Tabular: Efficiently Building Efficient Indexes

Ziyi Yan
Simon Fraser University
ziyi_yan@sfu.ca

Tianxun Hu
Simon Fraser University
tha110@sfu.ca

ABSTRACT

Concurrent indexes are hard to build by requiring complex, careful
yet error-prone processes of design and implementation. As prior
work has observed, modeling indexes as transactional tables can
largely ease programming. The developer only needs to write single-
threaded logic without worrying about concurrency or persistence,
which are transparently supported by ACID table operations. How-
ever, this was deemed infeasible due to high overheads caused by
the underlying OLTP engine.

In this paper, we argue that by adapting recent OLTP techniques
which have been shown to deliver unprecedented performance, this
idea is now feasible. We propose Tabular, a new library for building
efficient indexes by modeling indexes as ACID tables which provide
concurrency and persistence transparently. We elaborate the design
of Tabular and its use cases. Our evaluation shows that compared to
hand-crafted ones, indexes built using Tabular provide competitive
performance with improved programming efficiency.

PVLDB Reference Format:

Ziyi Yan, Mohamed Farouk Drira, Tianxun Hu, and Tianzheng Wang.
Tabular: Efficiently Building Efficient Indexes. PVLDB, 18(6): 1991 - 2004,
2025.

doi:10.14778/3725688.3725721

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/sfu-dis/tabular.

1 INTRODUCTION

Database systems rely on concurrent indexes [3, 20, 47, 53, 61] for
high performance. They need to be optimized for modern hard-
ware as represented by multi-core processors, large DRAM and fast
SSDs. To leverage the massive parallelism of modern CPUs, it is
necessary to employ parallel programming techniques to facilitate
multi-threaded accesses. The typical development cycle follows a
hand-crafted approach that starts with a single-threaded proof-of-
concept, which is then gradually added with more features and the
necessary support for concurrency and persistence. After that, the
data structure goes through multiple iterations of debugging and
tuning to meet the quality and performance requirements.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 6 ISSN 2150-8097.
doi:10.14778/3725688.3725721

1991

Mohamed Farouk Drira

Simon Fraser University

mfd4@sfu.ca

Tianzheng Wang
Simon Fraser University
tzwang@sfu.ca

_Load A memcpy A Read cb
AL Verify €= -
A L
B o (8] +-m-
\ Pointer \ Update cb
chasing
] C
x'
(a) Hand-crafted (b) Naive (c) Tabular (this work)

Figure 1: Hand-crafted indexes (a) are fast with in-place
accesses but hard to build. (b) Modeling indexes as tables
eases programming, but is prohibitively slow due to multi-
versioning. (c) Tabular reduces overheads with single-version,
callback (cb) based operations, while easing programming,.

1.1 Index Programming Efficiency

Hand-crafted indexes can yield very high performance. As Fig-
ure 1(a) shows, however, they require DBMS developers use vari-
ous parallel programming techniques, leading to notoriously low
programming efficiency (i.e., they are hard to build) [14, 67],

First, the developer needs to make design decisions on synchro-
nization. The classic solution was lock coupling [4] which locks
both reads and writes pessimistically while traversing and updat-
ing an index (e.g., B+-tree). With more CPU cores, optimistic [52]
and lock-free [57] approaches become more desirable since they
allow reads to proceed without taking any locks. Yet, realizing this
requires a mindset shift for developers to take account retry logic
in various locations of the code. As we show later, this translates
into various branching conditions that would not have existed in
traditional pessimistic lock-based or single-threaded index imple-
mentations. Lock-free approaches [57] can get more complex; even
replicating the effort itself is a significant research topic [91].

Second, the choice of optimistic and lock-free concurrency sig-
nificantly complicates memory management. Unlike lock-based
programming where the lifecycle of memory (e.g., B+-tree nodes)
are aligned with critical section boundaries, memory blocks can
continue to play an active role even after they have been retired
from the data structure. For example, while one thread has finished
splitting a B+-tree leaf node, another concurrent thread may still be
using the old version as reads are not locked. The old node cannot
be recycled until the oldest thread has finished using it. Handling
such cases requires additional efforts on implementing approaches
such as hazard pointers [68] and epoch-based reclamation [30],
both involve delicate parallel programming techniques to get right.
On top of these, developers also need to consider optimizations for
storage (e.g., read/write asymmetry [56, 57]).

https://doi.org/10.14778/3725688.3725721
https://github.com/sfu-dis/tabular
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3725688.3725721
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Finally, indexes have to evolve as hardware evolves, mandating
index developers continuously customize their solutions and more
tediously, repeat them for different indexes that already exist.

Overall, the need for fast indexes mandates DBMS developers to
be also experts in neighboring areas, such as synchronization [52,
55, 79], memory management [74, 78], storage devices [15, 40] and
networking [96]. Having to delve deep into other areas exacerbates
the challenges faced by DBMS developers: the learning curve is
steeper, the time-to-market is longer, code is more complex and
harder to debug and maintain, and the “better” solution may turn
out to be suboptimal [21, 91], causing confusion and wasted effort.

1.2 Tabular

This paper proposes Tabular, a new parallel programming library
to ease index programming by revisiting the classic idea of objects-
on-DB [41] with necessary optimizations to bring competitive per-
formance. The gist is to model indexes as transactional tables that
transparently provide ACID guarantees. For example, B+-tree nodes
can be backed by a table whose schema defines the B+-tree node
class members as table columns. Tree operations are programmed
as Tabular transactions. This way, concurrency and persistence are
handled transparently. The developer only needs to (1) model index
components (e.g., B+-tree nodes) as table records, and (2) write
sequential code that performs transactional record accesses.

Realizing this idea requires high-performance OLTP techniques.
Early work [5, 41] has seen limited adoption and does not directly
meet the need for today’s high-performance indexes. As summa-
rized in Figure 1(b), the first key culprit is excessive memory copy-
ing. Compared to Figure 1(a) where a hand-crafted B+-tree performs
in-place accesses, a naive object-on-DB design accesses records via
the DBMS. Data has to be copied from tables to the transaction’s
local buffers; this is not needed by a hand-crafted index at all. To
avoid excessive memory copying, Tabular presents a zero-copy,
callback-based data access approach, inspired by prior work [35].
As Figure 1(c) shows, instead of performing traditional copy-based
transactions, the index code provides a callback function that spec-
ifies the operation to be performed on the target data record. We
also apply this technique to allow in-place updates on data records,
benefiting a wide range of index operations.

While multi-versioning has been proven to benefit “real” data-
base applications [92], it brings unnecessary overheads for in-
dexes. For example, record versions are often chained in linked
lists [16, 44, 59], so B+-tree nodes are transparently multi-versioned
and accessing a node can incur pointer chasing operations, which
are known to be a major source of memory stalls [39]. To solve
this problem, we depart from the de facto standard multi-versioned
approaches and advocate (1) single-version and (2) decentralized
optimistic concurrency control (OCC) [45, 85]. This allows Tabular
to eliminate unnecessary memory copying and pointer chasing
overheads. We devise a set of techniques to work with callbacks
while guaranteeing serializability. For example, classic decentral-
ized OCC sorts the write-set upon precommit to avoid deadlocks,
but this may lead to incorrect ordering for callback-based updates.
We tweak the OCC protocol to solve this problem (details later).

Tabular uses parallel redo-only logging [85, 93] for durability.
The developer only needs to indicate in a flag in Tabular whether

1992

persistence is needed, allowing (almost) effortless transformation
between a volatile and persistent index using the same code.

Importantly, our goal is not to improve index performance be-
yond the state-of-the-art. Rather, we make it easier to build indexes
with competitive performance. Our evaluation shows that on a dual-
socket, 48-core server, B+-trees, tries and extendible hash tables
built using Tabular can achieve up to ~95% of the performance of
their hand-crafted counterparts. Using cognitive complexity,! we
show that the code of Tabular-based indexes is similarly under-
standable to sequential implementations and is 41.8% less complex
than hand-crafted concurrent indexes. We also integrated Tabular-
based indexes into ERMIA [44], a representative memory-optimized
OLTP engine. The resulted engine delivers comparable TPC-C per-
formance to ERMIA, highlighting that Tabular-based indexes satisfy
the performance need of modern OLTP engines.

This paper focuses on indexes as they directly impact DBMS
performance and are complex enough to require non-trivial effort.
But the applicability of Tabular goes beyond indexes. For exam-
ple, it could be used to build queues and linked lists, which are
building blocks for lock managers. Tabular’s transaction and table
abstractions are generic: they can be used to implement user-level
transactions in an OLTP engine; we leave it as future work.

1.3 Contributions

This paper makes four contributions. @ We revisit the idea of map-
ping indexes to tables and make the case for its potential in im-
proving programming efficiency while maintaining performance.
@ We propose Tabular, a new parallel programming library to make
the idea practical. Tabular is widely applicable and can be easily
integrated into existing systems. € We adapt popular indexes (B+-
tree, extendible hashing and ART) to showcase the effect of Tabular.
@ We provide a comprehensive evaluation of Tabular and other
approaches under microbenchmarks and end-to-end benchmarks.
Tabular is open-source at https://github.com/sfu-dis/tabular.

2 BACKGROUND

This section introduces the necessary background and motivates
our work by identifying research challenges.

2.1 Concurrent Indexes and Programmability

Without losing generality, we use memory-optimized B+-trees as a
running example to elaborate the programming efficiency issues in
existing hand-crafted indexes.

Synchronization. A classic approach is lock? coupling [4]. Each
B+-tree node is protected by a lock. To access a node, the thread
explicitly acquires the lock in shared or exclusive mode. A node
can be unlocked once no modification will be required. To split,
we need to lock both the leaf and parent nodes in exclusive mode.
However, the thread can only tell whether the leaf needs to be split
after locking it, while the parent has been locked in shared mode.
So the parent lock needs to be upgraded to exclusive mode, which
is tricky to get right and can cause deadlocks when another thread
holding a shared lock on the same parent is traversing down [76].

A complexity metric that measures the difficulty level of understanding code [7].
2Also known as latches in database literature to differentiate from logical-level trans-
action locks; we use both terms interchangeably as our focus is physical-level indexes.

https://github.com/sfu-dis/tabular

1 bool BTree::Insert(Key k, Value v):
2 restart:

3 epoch_enter()
4 retry = false

Epoch manager

implementation... S
P Optimistic lock

N implementation...

5 n = root
~ A :??d—1°Ck 6 ver = n.read_lock(retry)
= 7 if retry or n != root: goto restart
8 while n is inner:
9 next = n.children[findChild(n, k)]
10 n.verify_read(ver, retry)
11 if retry: goto restart
12 ver_next = next.read_lock(retry)
13 if retry: goto restart
14 if next is inner node: ...
read_lock 15 else: ...
16

= —» Retry path

17 epoch_exit()

Figure 2: Compared to sequential logic (highlighted in blue),
developers spend non-trivial extra effort on implementing
optimistic locks, OLC protocols and memory reclamation.

Such pessimistic approach also incurs shared memory writes even
for read-only accesses for changing lock state.

More recent indexes use lock-free algorithms [57] or optimistic
lock coupling (OLC) [55]. It is well-known that the former is chal-
lenging to design, debug and may not be optimal [21, 91]. An op-
timistic lock [11, 52, 79] carries a version number and lock state.
Writers proceed as usual, except they also increment the version
number after each round. Readers proceed without setting a shared
lock state but must verify the version number did not change after
the read. Compared to sequential code, optimistic locking is still
much more complex. As Figure 2 shows, one has to tweak lock cou-
pling with verification retry logic. Moreover, it is not uncommon for
DBMS developers to propose new locks [79] for desirable features.
Memory management also becomes non-trivial, resembling that
in lock-free code since readers are not protected. Nodes unlinked
from the tree must be kept available until all existing readers have
finished. As a result, the index developer also has to implement
memory reclamation algorithms [30, 68], or sometimes, propose
new ones [58]. Each of these algorithms comes with its own trade-
offs, requiring a DBMS developer to delve deep into another area,
lowering programming efficiency and increasing code complexity.

Persistence. It can be desirable to persist large indexes to re-
duce service downtime. In storage-centric DBMSs, B+-tree nodes
are database pages managed by the buffer pool. However, these
pages are merely data containers: developers still need to consider
concurrency issues. Recent memory-optimized DBMSs paid less
attention to index persistence. Many assume indexes are volatile
and must be rebuilt upon recovery; some use checkpointing and
logging [48, 57]. More recent work such as Bf-Tree [28] allows more
flexible caching granularity for on-disk pages. As a result, indexes
are coded up with parallel programming techniques and considera-
tions for managing I/O and memory. These quickly get complex,
lowering programming efficiency and adding maintenance effort.

Given the additional complexity, it would be desirable to free
developers from customizing features beyond the index logic itself.
As we show later, Tabular allows developers to focus on sequen-
tial index logic, reducing the programming complexity to what is
similar to programming sequential indexes.

1993

struct BTreeNode {
int n_keys;
bool is_leaf;
int lock;
BTreeNode *right_child;
KVPair kvs[16];
};

(b) C/C++ struct/class definition

(a) Logical view

RID | n_keys | is_leaf | right_child | kvs
10 False 1
1 False 2
2 True INVALID_RID

(c) Table storing BTreeNode objects

Figure 3: Modeling data structure objects on tables [5, 41].
Columns represent class fields and rows represent B+-tree
nodes. C/C++ pointers are turned into record IDs (RIDs).

2.2 Mapping Indexes to Tables

We follow the model as defined by prior work [5, 41] where a
schema defines the data structure’s class definitions.

High-Level Concepts. As Figures 3(a-b) show, a hand-crafted
concurrent B+-tree would define a BTreeNode class, specifying
members such as the number of keys. Under objects-on-DB, such
class is defined by a schema, with the same fields in BTreeNode,
except two notable changes. (1) lock is not needed because con-
current accesses are governed by transactions. (2) Pointers (e.g.,
right_child which points to the right-most child node if is_leaf
is false) become record IDs (RIDs). To create a new node, the de-
veloper inserts a new record to the table in Figure 3(c), whereas a
hand-crafted variant would use a memory allocator. To traverse the
tree, we start with reading the root node record, and then follow
the child RIDs to find other nodes.

Benefits. Since each B+-tree record is a database record, with
proper ACID support, the B+-tree developer only needs to write
sequential B+-tree logic. Persistence is also a given, without ad-
ditional code. This drastically improves programming efficiency
and code maintainability. The index is defined by a schema, so its
internals can be easily queried by database operations, simplifying
debugging. For example, to inspect the data stored in B+-tree nodes,
the developer can directly issue database queries over the tables—
exactly in the same way as querying other “normal” tables—to learn
about the data structure. One can also easily duplicate, migrate or
compact such data structures using DBMS table operations. We
focus on leveraging the first benefit (transparent concurrency and
persistence) and leave it as future work to explore other benefits.

Programming Interfaces. With objects-on-DB, instead of hand-
crafting class definitions and index operation functions, DBMS
developers (1) define data structure schemas and (2) devise transac-
tions that perform index operations. Off-the-shelf DBMSs already
provide such functionality, but they are usually declarative (e.g., in
SQL) and do not fully satisfy the need of building indexes which
are inherently imperative. Therefore, we envision a mostly imper-
ative interface that combines schema definitions and table record

« 100 ® EES Compute

;3/ 60 § EEE Synchronization

5 50 40 g EEX Txn Runtime

2 ZOE EEZAl Memory copying

S 0 IR Pointer chasing
we‘fiqe—“éifmﬂ%%w‘“‘

Figure 4: CPU cycles breakdown of hand-crafted vs. object-on-
DB indexes. Naively mapping indexes on an existing OLTP
engine spent almost half the CPU cycles on memory copying.

operations. An end-to-end objects-on-DB library can expose such
an interface in common imperative programming languages (e.g.,
C++) or a domain-specific language for DBMS developers. Through
an additional compiler pass (transpilation), we can generate code
that includes (1) C/C++ definitions transformed from the schema,
and (2) functions that directly use the interfaces provided by an
OLTP engine. Records then become schema agnostic and in essence
are raw bytes that can be cast to the defined classes. Certain aspects
can be made declarative to further simplify programming. In the
rest of this paper, we focus on the design of such an OLTP engine.

2.3 Modern OLTP and Motivation

Making the idea of index-on-DB practical requires the underlying
OLTP engine to perform well. Although early work [5, 41] in the
1990s explored various optimizations, it was rarely adopted mainly
due to the prohibitively high overhead of using a complex full-
fledged DBMS. Fast forward to today, modern OLTP engines [16, 43—
45, 71, 85] have optimized away many overheads in concurrency
control [23, 72, 85, 89, 92, 95] and storage management [25, 38, 51,
78, 88]. It is common for them to deliver such high throughput (e.g.,
>10MTPS TPC-C [84]) that is even beyond practical needs [75]. This
led us to ask “Is it now feasible to build fast-enough data structures
such as indexes with objects-on-DB on a modern OLTP engine?”

To answer this question, we started with building a B+-tree on
the ERMIA [44] memory-optimized OLTP engine. Like other en-
gines, ERMIA’s core is an embedded library that exposes C/C++
interfaces which we directly use to build indexes. This allows us to
cut the unnecessary overhead of parsing and optimization, but the
result still presents a significant performance gap between hand-
crafted counterparts by being up to over ~80% slower (Section 6).3
As Figure 4 shows (denoted as “Naive-MVCC”), close to 50% of the
CPU cycles are spent on pointer chasing, required by the multi-
versioning design commonly found in today’s OLTP engines. We
also tested the idea without using multi-versioning but uses single-
versioned optimistic concurrency control (OCC) [85], as shown by
the “Naive-OCC” bar in Figure 4, memory copying overhead takes
over as the biggest bottleneck. Also, both approaches have transac-
tion runtime overhead (e.g., for initializing transaction contexts and
committing transactions). None of these exist in the hand-crafted
counterparts. Overall, these issues still leave much room for op-
timizations to make the idea of objects-on-DB truly practical. In
later sections, we first introduce the internal interfaces of Tabular,

3We only use ERMIA’s table abstraction, without its hand-crafted indexes.

1994

and then discuss the sources and mitigation of excessive memory
copying for Tabular to reclaim most of the performance, matching
hand-crafted counterparts.

3 TABULAR OVERVIEW AND APIS

Tabular is a lightweight, transactional programming library that
transparently provides concurrency control and persistence for
data structures. As Section 2.2 discusses, we envision the DBMS
developer to continue to write imperative C/C++ code (or using
a domain-specific language), which then gets transpiled to use
table-based interfaces in Tabular [41]. Creating such a transpiler
is orthogonal to the design of Tabular; our current index imple-
mentations (discussed later in Section 5) directly use these internal
Tabular interfaces, which are the focus of the rest of this paper.
Tabular APIs are similar to those exposed by an OLTP engine to
other internal components of a DBMS (e.g., the query engine):

e Transaction *BeginTransaction(): Start a new transaction.
Returns a reference/pointer to a Transaction object.

bool Transaction::Commit(): Commit by performing a set of
correctness checks (Section 4). Returns true if the transaction is
committed; otherwise aborts the transaction and returns false.
e void Transaction::Rollback(): Abort the transaction.

e void Transaction::Read(Table *table, RID rid, void
*out): Read record identified by rid and store result into out
which is a user-prepared buffer (e.g., a BTreeNode object).

RID Transaction::Insert(Table *table, void *r, size_t
len): Allocate a new record of len bytes with content pointed
to by d; Returns the RID of the new record.

void Transaction::Update(Table *table, RID rid, void
*new_data): Update the record identified by rid with new_data.

Tabular offers new callback-based APIs that are the key for in-
dexes to match the performance of hand-crafted counterparts:

e void Transaction::ReadCallback(Table *table, RID rid,
Callback cb): Same as Read, but performs operations encoded
in a callback function cb over the record data, without copying
the data to a user-specific memory location.

void Transaction: :InsertCallback(Table *table, size_t
size, Callback cb): Same as Insert but performs operations
encoded in cb upon commit.

void Transaction::UpdateCallback(Table =*table, RID
rid, Callback cb): Same as Update but performs update op-
erations encoded in cb over the record data upon commit.

With these APIs, all accesses are transactional with serializability
and persistence guarantees (if desired).

4 TABULAR INTERNALS

We start with a baseline using an existing OLTP engine and describe
the necessary optimizations that bring Tabular’s performance to a
competitive level while maintaining the easy-to-use APIs.

4.1 Single-Versioned, Direct Record Access

Many memory-optimized OLTP engines advocate multi-versioning
because it can avoid readers and writers to block each other, thus
providing superior performance than single-versioning. It may

therefore seem natural to adopt multi-versioning in Tabular be-
cause read performance can significantly affect a data structure’s
overall performance. Some existing indexes [57] are already multi-
versioned where an update always appends a delta, rather than
performing in-place updates.

Evaluation of Indexing on MVCC OLTP. We implemented a
B+-tree in this way on top of ERMIA [44], a representative memory-
optimized, multi-versioned OLTP engine.* ERMIA implements multi-
versioning using indirection arrays and version chains following
new-to-old order [92]. Each record is uniquely identified by a logi-
cal RID that indexes into the indirection array which represents a
table. Each indirection array entry points to the latest version of
the record and versions are allocated in the heap using a memory
allocator such as jemalloc [19]. Figures 5(a-b) depicts the idea. A
tree traversal starts by reading the record that stores the root node,
which in turn is done by (1) using the root node’s RID () as an index
to the indirection array and (2) following the pointer stored in the
indirection array entry (address in the figure). Depending
on the freshness of the transaction issuing the read, we may need
to traverse the version chain until a visible version is found (not
shown in the figure for brevity). As Figure 5(c) shows, B+-tree nodes
store child node RIDs instead of pointers. On a 48-core dual-socket
server, compared to a hand-crafted OLC B+-tree, in Figure 6, such
multi-versioned B+-tree (denoted as Naive-MVCC which uses the
copy-based Read/Update interfaces) is ~49-79% slower than the
hand-crafted counterpart under a balanced read/update workload
(details in Section 6) due to indirection and multi-versioning.

Single-Versioned Flat Table. Therefore, Tabular should not
blindly follow current practices in OLTP engines which serve a dif-
ferent kind of workload than physical-level data structures. Rather,
it is necessary to reduce indirection and versioning overheads. To
this end, Tabular directly uses a flat memory space for allocating
records per table, and each record is represented by a single version.
RIDs are physical, much like in conventional storage-centric sys-
tems, indicating the offset into the flat memory space. As Figure 5(d)
shows, records (B+-tree nodes) now are laid out one after another,
without additional indirection. Each parent node still carries child
RIDs, but accessing them now only requires adding the RID (offset)
onto the base virtual address of the memory space backing the table.
For example, node A (the root node) starts at offset 0 and node B is
located at offset 256 (an RID stored in node A) from base address
0x7bee®. In contrast, in Figures 5(a-b), accessing node B requires
additionally traversing the indirection array and potentially the
version chain, incurring at least two additional cache misses.

Tabular’s flat memory space only needs to be logically contigu-
ous and can be faulted in gradually [78]. Records are read and up-
dated in-place. Upon deletion (e.g., during a B+-tree merge), our cur-
rent implementation first marks the record as deleted. Compaction
can then be performed later (e.g., during system maintenance time),
similar to existing systems [16, 44, 56]. As Figure 6 demonstrates,
avoiding indirection and versioning (Naive-0CC which also uses
the Read/Update interfaces) brings index performance to ~59-70%
of the hand-crafted counterpart. We explore how Tabular further
narrows the performance gap next.

4ERMIA is a full engine that only allows index-based table accesses. For fair comparison,
we implemented core ERMIA functionality in Tabular codebase to enable direct table
accesses without hand-crafted indexes and used the same benchmark driver.

1995

AR 0x7beed
A: keys, child RID I Records
RIDs (1...), ... o -
(a) Logical view A: keys, child RIDs
(256...), ...
0x9bfed 256
RID| Where? >0
B: keys, child B: keys and values, ...
0
RIDs, ...
1 |ox9bfeo .«/
1536
Oxfcoed C: keys and values, ...
6 |0xfcoed oF—>|C: keys and
values,...

(b) Indirection array (c) Heap memory (d) Flat table space
Figure 5: Building a B+-tree (a) on top of ERMIA (b—c) vs.
using Tabular’s flat table (d). Tabular eliminates additional

indirection and versioning to improve performance.

2 —V— Hand-crafted
& ©— Tabular
g —@— Naive-OCC
2 —>— Naive-MVCC
0 T T T T
1 12 24 36 48
Threads

Figure 6: Effect of single-versioning (Naive-OCC over
Naive-MVCC, Section 4.1) and zero-copy optimistic concur-
rency (Tabular over Naive-0CC, Section 4.2) on a B+-tree bal-
anced microbenchmark with 50% updates and 50% reads with
100 million 8-byte keys.

4.2 (Near) Zero-Copy Optimistic Concurrency

Optimistic, verification-based concurrency control has been the
dominant approach in recent memory-optimized OLTP engines [45,
85, 89, 95]. Compared to traditional two-phase locking (2PL), the
common advantage—which mimics optimistic locking in hand-
crafted indexes—is readers can proceed without taking any locks
and only need to verify at commit time that the data read is still
valid. We start with the representative decentralized OCC [45, 85]
and discuss how Tabular only needs simple tweaks to make it
competitive for physical-level data structures.

Traditional Decentralized OCC. To set the stage, we briefly
describe traditional decentralized OCC [45, 85]. Each record is
stamped with a transaction ID (TID) that denotes its creator or
latest updater. Part (e.g., 1 bit) of the TID (typically 64-bit) can be
carved out as the record lock, acquired in exclusive mode when
the record is being updated. During transaction execution, readers
proceed without taking locks but remembering the TID value in un-
locked state in a transaction-local read set. Writes are maintained
locally in a write set. Upon commit, the write set is first sorted
(to avoid deadlocks) and then locked. The protocol then performs
read verification by checking weather the current TID matches the
saved TID in the read set, and if not, the transaction will be aborted.
After verification, the protocol generates a new commit TID for the

transaction. Finally, we iterate through the (now sorted) write set to
apply writes in-place to the actual record locations and unlock each
record. Note that at this point the write set is already in a different
order and may not represent the order in which individual writes
were performed forward processing. As we discuss later, this has
implications for Tabular’s callback-based interfaces.

Decentralized OCC is very lightweight and thus delivers high
performance for database workloads, but is inadequate for data
structures. The key culprit is a common design that induces exces-
sive amounts of memory copying. To see why, consider a B+-tree
built on top of decentralized OCC and models B+-tree nodes as table
records. To read or update a node (table record), the B+-tree code
performs a query using Transaction: :Read() from Section 3. In
addition to table and rid, the caller (e.g., the B+-tree probing func-
tion) also prepares a pre-allocated memory chunk for the engine
to store the target record. We refer to this kind of read operations
materialized reads. As Figure 6 has highlighted, Naive-0CC with
materialized reads can be ~30-41% slower than the hand-crafted
upper bound, with the single-version flat table design in Section 4.1.
This is also evidenced by the large amount of memory copying
operations in Figure 4 when running a read-only B+-tree workload,
leaving few cycles for useful work. Index updates and inserts are
also affected because they rely on traversal to arrive at the leaf
node; we evaluate these operations later in Section 6.

Zero-Copy Read with Callbacks. Tabular provides callback-
based APIs to solve this problem. The application (e.g., B+-tree code)
specifies the operations to be performed on top of a record in a call-
back function, instead of performing the operations after copying
out the record. Similar to materialized Read, ReadCallback takes
as input the table to be accessed, RID, and a callback function which
will be invoked by Tabular internally. As shown in Algorithm 1,
a read operation performs in the same way as that was done in
traditional decentralized OCC, except that at line 6 we perform the
callback on top of the record. In contrast, it would be a memory
copying operation performed by traditional decentralized OCC.

For ReadCallback to work correctly, the callback should not
modify the record. We believe this is a reasonable assumption as
the users of Tabular are database index developers who know the
sequential index logic well. The transpilation pass mentioned in Sec-
tion 3 could enforce this requirement by transforming materialized
reads into callback-based reads.

Zero-Copy Modification and Commit. Similar to read oper-
ations, updates and inserts can also be callback based. The main
caveat is that unlike reads, the insert/update cannot be performed
right away to retain the consistency the records. They can only be
applied after the verification phase succeeds during commit time,
which requires tweaking the commit protocol. Algorithm 2 shows
the new commit algorithm where the new/modified steps on top
of decentralized OCC are shaded. The commit protocol also must
retain program order when performing callbacks. That is, the call-
backs should be performed in the order of their addition to the write
set during forward processing to preserve possible dependencies.
For example, suppose an application first modifies record B with
RID 100, and then relies on B’s value to update record A whose
RID is 50. This means the callback for modifying A would need
to read B’s new value. Both callbacks should only be applied at
commit time, yet this can be at odd with the existing decentralized

1996

Algorithm 1 Callback-based optimistic read in Tabular.

1 def Transaction::ReadCallback(table, rid, callback):
2 # Take a reference (pointer) to the record

3 Record &record = table.GetRecord(rid);

4 retry:

5 tid = record.get_consistent_tid()

6 callback(record) # Execute the callback in-place
7

8 # Verify the record did not change

9 tid_now = record.get_consistent_tid()

10 if (tid_now == tid):

11 read_set.Add(record, tid);

12 else:

13 goto retry

Algorithm 2 Tabular’s commit protocol.

1 def Transaction::Commit(table, rid, callback):
2 # Sort out-of-place and lock write set

3 sorted_ws = sort(write_set)

4 foreach w in sorted_ws:

5 lock w

6

7 . fences and get commit epoch ...

8

9 # Validate reads - exactly the same as 0OCC
10 foreach r in read_set:

11 if r.tid != r.record.get_tid() and !r.locked_by_me():
12 rollback and return

13

14 . iterate read/write sets to get new commit_tid ...
15

16 # Apply write callbacks and updates

17 foreach w in write_set:

18 if w.is_callback:

19 w.callback() # invoke the callback

20 else: # "normal" materialized update

21 memcpy (w.record.data, w.data, w.size)

22 w.tid = commit_tid

23

24 . other remaining operations ...

OCC protocol which sort all writes in a global consistent order
(e.g., by RIDs) to avoid deadlocks. As a result, A’s callback would be
performed before B’s, breaking program dependency requirements.
To solve this problem, at lines 2-5 of Algorithm 2, we sort the write
set out-of-place (e.g., by RID order) into an additional write set
structure (sorted_ws), which is then iterated through to lock all
the writes. After verifying all the read records and obtaining a new
commit TID, we iterate over the original write set which follows
program order (lines 17-20). This way, Tabular avoids deadlocks
while guaranteeing program logic specified by the developer.

4.3 Correctness

On top of decentralized OCC, Tabular’s commit CC protocol makes
two changes. (1) Some reads are performed using callbacks. (2) Some
updates and other logic associated with it are delayed until commit
time. The correctness of decentralized OCC has been proven [85]
by showing that it reduces to be S2PL-equivalent and is thus seri-
alizable. We argue for the correctness of Tabular’s callback-based
protocol by showing that these two changes do not change decen-
tralized OCC’s equivalence to S2PL. Like previous work [45, 85],
for brevity we assume the write is a subset of the read set. We first
consider callback-based reads in the read set. They are performed
by reading a consistent version of the data during forward process-
ing (Algorithm 1) and verified at commit time. This maintains the
equivalence that S2PL would have been able to acquire all the read
locks [85]. Next, we consider the callback-based write set entries.
Algorithm 2 performs the callbacks after (1) locking all the writes
and (2) verifying reads. The locking step is equivalent to upgrading
the read locks to exclusive locks in S2PL, where the new updates are
only visible to the transaction. Tabular retains the same property;
the only difference is the actual writes are performed at commit
time but still before the results become visible to other transactions.
Compared to hand-crafted optimistic locking, Tabular provides
stronger and more conservative consistency guarantees by enclos-
ing all record operations in one transaction. A hand-crafted protocol
can be seen as multiple shorter transactions, each of which accesses
a subset of records. For example, (optimistic) lock coupling unlocks
the parent node once it is sure that the parent node will not be
modified. This is equivalent to committing a transaction that reads
the current node N and a parent node, but simultaneously starting
another transaction that continues to drill down the tree based on
the current version of N. This can admit more parallelism than
Tabular, except when a split/merge is propagated to the root of
the tree: both Tabular and lock coupling will lock the entire path,
equivalent to enclosing all node/record operations in one transac-
tion. Such larger transaction scope enlarges the conflict window
and potentially lowers performance. However, as we have shown
earlier and later in Section 6, its impact is very small since typical
transactions used by indexes are not long in the first place.

4.4 Durability and Recovery

If durability and recovery support is needed, Tabular will generate
and persist log records and provide transparent persistence support.
For materialized updates and inserts the new values are collected
during forward processing, while for callback-based operations,
the log records are generated when the callbacks are performed at
commit time. Similar to many memory-optimized OLTP engines,
Tabular uses redo-only logging [69] for durability. Data generated
by aborted transactions are discarded and will never make it to the
persistent log. To avoid centralized logging bottleneck and I/O de-
lays, we use a private log buffer per thread which can be flushed in
the background, following classic pipelined commit protocols [38].
This allows Tabular to leverage the higher sequential write per-
formance (than that of random accesses) of modern SSDs/disks,
but a common problem of this approach is longer latency for each
operation. For systems that need low latency, techniques such as
placing log buffers in NVDIMMs [86-88] can be employed.

1997

4.5 Discussions

We consciously made several tradeoffs for Tabular to deliver com-
petitive performance. The first is that our table abstraction in
Section 4.1 is by nature memory-centric by assuming a virtually-
contiguous flat space for a table. This eliminates unnecessary indi-
rection, but makes it more complex to support larger-than-memory
data structures. A possible solution is to allow RIDs to refer to
either an in-memory offset or a storage address, indicated by a ded-
icated a bit in the RID word (e.g., the most significant bit). The table
space then becomes a buffer space that would need to be carefully
crafted. One possible solution is to adopt recent lightweight out-of-
memory solutions [50, 51, 71] that use techniques such as pointer
swizzling [42] to reduce overheads, however, it is important to also
maintain the same interfaces to avoid application-level changes.

Based on modern decentralized OCC [35, 45, 85], Tabular con-
currency control protocol mimics the behavior of optimistic lock-
ing [11, 55] commonly used by hand-crafted data structures. While
it avoids most unnecessary overheads, OCC is inherently vulnera-
ble to high contention. Numerous efforts have attempted to address
this problem [27, 35, 63, 79, 89, 95]. As promising future work, Tabu-
lar can also adopt such optimizations (e.g., by acquiring locks early)
to deliver better performance under contention. Moreover, such op-
timizations can happen within Tabular library itself, without affect
how index developers program, using the same transactional table
abstractions. Existing/new hand-crafted indexes could be trans-
formed/developed to use Tabular, which provide optimizations
under the hood. This allows a potentially smaller team of engineers
to focus on improving Tabular (e.g., to evolve it for new hardware
or adding features), than having to retrofit each desirable feature
into an existing hand-crafted index.

Data structures built by Tabular can be used to build a full DBMS.
Combining Tabular and a Tabular-based B+-tree allows one to easily
implement an OLTP engine, without having to (re-)implement the
table abstraction and the associated ACID guarantees.

5 TABULAR USE CASES

In this section, we discuss how a DBMS developer may use Tabular
APIs to build concurrent and persistent indexes relatively easily.
After introducing the core ideas, we elaborate the process and
design considerations using B+-tree and extendible hashing.

5.1 From Sequential Logic to Tabular

Tabular aims to free DBMS developers from complex parallel pro-
gramming issues by using the transactional interfaces described
in Section 3. This only requires the DBMS developer be familiar
with (1) the target data structure’s sequential (i.e., single-threaded)
logic and (2) the concepts of relational tables and transactions. Both
are commonly covered by introductory data structure and data-
base courses in most undergraduate curricula, and neither requires
advanced data structures or parallel programming backgrounds.
Modeling Index Structures as Tables. From DBMS developers’
perspective, they would need to reason about data structure design
using relations and transactions. We observe this can be done easily
by realizing that most indexes consist of three building blocks. (1)
Memory blocks (e.g., B+-tree nodes) connected through pointers.
(2) Functions for accessing these memory blocks. (3) Concurrency

Algorithm 3 Sequential B+-tree update routine.

1 def BTree::Update(k, v):
node = self.root;

2

3

4 while node.is_leaf is false:
5 node = node.findChild(k)
6
7
8

if node.key_exists(k):
node.update(k, v);

control and persistence protocols. Based on this observation, trans-
forming a single-threaded index to use Tabular is straightforward.
Allocating a memory block is transformed into inserting a new
record. Data manipulation are done using transactions on table
records. Index code (transaction) accesses data records using RIDs,
rather than pointers. Memory block sizes will determine database
record sizes, which in turn can affect performance. For example, a
B+-tree leaf node may inline data as values, requiring larger nodes
to accommodate the same number of key-value pairs. Using the
copy-based APIs would lead to suboptimal performance, making the
callback-based ones preferable. A related question to answer when
modeling a data structure class as a table (from class definitions
to schema definitions) is “what should be a record?” In principle, a
contiguous memory chunk in a C/C++ struct would translate into
a record in Tabular. However, blindly following this principle may
lead to suboptimal performance. We elaborate and provide solu-
tions later in Section 5.3. Finally, memory reclamation, concurrency
and persistence are handled transparently by Tabular transactions
without developer intervention.

Measuring Code Complexity. It is highly subjective to mea-
sure code complexity. Each metric (e.g., cyclomatic complexity [66]
and lines of code) has its own limitations. Recent work [70] has
shown that cognitive complexity [7] is promising at correlating with
the time spent on comprehension and subjective ratings of code
understandability. We use it to measure programming efficiency
and the mental burden of implementing indexes.

5.2 B+-Tree

To set the stage, Algorithm 3 shows a sequential B+-tree update
function, which is very straightforward. The algorithm starts tra-
versal from the root to the leaf level, and then searches for the target
key in the leaf node. If the key is found, it performs the update.
Tabular Adaptations. Algorithm 4 presents Tabular-based B+-
tree update using the copy-based interfaces. It (1) wraps node ac-
cesses in a transaction and (2) performs RID-based traversal. Line
2/16 starts/commits the transaction. Lines 4-6 corresponds to line
2 of Algorithm 3 for accessing the root node. Since nodes are rep-
resented as database records, they are addressable only by RIDs.
So line 5 prepares a buffer in the transaction’s local scratch area
to store the node read at line 6, which uses the root node RID ob-
tained at line 4. The buffer is an instance of BTreeNode as defined
by Figure 3(b) except variables for concurrency control (1lock) are
omitted. Similarly, lines 8—-10 of Algorithm 4 correspond to lines
4-5 of Algorithm 3 for traversing to the target leaf node. Lines
12-14 are in almost the same logic as lines 7-8 in Algorithm 3 to

Algorithm 4 Tabular-based B+-tree update using copy-based in-
terfaces. No concurrency control logic is needed.

def TabularBTree: :Update(k, v):
t = BeginTransaction() # start a transaction

1
2
3
4 rid = self.root_rid

5 BTreeNode node # in-memory node representation
6 t.Read(self.table, rid, &node)

7

8

9

while node.type.is_leaf == false:
rid = node.findChild(k)
10 t.Read(self.table, rid, &node)

11

12 if node.key_exists(k):

13 node.update(k, v) # perform update in local buffer
14 t.Update(self.table, rid, &node)

15

16 if not t.Commit(): retry from line 2

Algorithm 5 Tabular-based B+-tree insert using callbacks.

def TabularBTree::Insert(k, v):
t = BeginTransaction()
Stack stashed_nodes

if not leaf.is_full(): # will not split
def leaf_insert_cb(leaf, k, v): leaf.insert(k, v)
t.UpdateCallback(nodes, leaf_id, leaf_insert_cb, k, v)
10 else:
11 # Define and register a callback to split a leaf

1
2
3
4
5 ...traverse to leaf; path recorded in stashed_nodes...
6
7
8
9

12 Key sep
13 def split_leaf_cb(&split_leaf, k, v, &sep):

14 sep = leaf.split_to(split_leaf, k, v)

15 new_rid = t.InsertCallback(nodes, split_leaf_cb,

16 split_leaf, k, v, sep)
17 # Update inner nodes

18 while stashed_nodes.size() > 0:

19 [parent_id, parent] = stashed_nodes.pop()

20 if parent.is_full():

21 def split_inner_cb(&new_inner, &sep):

22 sep = parent.split_to(new_inner, sep, new_rid)
23 new_rid = t.InsertCallback(nodes, split_inner_cb)
24 else:

25 def update_inner_cb(): parent.insert(sep, new_rid)
26 t.UpdateCallback(nodes, parent_id, update_inner_cb)
27 if not t.Commit(): retry from line 2

28 root_rid = new_rid # Grow the tree if reached here

29 if not t.Commit(): retry from line 2

perform the update. The only difference is that update done in the
local buffer should be reflected in the table (line 14).

We use B+-tree insert to demonstrate the callback interfaces in
Algorithm 5. In the context of a transaction, the splitting thread

first probes down the tree to arrive at the leaf node (lines 2-6). Like
in single-threaded logic, references to inner nodes along the path
are collected in a stack in case later the split is propagated upwards.
If no split is needed, we register a callback to perform the insert
in the leaf node (lines 7-9). Otherwise, the algorithm splits the
existing leaf node into a new node (at the same time, insert the new
key into the proper target node) and registers a callback (line 15)
to insert it at commit time. Lines 18-27 then iterate over the stack
of inner nodes collected earlier to possibly propagate the split. For
each level, a callback is registered to either insert a new node (lines
21-23) or update the existing node with the new separator key
(lines 25-27). The latter case is followed by a transaction commit
to conclude the operation. Otherwise, if all the parent levels are
exhausted without triggering a commit at line 27, we have increased
the height of the tree. Although more involved than the copy-based
Algorithm 4, callback-based insert still follows single-threaded logic
without involving concurrency or persistence handling, which is
the complex effort Tabular aims to save.

Programming Efficiency. We calculate the cognitive complex-
ity of major B+-tree functions using clang-tidy [13]. The sequen-
tial implementation whose update function is shown in Algorithm 3
has the lowest cognitive complexity score of 31 (lower is better). The
hand-crafted variant has the highest score of 67, which is 1.71x over
that of the Tabular-based B+-tree (39). As mentioned earlier, the
adaptation process could be done by the developer or be automated
by a transpiler to further increase programming efficiency.

5.3 Extendible Hashing

Extendible hashing [20] is a classic dynamic hashing design. In
memory-optimized systems, the directory typically is implemented
as an array, whose entries point to buckets allocated in the heap.
Figures 7(b-c) define the C/C++ structures. Inserting into a full
bucket will split the bucket and re-hash existing keys into both
buckets. Consequently, a new pointer to the new bucket needs
to be added to the directory. The directory always grows in the
power of two, leading to 29/°bal_depth by ckets. Each bucket carries a
local_depth, which if is smaller than global_depth then the bucket
is yet to be split and will be pointed to by > 2 directory entries.
Extendible hashing can also use (optimistic) locking: accesses to
buckets only verify directory entry and bucket versions, while a
split will need to lock both the bucket and directory.

Table Definitions. Buckets are fixed-sized, so it is easy to model
and store them as table records, as Figure 7(e) shows. Similarly,
the directory can be modeled as a (variable-length) record and
expanding or shrinking the directory would be translated into up-
dating the directory record. Alternatively, one could always insert
a new directory record into the directory table as described in Fig-
ure 7(d). Neither table includes columns for concurrency control
(i.e., Bucket: : lock), which is handled transparently by Tabular.

Tabular Adaptations. Modeling the directory as a record is
straightforward, but can be challenging when the directory grows:
using the copy-based APIs we would need to copy the entire di-
rectory. As Section 6 shows, extendible hashing using these APIs
perform poorly and consumes an excessive amount of memory.
This necessitates the use of the callback-based APIs. Algorithm 6
shows the callback-based version which first uses ReadCallback

1999

struct Bucket { struct Directory {

g Bucket 1 int n_keys int global_depth
[} _| 5 _ 5
g int local_depth; Bucket *buckets[];
= int lock; int lock;
KVPair kvs[16]; };
- };
(a) Logical view (b) Bucket definition (c) Directory definition
RID|global_depth| buckets | [RID|n_keys|local_depth kvs
0 0 10 2
1 1 1 8 2
2 2 2 4 3
3 3

(d) Directory table (e) Bucket table

Figure 7: Modeling extendible hashing (a) in tables. The buck-
ets (b) and directory (c) are stored in two separate tables (d-e).

Algorithm 6 Tabular-based hash table update with callbacks.

1 def TabularHashTable::Update(k, v):

2 t = BeginTransaction()

3

4 # Define a callback function to retrive entry
5 def get_cb(record, key, e):

6 Directory dir = (Directory)record

7 e = dir[hash(key) % size]

8

9 # Invoke callback-based read with get_cb

10 Entry e

11 t.ReadCallback(self.dir_table, self.dir_rid,
12 get_cb, k, &e)

13

14 # Define an update function to update value in bucket
15 def update_cb(record, key, val):

16 Bucket bucket = (Bucket)record

17 if bucket.key_exists(key):

18 bucket.Update(key, val)

19

20 # Invoke callback-based update with update_cb
21 t.UpdateCallback(self.bucket_table, entry.bucket_rid,
22 update_cb, k, v)

23 if not t.Commit(): retry from line 2

to obtain the directory entry pointing to the target bucket (lines
5-7). The callback is then passed to ReadCallback along with other
parameters in line 11 of Algorithm 6. Lines 15-22 then searches
and updates the bucket.

Programming Efficiency. Although more involved than the
B+-tree case using copy-based APIs, the adaptation of extendible
hashing using callbacks still avoids the handling concurrency and
persistence issues, the largest sources of complexity.

6 PERFORMANCE EVALUATION

We have evaluated the effect of Tabular’s individual techniques for
B+-trees under certain workloads in Sections 2—4. In this section,
we include more scenarios and show that:

e Tabular-based B+-trees, extendible hashing and adaptive radix
tree (ART) can provide competitive performance close to the
upper bound provided by state-of-the-art hand-crafted indexes.

e Tabular transparently enables persistence support for indexes
and only incurs minor logging overheads.

e By replacing hand-crafted indexes with Tabular-based ones, an
existing OLTP engine can improve programming efficiency while
maintaining competitive overall performance.

6.1 Experimental Setup

We performed experiments on a dual-socket server with two 24-
core Intel Xeon Gold 6252 CPUs and 384GB of DRAM. The CPU is
clocked at 2.1GHz (3.7GHz with Turbo Boost) and has 35.75MB of
caches. The server runs Arch Linux with kernel version 6.6.2. We
use 1GB huge pages and jemalloc [19] to avoid memory allocation
being a major bottleneck. We interleave huge page allocations when
threads are spread across two sockets. Each worker thread is pinned
to a dedicated CPU core without hyperthreading to avoid the impact
of OS scheduler activities and ease the analysis of results.

Implementation. We implemented Tabular as a shared library.
Index code includes a Tabular header file and links with the library.
To focus on the performance of Tabular, we omit transpilation. All
the code is implemented in C++20 and compiled with GCC 13.

Index Variants. We compare variants of B+-tree, extendible
hashing, and ART implemented in six different ways:

e Hand-crafted: State-of-the-art hand-crafted in-memory variant
with optimistic lock coupling.’

e Naive-MVCC: Naive baseline objects-on-DB variant with multi-
versioning and materialized read/write in ERMIA [44].

e Naive-0CC: Naive baseline objects-on-DB variant with single-
versioning, decentralize OCC [85] and materialized read/write.

e Tabular:Indexes implemented using Tabular with single-version
flat tables and callback-based operations.

e STD-LC: Pessimistic lock coupling using std: : shared_mutex in
standard C++ (since C++17).

e TBB-LC: Pessimistic lock coupling using tbb: : spin_rw_mutex
in Intel oneAPI Threading Building Blocks (TBB) [36].

Naive-MVCC uses snapshot isolation without serializability, adding
which can add more overhead. We take recent B+-tree and ART im-
plementations [79] as Hand-crafted variants. We implemented op-
timistic Hand-crafted extendible hashing [62]. All Hand-crafted
variants are in-memory only as they were not design with persis-
tence support to begin with, but present performance upper bound.
STD-LC and TBB-LC represent two classic hand-crafted baselines
built using popular synchronization primitives.

Benchmarks. We perform both index-only microbenchmarks
and end-to-end TPC-C [84] benchmarks. For both types of bench-
marks, each experiment runs for 10 seconds and is repeated for
three times. We report the average throughput measured in million
operations per second (million ops/s). Variances between runs are
shown as shaded regions surrounding the lines in figures, although
we observe that the variance is minuscule. We describe the details
of each benchmark in their corresponding sections below.

SFor range indexes, Hand-crafted refers to OLC B+-tree/ART, except in Section 6.4
which uses Masstree [44] as the hand-crafted variant.

2000

—V— Hand-crafted —®— Naive-OCC —l— STD-LC

©— Tabular —>— Naive-MVCC —¢— TBB-LC
Lookup-only Update-only
v 50 50 7
5
i - 25
;5 25
0 0
2
1%}
& 2 120 1 o
< 100 1
g = ® (@)
2 g 607 50 °
= 0
0 0
200 4 Q160 Q
> O
<< 100 80 1
0 0
1 12 24 36 48 1 12 24 36 48
Threads Threads

Figure 8: Throughput of B+-tree (top), extendible hashing
(middle), and ART (bottom). Tabular maintains competitive
performance (up 95% of Hand-crafted) by removing unnec-
essary memory copying.

6.2 Index Performance

Our first set of experiments stress test indexes. For each experiment,
the index is loaded with 100 million 8-byte keys and 8-byte values;
keys are drawn from a uniform random distribution. We focus on
lookup-only and update-only workloads.®

B+-Trees. As shown in Figure 8(top), Hand-crafted performs
the best as expected, providing performance upper bound. Tabular
stays competitive in each workload by following closely the upper
bound; we also performed pure insert tests, which showed similar
trend as the update-only workload. Naive-0CC’s throughput is
~70% of that of Hand-crafted across different numbers of threads
in each workload, due to memory copying overheads. Naive-MVCC
exhibits ~70% of Hand-crafted performance under read-dominant
workloads. However, its throughput further lowers when more
updates are involved and starts to drop when memory accesses
cross NUMA boundaries beyond 24 threads (gray areas in the figure)
due to the increased latency caused by pointer-chasing in multi-
versioning overheads. STD-LC and TBB-LC B+-tree are unable to
scale due to their high pessimistic locking overhead. Thanks to the
callback and single-version flat table designs, Tabular retains over
~90% of Hand-crafted across all core counts and workloads.

We performed detailed profiling (using perf [60]) to identify the
root cause of the performance gap between hand-crafted and Tab-
ular based indexes. We take B+-tree as an example, but profiling
results of other indexes led to the same conclusion, so we omit them
here. Figure 9 shows the CPU cycle breakdown of Hand-crafted
and Tabular B+-trees under 24 threads (one socket to avoid NUMA
effect and ease analysis). The main overheads of Hand-crafted are

®We also tested other mixes such as balanced 50-50% read-update workloads; their
results fall between these two cases. So we omit them due to space limitation.

100 [EEN Compute
S E=3 Synchronization
LE 90 B Txn Initialization
E %0 A Forward Processing
) BN Read-set Validation
70 IEEE TID Generation
0 VAVAVA

Tabular Others

Hand-crafted
Figure 9: CPU cycle breakdown of Hand-crafted and Tabular
B+-trees running the lookup-only workload (24 threads).

(1) verification and (2) write locking time which collectively take
~15% of the CPU cycles (“Synchronization” in the figure), leaving
85% for tree logic (“Compute”). Tabular uses 12% more cycles on
synchronization which is represented by the remaining legends in
the figure. In detail, Tabular takes ~8% of the cycles for initializing
and cleaning up transaction contexts. The callback mechanisms (im-
plemented using std: : function which requires dynamic memory
allocation) and read verification before commit (Algorithm 1) take
another ~11% of CPU cycles. The commit protocol (including TID
generation, read verification and other operations such as write-set
sorting) takes ~9% of CPU cycles. These results corroborate with
the performance gap shown in Figure 8.

Hash Tables. The relative trend between Tabular and other
hash table variants is similar to that for B+-trees in Figure 8. Tabular
retains over ~80% of Hand-crafted’s throughput at high core
counts. For the same reason as we discussed previously, STD-LC
and TBB-LC hash tables do not scale. Moreover, it is noticeable that
Naive-0CC and Naive-MVCC perform extremely poorly due to exces-
sive memory copying overheads. Naive-MVCC hash table exhausted
memory before completion due to excessive memory consumption
of multi-versioning. Table 1 compares the memory consumed (in
GB) by Tabular and baselines after loading 100M records without
garbage collection. Hand-crafted uses 3.7GB without any addi-
tional overhead or metadata that is needed by the table structures
in Tabular, Naive-0CC and Naive-MVCC. Naive-0CC and Tabular
both consume 4.72GB, whereas Naive-MVCC consumes over 300GB
and exhausted available DRAM in the server. The reason is that
each directory update generates a new version by copying and
creating a large amount of data. A proactive garbage collection
policy could mitigate this issue for Naive-MVCC, but it is still more
likely to bloat memory usage if a large amount of versions cannot
be reclaimed timely. This result highlights the need to move away
from the conventional wisdom of building an OLTP engine for
database workloads using multi-versioning, and the need to use
single-versioned accesses in a library like Tabular.

ART. Tabular obtains up to ~85% of Hand-crafted’s through-
put. Naive-0CC suffers for the same reason as extendible hashing
(large record size) and we found that ~ 50% of the CPU cycles are
spent on memory copying. STD-LC and TBB-LC ART also do not
scale for the same reason discussed earlier.

Tabular vs. State-of-the-Art Hand-Crafted B+-Trees. To put
the performance numbers of Tabular-based indexes in perspective,
we compare them with other hand-crafted ones. We focus on B+-
tree variants and compare with Masstree [65] and BP-tree [94]. In
Figure 10, Tabular B+-tree is comparable with Masstree. Masstree’s

2001

—%— BP-tree

—@— Masstree
Update-only

—V— Hand-crafted B+-tree

©— Tabular B+-tree
Lookup-only

2
2, 60
3]
o
2 30
Z

0

1 12 24 36 48
Threads Threads

Figure 10: Tabular B+-tree vs. hand-crafted counterparts.

Table 1: Memory needed by hash table variants to store 100M
records. Naive-MVCC’s multi-versioning bloats memory usage.

Naive-OCC Naive-MVCC
4.72GB

Hand-crafted Tabular
3.5GB 4.72GB

> 300GB

Table 2: Throughput (million operations per second) of
volatile and persistent Tabular B+-trees. The SSD (Intel
P4800X) is saturated with 4 threads (2GB/s).

Threads 1 2 4 8
Volatile 1.54 3.09 6.19 12.39
Persistent 1.31 2.64 5.35 6.96

optimizations such as prefetching mitigate NUMA issues, allowing
it to scale (slightly) better than Hand-crafted B+-tree. BP-tree is
generally slower than other variants, since it employs traditional
lock coupling with reader-writer locks instead of OLC/OCC.

Summary. Tabular-based indexes match over ~80-95% of their
Hand-crafted counterparts’ throughput at high core counts, show-
ing a tradeoff between performance and other desiderata.

6.3 Effect of Transparent Persistence

Tabular allows the developer to turn a volatile index into a persistent
one by simply enabling the persistent option when creating tables.
We use Tabular B+-trees and run the update-only workloads with a
375GB Intel P4800X SSD [37] which has a peak bandwidth of 2GB/s.
The log buffer size is set to 32MB and is flushed with O_DIRECT to
bypass the OS page cache. As Table 2 shows, adding persistence
incurs ~14% of overhead on top of the volatile variant before the
SSD is fully saturated under four threads. Beyond that, e.g., with
eight threads, the system is bottlenecked by I/O and thus maintains
the performance at four threads.

To explore in-memory logging overhead, we performed an exper-
iment that skips actual I/O but keeps all other log-related operations.
As Figure 11 presents, under the lookup-only workload volatile and
persistent Tabular B+-tree perform exactly the same because no
logging is involved. With logging, persistent Tabular B+-tree ex-
hibits a slight drop of ~3% caused by log-record generation. This
indicates ~2% of overhead is due to SSD I/O operations, compared to

—V— Volatile
Lookup-only

@— Persistent (No I/0O)
Update-only

1] /
3 50 O
& 1) ol 40 -
=
gl o 20
= 0]
0 p T T T T 0 1 T T T T
1 12 24 36 48 1 12 24 36 48
Threads Threads

Figure 11: Throughput of volatile and persistent Tabular B+-
tree under read-only (left) and update-only (right) workloads.

i 1 Original ERMIA
5 (Masstree)
=
S 05 - ° ERMIA with
= Tabular B+-tree
=

O T T T T T

1 12 24 36 48
Threads

Figure 12: TPC-C throughput with Masstree vs. Tabular.

the previous SSD-based results. The same experiment for extendible
hashing exhibited similar trends, so we do not repeat here.

6.4 End-to-End TPC-C Results

Our final experiment tests how Tabular-based indexes work in
an OLTP engine by integrating Tabular B+-tree in ERMIA [44],
replacing its hand-crafted Masstree [65]. We use the TPC-C bench-
mark [84] and assign each worker a home warehouse (about 10%
of the payment transactions may access a remote warehouse). So
the workload inherently does not present much contention, putting
more pressure on indexes, accessing which takes ~50% of total CPU
cycles in our profiling results. We set both ERMIA variants to use
snapshot isolation.” Following prior work [16, 44, 59, 85], we use
an equal number of warehouses and worker threads in TPC-C. As
Figure 12 shows, with Tabular B+-tree ERMIA performs similarly
to original ERMIA, matching over 95% of the latter’s performance.
This demonstrates that the performance of Tabular-based indexes
is sufficient for representative end-to-end OLTP workloads.

7 RELATED WORK

Our work is closely related to prior efforts on modern OLTP, index
synchronization, objects-on-DB and parallel programming.
Memory-Optimized OLTP. Many logical-level concurrency
control (CC) algorithms have been proposed. A common theme is
to use lightweight optimistic approaches [46]. Hekaton [16] uses
verification for optimistic MVCC. Silo [85] removes the central-
ized TID allocation. A major drawback is they are not robust, i.e.,
performance can collapse under high contention and read-mostly
workloads [44]. Much work has focused on mitigating this issue, e.g.,
by combining pessimistic and optimistic CC [16, 82, 89], leveraging

"Not to be confused by the isolation level enforced by Tabular, which uses single-
versioned serializable OCC to ensure correct index concurrency.

2002

MVCC [6, 16, 44] and novel ways of managing timestamps [95].
Virtual domains [2] separate data structure (e.g., indexes) logic from
the actual execution strategies by using different configurations to
improve robustness across different hardware platforms. Tabular
can adopt these efforts to provide robust performance.

Index Synchronization. As we discussed earlier, memory-
optimized indexes prefer optimistic locking which is lightweight
but vulnerable to contention which can be improved by queue-
based locking [79]. Some efforts have attempted to ease index im-
plementation using multi-word CAS [26, 29, 90]. However, it still
requires developers reason about concurrency logic, which can be
complex [1, 83]. There is also no support for persistence on top of
SSDs which is provided by Tabular transparently.

Objects-on-DB, OODBMS and ORM. Early work on objects-
on-DB [41] targeted database applications with optimizations such
as prefetching from a disk-based DBMS [5]. Cicada [59] also stores
index nodes in tables, but lacks the optimizations in Tabular. Com-
pared to objects-on-DB, object-oriented DBMSs design explicit
object storage services with their own programming models [10].
Object-relational mapping (ORM) maps programming language
structures to rows and columns. Unlike Tabular, accesses to data via
ORM are transformed into SQL queries. DBOS [80] aims to build
OS services on top of fast OLTP. Tabular can complement such
approaches with better DBMS support.

Parallel Programming. Other research communities have pro-
posed transactional memory (TM) [32] to ease implementation.
Hardware TM has many limitations (e.g., spurious aborts) that hin-
der adoption [54, 64]. Software TM (STM) is more flexible but many
sacrifice performance due to word-level tracking [9]. STO [34]
tracks object-level accesses based on data types, whereas Tabular
tracks access by database records. TDSL [81] adopts TM optimiza-
tions with data structure specific designs for better performance.
Some STM solutions [17, 22, 33, 73, 77] use techniques similar to
Tabular’s. Hybrid solutions [8, 18] combine optimistic and pes-
simistic CC; Tabular could adopt them for robustness. Universal
constructions [12, 14, 31] transform a sequential algorithm to a con-
current one, but often requires more copies and/or atomics, leading
to low performance. Some work [24, 49] transforms volatile in-
dexes into durable ones on persistent memory but has seen limited
adoption given the only product has been canceled recently.

8 SUMMARY

We have presented Tabular, a new lightweight library to ease the
programming of concurrent and persistent indexes. The core idea is
to map indexes to relational tables with ACID guarantees. Tabular
combines several important designs in modern OLTP engines to
make this idea practical and deliver competitive performance while
reducing programming complexity.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive feedback.
We also thank Yue Deng who helped with benchmarking during
early stages of this work. This work is partially supported by an
NSERC Discovery Grant, Canada Foundation for Innovation John
R. Evans Leaders Fund, B.C. Knowledge Development Fund and
Mitacs Globalink Research Internship Awards.

REFERENCES

(1]

(2]

(3]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018.
Bztree: a high-performance latch-free range index for non-volatile memory. Proc.
VLDB Endow. 11, 5 (jan 2018), 553-565.

Tiemo Bang, Ismail Oukid, Norman May, Ilia Petrov, and Carsten Binnig. 2020.
Robust Performance of Main Memory Data Structures by Configuration. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data (SIGMOD °20). 1651-1666.

R. Bayer and E. McCreight. 1970. Organization and maintenance of large ordered
indices. In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD) Workshop on
Data Description, Access and Control (SIGFIDET °70). 107-141.

R. Bayer and M. Schkolnick. 1977. Concurrency of Operations on B-Trees. Acta
Inf. 9, 1 (mar 1977), 1-21.

Philip A. Bernstein, Shankar Pal, and David Shutt. 1999. Context-Based Prefetch
for Implementing Objects on Relations. In Proceedings of the 25th International
Conference on Very Large Data Bases (VLDB '99). 327-338.

Michael J. Cahill, Uwe Rohm, and Alan D. Fekete. 2009. Serializable Isolation
for Snapshot Databases. ACM Trans. Database Syst. 34, 4, Article 20 (Dec. 2009),
42 pages.

G Ann Campbell. 2018. Cognitive complexity: An overview and evaluation. In
Proceedings of the 2018 international conference on technical debt. 57-58.

Man Cao, Minjia Zhang, Aritra Sengupta, and Michael D. Bond. 2016. Drinking
from both glasses: combining pessimistic and optimistic tracking of cross-thread
dependences. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP °16). Article 20, 13 pages.

Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu, Ste-
fanie Chiras, and Siddhartha Chatterjee. 2008. Software Transactional Memory:
Why Is It Only a Research Toy? The promise of STM may likely be undermined
by its overheads and workload applicabilities. Queue 6, 5 (sep 2008), 46-58.

R. G. G. Cattell, Douglas K. Barry, Dirk Bartels, Mark Berler, Jeff Eastman, Sophie
Gamerman, David Jordan, Adam Springer, Henry Strickland, and Drew Wade.
1997. The object database standard: ODMG 2.0.

Sang K. Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon. 2001. Cache-
Conscious Concurrency Control of Main-Memory Indexes on Shared-Memory
Multiprocessor Systems. In Proceedings of the 27th International Conference on
Very Large Data Bases (VLDB ’01). 181-190.

Phong Chuong, Faith Ellen, and Vijaya Ramachandran. 2010. A universal con-
struction for wait-free transaction friendly data structures. In Proceedings of
the Twenty-Second Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA ’10). 335-344.

Clang. 2024. Clang-Tidy - Readability-Function-Cognitive-Complexity.
https://clang.llvm.org/extra/clang-tidy/checks/readability/function-cognitive-
complexity.html.

Andreia Correia, Pedro Ramalhete, and Pascal Felber. 2020. A wait-free universal
construction for large objects. In Proceedings of the 25th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP °20). 102-116.
Niv Dayan, Philippe Bonnet, and Stratos Idreos. 2016. GeckoFTL: Scalable Flash
Translation Techniques For Very Large Flash Devices. In Proceedings of the 2016
International Conference on Management of Data (SIGMOD °16). 327-342.
Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL Server’s
Memory-Optimized OLTP Engine. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’13). 1243-1254.
Dave Dice, Ori Shalev, and Nir Shavit. 2006. Transactional Locking II. In Pro-
ceedings of the 20th International Conference on Distributed Computing (DISC’06).
194-208.

Aleksandar Dragojevi¢, Rachid Guerraoui, and Michal Kapalka. 2009. Stretching
Transactional Memory. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 09). 155-165.

Jason Evans. 2006. A Scalable Concurrent malloc (3) Implementation for FreeBSD.
In Proceedings of the BSDCan Conference.

Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H. Raymond Strong. 1979.
Extendible hashing—a fast access method for dynamic files. ACM Trans. Database
Syst. 4, 3 (sep 1979), 315-344.

Jose M. Faleiro and Daniel J. Abadi. 2017. Latch-free Synchronization in Database
Systems: Silver Bullet or Fool’s Gold?. In 8th Biennial Conference on Innovative
Data Systems Research, CIDR 2017, Chaminade, CA, USA, January 8-11, 2017,
Online Proceedings. 9.

Pascal Felber, Christof Fetzer, and Torvald Riegel. 2008. Dynamic Performance
Tuning of Word-based Software Transactional Memory. In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’08). 237-246.

Michael Freitag, Alfons Kemper, and Thomas Neumann. 2022. Memory-optimized
multi-version concurrency control for disk-based database systems. Proc. VLDB
Endow. 15, 11 (jul 2022), 2797-2810.

Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch, and Erez
Petrank. 2020. NV Traverse: in NVRAM data structures, the destination is more

2003

[25]

[26]

[27]

[28

[29

(30]

(31]

[33

[34

(35]

[37

(38]

[39

[40]

[42

[43]

[44]

[45

[46]
[47]

(48]

important than the journey. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2020). 377-392.
Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi Kuno, Joseph Tucek, Mark
Lillibridge, and Alistair Veitch. 2014. In-memory performance for big data. Proc.
VLDB Endow. 8, 1 (sep 2014), 37-48.

Rachid Guerraoui, Alex Kogan, Virendra J. Marathe, and Igor Zablotchi. 2020.
Efficient Multi-Word Compare and Swap. In 34th International Symposium on Dis-
tributed Computing (DISC 2020) (Leibniz International Proceedings in Informatics
(LIPIcs)), Vol. 179. 4:1-4:19.

Zhihan Guo, Kan Wu, Cong Yan, and Xiangyao Yu. 2021. Releasing Locks As
Early As You Can: Reducing Contention of Hotspots by Violating Two-Phase
Locking. In Proceedings of the 2021 International Conference on Management of
Data (SIGMOD °21). 658—670.

Xiangpeng Hao and Badrish Chandramouli. 2024. Bf-Tree: A Modern Read-
Write-Optimized Concurrent Larger-Than-Memory Range Index. Proc. VLDB
Endow. 17, 11 (July 2024), 3442-3455.

Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A Practical Multi-word
Compare-and-Swap Operation. In Proceedings of the 16th International Conference
on Distributed Computing (DISC "02). 265-279.

Thomas E. Hart, Paul E. McKenney, and Angela Demke Brown. 2006. Making
lockless synchronization fast: performance implications of memory reclamation.
In Proceedings of the 20th International Conference on Parallel and Distributed
Processing (IPDPS’06). 21.

Maurice Herlihy. 1991. Wait-free synchronization. ACM Trans. Program. Lang.
Syst. 13, 1 (jan 1991), 124-149.

Maurice Herlihy. 2005. The transactional manifesto: software engineering and
non-blocking synchronization. In Proceedings of the 2005 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI "05). 280.
Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer. 2003.
Software Transactional Memory for Dynamic-Sized Data Structures. In Pro-
ceedings of the Twenty-Second Annual Symposium on Principles of Distributed
Computing (PODC "03). 92-101.

Nathaniel Herman, Jeevana Priya Inala, Yihe Huang, Lillian Tsai, Eddie Kohler,
Barbara Liskov, and Liuba Shrira. 2016. Type-aware transactions for faster
concurrent code. In Proceedings of the Eleventh European Conference on Computer
Systems (EuroSys '16). Article 31, 16 pages.

Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba Shrira. 2020.
Opportunities for optimism in contended main-memory multicore transactions.
Proc. VLDB Endow. 13, 5 (jan 2020), 629-642.

Intel. 2024. Intel® oneAPI Threading Building Blocks Documenta-
tion. https://www.intel.com/content/www/us/en/developer/tools/oneapi/
onetbb-documentation.html

Intel. 2024. Intel® Optane™ SSD DC P4800X Series. https:
//www.intel.com/content/www/us/en/products/sku/97161/intel-optane-
ssd-dc-p4800x-series-375gb-2-5in-pcie-x4-3d-xpoint/specifications.html

Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anasta-
sia Ailamaki. 2010. Aether: A Scalable Approach to Logging. Proc. VLDB Endow.
3,1 (Sept. 2010), 681-692.

Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin Levandoski,
and Gor Nishanov. 2018. Exploiting coroutines to attack the killer nanoseconds.
Proceedings of the VLDB Endowment 11, 11 (2018), 1702-1714.

Minji Kang, Soyee Choi, Gihwan Oh, and Sang-Won Lee. 2020. 2R: efficiently
isolating cold pages in flash storages. Proc. VLDB Endow. 13, 12 (jul 2020),
2004-2017.

Arthur M. Keller, Richard Jensen, and Shailesh Agarwal. 1993. Persistence
Software: Bridging Object-Oriented Programming and Relational Databases.
SIGMOD Rec. 22, 2 (jun 1993), 523-528.

Alfons Kemper and Donald Kossmann. 1993. Adaptable Pointer Swizzling Strate-
gies in Object Bases. In Proceedings of the Ninth International Conference on Data
Engineering. 155-162.

Alfons Kemper and Thomas Neumann. 2011. HyPer: A Hybrid OLTP&OLAP
Main Memory Database System Based on Virtual Memory Snapshots. In Proceed-
ings of the 2011 IEEE 27th International Conference on Data Engineering (ICDE
’11). 195-206.

Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2016.
ERMIA: Fast memory-optimized database system for heterogeneous workloads.
In Proceedings of the 2016 International Conference on Management of Data. 1675~
1687.

Hideaki Kimura. 2015. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data (SIGMOD °15). 691-706.

H. T. Kung and John T. Robinson. 1981. On Optimistic Methods for Concurrency
Control. ACM Trans. Database Syst. 6, 2 (June 1981), 213-226.

Per-Ake Larson. 1988. Dynamic Hash Tables. Commun. ACM 31, 4 (April 1988),
446-457.

Leon Lee, Siphrey Xie, Yunus Ma, and Shimin Chen. 2022. Index checkpoints for
instant recovery in in-memory database systems. Proc. VLDB Endow. 15, 8 (apr
2022), 1671-1683.

https://clang.llvm.org/extra/clang-tidy/checks/readability/function-cognitive-complexity.html
https://clang.llvm.org/extra/clang-tidy/checks/readability/function-cognitive-complexity.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb-documentation.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb-documentation.html
https://www.intel.com/content/www/us/en/products/sku/97161/intel-optane-ssd-dc-p4800x-series-375gb-2-5in-pcie-x4-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/97161/intel-optane-ssd-dc-p4800x-series-375gb-2-5in-pcie-x4-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/97161/intel-optane-ssd-dc-p4800x-series-375gb-2-5in-pcie-x4-3d-xpoint/specifications.html

[49

[50]

[51]

[52]

[53

[54]

[55]

[56]

[57]

[58

[59

[60]

(61

[62]
[63]

[64]

[65

[66]
[67]

[68]

[69]

[70]

[71]

[72]

Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chi-
dambaram. 2019. RECIPE: Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP °19). 462-477.

Viktor Leis, Adnan Alhomssi, Tobias Ziegler, Yannick Loeck, and Christian
Dietrich. 2023. Virtual-Memory Assisted Buffer Management. Proc. ACM Manag.
Data 1, 1, Article 7 (may 2023), 25 pages.

Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In 2018 IEEE
34th International Conference on Data Engineering (ICDE). 185-196.

Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Optimistic Lock
Coupling: A Scalable and Efficient General-Purpose Synchronization Method.
IEEE Data Eng. Bull. 42 (2019), 73-84.

Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The Adaptive Radix
Tree: ARTful Indexing for Main-Memory Databases. In Proceedings of the 2013
IEEE International Conference on Data Engineering (ICDE ’13). 38-49.

Viktor Leis, Alfons Kemper, and Thomas Neumann. 2014. Exploiting hardware
transactional memory in main-memory databases. In 2014 IEEE 30th International
Conference on Data Engineering. 580-591.

Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016.
The ART of practical synchronization. In Proceedings of the 12th International
Workshop on Data Management on New Hardware (DaMoN ’16). Article 3, 8 pages.
Justin Levandoski, David Lomet, and Sudipta Sengupta. 2013. LLAMA: A Cache/S-
torage Subsystem for Modern Hardware. Proc. VLDB Endow. 6, 10 (aug 2013),
877-888.

Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree: A
B-Tree for New Hardware Platforms. In Proceedings of the 2013 IEEE International
Conference on Data Engineering (ICDE °13). 302-313.

Tianyu Li, Badrish Chandramouli, and Samuel Madden. 2022. Performant Almost-
Latch-Free Data Structures Using Epoch Protection. In Proceedings of the 18th
International Workshop on Data Management on New Hardware (DaMoN °22).
Article 1, 10 pages.

Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada:
Dependably Fast Multi-Core In-Memory Transactions. In Proceedings of the 2017
ACM International Conference on Management of Data (SIGMOD °17). 21-35.
Linux perf wiki Contributors. 2025. perf: Linux profiling with performance
counters. https://perfwiki.github.io

Witold Litwin. 1980. Linear Hashing: A New Tool for File and Table Addressing.
In Proceedings of the Sixth International Conference on Very Large Data Bases -
Volume 6 (VLDB ’80). 212-223.

Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: scalable
hashing on persistent memory. Proc. VLDB Endow. 13, 8 (apr 2020), 1147-1161.
Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: a fast and practical
deterministic OLTP database. Proc. VLDB Endow. 13, 12 (jul 2020), 2047-2060.
Darko Makreshanski, Justin Levandoski, and Ryan Stutsman. 2015. To lock,
swap, or elide: on the interplay of hardware transactional memory and lock-free
indexing. Proc. VLDB Endow. 8, 11 (jul 2015), 1298-1309.

Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache Craftiness
for Fast Multicore Key-Value Storage. In Proceedings of the 7th ACM European
Conference on Computer Systems. 183-196.

Thomas J. McCabe. 1976. A complexity measure. In Proceedings of the 2nd
International Conference on Software Engineering (ICSE ’76). 407.

Paul E McKenney. 2021. Is Parallel Programming Hard, And, If So, What Can You
Do About It? (2 ed.).

M.M. Michael. 2004. Hazard pointers: safe memory reclamation for lock-free
objects. IEEE Transactions on Parallel and Distributed Systems 15, 6 (2004), 491
504.

C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
1992. ARIES: a transaction recovery method supporting fine-granularity locking
and partial rollbacks using write-ahead logging. ACM Trans. Database Syst. 17, 1
(mar 1992), 94-162.

Marvin Mufioz Barén, Marvin Wyrich, and Stefan Wagner. 2020. An empirical
validation of cognitive complexity as a measure of source code understandabil-
ity. In Proceedings of the 14th ACM/IEEE international symposium on empirical
software engineering and measurement (ESEM). 1-12.

Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In 10th Conference on Innovative Data Systems
Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings.

Thomas Neumann, Tobias Miihlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’15). 677-689.

2004

[73

[74

[75]

[77

(78]

[79]

(81

(82]

[92

(93]

[94]

[96

Marek Olszewski, Jeremy Cutler, and J. Gregory Steffan. 2007. JudoSTM: A
Dynamic Binary-Rewriting Approach to Software Transactional Memory. In
16th International Conference on Parallel Architecture and Compilation Techniques

(PACT 2007). 365-375.
Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner, Thomas Will-

halm, and Grégoire Gomes. 2017. Memory management techniques for large-
scale persistent-main-memory systems. Proc. VLDB Endow. 10, 11 (aug 2017),
1166-1177.

Andrew Pavlo. 2017. What Are We Doing With Our Lives? Nobody Cares About
Our Concurrency Control Research. In Proceedings of the 2017 ACM International
Conference on Management of Data (SIGMOD ’17). 3.

Raghu Ramakrishnan and Johannes Gehrke. 2003. Database Management Systems
(3 ed.).

Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Ben-
jamin Hertzberg. 2006. McRT-STM: a high performance software transactional
memory system for a multi-core runtime. In Proceedings of the Eleventh ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP
’06). 187-197.

Felix Martin Schuhknecht, Jens Dittrich, and Ankur Sharma. 2016. RUMA has
it: rewired user-space memory access is possible! Proc. VLDB Endow. 9, 10 (jun
2016), 768-779.

Ge Shi, Ziyi Yan, and Tianzheng Wang. 2023. OptiQL: Robust Optimistic Locking
for Memory-Optimized Indexes. Proc. ACM Manag. Data 1, 3, Article 216 (nov
2023), 26 pages.

Athinagoras Skiadopoulos, Qian Li, Peter Kraft, Kostis Kaffes, Daniel Hong,
Shana Mathew, David Bestor, Michael Cafarella, Vijay Gadepally, Goetz Graefe,
Jeremy Kepner, Christos Kozyrakis, Tim Kraska, Michael Stonebraker, Lalith
Suresh, and Matei Zaharia. 2021. DBOS: a DBMS-oriented operating system.
Proc. VLDB Endow. 15, 1 (sep 2021), 21-30.

Alexander Spiegelman, Guy Golan-Gueta, and Idit Keidar. 2016. Transactional
data structure libraries. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’16). 682-696.

Dixin Tang, Hao Jiang, and Aaron J Elmore. 2017. Adaptive Concurrency Control:
Despite the Looking Glass, One Concurrency Control Does Not Fit All. In CIDR,
Vol. 2. 1.

Xiangpeng Hao Tianzheng Wang. 2019. Experience on building a lock-free
B+-tree in persistent memory. https://pirl.nvsl.io/2019/12/10/experience-on-
building-a-lock-free-b-tree-in-persistent-memory/

TPC. 2010. TPC Benchmark C (OLTP) Standard Specification, revision 5.11.
Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy Transactions in Multicore In-Memory Databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13).
18-32.

Unigen. 2024. Non-Volatile Memory. https://unigen.com/products/nvdimm/.
Viking Technology. 2024. DDR4 NVDIMM. https://www.vikingtechnology.com/
non-volatile-memory/ddr4-nvdimm/

Tianzheng Wang and Ryan Johnson. 2014. Scalable Logging through Emerging
Non-Volatile Memory. Proc. VLDB Endow. 7, 10 (June 2014), 865-876.
Tianzheng Wang and Hideaki Kimura. 2016. Mostly-Optimistic Concurrency
Control for Highly Contended Dynamic Workloads on a Thousand Cores. Proc.
VLDB Endow. 10, 2 (Oct. 2016), 49-60.

Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. 2018. Easy Lock-Free
Indexing in Non-Volatile Memory. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE). 461-472.

Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,
Michael Kaminsky, and David G. Andersen. 2018. Building a Bw-Tree Takes
More Than Just Buzz Words. In Proceedings of the 2018 International Conference
on Management of Data (SIGMOD ’18). 473-488.

Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An
Empirical Evaluation of In-Memory Multi-Version Concurrency Control. Proc.
VLDB Endow. 10, 7 (March 2017), 781-792.

Yu Xia, Xiangyao Yu, Andrew Pavlo, and Srinivas Devadas. 2020. Taurus: Light-
weight Parallel Logging for in-Memory Database Management Systems. Proc.
VLDB Endow. 14, 2 (Oct. 2020), 189-201.

Helen Xu, Amanda Li, Brian Wheatman, Manoj Marneni, and Prashant Pandey.
2023. BP-Tree: Overcoming the Point-Range Operation Tradeoff for In-Memory
B-Trees. Proc. VLDB Endow. 16, 11 (July 2023), 2976-2989.

Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. TicToc:
Time Traveling Optimistic Concurrency Control. In Proceedings of the 2016
International Conference on Management of Data (SIGMOD ’16). 1629-1642.
Tobias Ziegler, Jacob Nelson-Slivon, Viktor Leis, and Carsten Binnig. 2023. Design
Guidelines for Correct, Efficient, and Scalable Synchronization using One-Sided
RDMA. Proc. ACM Manag. Data 1, 2, Article 131 (jun 2023), 26 pages.

https://perfwiki.github.io
https://pirl.nvsl.io/2019/12/10/experience-on-building-a-lock-free-b-tree-in-persistent-memory/
https://pirl.nvsl.io/2019/12/10/experience-on-building-a-lock-free-b-tree-in-persistent-memory/
https://www.vikingtechnology.com/non-volatile-memory/ddr4-nvdimm/
https://www.vikingtechnology.com/non-volatile-memory/ddr4-nvdimm/

	Abstract
	1 Introduction
	1.1 Index Programming Efficiency
	1.2 Tabular
	1.3 Contributions

	2 Background
	2.1 Concurrent Indexes and Programmability
	2.2 Mapping Indexes to Tables
	2.3 Modern OLTP and Motivation

	3 Tabular Overview and APIs
	4 Tabular Internals
	4.1 Single-Versioned, Direct Record Access
	4.2 (Near) Zero-Copy Optimistic Concurrency
	4.3 Correctness
	4.4 Durability and Recovery
	4.5 Discussions

	5 Tabular Use Cases
	5.1 From Sequential Logic to Tabular
	5.2 B+-Tree
	5.3 Extendible Hashing

	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Index Performance
	6.3 Effect of Transparent Persistence
	6.4 End-to-End TPC-C Results

	7 Related Work
	8 Summary
	Acknowledgments
	References

