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ABSTRACT
Community search finds query-dependent communities over graphs,

which has been investigated broadly. In this work, we focus on the

task of returning only a single connected community containing all

user input query vertices. Most existing studies in the literature only

propose a single and static model based on a particular subgraph
(e.g., 𝑘-core, 𝑘-truss, quasi-clique, and learning-based component).

These fixed models are hard to find exact community answers

on all datasets and fit with different underlying desires of users

and queries. This implies that the community search task needs

human-in-loop interactions, which allows users to give feedback

and dynamically advise community refinement.

To tackle the above issues, we formulate and study the problem

of interactive community search, which allows users to add/delete

vertices for improving community answers in a few rounds of

interactions. We first summarize dozens of existing community

models and develop an integrated notation system M(G,M,O,P)
to describe them all. Then, we propose a flexible approach to

interactive community search over graphs called GICS-framework.

The successful principle of GICS-framework lies on three key com-

ponents: personalized adding/deleting recommendation, parameter
auto-tuning, and fast partial refinement. We develop efficient al-

gorithms and successfully deploy three community models on

our GICS-framework. We further analyze algorithm complexity

of GICS-framework by illustrating one instance model in detail.

Extensive experiments on ground-truth communities demonstrate

that our interaction of GICS-framework improves F1-score accu-

racy by 22% against state-of-the-art competitors, and gives users

real-time responses within one second.
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Figure 1: An example of interactive community search.

1 INTRODUCTION
Community search is a fundamental graph analytics task, which

finds a closely connected subgraph containing a given set of queries

in large graphs [1–3, 6, 8, 9, 17, 18, 20, 21, 24, 25, 27, 28, 31, 36, 37,

39, 40, 54, 55, 68, 70, 72, 73, 76]. Different from general commu-

nity detection tasks [59, 66] which finds all communities in the

graph without user input query vertex, community search supports

query-oriented personalized search by locally exploring the graph

to identify the community in a candidate subgraph quickly [24, 54].

It has several applications in real-world networks, such as social

circles discovery in social networks [49], finding research groups

in collaboration networks [46], and protein-protein structures iden-

tification in biology networks [11].

However, most existing community search studies focus only

on the static problem setting, which returns community results

in one interactive round after receiving user query inputs. The an-

swer may be far more satisfactory from the users’ perspective

and cannot support further revision with more user inputs. We

illustrate three reasons why one static community model cannot

find good communities. First, a fixed model struggles to capture

the diverse properties of all communities in real-life graphs, as no

single model can accurately represent these varying connections.

Second, several different parameters are difficult for users to con-

figure. Query-oriented community search tasks always ask users

to provide query vertices, attributes, and other parameters (e.g.,

density, size, diameter, etc.). Third, overlapping communities exist

in real-life applications, leading to different communities depending

on user input query vertices. Initially, users are uncertain about

their desired communities, often realizing this only after several

interactions. Motivated by these observations, this paper studies

a different problem of interactive community search, which allows

users to continuously interact with the community model to refine

community results until they are satisfied.
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Existing interactive community search ICS-GNN [23] considers

user feedback to refine the community search result by labeling a

positive vertex and a negative vertex in the candidate subgraph,

which increases the size of the labeled vertices of the training set

iteratively to improve the effectiveness of the results. Unfortunately,

it still suffers three drawbacks. First, it uses a fixed model that does
not adjust the size parameter𝑘 during the interaction phase. Second,

it refines the answer by re-running search algorithms entirely, which

is inefficient. Third, it lacks recommendations and scalability to

other community models, thereby limiting its applicability and

extension to other community models. These limitations highlight

the importance of developing more flexible and efficient interactive

community search solutions.

Challenges. To address these gaps, we intend to develop a novel

interactive community search framework, which must overcome

three key technical challenges as follows.

• Challenge 1: the fitness of diverse community models. The aim of

a general interactive community search framework needs to fit

many different community models. However, it is a significant

challenge to fit multiple community search models with vari-

ous features of dense subgraph patterns (e.g., 𝑘-core, 𝑘-truss,

learning-based component, and so on), structural metrics, at-

tributes metrics, and parameters.

• Challenge 2: the design of user-friendly interactions.Many choices

of node insertion/deletion exit in a large-scale graph, which

brings challenges for users to select in the interactive process.

It seeks an effective recommendation schema by reducing such

choices and auto-adjusting parameters to help users make fast

and good community refinement.

• Challenge 3: the real-time response of interactions. The interac-
tive community search seeks real-time responses. Thus, it is

challenging to develop an efficient algorithm of community

refinement, avoiding the computation from scratch.

To address the above challenges, we propose a novel GICS-
framework of interactive community search. Leveraging a general-

ized notation system of community models, our GICS-framework

equips with three useful components for fast and effective interac-

tive actions, including personalized recommendation, fast refinement,
and parameter auto-adjustment. A motivating example shown in

Figure 1 introduces the key idea of our solution. Given a collabora-

tion network G in Figure 1(a), a 𝑘-core community model with the

smallest diameter, a query vertex 𝑄 = {𝑣6}, and parameter 𝑘 = 4.

The initial community 𝐻0 in Figure 1(b) is a database community

of 4-core containing 𝑣6, which has the smallest diameter of 1. Then,

our solution recommends three vertices 𝑣4, 𝑣7, and 𝑣10 for users

to add to 𝐻0. After performing the user action of adding 𝑣10, our

solution tunes parameter 𝑘 = 3 as the 𝑣10 only appears in the 3-core.

The answer 𝐻0 is corresponding refined as 𝐻1 in Figure 1(c), which

is a 3-core containing the new query {𝑣6, 𝑣10} with the diameter of

2. Next, the user deletes 𝑣13 and finally obtains 𝐻2 in Figure 1(d),

which is shown to be the desired data mining community contain-

ing {𝑣6, 𝑣10}. The proposed techniques of interactive community

search in GICS-framework are easily extended to support many

community models [1–3, 6, 8, 9, 17, 18, 20, 21, 24, 25, 27, 28, 31,

36, 37, 39, 40, 54, 55, 68, 70, 72, 73, 76]. In summary, we make the

following contributions:

• We identify key characteristics of community models, including

dense subgraph patterns, structural, and attributemetrics. Based

on these model criteria, we propose a novel notation system to

generalize existing community search models in a unified way.

We illustrate the usefulness of our notation system using three

particular instances of community searchmodels, and formulate

the problem of interactive community search (Section 3).

• We develop a fast and effective framework for interactive com-

munity search, incorporating three well-designed components

of personalized recommendation, fast refinement, and parame-

ter auto-turning. Moreover, we identify the scope of our inter-

active GICS-framework that can do and cannot do (Section 4).

• We design personalized recommendation algorithms to sug-

gest a small-sized set of high-quality vertices, which are easy

for users to decide insertion/deletion for further community

refinement. To support effective personalization and diverse

recommendations, we develop several strategies including di-

rected candidate graph reconstruction, maximum coverage-

based greedy solutions, and also the extension techniques of

handling attributes and large-scale graphs (Section 5).

• We develop two important phases of community parameter

auto-tuning and fast interactive refinement, which provide good

community results in a fast and user-friendly way (Section 6).

• We implement three particular community search models into

our interactive community search system. Experiments on ground-

truth communities and user studies validate the usability, effi-

ciency, and effectiveness of our methods (Section 7).

We review related work in Section 2 and conclude paper in Section 8.

2 RELATEDWORK
Structural community search. Table 1 summarizes various com-

munity models that employ dense subgraph patterns, structural met-
rics, and attributed metrics. Simple structural community search

problems first explored by Sozio et al. [54] are to identify densely

interconnected subgraphs that include specified query vertices [19,

26]. To constraint community density, key dense subgraph pat-

terns were proposed include 𝑘-core [3, 9, 54, 68], 𝑘-truss [24, 27],

𝑘-clique [8, 70], the densest subgraph model [10, 32], and learning-

based weighted components [5, 23, 30, 33]. Community models also

utilize structural metrics to measure the community structure char-

acteristics such as vertex count [9, 23, 24, 68], query distance [25],

and graph diameter [2, 27, 36].

Complex community search. Recent studies have explored com-

munity search within complex graphs, including directed graphs

[7, 20, 36], keyword graphs [6, 12, 18, 25, 72], spatial graphs [17, 31,

40], weighted graphs [55, 73], heterogeneous information networks

(HINs) [21, 29, 74], multilayer graphs [4, 56], and dynamic graphs

[28, 57, 64]. As summarized in Table 1, various attribute metrics are

employed to assess attribute cohesion. For instance, Liu et al. [37]

introduced an attribute score based on Jaccard distance for ensuring

cohesiveness, while Zhou et al. [74] focused on identifying com-

munities adhering to the meta-path-based (𝑘,P)-core condition
in HINs. Moreover, recent research in dynamic community search

[28, 57, 64] emphasizes the efficient updating of indices in response

to changes in graph topology.
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Table 1: A summary of existing community search problems

Graph Type Papers
Dense Subgraph Patterns

Structural Metrics Attribute Metrics Interactive Search
𝑘-core 𝑘-truss Clique Learning-based component

Simple

[3, 9, 68] ✓ |𝑉 (𝐻 ) |

×

×

[54] ✓ dist(𝑄,𝐻 )
[24] ✓ |𝑉 (𝐻 ) |
[27] ✓ dist(𝑄,𝐻 )

[8, 10, 70] ✓ |𝑉 (𝐻 ) |

Attributed

[18, 21, 28] ✓ |𝑉 (𝐻 ) | attr(𝐻 )
[72] ✓ dist(𝑄,𝐻 ) attr(𝐻 )

[17, 39, 40] ✓ |𝑉 (𝐻 ) | geodiam(𝐻 )
[55, 73] ✓ |𝑉 (𝐻 ) | weight(𝐻 )

[34, 41, 74] ✓ |𝑉 (𝐻 ) | influ(𝐻 )
[37, 76] ✓ |𝑉 (𝐻 ) | attr(𝐻 )
[2, 36] ✓ diam(𝐻 ) attr(𝐻 )
[25] ✓ dist(𝑄,𝐻 ) attr(𝐻 )

[5, 30, 33, 38] ✓ |𝑉 (𝐻 ) | gnn(𝐻 )
[23] ✓ |𝑉 (𝐻 ) | gnn(𝐻 ) ✓

All types Ours ✓ ✓ ✓ ✓ All types All types ✓

Interactive graph search. Several studies investigate user inter-
action with graphs to enhance search outcomes [43–45]. Perozzi

et al. [48] investigate community and outlier detection problems

guided by user-provided nodes. Fan et al. study graph incremen-

tal computation problems and the unbounded update properties

of common graph queries such as graph traversal [15]. Du et al.

propose interactive algorithms for subgraph matching following

query graph revisions [13]. Tao et al. focus on interactive graph

search in directed acyclic graphs (DAGs) [58]. The GMine system

facilitates interactive visualization for large graphs [50].

Gao et al. introduce ICS-GNN which focuses on interactive com-

munity search to identify a connected 𝑘-sized community max-

imizing the GNN score [23]. This approach iteratively enhances

the training set by labeling additional vertices to boost effective-

ness. However, extending ICS-GNN to other community models,

such as 𝑘-core and 𝑘-truss models, presents challenges due to the

lack of training objectives and ground-truth labels. Furthermore,

ICS-GNN does not support user recommendations, which limits its

usability. In contrast to ICS-GNN and other non-interactive com-

munity search methods [4, 21, 27, 29, 31, 36, 68, 70], we propose

a scalable interactive community search approach that includes

fast refinement with automatic parameter tuning and high-quality
recommendations for enhanced usability.

3 PRELIMINARIES
In this section, we identify key criteria of communities and propose

a notation systemM(G,M,O,P) to generalize community models

in a unified way. After that, we formulate the problem of interactive
community search.

3.1 Community Criterion
We introduce elements of a typical community model, including

dense subgraph patterns, structural metrics, and attribute metrics.
Basic graph notions and notations. Given an attributed graph

𝐺 (𝑉 , 𝐸,𝐴), the vertex set and edge set are 𝑉 and 𝐸, respectively.

Each vertex 𝑣 ∈ 𝑉 is depicted by the set of attributes 𝐴(𝑣). For a
subgraph 𝐻 ⊆ 𝐺 , the neighbors of 𝑣 ∈ 𝑉 is defined as N𝐻 (𝑣) = {𝑢 :

(𝑣,𝑢) ∈ 𝐸 (𝐻 )}. The degree of 𝑣 is the number of edges incident to 𝑣

in 𝐻 denoted by deg𝐻 (𝑣) = |N𝐻 (𝑣) |. A triangle △𝑢𝑣𝑤 is a 3-clique

of three vertices 𝑣,𝑢, and 𝑤 . For an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (𝐻 ), the
support of 𝑒 is the number of triangles containing 𝑒 in 𝐻 , denoted

as sup𝐻 (𝑒), where sup𝐻 (𝑒) = |{△𝑢𝑣𝑤 : 𝑤 ∈ N𝐻 (𝑣) ∩N𝐻 (𝑢)}|. The

edge density of 𝐻 is denoted as den(𝐻 ) = |𝐸 (𝐻 ) ||𝑉 (𝐻 ) | . For two vertices

𝑢, 𝑣 , the shortest distance between 𝑢 and 𝑣 is the smallest length of

all paths connecting 𝑢, 𝑣 in graph 𝐻 , denoted as dist𝐻 (𝑢, 𝑣) ∈ N.
Moreover, graph𝐻 is connected denoted as conn(𝐻 ) = 1, otherwise

conn(𝐻 ) = 0. Query vertices are denoted as𝑄 ⊆ 𝑉 (𝐻 ). Throughout
this paper, w.l.o.g., we regard the communities 𝐻 to be connected

and containing all query vertices, i.e., conn(𝐻 ) = 1 and 𝑄 ⊆ 𝑉 (𝐻 ).

3.1.1 Dense subgraph patterns. Most community models adopt a

dense subgraph pattern to depict structural connections among

community members. We summarize five frequently used dense

subgraph models: 𝑘-core [3, 9, 17, 18, 20, 21, 28, 31, 39, 40, 54, 55, 68,

72, 73], 𝑘-truss [2, 24, 25, 27, 36, 37, 76], cliques [8, 70], the densest

subgraphs [10, 32], and GNN-based models [23, 33].

𝑘-core. A subgraph 𝐻 ⊆ 𝐺 is 𝑘-core if every vertex has at least 𝑘

neighbors in 𝐻 , i.e., deg𝐻 (𝑣) ≥ 𝑘 . Coreness is frequently used to

denote the largest number 𝑘 ∈ N such that 𝐻 is a 𝑘-core, corre-

sponding to the minimum degree of vertices in 𝐻 , i.e., core(𝐻 ) =
𝑚𝑖𝑛𝑣∈𝐻 deg𝐻 (𝑣). Obviously, the larger coreness core(𝐻 ), the stronger
cohesiveness𝐻 . 𝑘-core is frequently used as the basis of community

models, which applies on the constraints to satisfy core(𝐻 ) ≥ 𝑘 for

a specific 𝑘 [9, 17, 18, 20, 21, 28, 31, 39, 40, 55, 72] or optimization

criteria to maximize coreness core(𝐻 ) [3, 9, 54, 68]. In summary,

we can represent a 𝑘-core community 𝐻 as core(𝐻 ) ≥ 𝑘 .

𝑘-truss. A subgraph 𝐻 ⊆ 𝐺 is 𝑘-truss if every edge 𝑒 ∈ 𝐸 (𝐻 )
has at least 𝑘 − 2 triangles in 𝐻 , i.e., sup𝐻 (𝑒) ≥ 𝑘 − 2. Similar to

𝑘-core, we evaluate the structural cohesiveness of 𝑘-truss 𝐻 using

the minimum support of edges 𝐸 (𝐻 ), named as the trussness, i.e.,
truss(𝐻 ) = min𝑒∈𝐸 (𝐻 ) sup𝐻 (𝑒) + 2. The larger trussness truss (H),
the cohesive community 𝐻 . Several community models [2, 24, 25,

27, 36, 37, 76] require 𝑘-truss to be a dense subgraph pattern. In

summary, we can represent a𝑘-truss community𝐻 as truss(𝐻 ) ≥ 𝑘 .

Cliques. A clique is a complete graph where every pair of nodes

has an edge [8, 70]. A𝑘-clique𝐻 ⊆ 𝐺 is the clique of exact𝑘 vertices

with the largest edge density, i.e., |𝑉 (𝐻 ) | = 𝑘 and den(𝐻 ) = 𝑘−1
2

. A

similar relaxation of 𝑘-clique is 𝛾-quasi-𝑘-clique [8], which allows

some missed edges, i.e., |𝑉 (𝐻 ) | = 𝑘 and den(𝐻 ) ≥ 𝛾 × 𝑘−1
2

.

Densest subgraph. A subgraph 𝐻 ⊆ 𝐺 is the densest subgraph if

there exists no other subgraph𝐻 ′ ⊆ 𝐺 having a higher density than

𝐻 , i.e., 𝐻 = argmax𝐻⊆𝐺 den(𝐻 ). Besides this classical definition
of edge density den(𝐻 ) = |𝐸 (𝐻 ) ||𝑉 (𝐻 ) | , the densest subgraph may adopt

other density metrics, e.g., the fraction of edge
2 |𝐸 (𝐻 ) |

|𝑉 (𝐻 ) | ( |𝑉 (𝐻 ) |−1) ,
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the modularity based density [10, 32], and so on. The densest sub-

graph can be formulated to argmax𝐻⊆𝐺 den(𝐻 ).
Learning-based component. The learning-based subgraph 𝐻

is usually a connected 𝑘-sized subgraph with vertices assigned

learned weights, denoted by conn(𝐻 ) = 1 and |𝑉 (𝐻 ) | = 𝑘 . A well-

known GNN-based community contains a set of 𝑘 vertices with the

highest GNN scores, i.e., gnn(𝐻 ) = ∑︁
𝑣∈𝑉 (𝐻 ) weight(𝑣), based on

their structural and feature similarity to query vertices [23]. These

weight-based connected community search problems [5, 23, 30, 33,

38] could be regarded as a 1-core with attribute score optimization,

i.e., argmax𝐻⊆𝐺 weight(𝐻 ), where core(𝐻 ) ≥ 1.

3.1.2 Structural metrics. Community distance measures the com-

munication cost between community members. Given a community

𝐻 , common graph distance-based metrics include the longest length

of shortest paths as diameter diam(𝐻 ) = max𝑢,𝑣∈𝑉 (𝐻 ) dist𝐻 (𝑢, 𝑣) [2,
4, 27, 36], radius radius(𝐻 ) = min𝑣∈𝑉 (𝐻 ) {max𝑢∈𝑉 (𝐻 ) dist𝐻 (𝑢, 𝑣)},
and also query distance dist(𝑄,𝐻 ) = max𝑢∈𝑄,𝑣∈𝑉 (𝐻 ) dist𝐻 (𝑢, 𝑣)
where𝑄 is a set of query vertices [25, 54]. A small graph distance of

𝐻 indicates the closeness of community members. Community size
counts on the number of vertices and edges in𝐻 , denoted by |𝑉 (𝐻 ) |
and |𝐸 (𝐻 ) |, respectively [3, 8, 9, 20, 21, 23, 24, 28, 37, 64, 68, 74].

3.1.3 Attribute metrics. The attribute similarity computes the ho-

mogeneity of nodes’ associated attributes, e.g., categorized key-

words [2, 6, 12, 30, 72], spatial locations [17, 31, 40], and influ-

ential importance [34, 41, 74]. The common attribute of commu-

nity 𝐻 is attr(𝐻 ) =
⋂︁

𝑣∈𝑉 (𝐻 ) 𝐴(𝑣), where 𝐴(𝑣) represents the

categorized keywords of 𝑣 [2, 18]. In geo-social networks, the

spatial diameter of 𝐻 is geodiam(𝐻 ) = max𝑢,𝑣∈𝑉 (𝐻 ) geod𝐻 (𝑢, 𝑣)
where geod(𝑢, 𝑣) represents the distance between 𝑢 and 𝑣 in the

spatial space [17, 40]. In influential social networks, the commu-

nity influence measures the minimum influence of nodes in 𝐻

influ(𝐻 ) = min𝑣∈𝑉 (𝐻 ) 𝐴(𝑣) where 𝐴(𝑣) here represents the in-

fluential importance of 𝑣 [34]. The group weight in the weighted

graph can be defined as weight(𝐻 ) = ∑︁
𝑒∈𝐸 (𝐻 ) 𝑤 (𝑒) where 𝑤 (𝑒)

represents the edge weight [73]. All attribute metrics above can be

calculated incrementally during interactive community search.

3.2 Community Notation Systems and Instances
Based on the above dense subgraph patterns, structural, and at-

tribute metrics, we present a community notation systemM(G,M,

O,P) to depict arbitray community model and illustrate the in-

stances. We first present three key elements of communities as the

metricsM, operations O, and parameters P.
MetricsM.We use a set of metricsM to describe the properties

of vertices, edges, and subgraphs in community 𝐻 . Therefore, we

represent the metrics as M = {core(.), truss(.), den(.), conn(.),
diam(.), radius(.), . . . , attr(.), gnn(.), geodiam(.), influ(.)}.
Operations O.We use a set of operations O to optimize objectives

and limit constraints, where O = {>, <, ≥, ≤,=,≠,max(.),min(.),
arg, ⊆, ⊇,∪,∩, . . . , |.|, +,−, ∗, /,∑︁,Π}. Here,max(.)/min(.) represents
the maximum/minimum optimization of functions, |.| indicates the
set cardinality, and ≤/≥ represent the inequality constraints.

Parameters P. We use a set of parameters P to indicate the com-

munity requirements quantified. First, query vertices are usually

required to appear in community answers, i.e., Φ(𝑄,𝐻 ) = |𝑄 |. Sec-
ond, dense subgraph models involve additional parameters of 𝑘 , 𝑑 ,

and others to constrain cohesiveness or communication cost, i.e.,

core(𝐻 ) ≥ 𝑘 . Third, community size constraints can be an upper

or lower bound or belong to a range, i.e., 𝑎 ≤ |𝑉 (𝐻 ) | ≤ 𝑏.

Based on the querying graph G and three elements M,O,P
above, the problem of existing community search models can be

formulated to find the answer of community 𝐻 as

𝐻 ← M(G,M,O,P) .

Therefore, we derive a unified community notation systemM(G,
M,O,P) for describing any community models. To illustrate the

usefulness of proposed notation system, we applyM(G,M,O,P)
on three representative instances, including the closest truss com-
munity search (CTC) [27], attributed community search (ACQ) [18],

and GNN-based interactive community search (ICS-GNN) [23].
Instance-1M𝐶𝑇𝐶 . The CTC model [27] finds a connected 𝑘-truss

community 𝐻 containing query vertices 𝑄 with the smallest di-

ameter. The objective of CTC can formulated as a minimization

problem to find a community 𝐻 ∈ 𝛀1 where the search space 𝛀1

is constrained by G1,M1,O1,P1, such that

M𝐶𝑇𝐶 (G1,M1,O1,P1) = argmin

𝐻 ∈𝛀1

diam(𝐻 )

where G1 = (𝑉1, 𝐸1),M1 = {diam(.), truss(.), conn(.),Φ(.)}, O1 =
{⊆,min(.), ≥,=, |.|},P1 = {𝑄,𝑘}, and𝛀1 = {𝐻 |𝐻 ⊆ G1, truss(𝐻 ) ≥
𝑘, conn(𝐻 ) = 1,Φ(𝑄,𝐻 ) = |𝑄 |}.

Throughout the remaining of this paper, we omit the constraints

conn(𝐻 ) = 1 for a connected community, Φ(𝑄,𝐻 ) = |𝑄 | for query-
dependent communities, and also parameters G,M,O,P as model

M(.), for simplicity. We can rewrite the above model asM𝐶𝑇𝐶 (.) =
argmin

𝐻 ∈𝛀1

diam(𝐻 ), where 𝛀1 = {𝐻 |𝐻 ⊆ G1, truss(𝐻 ) ≥ 𝑘}.

Instance-2 M𝐴𝐶𝑄 . The ACQ model [18] finds a connected 𝑘-core

containing query vertex 𝑞 with the maximum common attributes

over attributed graph G2 = (𝑉2, 𝐸2, 𝐴2), w.r.t., the parameter query

𝑞 and input query attributes 𝑆 . The ACQ model can be formu-

lated as M𝐴𝐶𝑄 (.) = argmax

𝐻 ∈𝛀2

|𝑆 ∩ attr(𝐻 ) |, where 𝛀2 = {𝐻 |𝐻 ⊆

G2, core(𝐻 ) ≥ 𝑘}.
Instance-3 M𝐺𝑁𝑁 . The ICS-GNN model [23] finds a 𝑘-sized con-

nected subgraph containing query vertices𝑄 with the largest GNN-

based score over attributed graph G3 = (𝑉3, 𝐸3, 𝐴3). The ICS-GNN
model can be formulated as M𝐺𝑁𝑁 (.) = argmax

𝐻 ∈𝛀3

gnn(𝐻 ), where

𝛀3 = {𝐻 |𝐻 ⊆ G3, |𝑉 (𝐻 ) | = 𝑘}.

3.3 Problem Formulation
In the following, we formulate the problem of interactive commu-

nity search (ICS-problem) for any community model M𝑥 ∈ CSM.

In the interactive setting, we allow users to modify community

search result𝐻0

𝑄±
−−→ �̂� by clicking vertices𝑄± to adding/removing

into/from the community, where 𝐻0 and �̂� are the initial and opti-

mal communities, respectively.

[Interactive community search problem (ICS-problem)]. Given
a graph G = (𝑉 , 𝐸,𝐴), a community model M𝑥 (G,M,O,P0) ∈
CSM, a given set of queries 𝑄0 ∈ parameter P0, an initial result
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Figure 2: The GICS for interactive community search.

of community 𝐻0 = M𝑥 (G,M,O,P0), and the maximum interac-

tive round as 𝐼𝑚𝑎𝑥 ∈ Z+, the ICS-problem is to iteratively revise

community 𝐻 𝑖−1
to 𝐻 𝑖

at the 𝑖-th round, where 1 ≤ 𝑖 ≤ 𝐼𝑚𝑎𝑥 ,

𝐻 𝑖 = M𝑥 (G,M,O,P𝑖 ), the query 𝑄𝑖 = 𝑄𝑖−1 ∪𝑄± by a sequence

of actions to add/remove vertices 𝑄± ⊆ 𝑉 , and 𝑄𝑖 ∈ P𝑖 .
The objective of interactive community search is to compute

the community 𝐻𝑖 close to the user target community �̂� guide

by user-provided interactive actions 𝑄± within 𝐼𝑚𝑎𝑥 iterations,

such that lim

𝑖→𝐼𝑚𝑎𝑥

|𝐻𝑖 − �̂� | = 0, where 0 ≤ 𝑖 ≤ 𝐼𝑚𝑎𝑥 . In the 𝑖-th

round of interaction, users can choose to add/remove operations

to a specific vertex or stop the search. There are three kinds of

relationships between𝐻𝑖 and �̂� : (1)𝐻𝑖 ⊂ �̂� ; (2)𝐻𝑖 ⊃ �̂� ; (3)𝐻𝑖∩�̂� ≠

∅. Case (1) requires to add vertices to 𝐻𝑖 while Case (2) requires

to remove vertices from 𝐻𝑖 . Case (3) requires both adding and

removing actions.

Discussion on convergency and optimality. Given a ground-

truth community �̂� , it takes 𝑂 (𝑛) interactions to converge to �̂�

in worst cases, where 𝑛 = |𝑉 |. The rationale is as follows. At each
𝑖-th iteration, users can mark the label of insertion/deletion for one

unlabeled vertex 𝑣 ∈ 𝑉 , i.e., insert 𝑣 ∈ 𝑉 (�̂� ) into 𝐻𝑖 and delete

𝑣 ∈ 𝑉 (𝐻𝑖 ) from 𝐻𝑖 . After at most 𝑛 iterations by marking all ver-

tices in 𝐺 , the optimal community �̂� is identified. Unfortunately,

there seems to be no optimal sequence of refinements to achieve �̂� ,

as the interaction process involves human willingness, that is, users

may perform different actions at the same round of interaction.

Therefore, a good solution for interactive community search should

admit at least two requirements: 1) Fast refinement. It takes a small

number 𝑖 of actions to reach the target community, i.e., 𝐻𝑖 = �̂� ; 2)

High-quality recommendation for user-friendly actions. It recom-

mends a small number of high-quality vertices 𝑅± to add/remove,

i.e.𝑄± ⊆ 𝑅±, instead of the whole vertex set such as𝑄± ⊆ 𝑉 , which

saves the user efforts and provides user-friendly service.

Example 1. Figure 1 gives an example of interactive community

search. Consider a collaboration network G in Figure 1(a) with 13

vertices and 26 edges. Each scholar vertex has an attribute of re-

search topics in {𝐷𝐵, 𝐷𝑀,𝑀𝐿}.M𝑥 model finds a connected 𝑘-core

community with the smallest diameter, i.e.,M𝑥 = argmin

𝐻 ∈𝛀
diam(𝐻 ),

where 𝛀 = {𝐻 |𝐻 ⊆ 𝐺, core(𝐻 ) ≥ 𝑘}. Given community modelM𝑥 ,

query vertex 𝑄 = {𝑣6}, 𝑘 = 4, and 𝐼𝑚𝑎𝑥 = 2, the initial community

search result 𝐻0 is a 4-core community with diam(𝐻 ) = 1 shown

in Figure 1(b). After adding 𝑣10, there is no 4-core containing 𝑣10,

thus we auto-tune by decreasing 𝑘 to 3 and refine the answer to

𝐻1 in Figure 1(c). 𝐻1 is a 3-core community with diam(𝐻 ) = 2.

After deleting 𝑣13, the refined community 𝐻2 has been extracted in

Figure 1(d), which is a data mining (DM) group.

Algorithm 1 Interactive Community Search Framework

Input: Graph G = (𝑉 , 𝐸,𝐴) , community modelM𝑥 ∈ CSM, query

vertices𝑄0, interactive budget 𝐼𝑚𝑎𝑥

Output: Refined community 𝐻 ∗

1: Compute initial community 𝐻0 ← M𝑥 (G,M, O, P0 ) ;
2: 𝑖 ← 1;

3: while 𝐻𝑖 = �̂� or 1 ≤ 𝑖 ≤ 𝐼𝑚𝑎𝑥 do
4: Recommend interactivevertices 𝑅± by Algorithm 2;

5: End-user specifies𝑄± from recommended vertex set 𝑅±;
6: Tune parameters P𝑖−1 to P𝑖 by Algorithm 6;

7: Refine and find answer 𝐻𝑖 ← M𝑥 (G,M, O, P𝑖+1 ) by Algorithm 7;

8: 𝑖 ← 𝑖 + 1;
9: Return a refined community 𝐻𝑖 ;

4 THE PROPOSED GICS-FRAMEWORK
We present an overview of GICS-framework in Figure 2 to be

adapted into arbitrary community model, which consists of three

phases in Algorithm 1.

- Phase I: personalized adding/deleting recommendation.
This module first provides a user-friendly service to list a small

number of recommended add/delete nodes 𝑅± for community

refinement. This gives users quick ideas to select candidates

for revising the community to the right answer. Specifically,

we propose new techniques to recommend a set of nodes that

have high community relevance and large coverages over our

reconstructed directed graphs.

- Phase II: auto-tuning parameter mechanism.We construct

an auto-adjusted parameter mechanism to infer a proper pa-

rameter setting for new queries and underlying community.

It adjusts proper parameter values P𝑖 based on the existing

community 𝐻𝑖−1 and the user’s new action on 𝑄±
𝑖
. This phase

maintains all kinds of structural and attributed parameters based

on user’s adding/removing actions.

- Phase III: fast refinement.We propose efficient refinement

algorithms to quickly identify answers based on the existing

answer𝐻𝑖−1 and new queries𝑄𝑖 , which provides short response

time in a user-friendly interaction. To ensure fast community

refinement, it constructs a small candidate subgraph to support

the community’s partial update.

The scope of our ICS problem and framework. We identify

the scope of our interactive community search problem and the

proposed solutionGICS-framework, that can do and cannot do.

• Our scope. This work focuses on a specific problem of graph
query processing, i.e., community search, which aims to identify

a single connected community containing all user input query
vertices meanwhile satisfying the predefined constraints and
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optimizations. We develop a unified notation systemCSM using

M𝑥 (G,M,O,P0) to represent various community search mod-

els [1–3, 6, 8, 9, 17, 18, 20, 21, 24, 25, 27, 28, 31, 36, 37, 39, 40, 54,

55, 68, 70, 72, 73, 76], which can be formulated to tackle in our

ICS-problem. Note that similar graph query processing tasks to

community search can also be solved by our GICS-framework.

We highlight three studies [51] [63] [48] as follows. First, the

minimum Wiener connector problem [51] finds a connected

subgraph 𝐻 ⊆ 𝐺 containing query vertices 𝑄 that minimizes

the Wiener index, the total of all pairwise distances in 𝐻 . Our

GICS first recommends vertices for user insertion/deletion. It

is unnecessary to tune parameters since no input parameters

are required except𝑄 . It then finds the shortest path to connect

inserted vertex to 𝐻 and expands it to a candidate subgraph. It

finally iteratively peels vertices to minimize the Wiener index.

Second, Whang et al. [63] propose a seed set expansion ap-

proach to find overlapping communities with low conductance.

Assume that there is one connected community containing all

seeds. The seeds act as query nodes in GICS, supporting rec-

ommendations on node adjustments. It tends to refine a low

conductance community from candidate subgraphs and then ex-

pand to the answer by connecting “whiskers” via “bridges” [63].

Third, the focused attributed graph clustering [48] finds clusters

based on attributes of user-provided exemplar vertices. Assume

that there is one connected cluster containing all user-provided

exemplar vertices, which we treat as query vertices in GICS.
GICS refines communities based on FOCUSCO model [48]. It

iteratively finds a low-weighted conductance community by

adding vertices from the candidate subgraph, ensuring both

dense structure and similar attributes to exemplars. Motivated

by [15], GICS suggests those querying tasks equipped with

node queries and graph localizable algorithms that can find the

updated answer in a local small graph may also be supported

by GICS-framework.

• Out of our scope. However, except for community search, our

GICS cannot address a broader area of graph analytics tasks, es-

pecially those tasks without the input queries, such as subgraph

pattern counting [16] (e.g., triangle counting [47], rectangle

counting [60]), graph decomposition [69], graph summariza-

tion [52, 75], graph traversal [14], and graph clustering [42].

Consider the task of community detection that identifies all

communities {𝐶1, . . . ,𝐶𝑘 } for 𝑘 ∈ Z+ in a graph, which is hard

to handle by our GICS in an interactive way. The difficulties lie

in two aspects. First, GICS supports a simple and user-friendly

action of adding/deleting nodes, which is a binary decision.

However, it is hard to apply GICS for community detection, by

changing decisions to be multiple choices as determining from

vertex 𝑥 ∈ 𝐶𝑖 to 𝑥 ∈ 𝐶 𝑗 , where 1 ≤ 𝑗 ≤ 𝑘 and 𝑖 ≠ 𝑗 . In other

ways, asking users whether 𝑥 ∈ 𝐶 𝑗 holds for 1 ≤ 𝑗 ≤ 𝑘 at each

interaction, which may involve too many 𝑘−1 rounds of interac-
tions for a large 𝑘 . This is not user-friendly. Second, community

detection usually has no query vertices, leading to communities

that are not user-oriented and prioritize global optimization

over local search objectives that GICS supports. Additionally,
GICS may struggle with interactive graph query processing

tasks that involve complex optimizations and constraints, such

as pattern matching and keyword searches.

Figure 3: Recommendation candidates 𝑅− and 𝑅+.

5 PERSONALIZED RECOMMENDATION
In this section, we introduce personalized recommendation algo-

rithms for interactive community search. We start with a straight-

forward recommendation solution by finding the maximum cover-

age vertex set. To enhance recommendation quality, we propose a

personalized maximum coverage approach that considers vertex

community relevance, highlighting varying importance of vertices.

5.1 Max-coveraged Recommendation
The problem setting of recommendation is as follows. Let commu-

nity search iteration number 𝑖 correspond to the returned commu-

nity 𝐻𝑖 . The objective is to recommend vertices 𝑅±
𝑖
= 𝑅+

𝑖
∪ 𝑅−

𝑖
to

help users in revising 𝐻𝑖 to 𝐻𝑖+1, where the insertion candidate

|𝑅+
𝑖
| = 𝑟 and the deletion candidate |𝑅−

𝑖
| = 𝑟 , thus |𝑅±

𝑖
| = 2𝑟 for a

small integer 𝑟 ∈ Z+. User can choose to add a vertex 𝑣 ∈ 𝑅+
𝑖
or

delete 𝑢 ∈ 𝑅−
𝑖
, leading to 𝑄+

𝑖
= {𝑣} and 𝑄−

𝑖
= {𝑢} . Thus, the new

query 𝑄𝑖 = 𝑄𝑖−1 ∪𝑄+𝑖 or 𝑄𝑖 = 𝑄𝑖−1 \𝑄−𝑖 . For simplicity, we can

omit subscripts and use 𝐻 , 𝑅±, 𝑅+, 𝑅− ,𝑄±,𝑄+,𝑄− to represent 𝐻𝑖 ,

𝑅±
𝑖
, 𝑅+

𝑖
, 𝑅−

𝑖
, 𝑄±

𝑖
, 𝑄+

𝑖
, 𝑄−

𝑖
, respectively.

Recommendation candidates𝑅− and𝑅+. The deletion candidate
set 𝑅− must include vertices in current answer 𝐻 but exclude any

previously confirmed query vertices𝑄𝑖−1, i.e. 𝑅− ⊆ 𝑉 (𝐻 ) \𝑄+. We

define the search region of 𝑅− as 𝐺−
𝐻

= (𝑉 (𝐺−
𝐻
), 𝐸 (𝐺−

𝐻
)), where

𝑉 (𝐺−
𝐻
) = 𝑉 (𝐻 ) \ 𝑄+, 𝐸 (𝐺−

𝐻
) = {(𝑣,𝑢) ∈ 𝐸 : 𝑣,𝑢 ∈ 𝑉 (𝐺−

𝐻
)}. The

insertion candidate 𝑅+ admits both of 𝑅+ ⊆ 𝑉 and 𝑅+ ∩𝑉 (𝐻 ) = ∅,
indicating that vertices not in 𝐻 could be further suggested to be

added into community. Given that a graph can have millions of

vertices while human cognitive capacity for suggestions is limited

to tens or hundreds, the vertices in 𝑅+ need to be highly correlated

with community 𝐻 . Thus, we focus on a small candidate region of

𝐺+
𝐻
⊆ 𝐺 , which is a 𝑑-hop neighborhood subgraph of 𝐻 , 𝑑 ∈ Z+,

where the vertex set 𝑉 (𝐺+
𝐻
) = {𝑢 ∈ 𝑉 \𝑉 (𝐻 ) : dist(𝑣,𝑢) ≤ 𝑑, 𝑣 ∈

𝑉 (𝐻 )}, the edge set 𝐸 (𝐺+
𝐻
) = {(𝑣,𝑢) ∈ 𝐸 : 𝑣,𝑢 ∈ 𝑉 (𝐺+

𝐻
)}. We set

a very small number 𝑑 as 𝑑 = 1 or 𝑑 = 2, due to consideration of

efficiency in a possible small world in social networks. Although it

expands only 𝑑-hops each time, we can still explore those candidate

vertices far from initial query nodes𝑄0 using a few more iterations.

As a result, we consider the scope of potential candidates as 𝑅+ ⊆
𝑉 (𝐺+

𝐻
) and 𝑅− ⊆ 𝑉 (𝐺−

𝐻
).

Small and diverse recommendation. In terms of users’ aspects,

the recommended vertices should satisfy two good properties: i)

the size of 𝑅± shall be not too large for easily selection. This could

be flexibly adjusted by a parameter 𝑟 =
|𝑅± |
2

; and ii) the diversity of

𝑅± shall be large, i.e., not all recommended vertices are similar. In

other words, the neighborhood subgraph of 𝑅± could differ, leading
to a large union neighborhood of the coverage of 𝑅±. This benefits
users by identifying those vertices that could become community

members. Next, we give a definition of vertex coverage.

Definition 1 (Vertex Coverage). Given a community answer 𝐻

and a candidate graph 𝐺𝐻 , the coverage of a vertex 𝑥 ∈ 𝑉 (𝐺𝐻 ) is
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Algorithm 2 Personalized Recommendation Solution (PADR)

Input: Candidate graph𝐺𝐻 , community 𝐻 , query vertices𝑄

Output: Recommendation vertices 𝑅

1: Construct directed graph𝐺𝐷 from𝐺𝐻 in Algorithm 3;

2: Compute all personalized community relevance PCR(𝑣) in Algorithm 4;

3: Ranking to find out top 𝑟 vertices 𝑅 in Algorithm 5;

4: return Recommendation vertices 𝑅;

defined as cov(𝑥) = |𝑁 ∗ (𝑥) |, which includes the set of 𝑥 ’s neighbors
and 𝑥 itself as 𝑁 ∗ (𝑥) = {𝑢 ∈ 𝑉 (𝐺𝐻 ) : (𝑥,𝑢) ∈ 𝐸 (𝐺𝐻 )} ∪ {𝑥}.

The coverage of a vertex counts on the size of 1-hop neighbor-

hood vertices. The larger coverage of recommended vertices, the

higher possibility of offering a better recommendation choice. Note

that we set 𝐺𝐻 = 𝐺+
𝐻
for adding recommendations and𝐺𝐻 = 𝐺−

𝐻
for deleting recommendations separately. For a given set of vertices

𝑆 in graph 𝐺𝐻 , the coverage of 𝑆 is cov(𝑆) = |⋃︁𝑥∈𝑆 𝑁
∗ (𝑥) |.

Problem statement. Given a current answer 𝐻 and a candidate

subgraph 𝐺𝐻 , an integer 𝑟 ∈ Z+, the objective of recommendation

is to find a small-sized set of 2𝑟 vertices 𝑅± = 𝑅+ ∪ 𝑅− such that

it achieves the maximum coverage, i.e., max𝑅±=𝑅+∪𝑅− (cov(𝑅+) +
cov(𝑅−)) where 𝑅+ ⊆ 𝑉 (𝐺+

𝐻
), 𝑅− ⊆ 𝑉 (𝐺−

𝐻
), |𝑅+ | = |𝑅− | = 𝑟 . This

problem can be shown to be NP-Hard by the reduction of a classical

problem of maximum coverage problem in an intuitive way. To

select the best recommendation of top-𝑟 vertices, one straightfor-

ward method adopts a greedy strategy to select the vertex with the

largest coverage in each round until |𝑅± | = 2𝑟 .

5.2 Personalized Recommendation PADR
Motivations. The probability of a vertex being part of a community

can vary significantly. Straightforwardly, given the current answer

𝐻 , vertices 𝑉 \𝑉 (𝐻 ) closer to query nodes 𝑄 are more likely to be

a target community member than those vertices of graph periph-

ery farther away from 𝑄 , due to the common properties of dense

structure and community connectivity.

An overview of PADR. We propose an optimization problem to

find 𝑟 -sized recommended vertices to maximize the total person-

alized community relevance score of covered vertices. We present

the personalized adding/deleting recommendation solution (PADR)
in Algorithm 2. Specifically, PADR involves three main steps. First,

we construct a directed graph 𝐺𝐷 from the existing candidate sub-

graph 𝐺𝐻 for further relevance calculation (Algorithm 3). Second,

we compute the personalized community relevance of all vertices

in𝐺𝐷 (Algorithm 4). Finally, we develop a greedy algorithm to find

𝑟 -sized diverse vertices to maximize the total importance of covered

vertices (Algorithm 5).

Step-1: Directed candidate graph reconstruction. In the original
candidate graph 𝐺𝐻 , it does not distinguish source vertices and

the edges’ influential direction that propagates the community

relevance from𝑄 . Therefore, we transform an undirected graph𝐺𝐻

into a directed graph𝐺𝐷 . The key idea is to set “correct” community

vertices𝑄 as the initial seeds and generate directed edges from𝑄 to

others vertices 𝑉 (𝐺𝐻 ) by expanding from neighbors level by level.

Specifically, we define three cases of directed edges. Consider a pair

of vertices 𝑣 and 𝑢 with (𝑣,𝑢) ∈ 𝐸 (𝐺𝐻 ), if 𝑣 and 𝑢 have the same

level, i.e., 𝑙𝑒𝑣𝑒𝑙 (𝑣) = 𝑙𝑒𝑣𝑒𝑙 (𝑢), we create two directed edges ⟨𝑣,𝑢⟩
and ⟨𝑢, 𝑣⟩; if 𝑣 has a smaller level than 𝑢, i.e., 𝑙𝑒𝑣𝑒𝑙 (𝑣) < 𝑙𝑒𝑣𝑒𝑙 (𝑢),

Algorithm 3 Directed Candidate Graph Reconstruction

Input: Candidate graph𝐺𝐻 , query vertices𝑄

Output: Directed graph𝐺𝐷 = (𝑉 (𝐺𝐷 ), 𝐸 (𝐺𝐷 ) )
1: Create a set of isolated vertices𝑉 (𝐺𝐷 ) = 𝑉 (𝐻 ) ;
2: for each vertex 𝑣 ∈ 𝑄 do Set 𝑙𝑒𝑣𝑒𝑙 (𝑣) ← 0;

3: Mark all vertices𝑄 as visited and add𝑄 into a queue 𝐷𝑞 = 𝑄 ;

4: while 𝐷𝑞 ≠ ∅ do
5: Pop a vertex 𝑣 from 𝐷𝑞 ;

6: for each unvisited 𝑢 ∈ 𝑁𝐺𝐻
(𝑣) do

7: 𝑙𝑒𝑣𝑒𝑙 (𝑢 ) ← 𝑙𝑒𝑣𝑒𝑙 (𝑣) + 1;
8: Mark 𝑢 as visited and 𝐷𝑞 ← 𝐷𝑞 ∪ {𝑢};
9: for each 𝑢 ∈ 𝑁𝐺𝐻

(𝑣) do
10: if 𝑙𝑒𝑣𝑒𝑙 (𝑢 ) > 𝑙𝑒𝑣𝑒𝑙 (𝑣) then
11: Add a new edge ⟨𝑣,𝑢 ⟩ into graph𝐺𝐷 ;

12: else if 𝑙𝑒𝑣𝑒𝑙 (𝑢 ) < 𝑙𝑒𝑣𝑒𝑙 (𝑣) then
13: Add a new edge ⟨𝑢, 𝑣⟩ into graph𝐺𝐷 ;

14: else if 𝑙𝑒𝑣𝑒𝑙 (𝑢 ) = 𝑙𝑒𝑣𝑒𝑙 (𝑣) then
15: Add two new edges ⟨𝑣,𝑢 ⟩ and ⟨𝑢, 𝑣⟩ into𝐺𝐷 ;

16: return directed graph𝐺𝐷 ;

(a) Construct𝐺𝐷 (b) Personalized recommendation

Figure 4: An example of top-𝑟 personalized recommendation.
we create one directed edge from 𝑣 to u, i.e., ⟨𝑣,𝑢⟩; otherwise, if
𝑙𝑒𝑣𝑒𝑙 (𝑣) > 𝑙𝑒𝑣𝑒𝑙 (𝑢), we create a directed edge ⟨𝑢, 𝑣⟩.

Algorithm 3 outlines the details of directed candidate graph re-

construction. Specifically, deleting recommendation takes an input

of graph 𝐺−
𝐻
and the updated 𝑖-th round query 𝑄+

𝑖
regarded to be

fallen into community, which finally produces a directed graph

𝐺𝐷 ; adding recommendation takes an input of graph 𝐺+
𝐻
and the

source vertices 𝑄 = 𝑉 (𝐻 ), which finally produces a directed graph

𝐺𝐷 . It first constructs 𝐺𝐷 with all isolated vertices of 𝑉 (𝐻 ) (line
1). Then, it starts a queue of all query nodes 𝑄 by marking them

as visited and setting their level as 0, which treats 𝑄 as the root of

a directed graph 𝐺𝐷 (lines 2-3). Then, it performs a BFS search to

expand the graph construction of 𝐺𝐷 (lines 4-15). In each iteration,

it pops a vertex 𝑣 from 𝐷𝑞 (line 5). For each unvisited neighbor

𝑢 ∈ 𝑁𝐺𝐻
(𝑣), it sets 𝑙𝑒𝑣𝑒𝑙 (𝑢) by increasing 𝑙𝑒𝑣𝑒𝑙 (𝑣) by one and add

𝑢 into 𝐷𝑞 (lines 6-8). Then, it adds a new directed edge ⟨𝑣,𝑢⟩ for
nodes from an early level to a later level, i.e., 𝑙𝑒𝑣𝑒𝑙 (𝑣) ≤ 𝑙𝑒𝑣𝑒𝑙 (𝑢). If
𝑙𝑒𝑣𝑒𝑙 (𝑣) = 𝑙𝑒𝑣𝑒𝑙 (𝑢), we add two new directed edges ⟨𝑣,𝑢⟩ and ⟨𝑢, 𝑣⟩
into graph 𝐺𝐷 . The time complexity of Algorithm 3 is 𝑂 ( |𝐸 (𝐺𝐻 ) |)
by scanning the whole graph 𝐺𝐻 once.

Step-2: Personalized community relevance computation. In
this step, we compute the personalized community relevance (PCR)
for all vertices w.r.t. the refined query𝑄 over the constructed graph

𝐺𝐷 . Assume the number of vertices in 𝐺𝐷 is denoted as 𝑛𝑑 =

|𝑉 (𝐺𝐷 ) |. For a vertex 𝑣 , the set of in-neighbors and out-neighbors

are defined as 𝑁 +
𝐺𝐷
(𝑣) = {𝑢 ∈ 𝑉 (𝐺𝐷 ) : ⟨𝑢, 𝑣⟩ ∈ 𝐸 (𝐺𝐷 )} and

𝑁 −
𝐺𝐷
(𝑣) = {𝑢 ∈ 𝑉 (𝐺𝐷 ) : ⟨𝑣,𝑢⟩ ∈ 𝐸 (𝐺𝐷 )}, respectively. Inspired by

personalized PageRank computation [62, 71], we intend to calculate

the personalized community relevance of a vertex 𝑣 w.r.t. multiple

personalized source vertices 𝑄 . Note that we do not calculate the
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Algorithm 4 Personalized Community Relevance Computation

Input: Directed graph𝐺𝐷 , query vertices𝑄 , a damping constant

parameter 𝛼 ∈ [0, 1], iteration 𝑙𝑚𝑎𝑥 ∈ Z+, a constant tolerance 𝛿 ∈ R+
Output: Personalized Community Relevance PCR(𝑣)
1: Initialization: 𝑛𝐷 ← |𝑉 (𝐺𝐷 ) |;
2: for each vertex 𝑣 ∈ 𝑉 (𝐺𝐷 ) \𝑄 do PCR(𝑣) ← 0;

3: for each vertex 𝑣 ∈ 𝑄 do PCR(𝑣) ← |𝑁 +
𝐺𝐷
(𝑣) |;

4: for 𝑖 ← 1 to 𝑙𝑚𝑎𝑥 do
5: Assign 𝑐ℎ𝑎𝑛𝑔𝑒 ← 0;

6: for each vertex 𝑣 ∈ 𝑉 (𝐺𝐷 ) \𝑄 do
7: PCR′ (𝑣) ← 1−𝛼

𝑛𝐷
+ 𝛼 · ∑︁𝑢∈𝑁 +

𝐺𝐷
(𝑣)

PCR(𝑢)
|𝑁 −

𝐺𝐷
(𝑢) | ;

8: 𝑐ℎ𝑎𝑛𝑔𝑒 ← 𝑐ℎ𝑎𝑛𝑔𝑒 + |PCR(𝑣) − PCR′ (𝑣) |;
9: PCR(𝑣) ← PCR′ (𝑣) ;
10: if 𝑐ℎ𝑎𝑛𝑔𝑒 < 𝛿 then break;
11: for each vertex 𝑣 ∈ 𝑄 do
12: Assign the maximum PCR value: PCR(𝑣) ← 1;

13: return all Personalized Community Relevance PCR(𝑣) ;

accumulated PCR values propagated between two vertices in 𝑄 .

Therefore, we treat the whole set of vertices 𝑄 as one virtual source
vertex. We define the personalized community relevance of vertex

𝑣 ∈ 𝑉 (𝐺𝐷 ) \𝑄 by PCR(𝑣) as follows.

PCR(𝑣) ← 1 − 𝛼
𝑛𝐷

+ 𝛼 ·
∑︂

𝑢∈𝑁 +
𝐺𝐷
(𝑣)

PCR(𝑢)
|𝑁 −

𝐺𝐷
(𝑢) | (1)

Algorithm 4 outlines the procedure of computing personalized

community relevance for all vertices in directed graph 𝐺𝐷 . At

the initialization stage, it assigns PCR(𝑣) as the number of out

neighbors of 𝑣 for 𝑣 ∈ 𝑄 and PCR(𝑣) = 0 for 𝑣 ∈ 𝑉 (𝐺𝐷 ) \𝑄 . In this

way, the PCR value is transferred from𝑄 to vertices outside evenly

(lines 1-3). Next, it iteratively computes PCR values by at most 𝑙𝑚𝑎𝑥

iterations. At each round, it first assigns an initial value of total

change as 0 (line 5). Then, it updates PCR value via Eq. 1 for each

vertex 𝑣 ∈ 𝑉 (𝐺𝐷 ) \𝑄 and accumulates the total change between

two rounds’ PCR values (lines 6-9). When the total change reaches

a predefined constant tolerance 𝛿 , the algorithm early terminates

(line 10); otherwise, it continues until repeating 𝑙𝑚𝑎𝑥 times.

Remarks. Unlike traditional multi-source personalized PageRank

computation, the key of our personalized community relevance

computation in Algorithm 4 is to reconstruct a small directed graph

𝐺𝐷 rather than using the original graph 𝐺 . Note that our computa-

tion of PCR is a heuristic approach, which runs in a finite number

of iterations and provides no accuracy guarantee of the resulting

scores. Fortunately, it provides a relative measure of importance

prioritizing proximity to source vertices 𝑄 . Thus, we can distin-

guish different importance of vertices, which is vital to offer a fast

and relative ranking for recommendation. In addition, we develop

techniques to accelerate PCR in two-fold aspects. First, we ignore

the edges between community members in graph𝐺𝐷 , as all these

community members of 𝑄 already appeared in answers. Second,

we set the iteration parameter 𝑙𝑚𝑎𝑥 as the number of levels in 𝐺𝐷 ,

where 𝑙𝑚𝑎𝑥 is a small number in practice. This can lead to accelerat-

ing our PCR computation significantly. Further accelerating PCR
computation could be extended by approximate multi-source PPR

computation [22] and other techniques [53] [35] [61] [62] [71] [67].

Step-3: Personalized community relevance based maximum
coverage. In this step, we intend to find a set of 𝑟 -sized vertices

Algorithm 5 Personalized Maximum Coverage Recommendation

Input: Directed graph𝐺𝐷 , all PCR(𝑣) values, query vertices𝑄

Output: Recommendation vertices 𝑅

1: Construct a weighted directed graph �̂�𝐷 based on𝐺𝐷 and PCR(𝑣) for
𝑣 ∈ 𝑉 (𝐺𝐷 ) ;

2: Initialize 𝑅 ← ∅;
3: Initialize a priority queue 𝑃𝑄 ← ∅;

//Pick the top-𝑟 insertion candidates;

4: for each vertex 𝑣 ∈ �̂�𝐷 \𝑄 do
5: Push vertex 𝑣 with its weighted covˆ (𝑣) into 𝑃𝑄 ;

6: while |𝑅 | < 𝑟 do
7: Pop out a vertex 𝑢∗ with the largest coverage covˆ (𝑢∗ ) ;
8: if covˆ (𝑢∗ ) is not up-to-date then
9: Recalculate covˆ (𝑢∗ ) and push 𝑢∗ into 𝑃𝑄 again;

10: else 𝑅 ← 𝑅 ∪ {𝑢∗};
11: return the recommended vertices 𝑅;

that maximizes coverage based on personalized community rele-

vance in𝐺𝐷 . Specifically, we first convert directed graph𝐺𝐷 into a

weighted directed graph �̂�𝐷 , assigning each vertex 𝑣 a weight of

community relevance PCR(𝑣). The coverage of a vertex 𝑣 is defined
as the accumulated score of community relevance in the neighbor-

hood of 𝑣 , i.e., covˆ (𝑣) = ∑︁
𝑢∈𝑁 ∗

�̂�𝐷
(𝑣) PCR(𝑢). For a set of vertices

𝑆 , coverage is covˆ (𝑆) = ∑︁
𝑢∈⋃︁𝑣∈𝑆 𝑁 ∗

�̂�𝐷
(𝑣) PCR(𝑢). Therefore, the

objective of finding a diverse and important vertex set in our new

recommendation problem is formulated as

max

𝑅±=𝑅+∪𝑅−
(covˆ (𝑅+) + covˆ (𝑅−)),

where 𝑅+ ⊆ 𝑉 (�̂�𝐷 ) \𝑉 (𝐻 ), 𝑅− ⊆ 𝑉 (𝐻 ) \𝑄+, |𝑅+ | = |𝑅− | = 𝑟 .

We propose a greedy selection method in Algorithm 5 to find top-

𝑟 vertices by picking up a vertex with the largest weighted coverage

score in each iteration, reflecting its neighborhood’s community

relevance. Moreover, the problem of finding the optimal solution is

NP-hard, which can be reduced from a classical NP-hard maximum

coverage problem. Thus, our greedy solution gives a promising

recommendation answer. Specifically, it first constructs a weighted

directed graph �̂� (𝐷) and initializes recommendation answers as

empty sets, i.e., 𝑅 ← ∅ (lines 1-2). Next, it uses a priority queue to

maintain vertices 𝑣 associatedwithweighted coverage scores covˆ (𝑣)
(lines 3-5). It then iteratively selects the vertex with the largest

coverage one by one into answer 𝑅 (lines 6-10). Finally, it returns

the recommendation answer 𝑅. Specifically, we set 𝐺𝐷 = 𝐺+
𝐷
, 𝑄 =

𝑉 (𝐻 ) for adding recommendation, and 𝐺𝐷 = 𝐺−
𝐷
, 𝑄 = 𝑄+ for

deleting recommendation respectively. After running Algorithm 5

twice to obtain 𝑅+ and 𝑅− , it returns the answer 𝑅± = 𝑅+ ∪ 𝑅− .
This algorithm can be extended to handle attributed graphs by

calculating attribute coverage, which can then be combined with

structural coverage to produce an integrated score.

5.3 Complexity Analysis
For graph 𝐺 (𝑉 , 𝐸), we denote the number of vertices and edges

as 𝑛 = |𝑉 | and 𝑚 = |𝐸 |. In the interactive process, a candidate

subgraph𝐺𝐻 of𝐺 has �̄� vertices and �̄� edges. W.L.O.G., we assume

that �̄� − 1 ≤ �̄� for a connected graph 𝐺𝐻 , i.e., 𝑂 (�̄�) ⊆ 𝑂 (�̄�) [27].
Theorem 5.1. The recommendation phase in Algorithm 2 takes

𝑂 (min{�̄�, 𝑟𝑑¯𝑚𝑎𝑥 + �̄�} · log �̄�) time and 𝑂 (�̄�) space.
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Proof. The recommendation phase in Algorithm 2 consists of three

steps: directed graph construction in Algorithm 3, personalized

community relevance computation in Algorithm 4, and person-

alized maximum coverage recommendation in Algorithm 5. We

analyze the time complexity of three steps one by one.

First, Algorithm 3 constructs a directed candidate graph 𝐺𝐷

by scanning the entire candidate graph 𝐺𝐻 once, which takes

𝑂 (�̄� + �̄�) = 𝑂 (�̄�) time. Second, Algorithm 4 computes person-

alized community relevance of each vertex in 𝐺𝐷 iteratively in a

total of 𝑙𝑚𝑎𝑥 rounds (lines 4-10 of Alg. 4), which takes 𝑂 (𝑙𝑚𝑎𝑥 · �̄�)
time. Thirds, Algorithm 5 first computes the coverage score covˆ (𝑣)
for each vertex 𝑣 by access all 𝑣 ’s neighbors (line 1 of Alg. 5), which

takes𝑂 (�̄�) time. Then, it creates a priority queue 𝑃𝑄 to store all ver-

tices in decreasing order of covˆ (𝑣) (lines 2-5 of Alg. 5), which takes

𝑂 (�̄� log �̄�) time. After that, it takes 𝑟 iterations to pick top-𝑟 vertices

𝑢∗ with the largest covˆ (𝑢∗) for recommendation (lines 6-10). After

select 𝑢∗ into 𝑅, it needs to at most update covˆ (𝑣) for 𝑣 ∈ 𝑁 (𝑢∗)
in 𝑃𝑄 , which takes 𝑂 ( |𝑁 (𝑢∗) | log �̄�) time. Assume that the maxi-

mum degree 𝑑¯𝑚𝑎𝑥 = max𝑢∈𝑉 (𝐺𝐷 ) |𝑁 (𝑢∗) |. Thus, the time of up-

dating 𝑃𝑄 in 𝑟 iterations is 𝑂 (min{𝑟𝑑¯𝑚𝑎𝑥 , �̄�} log �̄�) in worst case.

Overall, Algorithm 5 takes 𝑂 (�̄� + �̄� log �̄� + min{𝑟𝑑¯𝑚𝑎𝑥 , �̄�} log �̄�)
= 𝑂 (min{�̄�, 𝑟𝑑¯𝑚𝑎𝑥 + �̄�} log �̄�) time and 𝑂 (�̄�) space.

6 FAST COMMUNITY REFINEMENT
We introduce two important phases of community parameter auto-
tuning and fast interactive refinement, which provide good commu-

nity results in a fast and user-friendly way.

6.1 Parameter Auto-Tuning
Given a community model M𝑥 (G,M,O,P), parameters P can be

complex, as summarized in Table 1. Generally, four kinds of param-

eters are required in a community search model, including query

vertices, density, community size, and attributes. Some models M𝑥

require a single parameter, while others may require users to set up

multiple parameters for P. Parameters P can be further categorized

into numbers 𝑋 , ranges [𝑋,𝑌 ], keywords {𝑤1, . . . ,𝑤𝑙 }, and tuples.

Although parameters P strongly affect community search results,

it is challenging for users to update parameters by themselves dur-

ing the interactive iterations. Thus, the parameter auto-turning is

important for interactive community search. We identify param-

eters in different categories and then provide the corresponding

strategies for interactive-driven auto-tuning.

Auto-tuning rules. In the process of 𝐼𝑚𝑎𝑥 interactive actions,

users add/delete nodes 𝑄± into query 𝑄±
𝑖
where 0 ≤ 𝑖 < 𝐼𝑚𝑎𝑥 .

The objective of parameter tuning is to adjust parameter values

P𝑖 to P𝑖+1 such that the search result 𝐻𝑖+1 is close to the optimal

community �̂� . The auto-tuning strategy guideline depends on the

current community 𝐻𝑖 and the user-provided interactive actions

𝑄±, which provide the current information of local search area,

structural density indexes (e.g., coreness, trussness), and attributes.

Parameter auto-tuning algorithm. Algorithm 6 outlines the

procedure of parameter auto-tuning in the 𝑖-th iteration. The in-

put includes community model M𝑥 , the current community 𝐻𝑖 ,

parameters P𝑖 = {𝑄𝑖 , 𝐴𝑖 , 𝑘𝑖 , 𝑆𝑖 }, and also a pair of user selected

adding/deleting vertices 𝑄±. The algorithm outputs a modified pa-

rameterP𝑖+1. Here, the new query vertices𝑄±
𝑖+1 = 𝑄±

𝑖
∪𝑄±. Assume

Algorithm 6 Parameter Auto-Tuning

Input: M𝑥 , 𝐻𝑖 , P𝑖 = {𝑄±𝑖 , 𝐴𝑖 , 𝑘𝑖 , 𝑆𝑖 }, interaction𝑄±, ratio 𝜆 ∈ (0, 1)
Output: parameter P𝑖+1 = {𝑄±𝑖+1, 𝐴𝑖+1, 𝑘𝑖+1, 𝑆𝑖+1}
1: Initialization: P𝑖+1 ← P𝑖 ;
2: if users click on an inserting action do
3: 𝑄+

𝑖+1 = 𝑄+
𝑖
∪𝑄+;

4: Let 𝑘𝑄+ as the density of𝑄+ (e.g., coreness);
5: if 𝑘𝑄+ < 𝑘𝑖 do 𝑘𝑖+1 ← 𝑘𝑄+ ;

6: else if 𝐻𝑖 = ∅ and 𝑘𝑖 > 1 do 𝑘𝑖+1 ← 𝑘𝑖 − 1;

7: else 𝑆𝑖+1 ← (1 + 𝜆) · 𝑆𝑖 ;
8: if attr(𝑄+ ) ⊈ 𝐴𝑖 do 𝐴𝑖+1 ← 𝐴𝑖 ∪ attr(𝑄+ ) ;
9: if users click on a removing action do
10: 𝑄−

𝑖+1 ← 𝑄−
𝑖
∪𝑄− ;

11: if 𝐻𝑖 = ∅ and 𝑘𝑖 > 1 do 𝑘𝑖+1 ← 𝑘𝑖 − 1;

12: else 𝑆𝑖+1 ← (1 − 𝜆) · 𝑆𝑖 ;
13: return P𝑖+1 = {𝑄±𝑖+1, 𝐴𝑖+1, 𝑘𝑖+1, 𝑆𝑖+1};

that the model M𝑥 is the 𝑘-core-based attribute community search

model. Then we have 𝐴𝑖 as the set of query attributes for some at-

tributed models, 𝑘𝑖 as the density constraint of 𝐻 , i.e., core(𝐻 ) ≥ 𝑘 ,

and 𝑆𝑖 is the community size constraint of 𝐻 . Algorithm 6 presents

two parameter tuning procedures for the insertion 𝑄+ action (lines

1-8) and the deleting 𝑄− action (lines 9-12), respectively. First, it

adjusts the important density parameter 𝑘𝑖 first to avoid bad com-

munity results. A poor setting of parameter 𝑘 can lead to an empty

search result 𝐻 for two cases. The one is that the query vertex

can not meet the density constraint to 𝑘𝑖 , which violates the query

containment constraints. The other one is that query vertices are

disconnected from each other in the search result, violating the

connectivity requirement. Thus, if the density of inserted vertex𝑄+

is less than 𝑘𝑖 , it decreases 𝑘𝑖 (lines 4-5). Otherwise, if community

𝐻𝑖 is empty, we also decrease 𝑘𝑖 by 1 as the updated parameter 𝑘𝑖+1
(line 6). We slightly adjust the community size and the query at-

tributes via a predefined ratio 𝜆 ∈ (0, 1) (lines 7-8). For the deletion
case, we remove a community node 𝑄−

𝑖+1 = 𝑄−
𝑖
∪𝑄− and update

𝑘𝑖+1, 𝑆𝑖+1 accordingly (lines 9-12). Finally, the algorithm returns the

updated parameter P𝑖+1.

6.2 Partial Refinement
Interactive community refinement updates a partial community

Δ𝐻 with new parameters P𝑖+1 at a low cost, resulting in 𝐻𝑖+1 =

𝐻𝑖 +Δ𝐻 . However, due to the irregular community shapes and large

subgraph search spaces, it is challenging to produce Δ𝐻 efficiently

over large graphs. The key idea of our fast community refinement

is to leverage local search strategy to construct a high-quality,

small candidate subgraph based on 𝐻𝑖 and P𝑖+1, and then rerun

community search algorithms to get 𝐻𝑖+1.
Algorithm. Algorithm 7 provides an efficient approach to update

community 𝐻𝑖 . First, it initializes a candidate subgraph 𝐶𝐻 as the

induced subgraph of𝐺 by the current community 𝐻𝑖 (line 1). Sec-

ond, it updates 𝐶𝐻 by adding potentially qualified neighbors of

𝑢 ∈ 𝑉 (𝐶𝐻 ) if density or attribute constraints change in the pre-

vious interaction (lines 2-6). For insertion, it also inserts relevant

vertices between 𝐶𝐻 and the user-clicked vertex 𝑄+ along a path
from 𝑄+ to 𝐶𝐻 (lines 7-9). For deletion, it adjusts 𝐶𝐻 by deleting

𝑄− and its relevant edges (lines 10-11). After that, it computes a

refined community 𝐻𝑖+1 from 𝐶𝐻 (line 12). If 𝐻𝑖+1 = ∅ for the bad
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Algorithm 7 Fast Community Refinement

Input: Model M𝑥 , community 𝐻𝑖 , interaction𝑄±, parameters P𝑖+1
Output: Community 𝐻𝑖+1
1: Construct a candidate subgraph𝐶𝐻 as the induced subgraph of𝐺 by

previous community 𝐻𝑖 ;

2: if P𝑖+1 ≠ P𝑖 then
3: for each vertex 𝑣 in𝐶𝐻 do
4: for each vertex 𝑢 ∈ 𝑁 (𝑣) do
5: if 𝑢 satisfies the new constraint then
6: Add 𝑢 and its incident edges to𝐶𝐻 ;

7: if users click on an inserting action then
8: Find a path 𝑃 from𝑄+ to any vertex in𝐶𝐻 ;

9: Reconstruct𝐶𝐻 by inserting all vertices 𝑢 ∈ 𝑃 and 𝑢’s neighbors;

10: if users click on a removing action then
11: Delete𝑄− and its incident edges from𝐶𝐻 ;

12: Run the M𝑥 community search algorithm to compute 𝐻𝑖+1 on𝐶𝐻 ;

13: while 𝐻𝑖+1 = ∅ do
14: Invoke Algorithm 7 to auto-tune parameters P𝑖+1 and run this

refinement algorithm again;

15: if 𝑄+ ∉ 𝑉 (𝐻𝑖+1 ) or𝑄− ∈ 𝑉 (𝐻𝑖+1 ) then
16: Force insert/delete𝑄+/𝑄− to/from 𝐻𝑖+1 and maintain the connec-

tivity of 𝐻𝑖+1 accordingly;
17: return community 𝐻𝑖+1;

parameter setting or strict community model, it auto-tunes parame-

ters P𝑖+1 again by invoking Algorithm 6 and reruns this algorithm;

It enforces the insertion/deletion of 𝑄± in 𝐻𝑖+1 and maintains the

community connectivity by removing disqualified vertices (lines

15-16). Finally, it returns the updated community 𝐻𝑖+1.

6.3 Complexity Analysis
We analyze the complexity of Algorithm 6, Algorithm 7, and our

GICS-framework in Algorithm 1. For a given community modelM𝑥 ,

we assume that the original M𝑥 search algorithm takes 𝑂 (T𝑥 (𝐻 ))
time and 𝑂 (S𝑥 (𝐻 )) space, where 𝐻 is the querying graph.

Theorem 6.1. The refinement phase with parameter auto-tuning
in Algs. 6 and 7 take 𝑂 (T𝑥 (𝐺𝐻 )) time and 𝑂 (S𝑥 (𝐺𝐻 )) space.
Proof. First, Algorithm 6 of parameter auto-tuning takes constant

𝑂 (1) time. Second, Algorithm 7 first constructs a connected can-

didate subgraph 𝐶𝐻 based on parameters P and users’ interactive

actions 𝑄±, where 𝐶𝐻 is a subgraph of 𝐺𝐻 , i.e., 𝐶𝐻 ⊆ 𝐺𝐻 . Thus,

the community refinement in Algorithm 7 invoking original search

algorithms take 𝑂 (T𝑥 (𝐺𝐻 )) time and 𝑂 (S𝑥 (𝐺𝐻 )) space.

Theorem 6.2. Algorithm 1 ofGICS takes𝑂 (𝐼𝑚𝑎𝑥 (min{�̄�, 𝑟𝑑¯𝑚𝑎𝑥+
�̄�} · log �̄� + T𝑥 (𝐺𝐻 ))) time and 𝑂 (𝑚 + S𝑥 (𝐺)) space.
Proof.We analyze the complexity of our GICS-framework in Al-

gorithm 1, which has three phases of recommendation in Alg. 2,

parameter tuning in Alg. 6, and community refinement in Alg. 7.

By Theorems 5.1& 6.1, it infers that GICS takes𝑂 (min{�̄�, 𝑟𝑑¯𝑚𝑎𝑥 +
�̄�} · log �̄� + T𝑥 (𝐶𝐻 )) time in one round of user interaction. Overall,

GICS-framework in Algorithm 1 takes 𝑂 (𝐼𝑚𝑎𝑥 · (min{�̄�, 𝑟𝑑¯𝑚𝑎𝑥 +
�̄�} · log �̄� + T𝑥 (𝐶𝐻 ))) time and𝑂 (𝑚 + S𝑥 (𝐺)) space, where 𝐼𝑚𝑎𝑥 is

the maximum round of user interactions and S𝑥 (𝐺) represents the
storage of 𝐺 and the index of community modelM𝑥 .

Consider an instance of𝑘-core-based communitymodelM𝑊𝐶𝑆 [55],

which takes 𝑂 ( |𝑄 |𝑚 log𝑛) time and 𝑂 (𝑚) space for a set of query
nodes 𝑄 on graph 𝐺 . Thus, our GICS-framework equipped with

Table 2: Network Statistics
Datasets |𝑉 | |𝐸 | 𝑐𝑜𝑟𝑒 (𝐺 )
Amazon 334,863 925,872 6

DBLP 317,080 1,049,866 113

Youtube 1,134,890 2,987,624 51

LiveJournal 3,997,962 34,681,189 360

Orkut 3,072,441 117,185,083 253

M𝑊𝐶𝑆 takes 𝑂 (𝐼𝑚𝑎𝑥 · (min{�̄�, 𝑟𝑑¯𝑚𝑎𝑥 + �̄�} · log �̄� + |𝑄 |�̄� log �̄�)) =
𝑂 ((𝐼𝑚𝑎𝑥 + |𝑄 |)�̄� log �̄�) time and 𝑂 (𝑚 +𝑚) = 𝑂 (𝑚) space.

7 EXPERIMENTS
Datasets and queries.Weuse five real-world datasets with ground-

truth communities from SNAP
1
shown in Table 2. Ground-truth

communities are generated from [65], where community mem-

bers share a common external property or function. For exam-

ple, the LiveJournal dataset is a free online blogging community

with user-defined groups considered as ground-truth communities.

For each dataset, we use the recommended top 5,000 high-quality

ground-truth communities in experiments. We randomly generate

the queries and a few attributes for those vertices without attributes

by following the setting of previous works [23, 25, 55]. In each test,

we report the average result of 100 queries.

Comparedmethods.We compare all interactive community search

methods, in terms of recommendation and community refinement.
We implement three baseline methods of community models ICS-
GNN [23], ACQ [18],WCS [55], and our method as follows.

• GNN-baseline: is an interactive communtiy search method of

ICS-GNN that finds a 𝑘-sized community with the highest GNN

scores [23].

• ACQ-baseline: interactively finds a 𝑘-core community for new

queries with the largest number of common attributes [18].

• WCS-baseline: interactively finds a 𝑘-core community for new

queries with the smallest weight [55].

• Ours: is an integrated method by implementing three models

ICS-GNN,ACQ , andWCS under the proposedGICS-framework

in Algorithm 1, which equips with the recommendation in Algo-

rithm 2 parameter auto-tuning in Algorithm 6, and community

refinement in Algorithm 7.

Note that there is no recommendation phase for [23] [18] [55], as

their models are either static without any interaction or interactive
without any recommendation. To fit with an interactive setting, all

three baselines GNN-baseline, ACQ-baseline, and WCS-baseline
are supported with a phase of random recommendation by randomly

selecting 𝑅± vertices from candidate subgraphs. For fairness, we

also comprehensively test the recommendations in Exp-3 and Exp-5.

GNN-baseline is provided with its well-designed scheme of com-

munity refinement [23]. For the vertex deletion, ACQ-baseline [18]
andWCS-baseline [55] update the original graph by removing ver-

tices and their incident edges and then rerun the search algorithm.

Evaluation metrics. We evaluate competitors on three aspects:

interactive efficiency, search quality, and recommendation quality.
For algorithm efficiency, we report the average running time of
interactive search and recommendation, respectively. In terms of

community quality, we compare the search results and ground-truth

communities using F1-score. Recommendation quality is assessed

1
https://snap.stanford.edu/data/
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Table 3: Interactive efficiency, search quality and recommendation quality evaluation on three models and five datasets
Datasets Amazon DBLP Youtube LiveJournal Orkut

Models Phases Matrics Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours

GNN

Interactive

Efficiency

Total Time (s) 0.38 0.88 0.15 0.78 0.22 0.56 1.05 2.89 5.51 10.14

Interactive Search Time (s) 0.38 0.81 0.15 0.66 0.22 0.28 1.05 2.24 5.51 9.74

Recommendation Time (s) \ 0.07 \ 0.12 \ 0.28 \ 0.65 \ 0.40

Community

Quality

Initial F1-score 0.61 \ 0.08 \ 0.10 \ 0.30 \ 0.37 \

Interactive F1-score 0.67 0.92 0.08 0.20 0.12 0.14 0.31 0.44 0.37 0.65
Recommendation

Quality

Success Ratio 0.26 0.72 0.51 0.94 0.61 0.73 0.50 0.82 0.72 0.79
Accuracy 0.03 0.29 0.14 0.52 0.24 0.46 0.14 0.38 0.37 0.42

ACQ

Interactive

Efficiency

Total Time (s) 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.01 0.04

Interactive Search Time (s) 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01

Recommendation Time (s) \ 0.02 \ 0.02 \ 0.02 \ 0.02 \ 0.03

Community

Quality

Initial F1-score 0.55 \ 0.42 \ 0.13 \ 0.48 \ 0.19 \

Interactive F1-score 0.59 0.86 0.43 0.76 0.13 0.78 0.50 0.88 0.19 0.38
Recommendation

Quality

Success Ratio 0.10 0.26 0.26 0.39 0.13 0.36 0.12 0.27 0.31 0.52
Accuracy 0.01 0.15 0.07 0.24 0.02 0.21 0.02 0.16 0.06 0.19

WCS

Interactive

Efficiency

Total Time (s) 0.19 0.50 0.42 0.33 8.02 3.93 10.04 8.87 220.76 13.27

Interactive Search Time (s) 0.19 0.49 0.42 0.33 8.02 3.92 10.04 8.85 220.76 13.26

Recommendation Time (s) \ 0.00 \ 0.00 \ 0.01 \ 0.02 \ 0.01

Community

Quality

Initial F1-score 0.79 \ 0.86 \ 0.50 \ 0.65 \ 0.31 \

Interactive F1-score 0.80 0.93 0.86 0.93 0.51 0.68 0.67 0.78 0.31 0.39
Recommendation

Quality

Success Ratio 0.24 0.81 0.22 0.68 0.45 0.49 0.40 0.73 0.68 0.91
Accuracy 0.14 0.65 0.15 0.48 0.35 0.44 0.24 0.51 0.34 0.52

through accuracy and success ratio per iteration. The accuracy of

insertions and deletions are defined as: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦+ = | (�̂�\𝐻
∗ )∩𝑅+ |
|𝑅+ |

and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦− =
| (𝐻 ∗\�̂� )∩𝑅− |

|𝑅− | , where �̂� is ground-truth commu-

nity, 𝐻∗ is search result, 𝑅+/𝑅− are recommended vertex sets. A

recommendation is considered successful if a user accepts a vertex

from 𝑅±, resulting in a success ratio of one; otherwise, it fails with

a ratio of zero. We report the average accuracy and success ratio

for evaluating recommendation quality.

Parameter setting. By default, we set the maximum interactive it-

eration as 𝐼𝑚𝑎𝑥 = 10. For each iteration, we recommend ten vertices

for insertion and ten for deletion, i.e., |𝑅+ | = |𝑅− | = 10. The recom-

mendation candidate subgraph size is 1000. The adjustment ratio is

𝜆 = 0.1 to slightly modify community size. In PCR computation, the

damping factor 𝛼 = 0.85, with a constant tolerance of 𝛿 = 0.0001

and maximum iterations 𝑙𝑚𝑎𝑥 equal to the number of levels in 𝐺𝐷 .

For a query vertex 𝑣 , the input parameter 𝑘 ∈ [1, 𝑐𝑜𝑟𝑒 (𝑣)] for ACQ
andWCS models. For ICS-GNN, we follow its default setting and

set community and subgraph sizes to 100 and 1000, respectively.

Exp-1: Interactive efficiency evaluation. Table 3 reports the

total running time of all methods, and also their breakdown com-

ponents of interactive search time and recommendation time. Here,

the interactive search time includes the parameter auto-tuning and

community refinement time, where the community refinement

takes the majority cost and depends on its specific community

model M𝑥 . Overall, the interactive search time of our GICS is very

competitive to baseline methods on all datasets. GICS using the

ICS-GNN model takes longer than GNN-baseline, due to an en-

hanced recommendation scheme for quality improvement. GICS
runs faster thanWCS-baseline, especially on larger datasets Live-

Journal and Orkut, thanks to the effectiveness of our fast partial

refinement strategy. In terms of recommendation time, the random

recommendation taken by baseline methods is millisecond-scale

and omitted from Table 3. The recommendation time of our Algo-

rithm 2 consistently takes less than one second across all models,

which is practically useful to allow real-time user interactions.

Exp-2: Search quality evaluation on ground-truth communi-
ties. Table 3 reports the F1-score of interactive quality. We compare

three baselines and ours. We calculate the initial F1-score of an

initial community and the final F1-score of revised communities

after ten rounds of interactive iterations, respectively. Our algo-

rithm always achieves a better performance than the baseline on

all datasets and all three models, which indicates the effectiveness

and scalability of our interactive framework.

Exp-3: Recommendation quality evaluation. Table 3 reports
the recommendation quality of all methods, in terms of the accu-

racy and success ratio. We calculate the average result of inserting

and deleting recommendation quality. The results show that our

PADR always achieves a better quality than the baseline random

recommendation. Figure 5 evaluates the recommendation quality

of the first round recommendation for insertion and deletion sepa-

rately. As shown in Figure 5, our PADR for insertion consistently

outperforms than baselines for both accuracy and success ratio.

Moreover, our PADR recommendation can achieve success around

two times of baselines in Figure 5(b). Figure 5(c) and 5(d) show that

the recommendation quality of baselines and ours are similar, as a

small size of candidate search subgraph.

Exp-4: Community quality evaluation by varying interac-
tions. Figure 6 reports the F1-score of interactive community search

results for GNN and ACQ community models on four datasets, re-

spectively. We vary the number of iterations to test community

quality. With the increasing number of iterations, most methods

improve better and better, indicating the usefulness of user interac-

tions. We can see that all our methods achieve higher F1-scores than

baseline methods on both models. Our GICS method can obtain

good F1-scores significantly in the first three iterations, reflecting

the effective refinement of our techniques.

Exp-5: Ablation study.We test the performance of three phases

in GICS, i.e., Phase-I of recommendation, Phase-II of parameter

auto-tuning, and Phase-III of partial refinement, which are denoted

by P-I, P-II, P-III, respectively. We implement GICS on WCS model,

and compare GICS with its four variants by removing P-I, P-II, P-III,
and P-II&III, respectively.WCS-baseline is implemented by rerun-

ning original WCS model algorithms [55] and applying random

recommendations in each iteration. Table 4 illustrates that GICS
achieves the highest F1-scores and decreases with smaller F1-scores

with the removal of any phase. In terms of efficiency,GICS becomes

much slower when Phase-III of partial refinement is omitted, as

shown by comparing the running time of GICS and GICS without
P-III. Moreover, comparing WCS-baseline to GICS without P-II &

1987
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Figure 5: Recommendation quality evaluation on four datasets and three models.
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Figure 7: Case study on DBLP network.
P-III demonstrates that even added Phase-I personalized recommen-

dation alone outperformsWCS-baseline in F1-scores. As a result,

it clearly demonstrates the usefulness and indispensability of all

three proposed phases in GICS.
Exp-6: User study on DBLP network. We conduct a user study

on DBLP network to evaluate user satisfaction with interactive

search through three questions: Q1 regarding response time, Q2

about final result, and Q3 concerning insertion/deletion recommen-

dation. We test on two models ICS-GNN and ACQ by comparing

the baseline and the GICS method. We collect 50 sample results by

inviting 25 participants to test GNN model and another 25 for ACQ
model. To maintain the integrity of the results, participants were

not informed about the specific algorithms utilized, ensuring their

responses remained unbiased. The statistical analysis results, as

summarized in Table 5, indicate thatGICS achieves high satisfaction
rates across all questions on both models. The T-test results suggest

that there is a slight difference between the satisfaction of final

results and recommendation. The correlation between final results

and recommendation is strong, indicating a better recommendation

result is crucial.

Exp-7: Case study of personalized academic group search.
We use a research collaboration network from Aminer [12] with

144,334 vertices, 1,821,930 edges, and 7 vertex labels like research

topics of published papers, e.g., “DB”, “ML”. Our case study aims to

identify a notable machine learning (“ML”) research group formed

by “M. J. Franklin”, a famous database researcher. To find who

collaborated with “M. J. Franklin” in ML area, we intend to use our

interactive community search to find this personalized answer in

Figure 7, where colors indicate different research topics. First, we

Table 4: Ablation study of three phases of GICS on WCS
model: P-I for recommendation, P-II for parameter auto-
tuning, and P-III for partial refinement.

Datasets GICS
GICS
without

P-I

GICS
without

P-II

GICS
without

P-III

GICS
without

P-II&P-III

WCS-
baseline

Time(s)

Amazon 0.50 0.09 0.63 0.50 3.28 0.19

DBLP 0.33 0.11 0.27 0.69 1.32 0.42

Youtube 3.93 0.56 0.50 11.37 18.93 8.02

LiveJournal 8.87 4.58 5.21 15.16 24.89 10.04

F1-score

Amazon 0.93 0.82 0.92 0.90 0.83 0.80

DBLP 0.93 0.89 0.92 0.9 0.90 0.86

Youtube 0.68 0.67 0.57 0.52 0.52 0.51

LiveJournal 0.78 0.69 0.76 0.72 0.71 0.67

Table 5: Statistical analysis of user study on DBLP.
Models and Methods GNN GNN-Ours ACQ ACQ-Ours

Questions Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Count Satisfied 25 4 2 24 22 22 23 2 0 25 20 23

Count Dissatisfied 0 21 23 1 3 3 2 23 25 0 5 2

T-test (Q2&Q3) \ 0.39 \ 1 \ 0.16 \ 0.23

Correlation (Q2&Q3) \ 0.68 \ 1 \ \ \ 0.59

Average Satisfaction 100% 16% 8% 96% 88% 88% 92% 8% 0% 100% 80% 92%
Overall Satisfaction 8% 84% 0% 80%

query “M. J. Franklin” and obtain a database-focused community

(Figure 7(a)), but involving very few ML researchers. By adding

ML researcher “A. Talwalker”, we achieve a mixed collaboration

group containing both ML and DB researchers in Figure 7(b). After

removing “U. Cetintemel”, our interactive system finally refines

the result to ML collaboration group in Figure 7(c). This case study

illustrates the usefulness of our interactive community search for

excellent recommendations and user-friendly interaction.

8 CONCLUSIONS
This paper proposes GICS for interactive community search, en-

abling users to refine community results by adding/ deleting vertices

in a user-friendly way. GICS can be extended to support existing

query-oriented community search models in the interactive set-

ting but cannot support a broad range of graph clustering tasks

that find numerous communities globally without input queries.

Equipped with three well-designed components of personalized rec-

ommendation, fast refinement, and parameter auto-turning, GICS
improves the quality of community answers efficiently against the

state-of-the-art methods on ground-truth datasets. User studies and

case studies validate the efficiency, effectiveness, and usability of

proposed GICS.
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