝐷𝑆 (𝑟)

format is used in implementation. Since each predicate on 𝐴 is
identified by its similarity threshold, a unique number is assigned
to each predicate (threshold): the larger the threshold value, the
smaller the assigned number. For example, number 1 corresponds
to the largest threshold, while number |𝑇ℎ𝑟𝐴 | corresponds to the
smallest threshold of 0. Within each (partial) difference-set, we only
store the largest assigned number among all the satisfied predicates,
and store 0 if all the predicates are violated.

For example, for the two predicates 𝐷𝐸𝑃 (0) and 𝐷𝐸𝑃 (1) on 𝐷𝐸𝑃 ,
their numbers are “2” and “1”, respectively. Consequently, “2”, “1”
and “0” are stored to represent the difference-sets { }, {𝐷𝐸𝑃 (0) } and
{𝐷𝐸𝑃 (0) , 𝐷𝐸𝑃 (1) }, respectively, as shown in Figure 1.
Compressing difference-set. In 𝐷𝑆𝐴 (𝑡𝑖 , ·), the two partial difference-
sets produced by (𝑡𝑖 , 𝑡 𝑗) and (𝑡𝑖 , 𝑡𝑘) are redundant if 𝑡 𝑗 and 𝑡𝑘 have
the same value in𝐴. We adopt a compression scheme similar in spirt
to [41]1. The idea is to keep only distinct difference-sets and save a
list of tuple identifiers (TIDs) for each difference-set ds, where every
tuple in the list, when combined with 𝑡𝑖 , leads to ds. Our method to
compute 𝐷𝑆𝐴 (𝑡𝑖 , ·) generates difference-sets in this representation,
as will be detailed in Algorithm AttBuilder.

The compressed representation of 𝐷𝑆𝐷𝐸𝑃 (𝑡1, ·) is in Figure 1;
each difference-set is denoted by a threshold number and a TID list.
Combining partial difference-sets. Suppose 𝐷𝑆𝐴 (𝑡𝑖 , ·) = {<𝑚,𝑈𝑚>,
. . . , <𝑛,𝑈𝑛>}, where 𝑈𝑚 is the TID list associated with threshold
𝜃𝑚 . Similarly, suppose 𝐷𝑆𝐵 (𝑡𝑖 , ·) = {<𝑚′,𝑈𝑚′>, . . . , <𝑛′,𝑈𝑛′>} for
another attribute 𝐵. Now consider the combination of them. For
each value 𝑘 from 𝐷𝑆𝐴 (𝑡𝑖 , ·) and each value 𝑙 ′ from 𝐷𝑆𝐵 (𝑡𝑖 , ·), a
new distinct partial difference-set (𝑘 , 𝑙 ′) for 𝐴𝐵 is produced, and
the associated TID list is the intersection of𝑈𝑘 and𝑈𝑙 ′ .

1Our idea is inspired by the method to build evidence sets in DC discovery, but RFDs
consider differences between values, while DCs [12, 13] concern orders of values. This
distinction leads to significant differences in data structures and computation methods.

Figure 1: DiffBuilder for tuple 𝑡1

We show 𝐷𝑆{𝐷𝐸𝑃,𝑁𝑎𝑚𝑒 } (𝑡1, ·) in Figure 1, which is obtained
based on 𝐷𝑆𝐷𝐸𝑃 (𝑡1, ·) and 𝐷𝑆𝑁𝑎𝑚𝑒 (𝑡1, ·).

After processing all the attributes, we get 𝐷𝑆 (𝑡𝑖 , ·). For each
difference-set in𝐷𝑆 (𝑡𝑖 , ·), the count of tuples in its TID list indicates
the number of tuple pairs that lead to the difference-set. We discard
the list and keep only the count for each difference-set.
Merging difference-sets. If a difference-set in 𝐷𝑆 (𝑟) appears in, for
example,𝐷𝑆 (𝑡𝑖 , ·), . . . ,𝐷𝑆 (𝑡𝑘 , ·), then the count associated with that
difference-set is the sum of the counts from 𝐷𝑆 (𝑡𝑖 , ·), . . . , 𝐷𝑆 (𝑡𝑘 , ·).
Clusters. We use clusters to organize tuples (TIDs). Each cluster
for an attribute 𝐴 is a pair ⟨𝑘𝑒𝑦, 𝑙⟩, where 𝑙 is the list of tuples
that share the same value key in 𝐴, and TIDs in 𝑙 are stored in
ascending order. The clusters for a numerical attribute are further
sorted based on their key values in ascending order. For example,
the clusters for 𝐴𝑐𝑢𝑖𝑡𝑦 are organized in a list [< 1, [𝑡3,𝑡8,𝑡10] >,
< 2, [𝑡2, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡9] >, < 3, [𝑡1] >]. Two operations are defined
on clusters: 𝑐𝑙𝑢𝑠𝐴 (𝑡) returns the cluster in 𝐴 that contains 𝑡 , and
𝑙𝑎𝑠𝑡𝑇𝑢𝑝𝑙𝑒 (𝑐𝑘) returns the last tuple in a cluster 𝑐𝑘 . Both operations
take 𝑂 (1). We present examples in Figure 1.
Caching. We adopt a caching technique to improve efficiency. A
cache is created for each attribute, denoted as 𝑐𝑎𝑐ℎ𝑒𝐴 for the cache
corresponding to attribute 𝐴. Each element in 𝑐𝑎𝑐ℎ𝑒𝐴 using 𝑡𝑖 [𝐴]
as its key takes 𝐷𝑆𝐴 (𝑡𝑖 , ·) as its value (lines 11 and 15). If the key
𝑡𝑖 [𝐴] is found in the cache (line 6), then 𝑡 𝑗 [𝐴] = 𝑡𝑖 [𝐴] for some
𝑗 < 𝑖 . If 𝑗 < 𝑖 , then the tuples that 𝑡𝑖 needs to compare are a subset
of the tuples that 𝑡 𝑗 needs to compare. Consequently, we can easily
obtain 𝐷𝑆𝐴 (𝑡𝑖 , ·) by simply removing 𝑡𝑘 from the cached result for
all 𝑘 ≤ 𝑖 (lines 7-8). The cached result is discarded if it will no longer
be used, which happens when 𝑡𝑖 is the last tuple in its cluster (lines
9-10). If the key 𝑡𝑖 [𝐴] does not exist in the cache, then Algorithm
AttBuilder is called to compute 𝐷𝑆𝐴 (𝑡𝑖 , ·) (line 13). When memory
is low, we prefer to discard cached results for numerical attributes
or results with fewer future uses, i.e., results whose key values
belong to clusters containing fewer tuples after 𝑡𝑖 (not shown).

Algorithm.We now present our algorithm, calledAttBuilder (Algo-
rithm 2), for computing 𝐷𝑆𝐴 (𝑡𝑖 , ·). AttBuilder treats categorical and
numerical attributes in different ways. For a categorical attribute
𝐴, it deals with all tuples after 𝑡𝑖 one by one. For each 𝑡 𝑗 (𝑗 > 𝑖),
it identifies the cluster containing 𝑡 𝑗 and all tuples after 𝑡 𝑗 (lines
6-7), as all of them produce the same difference-set with 𝑡𝑖 . A set
checkedSet is used to save those tuples (line 8), to avoid processing

2048

Algorithm 2: AttBuilder
Input: tuple 𝑡𝑖 and attribute 𝐴
Output: the partial difference-sets 𝐷𝑆𝐴 (𝑡𝑖 , ·) for 𝑡𝑖 and 𝐴

1 𝐷𝑆𝐴 (𝑡𝑖 , ·) ← ∅
2 if 𝐴 is a categorical attribute then
3 checkedSet← ∅
4 foreach 𝑡 𝑗 ∈ { 𝑡𝑖+1, . . . , 𝑡 |𝑟 | } do
5 if 𝑡 𝑗 ∉ checkedSet then
6 cls← 𝑐𝑙𝑢𝑠𝐴 (𝑡 𝑗) // 𝑡 𝑗’s cluster

7 tidList← {𝑡𝑘 | 𝑡𝑘 ∈ cls ∧ 𝑘 ≥ 𝑗 }
8 checkedSet← checkedSet ∪ {𝑡𝑘 | 𝑡𝑘 ∈ cls ∧ 𝑘 ≥ 𝑗 }
9 dist← Φ𝐴 (𝑡𝑖 , 𝑡 𝑗) // distance calculation

10 𝑚← the largest satisfied threshold number according
to dist, or 0 if dist is larger than the max threshold

11 add <𝑚, tidList> into 𝐷𝑆𝐴 (𝑡𝑖 , ·) if no <𝑚, L> exists in
𝐷𝑆𝐴 (𝑡𝑖 , ·) , otherwise merge tidList into L

12 else // 𝐴 is a numerical attribute
13 clsList← all clusters cls such that the distance between cls.key

and 𝑡𝑖 [𝐴] is less than the maximum threshold
14 othertidList← [𝑡𝑖+1, . . . , 𝑡 |𝑟 |]
15 foreach cls ∈ clsList do
16 𝑡 𝑗 ← 𝑙𝑎𝑠𝑡𝑇𝑢𝑝𝑙𝑒 (cls)
17 if 𝑗 > 𝑖 then
18 dist← Φ𝐴 (𝑡𝑖 , 𝑡 𝑗) // distance calculation

19 𝑚← the largest satisfied threshold number
20 tidList← {𝑡𝑘 | 𝑡𝑘 ∈ cls ∧ 𝑘 > 𝑖}
21 othertidList← othertidList\{𝑡𝑘 | 𝑡𝑘 ∈ cls ∧ 𝑘 > 𝑖}
22 add <𝑚, tidList> into 𝐷𝑆𝐴 (𝑡𝑖 , ·) if no <𝑚, L> exists in

𝐷𝑆𝐴 (𝑡𝑖 , ·) , otherwise merge tidList into L
23 add <0, othertidList> into 𝐷𝑆𝐴 (𝑡𝑖 , ·)

them again (line 5). After the required distance calculation, the
threshold number is determined and put into 𝐷𝑆𝐴 (𝑡𝑖 , ·) together
with the TID list (lines 9-11). For a numerical attribute, AttBuilder
first identifies all the clusters containing tuples that, when com-
bined with 𝑡𝑖 , can contribute tuple pairs that satisfy some predicates
(line 13). As clusters for a numerical attribute are ordered, those
clusters can be found by identifying a start position and an end
position in the cluster list using a binary search (not shown), thus
avoiding checking all the clusters. AttBuilder then processes the
tuples in those clusters that come after 𝑡𝑖 (lines 15-22). AttBuilder
also identifies all the tuples that, when combined with 𝑡𝑖 , do not
satisfy any predicates during the same process (lines 14 and 21).
Example 7: Consider 𝐷𝑆𝐴𝑐𝑢𝑖𝑡𝑦 (𝑡3, ·). Since only tuples in the same
cluster as 𝑡3 can satisfy 𝐴𝑐𝑢𝑖𝑡𝑦 (0) , it suffices to visit the cluster
< 1, [𝑡3,𝑡8,𝑡10] >. In 𝐷𝑆𝐴𝑐𝑢𝑖𝑡𝑦 (𝑡3, ·), < 1, [𝑡8, 𝑡10] > represents tu-
ples that, when combined with 𝑡3, satisfy 𝐴𝑐𝑢𝑖𝑡𝑦 (0) , while < 0, [𝑡4,
𝑡5, 𝑡6, 𝑡7, 𝑡9] > denotes tuples that do not satisfy any predicates
with 𝑡3. In DiffBuilder, 𝐷𝑆𝐴𝑐𝑢𝑖𝑡𝑦 (𝑡3, ·) is cached with “1” as the key.
𝐷𝑆𝐴𝑐𝑢𝑖𝑡𝑦 (𝑡8, ·) and 𝐷𝑆𝐴𝑐𝑢𝑖𝑡𝑦 (𝑡10, ·) are then obtained leveraging
the cache. For instance, 𝐷𝑆𝐴𝑐𝑢𝑖𝑡𝑦 (𝑡8, ·) = { < 1, [𝑡10] >, < 0, [𝑡9] > };
it retains only the tuples after 𝑡8 from the cached result. □

Space and time complexity. (1) It takes 𝑂 (|𝐷𝑆 (𝑡𝑖 , ·) | (|𝑟 | + |𝑅 |))
space to compute 𝐷𝑆 (𝑡𝑖 , ·). Threshold numbers for all the attributes
and a TID list are saved within each difference-set. We use |𝑟 | bits
to store each TID list, where a bit set to 1 indicates that the corre-
sponding tuple is in the list. 𝐷𝑆 (𝑡𝑖 , ·) finally takes 𝑂 (|𝐷𝑆 (𝑡𝑖 , ·) | |𝑅 |)

Figure 2: RFD generation

space after all TID lists are discarded. 𝐷𝑆 (𝑟) takes 𝑂 (|𝐷𝑆 (𝑟) | |𝑅 |)
space; usually, |𝐷𝑆 (𝑟) | ≪ |𝑟 |2, as experimentally verified (shown
in Table 4). All cached results take𝑂 (|𝑟 |∑︁𝐴∈𝑅 |𝑐𝑙𝑢𝑠𝐴 | (|𝑇ℎ𝑟𝐴 | + 1))
space, where |𝑐𝑙𝑢𝑠𝐴 | denotes the number of clusters in 𝐴. Useless
cached results are discarded promptly. DiffBuilder in total takes
𝑂 (max

𝑡𝑖 ∈𝑟
|𝐷𝑆 (𝑡𝑖 , ·) | (|𝑟 | + |𝑅 |) +

∑︁
𝐴∈𝑅
|𝑐𝑙𝑢𝑠𝐴 | (|𝑇ℎ𝑟𝐴 | +1) |𝑟 | + |𝐷𝑆 (𝑟) | |𝑅 |)

space, since each 𝐷𝑆 (𝑡𝑖 , ·) is computed in sequence.
(2) It takes 𝑂 (|𝑟 | |𝑅 | +∑︁𝐴∈𝑅 |𝑐𝑙𝑢𝑠𝐴 |𝑙𝑜𝑔(|𝑐𝑙𝑢𝑠𝐴 |)) time to build and
sort clusters for all attributes. Assuming that all cache operations
take 𝑂 (1) time, it requires 𝑂 (∑︁𝐴∈𝑅 |𝑐𝑙𝑢𝑠𝐴 |2) time to calculate dis-
tances and 𝑂 (|𝑟 |∑︁𝐴∈𝑅 |𝑐𝑙𝑢𝑠𝐴 | (|𝑇ℎ𝑟𝐴 | + 1) + |𝑟 |

∑︁
𝑡𝑖 ∈𝑟 |𝐷𝑆 (𝑡𝑖 , ·) |)

time to process TID lists, with clustering and caching techniques.
The time complexity of DiffBuilder is the sum of the three parts.
All the bitwise operations on TID lists, such as intersection and
union, are very efficiently implemented with roaring bitmaps [29].

6 RFD DISCOVERYWITH DIFFERENCE-SET
In this section, we first provide an algorithm to discover all valid
and minimal RFDs leveraging 𝐷𝑆 (𝑟) built by DiffBuilder, and then
adapt it to discover only top-𝑘 RFDs based on a utility function.

Before detailing our algorithm, we explain several key techni-
cal aspects. For ease of understanding, we show each difference-set
as a predicate set, regardless of our underlying implementation.
We denote by 𝐷𝑆𝐴

𝜃𝑖
(𝑟) the subset of 𝐷𝑆 (𝑟) consisting of all the

difference-sets that contain a given predicate 𝐴𝜃𝑖 , i.e., 𝐷𝑆𝐴𝜃𝑖
(𝑟) =

{ds | ds ∈ 𝐷𝑆 (𝑟) ∧ 𝐴𝜃𝑖 ∈ ds }.
RFD refinement with difference-sets. In generating each RFD,
our method begins by selecting a RHS predicate and then incremen-
tally adds LHS predicates until the RFD becomes valid or is deemed
impossible. We utilize difference-sets in 𝐷𝑆 (𝑟) to guide the process
of adding LHS predicates, based on Proposition 1. As illustrated
before in Example 6, for a RFD 𝜆 with 𝐴𝜃𝑖 on its RHS, and a tuple
pair tp with its difference-set ds: (a) The pair tp may potentially
violate 𝜆 only when ds contains 𝐴𝜃𝑖 , i.e., ds ∈ 𝐷𝑆𝐴𝜃𝑖

(𝑟). (b) If ds
contains 𝐴𝜃𝑖 and 𝜆 contains no predicates from ds on its LHS, then
tp violates 𝜆. This violation can be resolved by adding to the LHS of
𝜆 any predicate from ds that is not on attribute 𝐴.
Example 8: Figure 2 illustrates our approach. We consider a rela-
tion containing 3 attributes and 5 tuples, and show all the predicates
and difference-sets along with the number of tuple pairs that pro-
duce each difference-set (denoted by 𝑐𝑛𝑡). Given that the error
threshold 𝜖 is 0.2, a valid RFD needs to be satisfied by a minimum
of 16 out of 20 tuple pairs. In this example, we consider RFDs with
𝐶 (1) on the RHS. Since 𝐷𝑆𝐶 (1) (𝑟) only includes 𝑑𝑠1 and 𝑑𝑠2, any RFD

2049

is always satisfied by the 6 tuple pairs producing 𝑑𝑠3. Therefore,
every valid RFD needs to be satisfied by 10 more tuple pairs.

We start with an empty LHS predicate set. (1) First consider 𝑑𝑠1.
∅ 0.2→ 𝐶 (1) is violated by the tuple pairs producing 𝑑𝑠1 because its
LHS has no predicates from 𝑑𝑠1. Since a valid RFD can be violated
by some tuple pairs, we have the option to resolve 𝑑𝑠1 or not,
leading to two branches. In the branch where 𝑑𝑠1 is unresolved, the
predicates in 𝑑𝑠1 cannot be used because using them will resolve
𝑑𝑠1. The branch terminates immediately due to the lack of available
predicates. In the other branch, the 2 predicates within 𝑑𝑠1 that are
not on attribute 𝐶 are added individually to the LHS to generate 2
RFDs, each of which is satisfied by an additional 8 tuple pairs. (2)
Next consider 𝑑𝑠2. 𝐴(0)

0.2→ 𝐶 (1) contains a LHS predicate from 𝑑𝑠2,
and is confirmed as valid because the number of satisfying tuple
pairs meets the requirement. In contrast, adding 𝐴(0) to the LHS of

𝐵 (0)
0.2→ 𝐶 (1) results in a non-minimal RFD. □

Processing order of RHS predicates.We adopt a strategy to unify
the processing of RFDs that use different RHS predicates on the
same attribute, by addressing them in descending order of their RHS
threshold values. This is because a smaller RHS threshold represents
a stricter constraint, which is thus harder to satisfy.
Proposition 2: If 𝜃𝑖 > 𝜃 𝑗 , then
(1) ∀ds ∈ 𝐷𝑆 (𝑟), 𝐴𝜃 𝑗 ∈ ds if 𝐴𝜃𝑖 ∈ ds;
(2) 𝐷𝑆𝐴

𝜃𝑖
(𝑟) ⊆ 𝐷𝑆𝐴

𝜃 𝑗
(𝑟);

Example 9: (Example 8 continued.) We consider RFDs with 𝐶 (0)
on the RHS. The processing does not start from scratch as 𝐷𝑆𝐶 (1) (𝑟)
⊂ 𝐷𝑆𝐶 (0) (𝑟); only branches that yield valid RFDs in Example 8 are
promising ones. Since 𝑑𝑠3 ∈ 𝐷𝑆𝐶 (0) (𝑟), every valid RFD with RHS
predicate 𝐶 (0) should be satisfied by 6 more tuple pairs compared

to that with 𝐶 (1) . We begin with 𝐴(0)
0.2→ 𝐶 (0) , which is already

satisfied by the tuple pairs producing 𝑑𝑠3. Notably, the validity of
𝐴(0)

0.2→ 𝐶 (0) implies that 𝐴(0)
0.2→ 𝐶 (1) is no longer minimal. □

Algorithm. We present our algorithm, called RFDD (Algorithm 3),
for finding the complete set of valid and minimal RFDs. We denote
by 𝐷𝑆𝐴 (𝑟) the subset of 𝐷𝑆 (𝑟) consisting of all difference-sets that
contain at least one predicate on attribute 𝐴, and denote the count
associated with each difference-set ds by ds.cnt. For each attribute
𝐴 ∈ 𝑅, RFDD first sorts difference-sets within 𝐷𝑆𝐴 (𝑟) and divides
them into stages (lines 2-4). The rationale is that if 𝐷𝑆𝐴 (𝑟) [𝑚] is
the first difference-set that does not contain a predicate 𝐴𝜃𝑖 , then
all the difference-sets before𝐷𝑆𝐴 (𝑟) [𝑚] belong to𝐷𝑆𝐴

𝜃𝑖
(𝑟). RFDD

next builds an array cntAry with |𝑇ℎ𝑟𝐴 | elements (lines 5-6). For a
RFD 𝜆 with RHS predicate 𝐴𝜃𝑖 , difference-sets in 𝐷𝑆 (𝑟) \ 𝐷𝑆𝐴

𝜃𝑖
(𝑟)

correspond to tuple pairs that always satisfy 𝜆. Thus, cntAry[i]
represents the number of remaining tuple pairs that must satisfy
𝜆 to make 𝜆 valid. Finally, RFDD calls Procedure DSEnum to find
all valid and minimal RFDs with RHS predicates on 𝐴 (line 7). The
meanings of every parameter will be explained shortly.

Algorithm. DSEnum (Algorithm 4) is presented to find all valid
and minimal RFDs with RHS predicates on 𝐴, by utilizing difference-
sets to generate RFDs and eliminating non-minimal or invalid RFDs
through various effective rules. The enumeration of all difference-
sets from 𝐷𝑆𝐴 (𝑟) is organized in a tree structure where each node

Algorithm 3: RFD Discovery (RFDD)
Input: the set 𝐷𝑆 (𝑟) of distinct difference-sets, the set P of

predicates, the set𝑇ℎ𝑟𝐴 of similarity thresholds for each
𝐴 ∈ 𝑅, and the error threshold 𝜖

Output: the complete set Σ of minimal and valid RFDs
1 foreach 𝐴 ∈ R do
2 sort difference-sets in𝐷𝑆𝐴 (𝑟) in descending order, based on the

number of predicates on 𝐴 contained in each difference-set
3 foreach ds in 𝐷𝑆𝐴 (𝑟) do
4 ds.stage← the minimum 𝑖 such that 𝐴𝜃𝑖 ∈ ds
5 for 𝑖 ← 1 to |𝑇ℎ𝑟𝐴 | do
6 cntAry[i]← (|𝑟 |2- |𝑟 |)×(1-𝜖) − ∑︁

ds∈𝐷𝑆 (𝑟)\𝐷𝑆𝐴
𝜃𝑖
(𝑟) ds.cnt

7 DSEnum(𝐴, 1, cntAry, P \ {𝐴
𝜃𝑘

| 𝜃𝑘 ∈ 𝑇ℎ𝑟𝐴}, ∅)

corresponds to a (recursive) call of DSEnum. The parent-child rela-
tionship of nodes follows the order of difference-sets within𝐷𝑆𝐴 (𝑟),
similar to the demonstration shown in Figure 2. Each timeDSEnum
gets called, it employs the 𝑖-th difference-set to refine LHS predicate
sets in Ω. The predicates available for use are restricted to the set
predSet. Counts stored in cntAry are adjusted after RFD refinement
and utilized to check the validity of RFDs. When first called in RFDD,
DSEnum takes the first difference-set within 𝐷𝑆𝐴 (𝑟), an empty set
Ω, and all predicates except those on 𝐴 as predSet.

DSEnum first checks the current processing state. If the current
results already form valid RFDs as indicated by cntAry, then they
are added to the result set Σ (line 3). The operations at a node are
immediately terminated if difference-sets have been used up, the
predicate on 𝐴 with the minimum threshold has been addressed,
or no LHS predicate sets exist (line 4). If the current difference-
set is in a different stage than the previous one, then DSEnum
begins processing RFDs using a new RHS predicate with a smaller
threshold; pruning is applied if no valid RFDs exist for the previous
RHS predicate (lines 5-6). The LHS predicate sets that do not intersect
with the current difference-set are collected (line 8).

Under the node for the 𝑖-th difference-set ds, the tree forks into
two branches. (a) In the branch where ds is unresolved, the set of
available predicates is adjusted because the predicates appearing in
ds cannot be used afterwards (line 10). For those LHS predicate sets
that have no more predicates available for refinement, DSEnum
collects those already forming valid RFDs by invoking Procedure
Check (lines 12-14). After that, DSEnum is recursively called (line
15). (b) In the branch where ds is resolved, counts stored in cntAry
are decreased (lines 18-19). DSEnum enumerates all the available
predicates, each time uses one of them to refine LHS predicate sets,
and discards non-minimal ones immediately (lines 20-24). Predicate
sets that cannot be further refined are handled similarly to those at
the preceding branch (lines 25-26), while all the others are collected
(line 27). Finally, DSEnum is recursively called (line 28).
Procedure Collect. Collect is invoked to add valid RFDs to Σ. It finds
the smallest threshold value 𝜃𝑘 for the RHS predicate that still forms
valid RFDs (lines 31-32), and combines minimality check to discard
non-minimal RFDs (lines 34 and 36).
Procedure Check. Given a predicate set 𝜔 , Check identifies all the
remaining difference-sets that intersect with𝜔 , subtracts the counts
of such difference-sets and calls Collect if valid RFDs are found.

2050

Algorithm 4: Difference-set Enumeration (DSEnum)
1 Procedure DSEnum(𝐴, i, cntAry, predSet, Ω)
2 if i = 1 then stage← 1 else stage← 𝐷𝑆𝐴 (𝑟) [𝑖-1].stage
3 if cntAry[stage] ≤ 0 then Collect(𝐴, Ω, stage,cntAry)
4 if 𝑖> |𝐷𝑆𝐴 (𝑟) | ∨ cntAry[|𝑇ℎ𝑟𝐴 |] ≤ 0 ∨ Ω = ∅ then return
5 ds← 𝐷𝑆𝐴 (𝑟) [𝑖]; curStage← ds.stage
6 if curStage ≠ stage ∧ cntAry[stage] > 0 then return
7 stage← curStage
8 Ω− ← {𝜔 ∈ Ω | 𝜔 ∩ ds = ∅}
9 Ω ← Ω \ Ω−

/* The branch where ds is unresolved */

10 predSet ← predSet \ds
11 if Ω− ≠ ∅ then
12 foreach 𝜔 ∈ Ω− such that predSet \𝜔 = ∅ do
13 Ω− ← Ω− \𝜔
14 Check (𝑖+1, 𝜔 , stage, cntAry)
15 DSEnum(𝐴, 𝑖 + 1, cntAry, predSet, Ω−)
16 recover the changes done in lines 10 and 13

/* the branch where ds is resolved */

17 if predSet ∩ ds ≠ ∅ then
18 for 𝑘 ← stage to |𝑇ℎ𝑟𝐴 | do
19 cntAry[k]← cntAry[k] - ds.cnt
20 foreach 𝜔 ∈ Ω− do
21 foreach 𝑝 ∈ (ds \𝜔) ∩ predSet do
22 𝜔 ′ ← 𝜔 ∪ {𝑝}
23 if ∃𝜂 ∈ Ω where 𝜂 ⪰ 𝜔 ′ then continue
24 remove all 𝜂 from Ω where 𝜔 ′ ⪰ 𝜂

25 if predSet \ 𝜔 ′ = ∅ then
26 Check (𝑖+1, 𝜔 ′ , stage, cntAry)
27 else Ω ← Ω ∪ {𝜔 ′}
28 DSEnum(𝐴, 𝑖 + 1, cntAry, predSet, Ω)
29

30 Procedure Collect(𝐴, candLHSs, stage, cntAry)
31 for k← stage to |𝑇ℎ𝑟𝐴 | do
32 if cntAry[k] > 0 then break
33 foreach 𝑋 ∈ candLHSs do
34 if ∄𝜂 → 𝐴𝜃 𝑗 ∈ Σ where 𝜂 ⪰ 𝑋 and 𝑗 ≥ 𝑘 then
35 Σ← Σ ∪ {𝑋 → 𝐴

𝜃𝑘
}

36 remove all 𝑋 → 𝐴𝜃 𝑗 from Σ where 𝑗 < 𝑘

37

38 Procedure Check(𝑘,𝜔, stage, cntAry)
39 for ds← 𝐷𝑆𝐴 (𝑟) [𝑘] to 𝐷𝑆𝐴 (𝑟) [|𝑇ℎ𝑟𝐴 |] do
40 if 𝜔 ∩ ds ≠ ∅ then
41 for 𝑘 ← ds.stage to |𝑇ℎ𝑟𝐴 | do
42 cntAry[k]← cntAry[k] - ds.cnt
43 if cntAry[stage] ≤ 0 then Collect(𝐴, {𝜔 }, stage, cntAry)

Example 10: Consider the instance 𝑟 in Table 1 and the predicate
set in Table 2. We only take into account attributes 𝐷𝐸𝑃 , 𝑁𝑎𝑚𝑒 and
𝑅𝑁 in this example. We consider RFDs with RHS predicate on 𝐷𝐸𝑃

and set 𝜖 = 0.1. Figure 3 presents execution details of DSEnum.
(1) At node 1○, Ω = {∅}, predSet = {𝑁𝑎𝑚𝑒 (0) , 𝑅𝑁 (0) , 𝑅𝑁 (1) } and
cntAry = [31, 36]. First consider node 2○ where ds1 is not resolved.
Since predSet \ ds1 = ∅, no branches are forked under this node.
Then consider node 3○ where ds1 is resolved. Each predicate from
predSet ∩ 𝑑𝑠1 is used as a LHS predicate set, except for 𝑅𝑁 (0) .
(2) Two valid 𝐿𝐻𝑆𝑠 {𝑁𝑎𝑚𝑒 (0) } and {𝑅𝑁 (0) } appear in node 5○ for

Figure 3: Running example of DSEnum

the RHS predicate 𝐷𝐸𝑃 (1) (stage 1), but the search continues to

test 𝐷𝐸𝑃 (0) . This is finally verified at node 9○, where 𝑁𝑎𝑚𝑒 (0)
0.1→

𝐷𝐸𝑃 (1) is removed from Σ while 𝑁𝑎𝑚𝑒 (0)
0.1→ 𝐷𝐸𝑃 (0) is added to Σ

in Procedure Collect. There is no need to further process ds5 under
node 9○, as valid RFDs for the final stage (stage 2) have been found.
(3) At node 6○, no predicates are available to refine the LHS predicate
set {𝑅𝑁 (0) }. After𝑅𝑁 (0)

0.1→𝐷𝐸𝑃 (0) is verified to be invalid inCheck,
branches under 6○ are pruned.

Finally,𝑁𝑎𝑚𝑒 (0)
0.1→𝐷𝐸𝑃 (0) and𝑅𝑁 (0)

0.1→𝐷𝐸𝑃 (1) are discovered
as valid and minimal RFDs. □
Proposition 3: Algorithm RFDD finds the complete set of valid
and minimal RFDs.
Proof: (1) Validity. The validity of RFDs is checked at each node.
All RFDs at a node use the same RHS predicate and resolve identical
difference-sets. Each position in cntAry corresponds to a specific
RHS predicate, indicating the number of remaining tuple pairs to
be satisfied by valid RFDs. A value of zero or less in any position
indicates that the LHS predicate sets at that node, along with the
associated RHS predicate, form valid RFDs.
(2) Minimality. The minimality of every valid RFD is checked when
added to Σ (in Collect). This process involves first checking for
any RFDs in Σ that hinder the minimality of the new RFD, and
then removing all RFDs that are no longer minimal due to the new
one. Only the equivalent LHS predicate set is considered in the
second step. This is because the visit to a node that does not resolve
a difference-set always occurs before the node that resolves the
difference-set, ensuring that every LHS predicate set generated at a
later node cannot be a proper subset of those at an earlier node.
(3) Completeness. RFDD enumerates every attribute and generates
RFDswith RHS predicates on that attribute using DSEnum. For each

2051

difference-set ds, DSEnum creates two branches: one that does not
resolve ds and one that does. The resolving branch utilizes each
available predicate to create new LHS predicate sets. The above
process exhaustively generates all valid RFDs. The pruning rules
only eliminate invalid or non-minimal RFDs. If a branch cannot
yield valid RFDswith a RHS threshold, it cannot do so with a smaller
one either (line 6). DSEnum checks if any LHS predicate set already
forms a valid RFD (in Check) before discarding it (lines 14 and 26).
Minimality checks occur within a node (lines 23-24) or when adding
valid RFDs to Σ (in Collect), removing only non-minimal RFDs. □

Complexity. The complexity of RFDD is the sum of the complexi-
ties of DSEnum applied to each attribute. We measure the complex-
ity of the enumeration algorithm DSEnum in the size of the search
space. In the search tree for attribute 𝐴, the number of nodes is
𝑂 (2 |𝐷𝑆𝐴 (𝑟) |) and the total number of distinct LHS predicate sets at
all nodes is𝑂 (2 | P𝐴 |), where |P

𝐴
| denotes the number of predicates

appearing in𝐷𝑆𝐴 (𝑟) that are associated with attributes other than𝐴.
RFD generation only uses predicates within 𝐷𝑆𝐴 (𝑟), and in the two
branches under a node, their LHS predicate sets are disjoint; in the
branch where a difference-set is unresolved, predicate sets that in-
tersect with that difference-set and its predicates are excluded from
future processing. Operations on cntAry take 𝑂 (|𝐷𝑆𝐴 (𝑟) | |𝑇ℎ𝑟𝐴 |)
time in total. The minimality check takes 𝑂 (|Ω |2) within a node
and𝑂 (|Σ| |Ω |) when Procedure Collect is invoked at a node, where
|Ω | denotes the number of LHS predicate sets at that node.

Remark. Enumerating valid RFDs inherently exhibits worst-case
exponential complexity. The actual running complexity primarily
depends on the number of RFDs generated for validation during
the search and the overhead of removing non-minimal RFDs. In our
approach, each refinement of a LHS predicate set is restricted to the
predicates within a specific difference-set, thereby ensuring that
the difference-set is resolved. This reduces the generation of invalid
RFDs and allows us to keep track of the counts of tuple pairs that
need to be satisfied instead of RFD validations; the complexity of
RFDD is independent of |𝑟 |. We also eliminate branches that cannot
generate valid RFDs as early as possible and perform minimality
checks early at each node to substantially decrease the minimality
check cost when adding valid RFDs to the result set. In contrast, the
baseline method generates RFDs by enumerating combinations of
predicates and validating them with difference-sets. This results in
a significantly larger RFD space of𝑂 (2 | P |− |𝑇ℎ𝑟𝐴 |) for each attribute
𝐴, consequently numerous invalid RFDs, and redundant, costly vali-
dation operations. Performing pairwise minimality checks among
all valid RFDs can also be expensive.

Top-𝑘 discovery. We adapt RFDD to discover only top-𝑘 RFDs.
This version, denoted by RFDDtop, aids users in selecting several
meaningful RFDs, suitable for certain scenarios. We first present a
utility function that combines some common metrics [8, 47, 50, 51].
The utility of a RFD 𝜆 is computed as follows:

𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝜆) = 𝑓 𝑟𝑎𝑐 (𝑅𝐻𝑆𝜆) ·𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐿𝐻𝑆𝜆)
|𝐿𝐻𝑆𝜆 |

(1) RHS threshold number: without loss of generality, assume that
𝑅𝐻𝑆𝜆 = 𝐴𝜃𝑘 . Recall that on 𝐴 the minimum threshold of 0 cor-
responds to number |𝑇ℎ𝑟𝐴 |, while the maximum threshold corre-
sponds to number 1. frac(𝑅𝐻𝑆𝜆) = 𝑘/|𝑇ℎ𝑟𝐴 |, where a large value
indicates a strong constraint on the RHS and is desirable.

Table 4: Datasets and execution statistics (TL: 100+ hours for
dataset EQ, 10+ hours for others)

Dataset Properties Results Running Time (seconds)
Dataset |𝑟 | |𝑅 | | P | |𝐷𝑆 (𝑟) | |Σ | RowRFD ColRFD FastRFD
Bridges 108 12+1 47 2,563 7,383 116 TL 11.5
Echo 132 13+0 47 5,389 14,249 743 TL 148
Iris 150 1+4 22 1,278 355 0.604 71.2 0.538

Foodstamp 150 0+5 14 99 32 0.086 5.5 0.061
Glass 214 0+11 47 10,358 25,084 3,579 TL 651

Balance 625 1+4 10 30 13 0.125 18.8 0.18
Restaurant 864 5+1 25 307 28 1.43 81.7 0.387

Car 1,728 7+0 18 1,466 381 2.02 6,112 0.512
Wine 4,898 0+9 26 39,859 1,435 774 TL 676

Abalone 4,177 1+8 37 23,545 790 1,154 TL 1,010
Emissions 8,088 0+5 16 251 37 40.5 6,518 10.8

Pcm 9,342 10+2 49 8,787 345 96.6 TL 35.9
Vocab 21k 1+4 6 24 16 72.1 4,643 9.1
Chess 28k 4+3 16 429 210 150 TL 40.9
Claim 112k 8+3 29 26,596 586 7,858 TL 1,841
Stock 122k 2+5 33 21,917 170 8,297 TL 1,069
Flight 150k 8+5 62 33,465 2,388 9,437 TL 2,698
Struct 169k 1+5 25 1,098 30 6,135 TL 231
EQ 1,000k 0+12 72 7,992 96 209,752 TL 52,761

(2) Support: support(𝐿𝐻𝑆𝜆) is the proportion of tuple pairs that
satisfy all the LHS predicates, and measures how frequently 𝜆 can be
applied. A high support indicates that more tuples are constrained
by 𝜆, implying better utility in downstream tasks.
(3) LHS cardinality: |𝐿𝐻𝑆𝜆 | is the number of LHS predicates. A small
|𝐿𝐻𝑆𝜆 | implies succinctness, avoiding potential overfitting RFDs.

Implementation.Different from the other twometrics, the support
is computationally expensive. Based on 𝐷𝑆 (𝑟), an inverted index
is built to enhance efficiency. For each predicate, a bit array with
|𝐷𝑆 (𝑟) | elements is used, where a “1” at a position indicates that the
corresponding difference-set in 𝐷𝑆 (𝑟) does not contain the predi-
cate. With these bit arrays, the difference-sets that do not contain
multiple predicates simultaneously can be efficiently obtained.

7 EXPERIMENTAL STUDY
In this section, we experimentally evaluate our approach.
Datasets. The tested datasets are shown in Table 4, and they have
been extensively used in prior work [8, 15, 27, 41]. |𝑅 | is given in
the form of # textual attributes + # numerical attributes. We set
similarity thresholds on each dataset in the same way as [8].
Algorithms. Our RFD discovery method, called FastRFD, is imple-
mented in Java. It first constructs 𝐷𝑆 (𝑟) with DiffBuilder (Algo-
rithm 1), and then finds RFDs with RFDD (Algorithm 3) based on
𝐷𝑆 (𝑟). FastRFD is compared with the following algorithms (all
implemented in Java) in terms of efficiency and (or) effectiveness.
(1) Two baseline RFD discovery methods are developed based on
column-wise and row-wise strategies respectively. (a) ColRFD is
a non-trivial extension of the method Tane [20]. It enumerates
candidate RFDs by traversing a lattice built upon the subsumption
relationship of predicate sets, and then validates them via tuple
pair comparisons. The results of distance calculations between
strings are cached to avoid repeated calculations. (b) RowRFD is
a non-trivial extension of the method FastFD [58]. It first builds

2052

the difference-sets of all tuple pairs in a column-by-column fashion
enhanced with clustering, and obtains 𝐷𝑆 (𝑟) by removing dupli-
cate difference-sets. It then employs a simplified version of RFDD,
referred to as RFDD− , which deals with RFDs that use different RHS
predicates on the same attribute independently.
(2) Dim𝜖 [10]2, the only known algorithm to find RFDs relaxing
in both aspects. As stated in Section 2, the results of FastRFD and
Dim𝜖 are not comparable, because they use different criteria to
measure violations and Dim𝜖 cannot guarantee the completeness.
(3)Domino [8], PYRO [26],DAFDiscover [15] and FastDD [27], the
SOTA discovery methods for RFDs with relaxation in value equality,
RFDs with relaxation in constraint satisfaction, and DDs3.
Running environment.We use a machine with an Intel Xeon E-2224
3.4G CPU, 64GB of memory and CentOS, and report the average of
three runs. We set the error threshold 𝜖 to 0.01 by default.

Experimental results.We next report our findings.

Exp-1: FastRFD against baseline methods. Table 4 presents the
runtime of algorithms. The time limit for the largest dataset EQ is
100 hours, and 10 hours for others; results exceeding these limits
are marked as TL. We also show |𝐷𝑆 (𝑟) | and |Σ|. Recall that 𝐷𝑆 (𝑟)
is the intermediate result that connects the two parts of FastRFD
(and RowRFD). FastRFD can well process datasets with different
input and output scales and data distribution characteristics, and
can be orders of magnitude faster than the compared algorithms.
(1) ColRFD fails to process most datasets within the time limit, and
on the datasets it can complete, it is on average more than two
orders of magnitude slower than FastRFD. The results justify our
choice of the row-based strategy: (a) RFD discovery is constrained by
the inherently exponential complexity in |P |. Row-based methods
can perform much better compared to column-based ones when
facing a large search space. (b) The repeated distance calculations
in RFD validation are very costly even when distances between
strings are cached in ColRFD; building difference-sets column-wise
in FastRFD and RowRFD effectively avoids these redundancies.
(2) RowRFD is already a highly non-trivial row-based discovery
method, but FastRFD still beats it by on average 5.2X and up to
26.6X. The advantage of FastRFD over RowRFD comes from the
memory and operational benefits of keeping difference-sets in the
condensed representation, and the benefit brought by the unified
processing of RFDs using RHS predicates on the same attribute.

Exp-2: Scalability. We first compare the scalability of different
algorithms, and then study our scalability in depth.
Scalability comparison.We compare the scalability by varying pa-
rameters and limit the running time to 1 hour.
(1) Using Vocab and Chess, we study the impact of |𝑟 | in Figure 4a
and Figure 4b, respectively. ColRFD does not scale well on Vocab,
exceeding the time limit when |𝑟 | reaches 20k. FastRFD scales well:
as |𝑟 | increases from 12k to 18k, the time of FastRFD increases
from 5.4s to 8.1s and the advantage of FastRFD over RowRFD (resp.
ColRFD) expands from 3.3X to 5.2X (resp. 290X to 401X). On Chess,

2The code is at https://dastlab.github.io/dime/ (last accessed 2025/4/6).
3The code is at https://dast-unisa.github.io/Domino-SW/, https://github.com/HPI-
Information-Systems/pyro, https://github.com/agithuber2023/DAFDiscover and https:
//github.com/TristonK/FastDD, respectively (last accessed 2025/4/6).

(a) Vocab: varying |𝑟 | (b) Chess: varying |𝑟 |

(c) Flight: varying | P | (d) Glass: varying | P |

(e) Pcm: varying 𝜖 (f) Bridges: varying 𝜖

Figure 4: Scalability comparison

ColRFD can be completed within the time limit only when |𝑟 | =
2K. As |𝑟 | increases from 2k to 10k, the time taken by FastRFD
increases from 1s to 8.9s, as opposed to 1.9s to 44s by RowRFD. The
results verify the scalability advantage of FastRFD.
(2) We vary |P | by varying |𝑅 | or considering more thresholds
on certain attributes. When one predicate set is varied to another
larger one, the inclusion relationship between them is ensured.
In Figures 4c and 4d, we use Flight (|𝑟 | = 5k) and Glass to show
two representative scenarios where either DiffBuilder or RFDD
dominates FastRFD. On Flight, computing difference-sets takes a
significant portion of the runtime of both FastRFD and RowRFD.
The two methods show similar scalability since they both perform
difference-set construction column-wise, but FastRFD is still on
average 2.9X and up to 3.6X faster.With the increase of |P | onGlass,
the time for inferring RFDs from difference-sets increases rapidly
while that for difference-set construction only slightly increases due
to the small instance size. The proportion of RFDD finally accounts
for over 95% of the time of FastRFD (not shown). Overall, the time
of FastRFD increases by 67X, compared to 2,387X for ColRFD and
233X for RowRFD. The advantage of FastRFD over ColRFD verifies
the scalability advantage of row-based algorithms over column-
based ones, while that of FastRFD over RowRFD mainly comes
from the superiority of RFDD over RFDD− .
(3) We finally study the impact of 𝜖 . Since 𝜖 only affects the runtime
of RFDD, we conduct experiments to compare methods for obtain-
ing RFDs based on 𝐷𝑆 (𝑟): (a) RFDD. (b) RFDD− , the second part of
RowRFD. (c) ColEnum, which enumerates RFDs in the same way as

2053

https://dastlab.github.io/dime/
https://dast-unisa.github.io/Domino-SW/
https://github.com/HPI-Information-Systems/pyro
https://github.com/HPI-Information-Systems/pyro
https://github.com/agithuber2023/DAFDiscover
https://github.com/TristonK/FastDD
https://github.com/TristonK/FastDD

(a) varying |𝑟 | or | P | (b) time decomposition

Figure 5: Scalability of our methods

ColRFD but validates them via 𝐷𝑆 (𝑟) based on Proposition 1. We
select two datasets where the impact of 𝜖 on |Σ| varies.

The results for Pcm are shown in Figure 4e. RFDD is on average
124X faster thanColEnum and 2.7X faster than RFDD− . The former
comparison verifies that using difference-sets to refine RFDs can
be far more efficient than enumerating RFDs and then validating
them based on difference-sets. As analyzed in Section 6, the for-
mer approach significantly reduces the generation of invalid RFDs,
thereby greatly decreasing the search space, which is crucial for
enumeration algorithms with exponential complexity. Additionally,
the latter comparison shows that organizing RFDs based on the
subsumption of their RHS predicates can further enhance perfor-
mance. |Σ| decreases as 𝜖 increases on Pcm. With the increase of
𝜖 , a previously valid RFD may be replaced by a more generalized
RFD, i.e., a RFD with a smaller threshold in its RHS predicate, fewer
LHS predicates or larger threshold(s) in its LHS predicate(s). When
multiple valid RFDs share the same generalization, the total number
of discovered RFDs will decrease.

The results for Bridges shown in Figure 4f exhibit a trend that
slightly differs. |Σ| is 107 for 𝜖 = 0.001 but increases to 199 for 𝜖
= 0.01; the number of newly established valid RFDs exceeds that
of RFDs that are removed due to not being minimal. The time of
ColEnum (and RFDD−) decreases because valid RFDs (even with a
larger quantity) are discovered early in the traversal as 𝜖 increases.
RFDD slightly degrades as 𝜖 changes from 0.001 to 0.01. We observe
that a pruning rule in RFDD (line 6 of DSEnum) takes effect for 𝜖
= 0.001, making RFDD highly efficient, but it no longer works for 𝜖
= 0.01 when the restriction in RFD satisfaction is further relaxed.
More scalability results. Using all the datasets, we test the scalability
of our methods in Figure 5. In Figure 5a, we calculate the ratio of
running time as the proportions of |𝑟 | and |P | change, using the first
configuration of each dataset as the baseline. We display the time of
DiffBuilder only when varying |𝑟 |, since |𝑟 | does not directly affect
RFDD (the input for RFDD is 𝐷𝑆 (𝑟), but not 𝑟). The scalability of
DiffBuilder is much better than𝑂 (|𝑟 |2): when |𝑟 | increases tenfold,
the maximum growth ratio of the time is 43 and the median is 15.8.
The differences in scalability across different datasets are primarily
related to |𝐷𝑆 (𝑟) |. According to the complexity analysis provided in
Section 5, if |𝐷𝑆 (𝑟) | (and |𝐷𝑆 (𝑡𝑖 , ·) |) increases significantly with |𝑟 |,
it will reduce the benefits brought by difference-set compression,
leading to higher computational complexity.

When adjusting |P |, each attribute must have at least one predi-
cate, so some datasets start experiments at 40% of |P |. The time of
FastRFD reflects the cumulative effects of DiffBuilder and RFDD.
SinceRFDD is muchmore sensitive to |P | thanDiffBuilder, the time
of FastRFD significantly increases in datasets where the time for
RFDD constitutes the vast majority of FastRFD, possibly exhibiting
exponential growth. Consequently, we observe significant differ-
ences in the scalability of FastRFD with respect to |P | across differ-
ent datasets. In Figure 5b, we present the proportions ofDiffBuilder
and RFDD within FastRFD, highlighting a clear relationship with
the scalability with respect to |P |.
Exp-3: Handling dirty data. We compare different methods in
their abilities of identifying FDs from dirty data. We first conduct
FD discovery on 𝑟 to identify the set Σ of minimal and valid FDs as
the ground truth, and then inject errors into 𝑟 to generate a dirty
dataset 𝑟 ′. We next run each algorithm on 𝑟 ′ and measure the recall
(𝑅), precision (𝑃) and F-measure (𝐹) of the result set relative to Σ.

We inject errors by selecting 5% tuples, and for each tuple, modi-
fying all the values in the RHS attributes of FDs from Σ. Each value
has a 50% chance of being modified to a new value at a distance of
at most 2 from it, and a 50% chance of being replaced with another
value from the active domain. We set similarity thresholds 0, 1,
and 2 on each attribute for FastRFD and Domino. We test FastRFD
and PYRO with 𝜖 = 0.01 and 0.001, and report the setting where
both algorithms perform better. For DAFDiscover, the upper bound
on the proportion of errors is set for each attribute based on our
noise injection method. We set similarity threshold to 2 and 𝜖 to
0.1 for Dim𝜖 , as Dim𝜖 only supports one similarity threshold for
all attributes and uses a different way to quantify violations. We
also run exact FD discovery on 𝑟 ′, since injecting errors does not
imply that all the original valid FDs become invalid.

We report the results on three datasets in Table 5. Discovery
methods for some kinds of RFDs usually provide better recall on
dirty data compared to the exact discovery method. However,Dim𝜖

performs particularly poorly for Foodstamp. Only a small number
of valid results exist in this dataset, and Dim𝜖 misses all of them
because it does not guarantee completeness. Domino does not tol-
erate constraint violations, while PYRO and DAFDiscover do not
support relaxation in value equality. Thus, when faced with dirty
datasets that contain multiple types of errors, they often add too
many attributes on the LHS (similar to overfitting) in the discovery
process, which can notably reduce their precision in some cases.

2054

Table 5: Comparison of effectiveness

Dataset
Method

FastRFD Dim𝜖 [10]
Domino [8] PYRO [26]

DAFDiscover [15] ExactFD(𝜖 = 0.001) (𝜖 = 0.1) (𝜖 = 0.001)

Struct
𝑅 1.0 0.62 0.62 1.0 1.0 0.56
𝑃 0.76 0.67 0.21 0.69 0.69 0.47
𝐹 0.86 0.64 0.31 0.81 0.81 0.51

Stock
𝑅 0.96 0.42 0.90 1.0 1.0 0.82
𝑃 0.76 0.84 0.23 0.21 0.26 0.75
𝐹 0.85 0.57 0.37 0.35 0.41 0.78

Foodstamp
𝑅 0.86 0 0.29 0.57 1.0 0.29
𝑃 0.86 0 0.14 0.40 0.50 0.14
𝐹 0.86 0 0.19 0.47 0.66 0.19

Table 6: Ranking RFDs

Dataset Precision Example

Foodstamp 0.8 𝜆1: 𝑖𝑛𝑐𝑜𝑚𝑒 (10)
0.01−→ 𝑠𝑢𝑝𝑝𝑙𝑖𝑛𝑐𝑜𝑚𝑒 (0)

𝜆2: 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 (0) , 𝑖𝑛𝑐𝑜𝑚𝑒 (10)
0.01−→ 𝑡𝑒𝑛𝑎𝑛𝑐𝑦 (0)

Bridges 0.65 𝜆3: 𝑅𝐸𝐿(0) , 𝑡𝑦𝑝𝑒 (2)
0.01−→ 𝑐𝑙𝑒𝑎𝑟 (0)

𝜆4: 𝑒𝑟𝑒𝑐𝑡𝑒𝑑 (20) , 𝑠𝑝𝑎𝑛 (2) , 𝑅𝐸𝐿(0)
0.01−→𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (0)

Wine 0.8 𝜆5: 𝐹𝐴(0.4) , 𝑅𝑆 (4) ,𝑇𝑆𝐷 (4)
0.01−→ 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 (0)

𝜆6: 𝐹𝐴(0.4) ,𝑇𝑆𝐷 (4)
0.01−→ 𝑠𝑢𝑙𝑝ℎ𝑎𝑡𝑒𝑠 (0.1)

FastRFD performs the best across all criteria in Struct, and achieves
the best overall performance in Stock and Foodstamp, while other
methods usually have significant limitations in either precision or
recall. The results verify that compared to the other algorithms,
FastRFD is more effective in identifying FDs from dirty data.

Exp-4: Top-k discovery. We verify top-𝑘 discovery by employ-
ing RFDDtop in FastRFD. Using Foodstamp, Bridges andWine, we
identify top-20 RFDs on each dataset and manually judge the mean-
ingfulness of them. In Table 6, we report the precision, which is the
proportion of RFDsmarked as meaningful. Based on our utility func-
tion, relatively satisfactory results can be obtained. The attribute
descriptions and detailed discovery results are provided [30].

We showcase some results in Table 6. (1) 𝜆1 states that families
with very similar incomes should receive the same treatment re-
garding whether they have supplemental incomes. The difference
of 10 in the attribute income is small, as the values in income range
from 0 to 2,995, while supplincome contains a boolean value. The
corresponding exact FD and the version only relaxing the restriction
in value equality hold with exceptions and are invalid. Although
the version only relaxing the restriction in FD satisfaction is found
valid, 𝜆1 is more general and applicable in practice because it does
not require values in income to be strictly equal. (2) 𝜆4 states that
bridges built during the same period, if they have similar spans and
are either all elevated or all non-elevated, are constructed from the
same material. The corresponding exact FD only applies to bridges
with exactly the same year of construction and span, with much
lower support. (3) 𝜆5 indicates that slight variations in the con-
centrations of fixed acidity, residual sugar, and total sulfur dioxide
barely affect the quality. Both relaxations are necessary in this RFD.

The discovered RFDs can be utilized for enhancing data quality.
For instance, data violating RFDs are clear targets in data cleaning,
and attributes involving relaxed value equality may indicate the
presence of data precision problems.

(a) FastRFD against Dim𝜖

(b) FastRFD against Domino and FastDD

Figure 6: Runtime comparisons

Exp-5: FastRFD against Dim𝜖. We modify FastRFD to use the
same similarity threshold for all attributes as Dim𝜖 , and set 𝜖 to
0.1 for both algorithms. Dim𝜖 only supports datasets with |𝑟 | ≤
35K and cannot process some datasets within a 10-hour limit. As
reported in Figure 6a, FastRFD is on average 295X faster thanDim𝜖 ,
with a median speedup of 27 times. The results here and those from
Exp-3 verify that FastRFD far outperforms Dim𝜖 in terms of both
effectiveness and efficiency.

Exp-6: FastRFD against Domino and FastDD. By disabling the
relaxation in constraint satisfaction with 𝜖 = 0, FastRFD is adapted
to find RFDswith relaxation only in value equality, just likeDomino.
FastDD [27] is also used to generate the same output, by consid-
ering only the “≤” operator. The results in Figure 6b show that
FastRFD significantly beats Domino and is on average 92.9X faster
(Domino fails on EQ due to time limit). FastRFD is on average
1.77X faster than FastDD, outperforming it on 13 out of 19 datasets,
with its advantage particularly evident in some of the more time-
consuming datasets. FastRFD can also serve as an efficient solution
to the discovery of RFDs relaxing restrictions only in value equality.

8 CONCLUSION
We consider RFDs relaxing restrictions in value equality and con-
straint satisfaction simultaneously, and have presented the first
algorithm for discovering all valid and minimal RFDs. We have de-
veloped novel methods to build difference-sets and find RFDs based
on difference-sets, and verified the effectiveness and efficiency of
our approach through an extensive experimental evaluation.

We intend to extend our approach to distributed environments [46,
49], for addressing the scalability limitation of a single machine.

ACKNOWLEDGMENTS
This work is supported by National Natural Science Foundation of
China 62172102, U24B20143 and U22B2021. For any correspondence,
please refer to Zijing Tan and Shuai Ma.

2055

REFERENCES
[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2017. Data Profiling: A

Tutorial. In SIGMOD. 1747–1751.
[2] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock.

2018. Data Profiling. Morgan & Claypool Publishers, San Rafael.
[3] Ziawasch Abedjan, Patrick Schulze, and Felix Naumann. 2014. DFD: Efficient

Functional Dependency Discovery. In CIKM. 949–958.
[4] Tobias Bleifuß, Susanne Bülow, Johannes Frohnhofen, Julian Risch, Georg Wiese,

Sebastian Kruse, Thorsten Papenbrock, and Felix Naumann. 2016. Approximate
Discovery of Functional Dependencies for Large Datasets. In CIKM. 1803–1812.

[5] Tobias Bleifuß, Thorsten Papenbrock, Thomas Bläsius, Martin Schirneck, and
Felix Naumann. 2024. Discovering Functional Dependencies through Hitting Set
Enumeration. Proc. ACM Manag. Data 2, 1 (2024), 43:1–43:24.

[6] Bernardo Breve, Loredana Caruccio, Stefano Cirillo, Vincenzo Deufemia, and
Giuseppe Polese. 2023. IndiBits: Incremental Discovery of Relaxed Functional
Dependencies using Bitwise Similarity. In ICDE. 1393–1405.

[7] Loredana Caruccio and Stefano Cirillo. 2020. Incremental Discovery of Imprecise
Functional Dependencies. ACM J. Data Inf. Qual. 12, 4 (2020), 19:1–19:25.

[8] Loredana Caruccio, Vincenzo Deufemia, Felix Naumann, and Giuseppe Polese.
2021. Discovering Relaxed Functional Dependencies Based on Multi-Attribute
Dominance. IEEE Trans. Knowl. Data Eng. 33, 9 (2021), 3212–3228.

[9] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2016. Relaxed
Functional Dependencies - A Survey of Approaches. IEEE Trans. Knowl. Data
Eng. 28, 1 (2016), 147–165.

[10] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2020. Mining
relaxed functional dependencies from data. Data Min. Knowl. Discov. 34, 2 (2020),
443–477.

[11] Jixuan Chen, Yifeng Jin, Yihan Li, Zijing Tan, Weidong Yang, and Shuai Ma. 2023.
Effective and Efficient Lexicographical Order Dependency Discovery. IEEE Trans.
Knowl. Data Eng. 35, 9 (2023), 9700–9714.

[12] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering Denial Constraints.
PVLDB 6, 13 (2013), 1498–1509.

[13] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting
violations into context. In ICDE. 458–469.

[14] Xiaoou Ding, Yida Liu, Hongzhi Wang, ChenWang, Yichen Song, Donghua Yang,
and Jianmin Wang. 2024. Efficient Relaxed Functional Dependency Discovery
with Minimal Set Cover. In ICDE. 3519–3531.

[15] Xiaoou Ding, Yixing Lu, Hongzhi Wang, Chen Wang, Yida Liu, and Jianmin
Wang. 2024. DAFDiscover: Robust Mining Algorithm for Dynamic Approximate
Functional Dependencies on Dirty Data. Proc. VLDB Endow. 17, 11 (2024), 3484 –
3496.

[16] Wenfei Fan and Floris Geerts. 2012. Foundations of Data Quality Management.
Morgan & Claypool Publishers, San Rafael.

[17] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. 2011. Discovering
Conditional Functional Dependencies. IEEE Trans. Knowl. Data Eng. 23, 5 (2011),
683–698.

[18] Peter A. Flach and Iztok Savnik. 1999. Database Dependency Discovery: A
Machine Learning Approach. AI Commun. 12, 3 (1999), 139–160.

[19] Lukasz Golab, Howard J. Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. 2008.
On generating near-optimal tableaux for conditional functional dependencies.
PVLDB 1, 1 (2008), 376–390.

[20] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. 1999. TANE:
An Efficient Algorithm for Discovering Functional and Approximate Dependen-
cies. Comput. J. 42, 2 (1999), 100–111.

[21] Ihab F. Ilyas and Xu Chu. 2019. Data Cleaning. ACM, New York City.
[22] Ihab F. Ilyas, VolkerMarkl, Peter J. Haas, Paul Brown, andAshraf Aboulnaga. 2004.

CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies.
In SIGMOD. 647–658.

[23] Yifeng Jin, Zijing Tan, Jixuan Chen, and Shuai Ma. 2023. Discovery of Approxi-
mate Lexicographical Order Dependencies. IEEE Trans. Knowl. Data Eng. 35, 4
(2023), 3684–3698.

[24] Yifeng Jin, Lin Zhu, and Zijing Tan. 2020. Efficient Bidirectional Order Depen-
dency Discovery. In ICDE. 61–72.

[25] Jyrki Kivinen and Heikki Mannila. 1992. Approximate Dependency Inference
from Relations. In ICDT. 86–98.

[26] Sebastian Kruse and Felix Naumann. 2018. Efficient Discovery of Approximate
Dependencies. PVLDB 11, 7 (2018), 759–772.

[27] Shulei Kuang, Honghui Yang, Zijing Tan, and Shuai Ma. 2024. Efficient Differen-
tial Dependency Discovery. Proc. VLDB Endow. 17, 7 (2024), 1552–1564.

[28] Philipp Langer and Felix Naumann. 2016. Efficient order dependency detection.
VLDB J. 25, 2 (2016), 223–241.

[29] Daniel Lemire, Gregory Ssi Yan Kai, and Owen Kaser. 2016. Consistently faster
and smaller compressed bitmaps with Roaring. Softw. Pract. Exp. 46, 11 (2016),
1547–1569.

[30] Mengran Li, Zijing Tan, Honghui Yang, and Shuai Ma. 2024.
https://github.com/YukinoMR/FastRFD (last accessed 2025/4/10).

[31] Pei Li, Jaroslaw Szlichta, Michael H. Böhlen, and Divesh Srivastava. 2022. ABC
of order dependencies. VLDB J. 31, 5 (2022), 825–849.

[32] Qiongqiong Lin, Yunfan Gu, Jingyan Sai, Jinfei Liu, Kui Ren, Li Xiong, Tianzhen
Wang, Yanbei Pang, Sheng Wang, and Feifei Li. 2023. EulerFD: An Efficient
Double-Cycle Approximation of Functional Dependencies. In ICDE. 2878–2891.

[33] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. 2020. Approx-
imate Denial Constraints. PVLDB 13, 10 (2020), 1682–1695.

[34] Panagiotis Mandros, Mario Boley, and Jilles Vreeken. 2017. Discovering Reliable
Approximate Functional Dependencies. In SIGKDD. 355–363.

[35] Panagiotis Mandros, Mario Boley, and Jilles Vreeken. 2018. Discovering Reliable
Dependencies fromData: Hardness and Improved Algorithms. In ICDM. 317–326.

[36] Panagiotis Mandros, David Kaltenpoth, Mario Boley, and Jilles Vreeken. 2020.
Discovering Functional Dependencies from Mixed-Type Data. In SIGKDD. 1404–
1414.

[37] Heikki Mannila and Kari-Jouko Räihä. 1994. Algorithms for Inferring Functional
Dependencies from Relations. Data Knowl. Eng. 12, 1 (1994), 83–99.

[38] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer
Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Naumann. 2015. Func-
tional Dependency Discovery: An Experimental Evaluation of Seven Algorithms.
PVLDB 8, 10 (2015), 1082–1093.

[39] Thorsten Papenbrock and Felix Naumann. 2016. A Hybrid Approach to Func-
tional Dependency Discovery. In SIGMOD. 821–833.

[40] Eduardo H. M. Pena, Eduardo Cunha de Almeida, and Felix Naumann. 2019.
Discovery of Approximate (and Exact) Denial Constraints. PVLDB 13, 3 (2019),
266–278.

[41] Eduardo H. M. Pena, Fábio Porto, and Felix Naumann. 2022. Fast Algorithms for
Denial Constraint Discovery. PVLDB 16, 4 (2022), 684–696.

[42] Frédéric Pennerath, Panagiotis Mandros, and Jilles Vreeken. 2020. Discovering
Approximate Functional Dependencies using Smoothed Mutual Information. In
SIGKDD. 1254–1264.

[43] Chaoqin Qian, Menglu Li, Zijing Tan, Ai Ran, and Shuai Ma. 2023. Incremental
discovery of denial constraints. VLDB J. 32, 6 (2023), 1289–1313.

[44] Joeri Rammelaere and Floris Geerts. 2018. Explaining Repaired Data with CFDs.
PVLDB 11, 11 (2018), 1387–1399.

[45] Joeri Rammelaere and Floris Geerts. 2018. Revisiting Conditional Functional
Dependency Discovery: Splitting the "C" from the "FD". In ECML PKDD 2018.
552–568.

[46] Hemant Saxena, Lukasz Golab, and Ihab F. Ilyas. 2019. Distributed Implementa-
tions of Dependency Discovery Algorithms. Proc. VLDB Endow. 12, 11 (2019),
1624–1636.

[47] Philipp Schirmer, Thorsten Papenbrock, Ioannis K. Koumarelas, and Felix Nau-
mann. 2020. Efficient Discovery of Matching Dependencies. ACMTrans. Database
Syst. 45, 3 (2020), 13:1–13:33.

[48] Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Naumann, Dennis
Hempfing, Torben Mayer, and Daniel Neuschäfer-Rube. 2019. DynFD: Functional
Dependency Discovery in Dynamic Datasets. In EDBT. 253–264.

[49] Sebastian Schmidl and Thorsten Papenbrock. 2022. Efficient distributed discovery
of bidirectional order dependencies. VLDB J. 31, 1 (2022), 49–74.

[50] Shaoxu Song and Lei Chen. 2011. Differential dependencies: Reasoning and
discovery. ACM Trans. Database Syst. 36, 3 (2011), 16:1–16:41.

[51] Shaoxu Song, Lei Chen, and Hong Cheng. 2014. Efficient Determination of
Distance Thresholds for Differential Dependencies. IEEE Trans. Knowl. Data Eng.
26, 9 (2014), 2179–2192.

[52] Shaoxu Song, Fei Gao, Ruihong Huang, and Chaokun Wang. 2022. Data Depen-
dencies Extended for Variety and Veracity: A Family Tree. IEEE Trans. Knowl.
Data Eng. 34, 10 (2022), 4717–4736.

[53] Jaroslaw Szlichta, Parke Godfrey, Lukasz Golab, Mehdi Kargar, and Divesh Sri-
vastava. 2017. Effective and Complete Discovery of Order Dependencies via
Set-based Axiomatization. PVLDB 10, 7 (2017), 721–732.

[54] Jaroslaw Szlichta, Parke Godfrey, Lukasz Golab, Mehdi Kargar, and Divesh Srivas-
tava. 2018. Effective and complete discovery of bidirectional order dependencies
via set-based axioms. VLDB J. 27, 4 (2018), 573–591.

[55] Jaroslaw Szlichta, Parke Godfrey, Jarek Gryz, and Calisto Zuzarte. 2013. Expres-
siveness and Complexity of Order Dependencies. PVLDB 6, 14 (2013), 1858–1869.

[56] Ziheng Wei, Sven Hartmann, and Sebastian Link. 2021. Algorithms for the
discovery of embedded functional dependencies. VLDB J. 30, 6 (2021), 1069–
1093.

[57] Ziheng Wei and Sebastian Link. 2019. Discovery and Ranking of Functional
Dependencies. In ICDE. 1526–1537.

[58] Catharine M. Wyss, Chris Giannella, and Edward L. Robertson. 2001. FastFDs: A
Heuristic-Driven, Depth-First Algorithm for Mining Functional Dependencies
from Relation Instances. In DaWaK. 101–110.

[59] Renjie Xiao, Zijing Tan, Haojin Wang, and Shuai Ma. 2022. Fast approximate
denial constraint discovery. Proc. VLDB Endow. 16, 2 (2022), 269–281.

[60] Renjie Xiao, Yong’an Yuan, Zijing Tan, Shuai Ma, and Wei Wang. 2022. Dynamic
Functional Dependency Discovery with Dynamic Hitting Set Enumeration. In
ICDE. 286–298.

[61] Yunjia Zhang, Zhihan Guo, and Theodoros Rekatsinas. 2020. A Statistical Per-
spective on Discovering Functional Dependencies in Noisy Data. In SIGMOD.
861–876.

2056

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Framework for RFD Discovery
	5 Difference-set Construction
	6 RFD Discovery with Difference-set
	7 Experimental Study
	8 Conclusion
	References

