
Anarchy in the Database: A Survey and Evaluation of
Database Management System Extensibility

Abigale Kim
UW–Madison

abigale@cs.wisc.edu

Marco Slot
Crunchy Data

marco.slot@crunchydata.com

David G. Andersen
Carnegie Mellon University

dga@cs.cmu.edu

Andrew Pavlo
Carnegie Mellon University

pavlo@cs.cmu.edu

ABSTRACT
Extensions allow applications to expand the capabilities of database
management systems (DBMSs) with custom logic. However, the
extensibility environment for some DBMSs is fraught with perils,
causing developers to resort to unorthodox methods to achieve
their goals. This paper studies and evaluates the design of DBMS
extensibility. First, we provide a comprehensive taxonomy of the
types of DBMS extensibility. We then examine the extensibility
of six DBMSs: PostgreSQL, MySQL, MariaDB, SQLite, Redis, and
DuckDB. We present an automated extension analysis toolkit that
collects static and dynamic information on how an extension in-
tegrates into the DBMS. Our evaluation of over 400 PostgreSQL
extensions shows that 16.8% of them are incompatible with at least
one other extension and can cause system failures. These results
also show the correlation between these failures and factors related
to extension complexity and implementation.

PVLDB Reference Format:
Abigale Kim, Marco Slot, David G. Andersen, and Andrew Pavlo. Anarchy
in the Database: A Survey and Evaluation of Database Management System
Extensibility. PVLDB, 18(6): 1962 - 1976, 2025.
doi:10.14778/3725688.3725719

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/cmu-db/ext-analyzer.

1 INTRODUCTION
There are two choices when building a DBMS to support a speci�c
use case. The �rst is to create a new system (or fork an existing one)
and customize it for the target workload and environment [152].
The other approach is to expand an existing DBMS through an
extension. An extension (aka plug-in) is custom code that adds new
features to a DBMS while maintaining its core functionality and
infrastructure Examples of extensions include user-de�ned types,
password authentication protocols, or a storage manager.

Extensions allow a DBMS to support more use cases with less
code than writing a new system. As the DBMS improves with new
features, such extensions ideally bene�t from these updates without
refactoring. They also reduce feature bloat in the DBMS, improving
engineering cadence by separating the DBMS’s development cycle
from the extensions. In some cases, extensions are so bene�cial that

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 6 ISSN 2150-8097.
doi:10.14778/3725688.3725719

DBMSs convert them into core features. For example, PostgreSQL’s
auto-vacuum started as a “contrib” extension in 2003 (v7.4 [1]) and
became a built-in component in 2005 (v8.1 [2]).

The database industry has recognized the importance of exten-
sions for decades. Many leading systems support extensibility, in-
cluding PostgreSQL [119], DuckDB [117], Oracle [55], MySQL [45],
SQLite [104], SQL Server [43], Redis [93], and Elasticsearch [30].
There are even companies o�ering DBMS products based on exten-
sions, such as Citus [24], TimescaleDB [112], and ParadeDB [56].

Despite the bene�ts of extensions and wide adoption, there has
been almost no research into this aspect of DBMSs. Furthermore,
some design decisions in DBMSs to make a system more extensible
are fraught with problems. Unfettered extensions lead to unex-
pected errors or compatibility issues with other extensions, causing
the DBMS to produce incorrect results, corrupt data, or crash. In
other cases, insu�cient APIs and support infrastructure cause ex-
tension developers to resort to bad practices, such as copying source
code or exploiting existing APIs for uses other than their intention.

This paper provides a thorough analysis of DBMS extensions
from the perspective of system internals. We propose a taxonomy of
extensibility supported by DBMSs and their design considerations,
and then discuss the mechanisms that DBMSs can o�er to support
extensions.We use this taxonomy to survey six DBMSs: PostgreSQL,
MySQL, MariaDB, SQLite, Redis, and DuckDB. We discuss the good
and not-so-good aspects of each DBMS’s extension support. We
then introduce ExtAnalyzer! [116], our automated analysis toolkit
for DBMS extensions. We evaluated 441 PostgreSQL extensions and
�nd that 16.8% are incompatible with at least one other extension,
causing unexpected behavior and errors. Based on these results, we
provide guidance on how DBMSs can better support extensibility.

2 BACKGROUND
To our knowledge, the �rst extensible DBMS was INGRES in the
1970s, with its support for UDFs written in C [153]. The academic
version of INGRES also added UDTs in the early 1980s [143]. The
INGRES developers then transferred this prototype’s design and
code into the initial version of PostgreSQL [151, 154].

In the 1990s and early 2000s, other DBMSs added support for
UDFs and UDTs, including Oracle [3, 5], IBM DB2 [135], and Mi-
crosoft SQL Server [8, 19]. MySQL v3.22 added its storage engine
interface in 2001 [145]. The SQL standard also included UDFs in
SQL:1996 [136] and UDTs in SQL:1999 [137]. Since then the trend
towards more DBMS extensibility has continued. MySQL began sup-
porting system plugins in 2004, while PostgreSQL added extension
hooks in 2006. These extensibility mechanisms allowed applications
to override DBMS code, increasing extension development.

Some DBMSs provide extensibility as a �rst-class feature with
explicit methods of extending the capabilities of the DBMS. We

1962

https://doi.org/10.14778/3725688.3725719
https://github.com/cmu-db/ext-analyzer
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3725688.3725719
https://www.acm.org/publications/policies/artifact-review-and-badging-current


exclude methods that rely on unintended behaviors or security
breaches to add extensions (e.g., using code injection to add new
features instead of the core DBMS APIs).

3 DATABASE EXTENSIBILITY TAXONOMY
This section presents our taxonomy of implementation design deci-
sions for DBMS extensibility. We begin in Section 3.1 with the types
of extensibility that a DBMS can support. We then discuss the �ve
areas of a DBMS’s architecture and environment for extensions: (1)
integration interfaces, (2) state modi�cation methods, (3) protection
mechanisms, (4) supporting components, and (5) developer APIs.
We discuss problems with real-world implementations of these �ve
areas in Section 4. Although extending a DBMS in more ways than
described here is possible, our taxonomy targets the most common
extensibility types in the most popular DBMSs.

3.1 Extensibility Types
An extension is user-provided logic that augments a DBMS’s be-
havior. This broad de�nition encompasses high-level extensions
(i.e., UDFs) and low-level extensions that rely on a DBMS’s internal
APIs. These types are not mutually exclusive, and many extensions
we examine in Section 5 comprise multiple types.

User-De�ned Types (UDTs): A UDT provides a data type that
does not already exist in the DBMS’s built-in type system. UDTs can
be logical aliases of an existing type or a combination of existing
types (i.e., a struct). Some DBMSs support new custom physical
types with their own binary encoding scheme and support func-
tions (e.g., comparators and access methods). Examples of the latter
include vector embeddings [58] and LiDaR points [76].

User-De�ned Functions (UDFs): Most DBMSs support UDFs
written in procedural languages like PL/SQL or Python. The most
common UDF takes in scalar input arguments and produces either
scalar or table results. Another is a user-de�ned aggregate (UDA)
that takes in multiple rows of data as input and returns a single
scalar result. User-de�ned operators (UDOs) implement expression
operators such as “=” and “+” for UDTs via a UDF. Lastly, some
systems support executing UDFs as standalone stored procedures.

Client Authentication: These extensions add or modify the
DBMS’s client authentication mechanisms and protocols. For ex-
ample, an extension could enable user authentication through an
external Kerberos server [34]. Some DBMSs allow extensions to
change how they handle passwords internally, such as MySQL’s
validate_password [50] and PostgreSQL’s passwordcheck [71].

Utility Commands: The next group overrides or introduces
administrative commands that read or modify the internal state of
the DBMS. These commands target a variety of database objects and
system artifacts, including schema, permissions/ACLs, log �les [36],
and con�guration settings. We also include package managers in
this category that install other extensions (see Section 3.6).

Parser Modi�cations: A DBMS parser validates the syntax of a
query and converts it into an internal representation for subsequent
optimization and execution. A parser extension could change the
query dialect the DBMS supports to add new syntax. Such exten-
sions di�er from UDFs because they enable new syntactic features
in a DBMS’s query language that are not expressed as functions.
Alternatively, they may not change the syntax but instead change

validation rules (e.g., reject queries modifying speci�c tables). De-
velopers extend a DBMS’s parser by modifying its code or injecting
custom rewrite rules (MySQL’s Query Rewriter [52]).

Query Processing: The next type is a broad category of exten-
sions that modify the DBMS’s query processing stack, including its
planner and execution engine. The extensions that provide addi-
tional execution support either (1) modify only a small part of the
execution path and, therefore, are smaller in scope or (2) rewrite the
entire query processing layer to support distributed execution or to
handle new physical data layouts (e.g., Citus [24], Timescale [112]).
Some query processing extensions collect runtime telemetry about
queries for performance analysis and debugging.

Storage Managers: A storage manager is responsible for or-
ganizing, retrieving, and updating data on storage devices. Some
DBMSs allow extensions to replace their storage manager either
at the (1) �le access layer or (2) table access layer. The former is
when an extension replaces the DBMS’s components interacting
with physical �les (e.g., SQLite’s Unix VFS [107]). For example, an
extension could retrieve object store data (e.g., Amazon S3) using a
non-POSIX API. Only the extension interacts with the object store
to retrieve data; the rest of the DBMS is unaware of where that data
came from, and the data’s interpretation remains the same. Other
extensions override a DBMS’s API for retrieving data from logical
tables. The most common are “connectors” that interact with tables
backed by external data sources. More expansive extensions involve
concurrency control and bu�er management components [48].

Index Access Methods: Some DBMSs allow extensions to in-
troduce new indexes on top of its existing storage. Custom index im-
plementations sometimes rely on UDTs. For instance, PostgreSQL’s
pgvector [58] and DuckDB’s VSS [113] provide vector UDT indexes
for similarity search. Other index extensions leverage custom UDT
operators, such as PostgreSQL’s GiST [67].

3.2 Interfaces
ADBMS’s programming interface (API) determines how developers
integrate their extensions into the system. The DBMS exposes this
API through a SQL interface or a procedural programming language
(PL). The API’s expressiveness determines whether an extension
(1) adds new components to the DBMS or (2) overrides existing
components’ capabilities with custom logic.

Adding Components: A DBMS can provide APIs to add new
types, functions, and other components via handler functions with-
out changing the system’s core functionality. An application then
loads the extension into the DBMS and invokes the new functional-
ity explicitly (e.g., by calling the UDF). The APIs for adding compo-
nents to the DBMS are limited and cannot support all extensibility
types. Additionally, performance can su�er depending on the lan-
guage and runtime context. For example, a Python UDF is slower
to execute than a C/C++ UDF due to runtime overhead.

Overriding Components: Another approach is where exten-
sions override parts of the DBMS’s code to augment it with new
capabilities. The DBMS invokes the extension to perform some task
instead of using its original, built-in code. Consider an extension
that overrides the DBMS’s query execution: when a query arrives,
the DBMS bypasses its original code and invokes the extension to

1963



process it. One method of supporting overriding is via function
pointer hooks at various places in a DBMS’s source code.

3.3 State Modi�cation
Most extensibility types in Section 3.1 access or modify state in the
DBMS. There are four state types with di�erent implications for
how the DBMS supports them: (1) database state, (2) system state,
(3) extension state, and (4) ephemeral state.

Database State: This consists of a database’s logical contents
and its physical structures. Database state consists of user data, such
as tables, indexes, materialized views, and the metadata about these
objects. Extensions modify this state by either (1) submitting SQL
commands, (2) accessing table data via the host DBMS’s internal
API, or (3) modifying the contents of the database’s physical �les.

System State: This state is how the DBMS tracks its runtime
operations independent of extensions. It includes the DBMS’s cata-
log, internal data structures that persist from one query to the next
(e.g., bu�er pools), and temporary data structures that the DBMS
creates per query (e.g., plans). Extensions modify system state by (1)
registering new components in the catalog (e.g., UDFs, UDTs), (2)
writing into data structures passed to extension handler functions,
and (3) updating data in shared memory.

Extension State: Each extension can also maintain data for its
internal operations, including con�guration settings and metrics.
Extensions store their state as (1) a database table, (2) an entry
in the DBMS’s catalog, or (3) in-memory data structures if their
contents persist across multiple queries. The �rst two rely on the
DBMS’s built-in recovery methods to ensure durability.

Ephemeral State: We deem any intermediate state that an ex-
tensionmodi�es during its execution but does not persist in the data-
base as ephemeral. Such state is usually related to query execution
and only persists for the lifetime to a query (e.g., tuples projected
from an external table). Extensions create or modify ephemeral
state within their runtime contexts. They can also pass this state to
the host DBMS for additional processing.

3.4 Protection Mechanisms
We now discuss how to ensure that extensions do not interfere with
one another and limit the DBMS’s exposure to security attacks.

Isolation: To ensure extensions do not interfere with each other,
a DBMS should isolate their e�ects. As we discuss in our analysis
in Section 5.4, we found examples where two extensions cause
problems when installed together, even if individually they do not.
One type of static isolation is to restrict the DBMS’s extension API.
For example, SQLite only allows one extension to control a given
extensibility pathway. Other methods include limiting allocations
to a unique namespace with the appropriate ACLs. The level of
isolation provided by processes does not prevent resource manage-
ment exploits using extensions. To mitigate this, the system could
run an extension in a sandbox (e.g., container, jail) to restrict an
extension’s resource consumption to prevent out-of-memory or
priority inversion issues.

Security: Unsafe extensibility opens the DBMS up to attacks
that access sensitive data and cause the system to malfunction.
Thus, it is imperative to consider security from the onset of adding

extension support. The DBMS can diminish such threats by (1)
supporting extensions in safer languages (e.g., not C/C++), (2) dis-
allowing extensions from accessing sensitive data via internal APIs,
and (3) placing restrictions on what extensions users can install.
These are preventativemeasures formalicious extension developers,
but they are not su�cient for security.

3.5 System Components
We describe the internal components exposed to extensions.

Background Workers: Most extensibility types modify the
critical path of query execution in the DBMS. Others implement
asynchronous maintenance tasks that do not operate during query
execution. Some DBMSs provide background workers for these
tasks by spawning processes or threads to execute custom code.
Examples of these maintenance tasks include garbage collection [4],
periodic job scheduling [73], and LSM compaction [70]. Extensions
can invoke background workers by utilizing (1) custom APIs pro-
vided by the DBMS or (2) native threads (e.g., POSIX threads).

Memory Allocation: When extensions store state in memory,
they should utilize the DBMS’s built-in allocator instead of their
PL’s native allocators (e.g. malloc). Using the DBMS’s memory
allocator allows the system to track memory via pools that are
coupled with the lifecycle of a query, transaction or session, and
cleared in case of error to avoid memory leaks. We found most
extensions use the DBMS’s built-in memory mechanisms.

Con�guration Options: Extensions can expose con�guration
options to allow users to customize their behavior without needing
to recompile the source code. Common options include (1) resource
limits, (2) debug logging levels, and (3) other extension-speci�c
settings. Most DBMSs expose registration functions to add new
options to the existing con�guration infrastructure. After new op-
tions are added, the users can set these options by (1) modifying
con�guration �les, (2) passing in command line arguments when
they start up a database instance, or (3) writing SQL commands.

Concurrency Control: To support parallelism, some DBMSs
allow extensions to declare custom locks and use existing latches,
which are managed by the system. Extensions use locks to imple-
ment concurrency control protocols or modify table data, and use
latches to synchronize access to extension managed memory or in-
ternal data structures. Extensions declare and register custom locks
by calling DBMS API functions in their source code, and leverage
the host system’s existing concurrency control scheme.

3.6 Developer Ecosystem
Lastly, we discuss the ways developers create extensions and how
users manage them. These include the supported languages and a
DBMS’s package manager, building tools, or testing infrastructure.

Programming Languages: A developer’s �rst decision when
writing an extension is which PL to use since DBMSs often support
multiple languages. These include the language of the DBMS source
code or SQL for UDFs and UDTs. Additionally, language binding
frameworks allow developers to create extensions in previously
unsupported languages. DBMSs implement these as foreign func-
tion interfaces (FFIs) bundled with their original API. Implementing
an extension overriding a DBMS component in the same language
as its source code is easier, as the extension can call the original

1964



PostgreSQL MySQL MariaDB SQLite Redis DuckDB
User-De�ned Functions Yes (408) Yes (2) Yes (1) Yes (79) Yes (57) Yes (41)

User-de�ned Types Yes (139) No Yes (13) No No Yes (4)
Utility Commands Yes (43) No No No No No

Parser Modi�cations No Yes (2) Yes (1) No No Yes (4)
Query Processing Yes (46) Yes (7) Yes (5) No No Yes (4)
Storage Managers Yes (44) Yes (13) Yes (18) Yes (43) No Yes (9)

Index Access Methods Yes (67) No No No No Yes (3)
Client Authentication Yes (17) Yes (3) Yes (10) No No No
Version Examined v16 v8 v11 v3 v7 v1

Number of Extensions 441 29 68 98 57 44+
Table 1: DBMS Extensibility – An overview of extensibility types supported by the DBMSs considered in Section 4.

implementation as needed. However, it requires knowledge of the
target DBMS’s internals. Writing extensions in a high-level PL (e.g.,
Python, JavaScript) results in less faulty code because extensions
address the DBMS’s state through abstractions and not directly.
This increases the security and isolation of the extension.

Installation: Developers must also work with a DBMS’s APIs
for installing and removing extensions. Examples of installation in-
terfaces include (1) SQL commands, (2) separate extension manager,
and (3) con�guration �les. Similar to PLs, extension developers can
build on these installation interfaces to support a new API.

Package Managers: Con�guring and installing many exten-
sions on the same DBMS is di�cult. As a result, the DBMS or ecosys-
tem sometimes provide package managers to download, install, and
run tests on extensions. Package managers are implemented as (1)
command line tools, (2) websites, or (3) built-in utilities.

Build & Test Tooling: Developers rely on a DBMS’s infras-
tructure to decrease the boilerplate code required to create a new
extension. Examples include build scripts and additional PL support.
Likewise, test tooling is also tedious to implement and an DBMS
should ideally provide these to expedite extension development.

4 SYSTEM SURVEY
Given this taxonomy, we qualitatively analyze how DBMSs support
extensions. For each element in Section 3, we read the DBMSs’
documentation and then con�rmed our �ndings by examining their
source code. This survey aims to understand the prevalence of
trade-o�s that DBMSs make when designing extensibility. We will
provide a quantitative analysis of DBMS extensibility in Section 5.

We chose six DBMSs to examine based on (1) source code avail-
ability, (2) support for at least two extensibility types other than
UDTs/UDFs, and (3) usage popularity. The �rst criterion is critical,
but it unfortunately precludes the most popular enterprise DBMSs.

• PostgreSQL (1986) [18]: This relational DBMS is written in C
and was designed at its inception to be extensible [154]. As such,
PostgreSQL has the most diverse extensibility network.

• MySQL (1994) [45]: This relational DBMS is written in C++
and is most known for its storage manager plug-in architecture.

• MariaDB (2009) [37]: A MySQL fork written in C++ that
supports more extensions than the original MySQL codebase.

• SQLite (2000) [104]: An embedded DBMS written in C that
works on the most varied hardware and operating environments.

• Redis (2009) [93]: An in-memory key-value store written in
C++. Its extensibility is unique because it only supports exten-
sions that operate above the DBMS’s key-value storage.

• DuckDB (2018) [117]: An embedded DBMS for analytics
written in C++ with a burgeoning extensibility ecosystem.

We �rst discuss which extensibility types each DBMS supports
(see Table 1). We then provide our analysis of each DBMS’s internals
based on our taxonomy. Table 2 shows a summary of this survey.

4.1 Extensibility Types
For each DBMS, we surveyed extensions found from three sources:
(1) GitHub, (2) o�cially supported internal extensions, and (3) ex-
tensions supported by cloud providers (e.g., Amazon, Microsoft).

PostgreSQL: This DBMS supports the most extensibility
types (seven of eight) and supports relatively advanced features for
each type. We found over 441 extensions, whereas the other DBMSs
have less than 100 per system. PostgreSQL’s source code includes a
contrib directory with ⇠50 extensions. The DBMS supports UDFs
written in C, SQL, or PL/pgSQL by default, but extensions can also
add new PLs [62, 63]. Combining UDTs, UDOs, and index access
extensions enables specialized domains, such as geospatial [64] and
vector search [58]. PostgreSQL extensions use query processing
hooks to provide alternative scan and join algorithms, or augment
the planner and executor with additional functionality [128]. It also
provides two forms of storage manager extensibility: (1) foreign
data wrappers [84] for external tables (e.g., �le-based, other DBMSs)
and (2) table access methods for local storage (e.g., columnar [25]).
It is the only DBMS that supports utility command extensibility.

MySQL: The DBMS’s installation package includes 44 exten-
sions, but there are a small number of third-party extensions. There
are ⇠10 storage managers for MySQL [158], including InnoDB [48],
in-memory [49], and federated [47] engines. MySQL’s extension
ecosystem is less active than PostgreSQL despite historical trends
of the former being more widely deployed than the latter.

MariaDB: Since it is a MySQL fork, MariaDB has the same
extensibility types, but it added support for UDTs in 2019 [6]. Mari-
aDB’s installation package contains 65 extensions, including 22
storage managers that are more specialized than the ones available
for MySQL [158]. Examples include text search [39], S3 backup [42],
and parallel query execution [38].

SQLite: This DBMS supports overriding its �lesystem ac-
cess layer. Extensions use this extensibility to optimize storage for
di�erent workloads, support additional operating systems, and im-
plement security features, such as encryption [105]. SQLite restricts
overriding more than one �lesystem simultaneously. Apart from
this, extensibility support in SQLite is minimal.

1965



Redis: This DBMS’s extensibility support di�ers from the oth-
ers because it does not allow extensions to access its internal APIs.
It only supports UDFs, which operate above the DBMS’s key-value
storage. Despite this limited support, Redis has an actively main-
tained catalog of 57 extensions. One of its most popular extensions
provides a new query and indexing engine [99]. Redis supports
extensions written in either C or Lua.

DuckDB: Similar to PostgreSQL, DuckDB supports many
extensibility types. For example, it supports planner extensions
to add custom optimizer passes. It also provides vectorized UDFs,
which means that each invocation of the UDF processes a batch
of values to avoid the overhead of context switching. It enables
developers to override its catalog to support accessing external
DBMSs, including PostgreSQL [28] and SQLite [29]. DuckDB has
modi�ed its parser to be extensible at runtime to allow extensions
to add their own syntax without the need for UDFs [142].

4.2 Interfaces
We now examine the DBMSs’ interfaces for extensions. Extensions
that replace DBMS components have a wider variety of capabilities;
some extensions override so much of a DBMS that they transform
it into a di�erent system. For example, Citus [24] turns PostgreSQL
into a distributed DBMS. Maintaining such complex extensions is
di�cult because developers must ensure compatibility as a DBMS’s
API evolves with newer versions. When a DBMS’s interface does
not provide developers with what they need, they resort to using
brittle methods, like duplicating the DBMS source code.

PostgreSQL: The DBMS provides mechanisms to add func-
tionality via handler functions for UDTs, external tables, storage
engines, and index accessmethods. One problemwith PostgreSQL’s
UDT API is that some handler functions are optional, which causes
problems when using them with index extensions if not imple-
mented (see Section 5.4). PostgreSQL provides the other extensibil-
ity types by allowing extensions to override DBMS functionality
via hooks in parts of its code. The DBMS declares hooks as function
pointers in global variables that it will call instead of its code if the
hook is set. Extensions replace a part of PostgreSQL’s functionality
or perform additional steps before or after calling the original code.
As of 2024, PostgreSQL supports 34 hooks.

MySQL / MariaDB: Their interfaces for adding compo-
nents is similar to PostgreSQL. However, instead of setting hook
pointers, their extensions set handler functions in structs. The
DBMS stores extension metadata, including the addresses of the
handlers, in its catalog. Then, it searches and invokes the exten-
sion at various points in the code. Each extension has a single type
association and thus cannot contain multiple types of extensibility.

SQLite: The UDF and storage manager interfaces support
adding components via handler functions. Similar to MySQL and
MariaDB, extensions set handler functions in structs, and the DBMS
invokes the extension when the component is used. SQLite allows
extensions to override �lesystem functionality by replacing system
call wrapper functions (e.g., open, read, write).

Redis: This DBMS has the most restrictive API that only
supports UDFs (called “commands” [95]) that process query com-
mands and read/write data via its storage layer. Redis UDFs cannot
override core DBMS functionality. Despite this limited API, as we

describe in Section 4.1 Redis has some of the most diverse exten-
sions that transform the system into a di�erent type of DBMS (e.g.,
graph [100], full-text search [99], relational [115]). This is akin
to building a full-featured DBMS (e.g., TiDB [134]) on top of an
embedded key-value DBMS (e.g., RocksDB [131]).

DuckDB: Similar to MySQL, this DBMS’s extensions add
components via handler functions. Since DuckDB is a C++ codebase,
extensions de�ne these functions in a class instead of structs. But
DuckDB is switching to a C API for extensions to make it easier to
interoperate with other PLs [120].

4.3 State Modi�cation
Next, we consider the state types extensions can modify. Extensions
that modify system state wield more control over the DBMS’s be-
havior to support expansive features. But if an extension is allowed
to modify internal data structures, it can corrupt them, causing the
DBMS to crash or produce incorrect results.

PostgreSQL: Extensions access database and system state
via global functions and variables, and the DBMS passes ephemeral
state into the extension via function arguments. Extensions can
create tables and other database objects to store extension-speci�c
state, but they must also handle upgrades and dump-and-restore
scenarios. PostgreSQL also allows extensions to register functions
for copying and (de)serializing data structures. Extensions often
use this functionality to inject data into query plans.

MySQL / MariaDB: They allow extensions to create data-
base objects (e.g., tables), access system state via C-style pointers,
use the built-in memory allocation mechanisms for extension state,
and de�ne ephemeral state.

SQLite: Its extensions can use the built-in memory allocator
to access ephemeral state. Both SQLite’s virtual table (i.e., connec-
tors) and �lesystem extensions access system state via arguments
to their handlers. Although extensions cannot create new databases,
they can write tuple data in database �les to modify state.

Redis: Its extensions can modify all state types except sys-
tem. Extensions can store metadata or database contents inside the
DBMS’s built-in key-value store, use built-in memory mechanisms,
and de�ne ephemeral state in their source code.

DuckDB: The DBMS exposes its system state via top-level
database session instances and extensibility interfaces. Extensions
can also augment the DBMS’s C++ classes with ephemeral state.
They can create tables and store state in the database, though such
facilities are limited.

4.4 Protection Mechanisms
We next analyze the protection mechanisms in the DBMSs. There is
contention between how much freedom a DBMS gives extensions
and how vulnerable it makes the system. Query-invoked extensions
(e.g., UDFs) can circumvent a DBMS’s ACLs since they execute as
the calling user and not the original user that installed it [14]. If
users can install extensions written in an unsafe language, the only
protection is whatever the OS provides. If extensions run in the
DBMS’s address space, the OS cannot prevent them from accessing
certain resources. Such problems are why DBaaS vendors restrict
what extensions a user can enable. Static analysis methods and

1966



PostgreSQL MySQL MariaDB SQLite Redis DuckDB
Adding Components Yes Yes Yes Yes Yes Yes

Overriding Components Yes Yes Yes Yes No Yes
State Modi�cation All state All state All state All state Etxn. + Ephmrl. All state
Isolation/Security None Low Low Medium High Low

Background Workers Yes Yes Yes No No No
Memory Allocation Yes Yes Yes Yes Yes Yes

Con�guration Options Yes Yes Yes No Yes Yes
Source Code Yes Yes Yes Yes No Yes

Programming Languages C, C++, Rust C++ C++ C, Rust C, Lua C++
Installation Interface SQL, con�gs SQL SQL SQL SQL, con�gs SQL
Build & Test Tooling Both Testing Testing Both None Both

Package Manager Yes (community) No Yes (OS) Yes (community) No Yes
Table 2: Extensibility Support – An overview of extensibility support for the DBMSs evaluated for the survey in Section 4.

runtime sandboxing could prevent some problems with unsafe ex-
tensions, but none of the DBMSs we examined do these. Enterprise
DBMSs (e.g., Oracle [118]) execute extensions as a separate process.

PostgreSQL: Users’ calls to UDFs in higher-level languages
are subject to regular database ACLs. However, it is possible for an
extension to de�ne UDFs with administrative privileges. An admin-
istrator normally loads extensions, though installation interface
issues create opportunities for less privileged users to gain higher
privileges [11, 13, 17]. An administrator can mark extensions as
“trusted” to allow less privileged users to load them [66].

Extensions written in C have no restrictions once called via a
hook. Low-level functions for reading and writing to the database
are not subject to access controls since the DBMS only enforces
those at the planning and execution layer. It is up to the exten-
sion developer to enforce ACLs. PostgreSQL provides a keyword
SECURITY LABEL[87] which provides access control for extensions.

Multiple extensions can interfere with each other when they
use the same hook. Thus, the end-to-end behavior of combining
multiple extensions may be unpredictable. Some extensions require
the DBMS to invoke them last to avoid interference, which causes
problems if two extensions have this requirement. Suppose a hook
is already set by extension A when extension B is loaded, and B
sets it to its function. In that case, the convention is for B’s function
to call the original hook (A’s function) to form a chain of function
calls, but the DBMS does not enforce this, and the extension may
make changes to the data structures passed as arguments. We study
this issue further in Section 5.4.

MySQL / MariaDB: Since the DBMS handles extension
invocation, one extension cannot modify another’s execution. The
DBMS attempts to ensure extensions do not overwrite each other’s
state, but this behavior is not guaranteed. For auditing plugins, the
DBMS passes the same event state to each plugin, which allows
other extensions to modify it. Because most of MySQL’s extensions
are in C/C++, it is prone to security vulnerabilities. For example,
users with low privilege access can execute denial of service at-
tacks [12, 46]. Like PostgreSQL, MySQL’s allows developers to
specify whether an extension requires higher privileges to install.

SQLite: Most extensibility types cannot interact, and the
DBMS only allows one �lesystem extension at a time. Like other
DBMSs, a malicious user can cause denial of service attacks through

the extension API [7, 10]. SQLite supports disabling extension load-
ing to prevent such attacks and SQL injections. Since SQLite is in
C, it is prone to language-supported security attacks.

Redis: This DBMS is the most isolated in our survey, as all
its extensibility types do not interact with one another. Since the
DBMS is written in C, it is also prone to language-related security
attacks. For example, pam_auth [98] overrides the client authenti-
cation component of the DBMS without an established interface. It
supports ACLs to disallow users from installing extensions.

DuckDB: The APIs in DuckDB prevent extensions from over-
riding each other, though they can sometimes alter each other’s
state. For instance, optimizer extensions have access to the same
query plan data structure. To prevent exploits, DuckDB crypto-
graphically signs its core extensions and community repository
extensions. The DBMS is also prone to some language-level attacks,
but it mitigates them using modern C++ memory constructs.

4.5 System Components
We now describe the internal mechanisms that the DBMSs provide
to developers to help them create extensions. The DBMS’s system
components impact extension design by making development more
convenient. Implementing workarounds for components that do
not exist or have unsuitable APIs is also possible. For example, ex-
tensions can create database tables to store metadata, even without
memory allocation APIs.

PostgreSQL: The DBMS has a large C codebase where some
functions and variables de�ned in header �les are accessible to ex-
tensions. Extensions allocate short-term memory using the DBMS’s
built-in region-based allocator; the DBMS automatically releases
this memory at the end of the current operation or transaction. Ex-
tensions can also request long-term memory to share state across
its process-based sessions. PostgreSQL provides specialized back-
ground workers that work with its process-per-worker model. Ex-
tensions can also de�ne new con�guration options. Users set these
options via SQL or regular con�guration �les. Allowing users to
change options via con�guration �les is unique to PostgreSQL.

MySQL / MariaDB: They both provide generous extensi-
bility mechanisms to developers. For example, the DBMS’s daemon
extensibility allows extensions to spawn additional threads. This
is similar to background workers, although it is supported di�er-
ently within the DBMS. Extensions using daemons typically run
one process in the background to perform various tasks. On the

1967



other hand, extensions using background workers use them to
supplement existing functionality (e.g., garbage collection for an
index).

SQLite: The DBMS provides a C header [111] that gives ex-
tensions access to all its API routines. These include concurrency
control, memory allocation, and string processing functionality.

Redis: It provides a dynamic memory allocation API that
allows extensions to allocate and free memory. Redis also provides
an extensive utility API, allowing extension developers to call its
internal commands from their extension code. It does not o�er
its core source code for extension developers. Instead, extension
developers build extensions using the key-value store as needed
instead of directly modifying Redis.

DuckDB: It uses C++’s memory management features (e.g.,
smart pointers) to mostly obviate the need for custom allocation
primitives, but a custom allocator is available for allocating data
bu�ers. Extensions can add data structures to maps tied to the
session or database instance. Extensions can also extend classes in
DuckDB’s source code to add new functionality. DuckDB relies on
conventional C++ mutexes for concurrency control, and extensions
can do the same. Since DuckDB is an embedded DBMS, it does not
support background workers. Extensions add con�guration options
by calling internal functions upon initialization.

4.6 Developer Ecosystem
We discuss methods for creating and installing extensions. A com-
mon problem is ensuring version compatibility when a DBMS’s
API changes. If a DBMS does not require an extension to provide
a supported versions list, developers resort to two methods. First,
they release separate variants of their extension for each DBMS
version, which imposes an maintenance burden on developers and
users. Alternatively, developers write explicit version handling in
their extensions, increasing the code’s complexity and brittleness.

PostgreSQL: SQL scripts de�ne the DBMS extensions to
create database objects and an optional shared library with in-
ternal functions and hooks. Developers can write a shared library
in C, C++, or Rust (pgrx [86]). pg_tle [89] also enables developers
to write extensions in procedural languages. Extensions can be
installed via package repositories, compiling the extension from
source, or a specialized extension manager (e.g., PGXN [59]). No
o�cial extension manager exists, but PGDC [68] distributes com-
monly used extensions. Some extensions require users to modify
con�guration �les to load them on startup.

PostgreSQL provides two extension development tools: (1) PGXS [60]
(build system for extension development) and (2) pg_regress [57]
(opaque-box testing for extensions).

MySQL: Extensions are SQL scripts with UDFs or shared
library objects written in C++. The DBMS does not have build
tooling, so extensions create their own. It provides examplemodules
and testing infrastructure, although extensions sparingly use the
latter. Users install extensions with SQL commands or by passing
in a con�guration option at server startup. Our survey did not �nd
any extension package manager for MySQL. This lack of support is
notable, given that the MySQL extensibility has many features.

MariaDB: Its ecosystem is similar to MySQL but has better
documentation and a tool for managing extensions [41]. MariaDB
also relies on OS package managers (e.g., Debian apt, Redhat yum)
for distributing and upgrading extensions [40].

SQLite: There is no DBMS-provided build infrastructure for
extensions written in C, but there are community-driven e�orts for
other PL frameworks [106, 109]. Developers compile extensions into
shared library objects and load them through SQL commands. They
can also write tests using SQLite’s built-in Tcl testing framework.
SQLite has one community package manager (sqlean) [108].

Redis: The DBMS supports extensions written in either C
or Lua (UDFs). RedisModulesSDK [97] is a collection of utility func-
tions, test tooling, and documentation to help developers write
extensions. The redismodule-rs is a framework for writing exten-
sions in Rust. Redis does not have a package manager, but its o�cial
documentation used to provide a list of popular, vetted extensions
extensions [96]; this list was removed as part of Redis’ re-branding
and license change in 2024 [94].

DuckDB: The DBMS provides a C++ extension template that
includes build and test infrastructure. Extensions compile to shared
libraries. When the DBMS loads an extension, it installs objects like
functions and types to its catalog. DuckDB also provides extensibil-
ity that targets local applications. For instance, developers can use
the C API to de�ne custom scans and the Python API to de�ne cus-
tom UDFs in Python, though we do not consider such programs in
this paper. DuckDB is the only DBMS that has a built-in extension
manager. When users install an extension with SQL commands,
the DBMS downloads it from either a DuckDB-managed repository
or third-party repository [27]. Developers can also manually link
extensions into the DuckDB binary.

5 EXTENSION ANALYSIS
Our survey in Section 4 provides a qualitative overview of DBMS
extensibility in widely used systems. To better understand how
extensions use these features in the real world, we next analyze the
implementations of PostgreSQL extensions. We examined the other
DBMSs but found no incompatible extensions, and the amount of
copied code was minimal. We discovered that 15.5% of DuckDB
extensions contained code from the DBMS, which was all less than
3%. Most of the code copied by SQLite and Redis extensions were
from their extension header �les. Lastly, we found that MySQL and
MariaDB have no extensions with copied source code.

In this section, we evaluate PostgreSQL’s extensibility in three
ways. The �rst two rely on static analysis of the extensions’ source
code (Sections 5.1 and 5.2). Our third evaluation step runs the
extensions in the DBMS and observes their behavior (Section 5.4).

We created the Extension Analyzer Toolkit (ExtAnalyzer! [116])
for this investigation. The toolkit automatically downloads and in-
stalls PostgreSQL v16 [18] extensions from the following sources: (1)
PostgreSQL’s contrib directory [16], (2) supported extensions from
AWS RDS [20], Google Cloud SQL [33], and Azure PostgreSQL [22],
(3) PostgreSQL Extension Network (PGXN) [59], and (4) other pop-
ular extensions (e.g., Citus [24], TimescaleDB [112], PostGIS [64]).
Since we do not know which extensions are the most used, the
supported extension list from the cloud vendors is a suitable ap-
proximation and 89% of them are open-source.

1968



Figure 1: Distribution of Extensibility Types – The number of exten-
sions using each extensibility type, grouped by number of types used.

Extensibility Type # of Extensions
User-De�ned Functions 408 (92.5%)
User-De�ned Types 139 (31.5%)
Index Access Methods 67 (15.2%)
Storage Managers 44 (10.0%)
Client Authentication 17 (3.9%)
Query Processing 45 (10.2%)
Utility Commands 43 (9.8%)

Table 3: Extensibility Types – The number of PostgreSQL extensions per
extensibility type evaluated in our experiments.

5.1 Source Analysis: Extension Characteristics
We �rst measure the prevalence of extensibility types (Section 3.1)
and system components (Section 3.5) to understand how real-world
extensions use these elements. For each extension, our analysis
toolkit downloads its source code, extracts relevant code, and checks
for keywords that indicate usage of an extensibility feature. Since
our toolkit can produce false positives due to keyword misuse, we
manually inspected a random sample of the extensions to verify that
the analysis works as intended. Extensions declare which hooks
they want to override in their initialization code. The toolkit also
extracts SQL keywords that install di�erent components of the
extension (e.g., CREATE FUNCTION). We count the number of extensi-
bility types per extension. We then identify combination groupings
of extensibility types in the more complex extensions.

Figure 1 groups extensions by the number of extensibility types
used and shows the number of extensions that use a speci�c type
within each group. In addition, Table 3 presents the number of
extensions using each type. UDFs are the most common type; over
92% of extensions use them. This pervasiveness is expected because
PostgreSQL extensions use UDFs for user-facing features and to
de�ne other extensibility types (e.g., UDTs).

The second most common extensibility type is UDTs, with ⇠32%
of extensions using them. Extensions are more likely to employ
UDTs when combined with other types. All but one extension
creates UDTs using C/C++ code handlers (represented as UDFs) to
read and write the type representation into memory.

Most extensions are simple and only use one or two extensibility
types. 81 of 441 (⇠20%) extensions use three or more types, and
we classify these as complex extensions. Of these extensions, 31 of
81 (35.6%) use (1) client authentication, (2) query processing, or (3)
utility command types, which means they use hooks and override
functionality in the host DBMS. We also observed that 36 of 81
(44.4%) extensions with three or more extensibility types leverage
the DBMS’s system components described in Section 4.5.

Rank Categorization Info # of Extensions
#1 N�� I������

UDFs, UDTs, index access methods
55 (67.9%)

#2 ���� P��������� F�������
UDFs, query processing, utility cmds

17 (21.0%)

#3 UDT�������������� E�����
UDFs, UDTs, storage mgr., query proc.

4 (4.9%)

#4 N�� S������M������
UDFs, storage manager, utility cmds

4 (4.9%)

#5 F������������ E���������
All extensibility types

1 (1.2%)

Table 4: Complex Extension Categorization – An overview of the ex-
tension categories found by the K-modes clustering algorithm.

We convert each extension’s extensibility types into a one-hot
encoding and then cluster them using K-modes [124]. We found
that �ve clusters provided the most meaningful results through the
elbowmethod. Then, we manually each group of extensions (shown
in Table 4). All categories use UDFs, which are required for other
extensibility types. The most common category is new data types
with type-speci�c indexes. One example is pgvector, an extension
that implements a custom embedding type and an HNSW index to
retrieve them e�ciently. PostgreSQL has supported custom types
and index access methods since 1995 [133], whereas it added query
processing extensibility in the mid-2000s [26, 91, 103].

The second complex extension category targets query processing.
These extensions combine query processing and utility hooks to
provide additional functionality for each command (e.g., statistics
collection). Storage manager extensions add foreign tables or access
methods with table-level utility commands (e.g., COPY or TRUNCATE).
New query engines with UDTs add storage and execution features
for custom types. The smallest category in our cluster is the full-
featured extensions that transform PostgreSQL into a new DBMS
by adding layered features on top of it; the only extension in this
category is Citus [24]. It includes a custom planner for distributed
queries, columnar table storage, and UDFs/UDTs.

5.2 Source Analysis: Duplicate Code
We next evaluate the source code quality of PostgreSQL extensions
to understand whether the DBMS’s API su�ciently supports the
extensions’ use cases or whether developers contort the system
to implement their features. We look for two problems that we
observed while surveying these extensions. The �rst is when devel-
opers copy large amounts of the DBMS’s code into their extensions.
The second problem is when extensions have custom logic for API
changes in DBMS versions (see Section 5.3).

To identify duplicate code, the toolkit extracts two metrics from
each extension: (1) total number of code lines and (2) number of lines
copied from PostgreSQL’ source code. We use PMD Copy/Paste
Detector (CPD) [31] to �nd duplicate code blocks. We provide CPD
with each extension’s source code and PostgreSQL source code. The
toolkit then examines code blocks with a minimum length of 100
tokens (i.e., the smallest unit of a PL with meaning). CPD records
false positives when it determines that an extension duplicates its
own code and the toolkit omits these cases in our results.

We found 73 of 441 extensions (16.6%) include at least one line
of copied PostgreSQL code. The histogram in Figure 2 shows the
distribution of these extensions based on the percentage of copied

1969



Figure 2: Duplicate Code – Distribution of extensions based on the per-
centage of copied PostgreSQL code in their codebases.

Extensibility Type # of Extensions
User-De�ned Functions 29 (93.5%)
User-De�ned Types 18 (58.1%)
Index Access Methods 7 (22.6%)
Storage Managers 0 (0%)
Client Authentication 3 (9.7%)
Query Processing 5 (16.1%)
Utility Commands 6 (19.4%)

Table 5: Duplicate Code per Extensibility Type – Number of extensions
with > 10% copied code (31) using each extensibility type.

code relative to their entire codebase. The biggest “o�ender” is
pg_ivm [75] (incremental view maintenance) where over 75% of its
code is copied from PostgreSQL!

We ran an additional cross-analysis on the extensions with more
than 10% copied code to understand what di�erentiates them. Ex-
tensions copying source code use more UDTs, index access meth-
ods, client authentication, query processing, and utility commands
than others. All extensibility types that require hooks are on this
list. When setting these hooks, an extension should preserve the
DBMS’ original functionality and may need to call existing func-
tions. Extensions that use storage manager APIs have little dupli-
cated code. A possible explanation is that PostgreSQL’s storage
manager APIs were created in tandem with related extensions (e.g.,
postgres_fdw [84]), so any gaps in those interfaces would have
been apparent during development.

Through a manual inspection of the copied code and discussions
with developers, we found that extensions copy PostgreSQL’s code
for three reasons. Foremost, extensions often need to use built-in
functions within the PostgreSQL source code. However, those func-
tions are declared static in the code, meaning any other code that
wants to call the function must reside in the same �le as the func-
tion’s de�nition (this is a C restriction). Therefore, developers resort
to copying these functions into their repository so their extension
can call them. This is the reason why pg_ivm contains so much
copied code. We found that 29 of 73 (39.7%) extensions that dupli-
cate code contain copied entire functions. In other cases, extensions
copy functions but change small parts of their functionality to suit
their needs. Lastly, we identi�ed cases where extensions copy a
portion of logic from PostgreSQL code but not entire functions.

To di�erentiate between these three scenarios, we measured
what percentage of each extension’s lines of copied code resides in
an entire function from PostgreSQL. Figure 3 shows the percentage
of copied code relative to an extension’s total number of lines of
code. These results show that an average of 42.7% of copied code
consisted of entire functions. One common anti-pattern is when
an extension contains a copy of the same PostgreSQL function for

Figure 3: Percentage of Function Code in Extensions – Distribution
of extensions based on the percentage of lines of copied code consisting of
whole functions.

each major DBMS version. An example of an extension that does
this is rum [101] (inverted index for full-text search), which has over
10k lines of copied code related to sorting tuples that only changes
slightly from one version of PostgreSQL to the next. Maintaining
a codebase with copied functions is laborious and results in many
bugs. For example, Citus’ GitHub repository contains 44 issues
related to problems with PostgreSQL copied functions [24]. We
discuss the implications of this issue further in Section 6.5.

5.3 Source Analysis: Versioning Logic
Given the above example with the profuse copied code based on ver-
sions, we next measure how often extensions include such custom
logic. This provides insight into how often extension developers
must handle changes in the DBMS’s internal API. For each exten-
sion, our toolkit analyzes its code to determine whether (1) it uses
versioning logic, (2) the number of versions supported, and (3) how
many lines of code are version-speci�c. The toolkit identi�es pre-
processor directives (#ifdef) in the code using the PostgreSQL’s
PG_VERSION_NUM macro, and then calculates the number of lines of
code encapsulated in these versioned conditionals.

Figure 4 shows the distribution of the extensions’ code wrapped
in versioning logic, with 153 of 441 (34.7%) extensions using it at
least once; 38 of these 153 (24.8%) extensions are supported by
the cloud vendors. Although versioning exists in a third of the
extensions, on average only 5.8% of their code is version-speci�c.

We also ran a cross-analysis on extensibility types to explain
why some extensions contain more versioning logic than others.
Table 6 shows query processing (41.9%) and utility command (48.4%)
extensions have more versioning logic. These extensions rely on
internal representations of query plans and execution engine logic
that often changes between versions. For example, the function sig-
nature for PostgreSQL’s utility command hook changed four times
in the last decade. But not all extensions using these extensibility
types contain versioning logic: 13 of 45 (28.9%) query processing
and 12 of 43 (27.9%) utility command extensions do not handle
versioning. The developers for these extensions instead release
separate binaries for speci�c PostgreSQL’s versions. This analysis
highlights that PostgreSQL API inconsistency between versions
causes developers to write more convoluted code.

5.4 Runtime Analysis: Compatibility
As discussed in Section 4.2, PostgreSQL has the most permissive ex-
tension API out of the other DBMSs. Our last experiment measures
how PostgreSQL’s �exible API impacts extension isolation.

1970



Extensibility Type # of Extensions
User-De�ned Functions 22 (71.0%)
User-De�ned Types 3 (9.7%)
Index Access Methods 1 (3.2%)
Storage Managers 6 (19.4%)
Client Authentication 4 (12.4%)
Query Processing 13 (41.9%)
Utility Commands 15 (48.4%)

Table 6: Versioning Logic per Extensibility Type – Number of exten-
sions with >10% encapsulated versioning code (31) per extensibility type.

Figure 4: Versioning Logic – Distribution based on the percentage of
encapsulated versioning code in extension codebases.

We test all unique pairs of extensions to evaluate their compatibil-
ity. Two extensions are deemed compatible if our toolkit completes
three steps: (1) installs them into the same DBMS instance, (2) runs
the extension-provided unit tests, and (3) runs pgbench [65]. Run-
ning pgbench in the last step provides a smoke test to determine
whether the rest of the DBMS still functions correctly with the
extensions installed. We also separately test each UDT and index
extension combination. We use Claude v3.5 Sonnet [127] to auto-
matically generate an SQL script that populates a small table with a
UDT column and then attempts to build an index on that column.

Some failures only occur when the toolkit installs one extension
�rst because it determines the order in which the DBMS invokes
them. Hence, for each extension pair, our toolkit installs them in
both permutations (i.e., A!B, B!A). We ran these tests in our
toolkit for the 96 extensions with the necessary installation scripts.

Our tests found that 16.8% of extension pairs failed to work
together. The matrix in Figure 5 shows the compatibility testing
results. Each green square in the graph indicates a successful, com-
patible pair of extensions, while each red square indicates that the
pair of extensions failed to operate together correctly. The exten-
sions in the graph are sorted from lowest to highest compatibility
failure rate. This �gure reveals that while most extensions are com-
patible with one another, some extensions have higher failure rates.

The zoomed view in Figure 5 highlights the 20 extensions with
the highest failure rates. Of these tests, 255 of 380 (67.1%) fail and
about a quarter (29.2%) of those fail due to brittle test cases. Most
PostgreSQL extensions use the built-in testing harness (pg_regress).
The problem with this harness is that it uses string comparisons
on the output of SQL commands to determine whether a test case
succeeds. When our toolkit loads multiple extensions together, it
can change the output of some commands (e.g., catalog queries)
and cause spurious test failures.

Through manually examining our output, we found bugs in
extensions and parts of PostgreSQL. We discuss these below:

• Extension Bugs: lsm3 introduces a latch deadlock that causes
the DBMS to hang with 16 of 95 (16.8%) extensions due to a

Figure 5: Compatibility Tests – Left matrix shows the results of all
compatibility testing. Right matrix shows the results of the 20 extensions
with the highest failure rate.

background worker synchronization bug. plprofiler [61] con-
�icts with 12 of 95 (12.6%) extensions due to a shared memory
initialization error.

• Brittle Con�guration Settings: Since test_decoding [88] and
wal2json [114] are both logical decoding extensions, they use
replication slots. Their tests produced an error due to too few
allocated replication slots.

• Memory Errors: The toolkit caused the DBMS to crash due to a
segmentation fault with pg_show_plans [80] and pg_repack [78]
when the former runs out of memory. The same crash occurs
when logerrors [35] and plprofiler [61] run out of memory.

• UDO Incompatibilities: PostgreSQL misinterprets UDOs for
several extensions [69, 70, 72, 85] as their own. When their func-
tion signatures do not match the DBMS’s API, it errors out.

• Query Processing Bugs: If the DBMS uses timescaledb [112]
with pg_hint_plan [74], then the latter is unable to override
the query’s join order, causing unexpected behavior. Installing
pg_stat_monitor [82] together with pg_stat_statements [83]
causes the former to record incorrect data in its auxiliary tables.

• Installation Order: The DBMS fails to start when it does not
load (1) citus [24] �rst or (2) pg_queryid [77] last.

These failures indicate there are rampant compatibility issues
between extensions. We next identi�ed what aspects of their imple-
mentations cause problems. We ran paired T-tests with a p-value of
0.1 on the compatibility failure rates. Although there are risks with
using paired T-tests on multiple hypotheses, we decided to run tests
on many extensibility factors to determine possible correlations.
We split them into two groups based on whether an extension:

• Uses a certain hook in their source code.
• Uses more than = hooks in their source code (= = [0, 7]).
• Utilizes a certain extensibility type.
• Contains source code copied from PostgreSQL.
• Contains versioning logic.
• Contains more than = lines of source code (= = {500, 750, 1000}).
• Uses more than = extensibility types (= = [1, 4]).
• Uses certain system components.

Of the 55 factors we considered in our T-paired analysis, we
found that the following have the strongest correlation to failures.

1971



Feature p-value

A
��

�
.

Function Usage 1.13e-6
Storage Manager Component 0.0375

C
��

� Duplicate PostgreSQL Code 0.0172
More than 1000 LOC 0.0448
More than 750 LOC 0.0915

I�
��

.

More than 3 Components 0.0920
More than 3 Hooks 0.0715
More than 4 Hooks 0.0023
More than 4 Components 0.0015

Table 7: Failure Correlations by General Features – Lists the p-values
associated with each of our paired T-tests grouped by the extensions’ archi-
tecture (A���.), source code (C���), and implementation (I���.) features.

The foremost reason is that higher complexity causes lower compat-
ibility: if an extension uses many system components, extensibility
types, or hooks, it is more likely to break other extensions.

Second, using larger-scope query planner and execution hooks
(e.g., planner_hook, ProcessUtility_hook) and smaller scope hooks
(e.g., set_join_pathlist_hook) decreases compatibility. Using such
hooks in an extension requires a deep understanding of the DBMS’s
query engine to ensure that it does not cause problems; if two exten-
sions modify the same query engine state, they break unpredictably.

Other codebase complexity measures, such as duplicate code
usage or having a larger codebase, also decreased compatibility. This
aligns with our observations since extensions with these features
require more maintenance and e�ort to ensure they work correctly.

Using UDFs correlates to failures since many complex extensions
use UDFs. Notably, extensions only using UDFs had an average
compatibility failure rate of 10.7%, while extensions that used UDFs
and other extensibility types had an average failure rate of 22.2%.

6 DISCUSSION
We now summarize our �ndings on DBMS extensibility and pro-
vide recommendations for developers who want to add or improve
extension support in a DBMS. PostgreSQL has the most comprehen-
sive extensibility APIs and the largest extension ecosystem. Many
of its design decisions are worth replicating in other DBMSs, but
our survey and analysis also showed that it is not without its �aws.

6.1 Safety vs. Flexibility
Designing extensibility with the proper safety mechanisms means
ensuring the DBMS will not produce incorrect results or crash. This
goal can con�ict with the desire to support expansive extensions
that can modify the DBMS’s runtime behavior. An example of opt-
ing for safety is SQLite’s limitation that only allows one �lesystem
extension at a time to avoid compatibility issues. PostgreSQL is the
other extreme, where extensions are unrestricted in manipulating
the core system and each other.

Figure 6 shows the six DBMSs surveyed on the safety-�exibility
spectrum. We consider PostgreSQL’s framework the most �exible
and Redis’ the safest. We consider Redis the least �exible because
it does not allow users to access system state and it only supports
one interface for writing extensions. This trade-o� is important to
consider because it determines the API that a DBMS exposes to
extension developers and the possible extensions. For example, most
of SQLite’s extensions are UDFs, but the extensions for PostgreSQL,

Figure 6: Safety vs. Flexibility – An approximation of how the DBMSs
consider safety vs. �exibility trade-o�s from Section 6.1.

MySQL, MariaDB, and DuckDB are more diverse. On the other
hand, we showed in Section 5.4 that a too-permissive extensibility
API can have stability issues.

6.2 Extension Composability
Our survey showed that DBMS extensibility is not inherently com-
posable. There is no built-in way for an extension to reference
another extension’s code, components, or state. Instead, developers
rely on their understanding of an extension and then implement
their extension to match this behavior. This does not stop develop-
ers from using extensions as dependencies in their implementations.
For example, many PostgreSQL extensions [74, 77, 79, 81] rely on
pg_stat_statements [83] to obtain planning and execution statis-
tics. Another example is the InnoDB-speci�c catalog extensions
in MySQL and MariaDB. These examples provide a compelling
argument for DBMSs to support extension composability formally.

PostgreSQL’s hook “chaining” is the root of many problems we
identi�ed, as it creates a new call path that an extension is unlikely
to test beforehand. PostgreSQL requires that any extension that
connects via a hook must also call the previously set hook to ensure
both extensions are called, but it has no way of checking whether
an extension complies with this. Furthermore, extensions might
call internal query execution functions that then call other hooks.
Such chaining means the DBMS might invoke an extension in an
unfamiliar state. Given this, using a SQL interface over low-level
hooks (e.g., event triggers for DDL changes) is preferable.

6.3 Extension Redundancies
Our survey reveals that many extensions re-implemented the same
functionality for di�erent DBMSs. For example, both MySQL and
PostgreSQL have job scheduling extensions: mysql_query_queue [51]
and pg_cron [73]. Almost all the DBMSs also have vector index ex-
tensions: PostgreSQL’s pgvector [58], SQLite’s sqlite-vss [110],
DuckDB’s duckdb_vss [113], and MySQL’s mysql_vss [53]. To re-
duce this repetitive e�ort, we argue that the database community
should develop a standardized POSIX-like API [129, 146] for exten-
sions so that DBMSs can share extensions.

6.4 DBMS Extensibility in the Cloud
Managed DBMS services want to allow users to create extensions,
but they do not want to compromise the integrity and security of
their systems. This is problematic, especially for PostgreSQL, since
extensions can expose low-level access to the host machine (e.g.,
�le system, remote shell).

1972



There are di�erent strategies to deal with this problem. The
�rst is to modify the DBMS to introduce a new admin role with
reduced permissions for installing extensions. For example, when a
user installs an extension in AWS RDS PostgreSQL [20], the DBMS
switches to an administrator role with unique permissions (e.g.,
no �le system access) to add an extension. The second option is
to modify the source code of allowed extensions to avoid these
problems. Google Cloud SQL [33] allows a regular user to create an
extension, which prevents escalation issues but is risky because it
means regular users own extension catalog tables. For instance, a
user install a trigger on a pg_cron [73] catalog table and then wait
for the background worker with full administrative permissions to
write to that table and then execute the trigger. However, Google’s
developers modi�ed pg_cron to prevent this from happening. Both
approaches are laborious and error-prone; a better approach is to
use a sandbox to reduce the exposure of the DBMS to such attacks.

6.5 API Lessons
Our correlation analysis shows that extensions relying on coarse-
grained hooks have higher compatibility failure rates. However,
the extensions using these hooks often add relatively simple func-
tionality, such as statistics collection. The DBMS should expose
more �ne-grained hooks for common scenarios that do not carry
the compatibility risks identi�ed in Section 5.4.

PostgreSQL extensions copy code when they need to process in-
ternal data structures that the extension API permits them to access.
The DBMS gives extensions a lot of responsibility to manage the
system’s internal state (e.g., overriding core DBMS functions) but
without the necessary capability to do so (e.g., internal helper/API
functions to modify these internal data structures). Therefore, de-
velopers copy code to use and modify these data structures. Other
problems occur when extensions rely on the representations of a
DBMS’s internal objects, but those objects change in a new DBMS
version (e.g., adding a new �eld to a struct) [149]. PostgreSQL is
designed to be extensible, and this is commendable. However, it
is a beautiful monstrosity because extensions can do essentially
anything in PostgreSQL.

Lastly, PostgreSQL makes building and testing extensions rela-
tively easy via its tooling. This partly explains why it has a more
extensive ecosystem than MySQL and MariaDB, even though they
have similar extensibility features. However, PostgreSQL lacks
an authoritative platform for publishing extensions. In contrast,
DuckDB maintainers provide a platform for community extensions.
Given the success of package managers for programming languages
(e.g., Rust [102], Python [92], JavaScript [54]), every DBMS should
strive to have an e�ective management tool for extensions. Such a
platform can also address quality concerns by recompiling exten-
sions for new patch releases and running cross-extension tests.

7 RELATEDWORK
We now discuss prior work on extensibility across system �elds.

DBMS Extensibility: One of the �rst studies on DBMS exten-
sibility from the early 1990s examined emerging frameworks for
building DBMSs [125]. This study considers extensible DBMSs [122,
126, 144, 148, 154] and identi�es three extensibility types: (1) user
interface, (2) query processing, and (3) storage extensions.

Since then, several works have proposed new types of DBMS
extensibility. For example, Umbra proposed user-de�ned operators
(UDOs) to support custom operations on UDTs [90]. Second, a few
recent works [129, 146, 147] have argued that the databases commu-
nity should prioritize composability, which refers to building new
systems from a collection of its naturally well-de�ned components.
Both extensibility and composability argue for reusable, customiz-
able components within DBMSs. Unlike extensibility, composability
argues that the DBMS should consist of these components.

Operating System Extensibility: Understanding OS extensi-
bility is helpful because we can apply existing terminology, tech-
niques, and support mechanisms to categorize and analyze data-
base system extensibility. Linux’s extensions [9] are shared objects
written in C, while MacOS [21] provides a user-space API. Safer
versions of extensibility that use sandboxing, veri�cation, type-safe
languages, and isolation techniques have been implemented suc-
cessfully in OSs [15, 123, 132, 140, 155]. These e�orts introduce
many valuable ideas for safe, reliable extensibility frameworks. In
the future, it may be helpful to apply the ideas of user-space exten-
sions, sandboxing, formal extensibility frameworks, crash recovery,
and user-controlled research management to DBMS extensibility.

Browser Extensibility: There are ⇠130,000 Google Chrome
extensions [130] and ⇠44,000 Mozilla Firefox extensions [32]. As
a result, security is a signi�cant focus in browser extensibility re-
search [121, 139, 156, 157]. Both Chrome [23, 121] and Firefox [44]
support security features for extensions. Applying the lessons
learned to ensure safety in browser extensions is highly relevant to
developing security measures for DBMS extensions.

Feature Interactions: In software engineering, feature interac-
tions research [138, 141, 150] focuses on understanding how two
di�erent features in a software systemmodify each other’s behavior.
Such research is relevant to DBMS extensibility because one can
represent extensions as features in a system. This means applying
these results to DBMSs and using static and dynamic analysis to
make extension development easier is possible.

8 CONCLUSION
This paper presented an evaluation of modern DBMS extensibility.
We �rst provided an overview of the major DBMS extensibility
types and then expounded on �ve implementation considerations
for extensions: (1) integration interfaces, (2) statemodi�cationmeth-
ods, (3) protection mechanisms, (4) supporting components, and (5)
developer APIs. We examined six open-source DBMSs and showed
how their extension implementations di�er. We then performed a
comprehensive analysis of PostgreSQL’s extensibility ecosystem.
To help with this analysis, we developed a toolkit that automat-
ically deploys and tests extensions. Our results demonstrate the
challenges in trading o� DBMS safety for extension �exibility. This
work highlights existing problems of DBMS extensibility and moti-
vates future research on improving this critical capability.

ACKNOWLEDGMENTS
The authors would like to thank the database extensions commu-
nity for their support and feedback on this work. Particularly, we
are very grateful to everyone who interacted with our talk at the
PostgreSQL Development Conference 2024!

1973

https://2024.pgconf.dev/


REFERENCES
[1] 2003. PostgreSQL v7.4.0 Release Notes. Retrieved 2025-04-04 from https://www.

postgresql.org/docs/release/7.4.0/
[2] 2005. PostgreSQL v8.1.23 Documentation: Appendix E. Release Notes. Retrieved

2025-04-04 from https://www.postgresql.org/docs/8.1/release-8-1.html
[3] 2008. Oracle v8 Release Notes. Retrieved 2025-04-04 from https://www.orafaq.

com/wiki/Oracle_8
[4] 2013. PostgreSQL: pg_autovacuum. Retrieved 2025-04-04 from https://www.

postgresql.org/docs/8.3/catalog-pg-autovacuum.html
[5] 2016. Oracle v7 Release Notes. Retrieved 2025-04-04 from https://www.orafaq.

com/wiki/Oracle_7
[6] 2019. MariaDB: UUID Data Type. Retrieved 2025-04-04 from https://mariadb.

com/kb/en/mariadb-plugin/
[7] 2019. MySQL: CVE-2019-19959. Retrieved 2025-04-04 from https://nvd.nist.gov/

vuln/detail/CVE-2019-19959
[8] 2019. SQL Server: User-de�ned Functions. Retrieved 2025-04-04 from

https://learn.microsoft.com/en-us/archive/msdn-magazine/2003/november/
data-points-sql-server-user-de�ned-functions

[9] 2020. The Linux Documentation Project. Retrieved 2025-04-04 from https:
//tldp.org/

[10] 2020. MySQL: CVE-2020-13630. Retrieved 2025-04-04 from https://nvd.nist.gov/
vuln/detail/CVE-2020-13630

[11] 2020. PostgreSQL: CVE-2020-14350. Retrieved 2025-04-04 from https://www.
postgresql.org/support/security/CVE-2020-14350/

[12] 2022. MySQL: CVE-2022-21454. Retrieved 2025-04-04 from https://nvd.nist.gov/
vuln/detail/CVE-2022-21454

[13] 2022. PostgreSQL: CVE-2022-2625. Retrieved 2025-04-04 from https://www.
postgresql.org/support/security/CVE-2022-2625/

[14] 2022. Redis: Lua scripts can bemanipulated to overcomeACL rules. Retrieved 2025-
04-04 from https://github.com/redis/redis/security/advisories/GHSA-647m-
2wmq-qmvq

[15] 2023. eBPF Documentation. Retrieved 2025-04-04 from https://ebpf.io/what-is-
ebpf/

[16] 2023. PostgreSQL: Contrib module. Retrieved 2025-04-04 from https://pgpedia.
info/c/contrib-module.html

[17] 2023. PostgreSQL: CVE-2023-39417. Retrieved 2025-04-04 from https://www.
postgresql.org/support/security/CVE-2023-39417/

[18] 2023. PostgreSQL v15.3 Release Notes. Retrieved 2025-04-04 from https://www.
postgresql.org/docs/release/15.3/

[19] 2023. SQL Server: CLR User-De�ned Types. Retrieved 2025-04-04 from
https://learn.microsoft.com/en-us/sql/relational-databases/clr-integration-
database-objects-user-de�ned-types/clr-user-de�ned-types?view=sql-
server-ver16

[20] 2024. Amazon RDS for PostgreSQL. Retrieved 2025-04-04 from https://aws.
amazon.com/rds/postgresql/

[21] 2024. Apple OS X System Extensions. Retrieved 2025-04-04 from https:
//developer.apple.com/documentation/systemextensions

[22] 2024. Azure Database for PostgreSQL. Retrieved 2025-04-04 from https://azure.
microsoft.com/en-us/products/postgresql

[23] 2024. Chrome Extensions: Manifest - Sandbox. Retrieved 2025-04-04 from
https://developer.chrome.com/docs/extensions/reference/manifest/sandbox

[24] 2024. Citus. Retrieved 2025-04-04 from https://github.com/citusdata/citus
[25] 2024. Citus Columnar. Retrieved 2025-04-04 from https://github.com/citusdata/

citus/tree/main/src/backend/columnar
[26] 2024. Create hooks to let a loadable plugin monitor (or even replace) the planner.

Retrieved 2025-04-04 from https://git.postgresql.org/gitweb/?p=postgresql.git;
a=commit;h=604�d280b955100e5fc24649ee4d42a6f3ebf35

[27] 2024. DuckDB: Community Extensions Repository. Retrieved 2025-04-04 from
https://github.com/duckdb/community-extensions

[28] 2024. DuckDB: Postgres Scanner. Retrieved 2025-04-04 from https://github.com/
duckdb/postgres_scanner

[29] 2024. DuckDB: SQLite Scanner. Retrieved 2025-04-04 from https://github.com/
duckdb/sqlite_scanner

[30] 2024. ElasticSearch. Retrieved 2025-04-04 from https://www.elastic.co/
elasticsearch

[31] 2024. Finding duplicated code with CPD. Retrieved 2025-04-04 from https:
//pmd.github.io/pmd/pmd_userdocs_cpd

[32] 2024. Firefox Browser Add-Ons. Retrieved 2025-04-04 from https://addons.
mozilla.org/en-US/�refox/search/?type=extension

[33] 2024. Google Cloud SQL. Retrieved 2025-04-04 from https://cloud.google.com/
sql/postgresql

[34] 2024. Kerberos Pluggable Authentication. Retrieved 2025-04-04 from
https://dev.mysql.com/doc/mysql-security-excerpt/8.0/en/kerberos-
pluggable-authentication.html

[35] 2024. logerrors. Retrieved 2025-04-04 from https://github.com/munakoiso/
logerrors

[36] 2024. Logical Decoding Concepts. Retrieved 2025-04-04 from https://www.
postgresql.org/docs/current/logicaldecoding-explanation.html

[37] 2024. MariaDB. Retrieved 2025-04-04 from https://mariadb.com/docs/server/
ref/cs10.4/

[38] 2024. MariaDB: ColumnStore Engine. Retrieved 2025-04-04 from https://mariadb.
com/docs/columnstore/

[39] 2024. MariaDB: Mroonga. Retrieved 2025-04-04 from https://mariadb.com/kb/
en/mroonga/

[40] 2024. MariaDB: Package Repository Setup and Usage. Retrieved 2025-04-04 from
https://mariadb.com/kb/en/mariadb-package-repository-setup-and-usage/

[41] 2024. mariadb-plugin. Retrieved 2025-04-04 from https://mariadb.com/kb/en/
mariadb-plugin/

[42] 2024. MariaDB: S3 Storage Engine. Retrieved 2025-04-04 from https://mariadb.
com/kb/en/s3-storage-engine/

[43] 2024. Microsoft SQL Server. Retrieved 2025-04-04 from https://www.microsoft.
com/en-us/sql-server

[44] 2024. Mozilla Wiki: Security/Sandbox. Retrieved 2025-04-04 from https://wiki.
mozilla.org/Security/Sandbox

[45] 2024. MySQL. Retrieved 2025-04-04 from http://www.mysql.com
[46] 2024. MySQL: CVE-2024-20985. Retrieved 2025-04-04 from https://nvd.nist.gov/

vuln/detail/CVE-2024-20985
[47] 2024. MySQL: FEDERATED Storage Engine. Retrieved 2025-04-04 from https:

//dev.mysql.com/doc/refman/8.0/en/federated-storage-engine.html
[48] 2024. MySQL: Introduction to InnoDB. Retrieved 2025-04-04 from https://dev.

mysql.com/doc/refman/8.0/en/innodb-introduction.html
[49] 2024. MySQL: MEMORY Storage Engine. Retrieved 2025-04-04 from https:

//dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
[50] 2024. MySQL: Password Validation Component. Retrieved 2025-04-04 from

https://dev.mysql.com/doc/refman/8.3/en/validate-password.html
[51] 2024. MySQL: Query Job Queue. Retrieved 2025-04-04 from https://github.com/

adrpar/mysql_query_queue
[52] 2024. MySQL: Rewriter Query Rewrite Plugin Reference. Retrieved 2025-04-04

from https://dev.mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin-
reference.html

[53] 2024. mysql_vss. Retrieved 2025-04-04 from https://github.com/stephenc222/
mysql_vss

[54] 2024. npm. Retrieved 2025-04-04 from https://www.npmjs.com/
[55] 2024. Oracle. Retrieved 2025-04-04 from https://www.oracle.com
[56] 2024. ParadeDB. Retrieved 2025-04-04 from https://www.paradedb.com/
[57] 2024. pg_regress. Retrieved 2025-04-04 from https://github.com/postgres/

postgres/blob/master/src/test/regress/pg_regress.c
[58] 2024. pgvector. Retrieved 2025-04-04 from https://github.com/pgvector/

pgvector
[59] 2024. PGXN: PostgreSQL Extension Network. Retrieved 2025-04-04 from https:

//pgxn.org/
[60] 2024. pgxs. Retrieved 2025-04-04 from https://www.postgresql.org/docs/

current/extend-pgxs.html
[61] 2024. plPro�ler. Retrieved 2025-04-04 from https://github.com/bigsql/plpro�ler
[62] 2024. PL/Rust. Retrieved 2025-04-04 from https://github.com/tcdi/plrust
[63] 2024. PLV8. Retrieved 2025-04-04 from https://github.com/plv8/plv8
[64] 2024. PostGIS. Retrieved 2025-04-04 from https://postgis.net/
[65] 2024. PostgreSQL Benchmark (pgbench). Retrieved 2025-04-04 from https:

//www.postgresql.org/docs/current/pgbench.html
[66] 2024. PostgreSQL: CREATE EXTENSION. Retrieved 2025-04-04 from https:

//www.postgresql.org/docs/15/sql-createextension.html
[67] 2024. PostgreSQL: GiST and GIN Index Types. Retrieved 2025-04-04 from

https://www.postgresql.org/docs/9.1/textsearch-indexes.html
[68] 2024. PostgreSQL Global Development Group. Retrieved 2025-04-04 from

https://www.postgresql.org/developer/core/
[69] 2024. PostgreSQL: isn. Retrieved 2025-04-04 from https://www.postgresql.org/

docs/current/isn.html
[70] 2024. PostgreSQL: lsm3. Retrieved 2025-04-04 from https://github.com/

postgrespro/lsm3
[71] 2024. PostgreSQL: passwordcheck. Retrieved 2025-04-04 from https://www.

postgresql.org/docs/current/passwordcheck.html
[72] 2024. PostgreSQL: pg_bigm. Retrieved 2025-04-04 from https://github.com/

pgbigm/pg_bigm
[73] 2024. PostgreSQL: pg_cron. Retrieved 2025-04-04 from https://github.com/

citusdata/pg_cron
[74] 2024. PostgreSQL: pg_hint_plan. Retrieved 2025-04-04 from https://github.com/

ossc-db/pg_hint_plan
[75] 2024. PostgreSQL: pg_ivm. Retrieved 2025-04-04 from https://github.com/

sraoss/pg_ivm
[76] 2024. PostgreSQL: pgpointcloud. Retrieved 2025-04-04 from https://github.com/

pgpointcloud/pointcloud
[77] 2024. PostgreSQL: pg_queryid. Retrieved 2025-04-04 from https://github.com/

rjuju/pg_queryid

1974

https://www.postgresql.org/docs/release/7.4.0/
https://www.postgresql.org/docs/release/7.4.0/
https://www.postgresql.org/docs/8.1/release-8-1.html
https://www.orafaq.com/wiki/Oracle_8
https://www.orafaq.com/wiki/Oracle_8
https://www.postgresql.org/docs/8.3/catalog-pg-autovacuum.html
https://www.postgresql.org/docs/8.3/catalog-pg-autovacuum.html
https://www.orafaq.com/wiki/Oracle_7
https://www.orafaq.com/wiki/Oracle_7
https://mariadb.com/kb/en/mariadb-plugin/
https://mariadb.com/kb/en/mariadb-plugin/
https://nvd.nist.gov/vuln/detail/CVE-2019-19959
https://nvd.nist.gov/vuln/detail/CVE-2019-19959
https://learn.microsoft.com/en-us/archive/msdn-magazine/2003/november/data-points-sql-server-user-defined-functions
https://learn.microsoft.com/en-us/archive/msdn-magazine/2003/november/data-points-sql-server-user-defined-functions
https://tldp.org/
https://tldp.org/
https://nvd.nist.gov/vuln/detail/CVE-2020-13630
https://nvd.nist.gov/vuln/detail/CVE-2020-13630
https://www.postgresql.org/support/security/CVE-2020-14350/
https://www.postgresql.org/support/security/CVE-2020-14350/
https://nvd.nist.gov/vuln/detail/CVE-2022-21454
https://nvd.nist.gov/vuln/detail/CVE-2022-21454
https://www.postgresql.org/support/security/CVE-2022-2625/
https://www.postgresql.org/support/security/CVE-2022-2625/
https://github.com/redis/redis/security/advisories/GHSA-647m-2wmq-qmvq
https://github.com/redis/redis/security/advisories/GHSA-647m-2wmq-qmvq
https://ebpf.io/what-is-ebpf/
https://ebpf.io/what-is-ebpf/
https://pgpedia.info/c/contrib-module.html
https://pgpedia.info/c/contrib-module.html
https://www.postgresql.org/support/security/CVE-2023-39417/
https://www.postgresql.org/support/security/CVE-2023-39417/
https://www.postgresql.org/docs/release/15.3/
https://www.postgresql.org/docs/release/15.3/
https://learn.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-types/clr-user-defined-types?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-types/clr-user-defined-types?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-types/clr-user-defined-types?view=sql-server-ver16
https://aws.amazon.com/rds/postgresql/
https://aws.amazon.com/rds/postgresql/
https://developer.apple.com/documentation/systemextensions
https://developer.apple.com/documentation/systemextensions
https://azure.microsoft.com/en-us/products/postgresql
https://azure.microsoft.com/en-us/products/postgresql
https://developer.chrome.com/docs/extensions/reference/manifest/sandbox
https://github.com/citusdata/citus
https://github.com/citusdata/citus/tree/main/src/backend/columnar
https://github.com/citusdata/citus/tree/main/src/backend/columnar
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=604ffd280b955100e5fc24649ee4d42a6f3ebf35
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=604ffd280b955100e5fc24649ee4d42a6f3ebf35
https://github.com/duckdb/community-extensions
https://github.com/duckdb/postgres_scanner
https://github.com/duckdb/postgres_scanner
https://github.com/duckdb/sqlite_scanner
https://github.com/duckdb/sqlite_scanner
https://www.elastic.co/elasticsearch
https://www.elastic.co/elasticsearch
https://pmd.github.io/pmd/pmd_userdocs_cpd
https://pmd.github.io/pmd/pmd_userdocs_cpd
https://addons.mozilla.org/en-US/firefox/search/?type=extension
https://addons.mozilla.org/en-US/firefox/search/?type=extension
https://cloud.google.com/sql/postgresql
https://cloud.google.com/sql/postgresql
https://dev.mysql.com/doc/mysql-security-excerpt/8.0/en/kerberos-pluggable-authentication.html
https://dev.mysql.com/doc/mysql-security-excerpt/8.0/en/kerberos-pluggable-authentication.html
https://github.com/munakoiso/logerrors
https://github.com/munakoiso/logerrors
https://www.postgresql.org/docs/current/logicaldecoding-explanation.html
https://www.postgresql.org/docs/current/logicaldecoding-explanation.html
https://mariadb.com/docs/server/ref/cs10.4/
https://mariadb.com/docs/server/ref/cs10.4/
https://mariadb.com/docs/columnstore/
https://mariadb.com/docs/columnstore/
https://mariadb.com/kb/en/mroonga/
https://mariadb.com/kb/en/mroonga/
https://mariadb.com/kb/en/mariadb-package-repository-setup-and-usage/
https://mariadb.com/kb/en/mariadb-plugin/
https://mariadb.com/kb/en/mariadb-plugin/
https://mariadb.com/kb/en/s3-storage-engine/
https://mariadb.com/kb/en/s3-storage-engine/
https://www.microsoft.com/en-us/sql-server
https://www.microsoft.com/en-us/sql-server
https://wiki.mozilla.org/Security/Sandbox
https://wiki.mozilla.org/Security/Sandbox
http://www.mysql.com
https://nvd.nist.gov/vuln/detail/CVE-2024-20985
https://nvd.nist.gov/vuln/detail/CVE-2024-20985
https://dev.mysql.com/doc/refman/8.0/en/federated-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/federated-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-introduction.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-introduction.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.3/en/validate-password.html
https://github.com/adrpar/mysql_query_queue
https://github.com/adrpar/mysql_query_queue
https://dev.mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin-reference.html
https://dev.mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin-reference.html
https://github.com/stephenc222/mysql_vss
https://github.com/stephenc222/mysql_vss
https://www.npmjs.com/
https://www.oracle.com
https://www.paradedb.com/
https://github.com/postgres/postgres/blob/master/src/test/regress/pg_regress.c
https://github.com/postgres/postgres/blob/master/src/test/regress/pg_regress.c
https://github.com/pgvector/pgvector
https://github.com/pgvector/pgvector
https://pgxn.org/
https://pgxn.org/
https://www.postgresql.org/docs/current/extend-pgxs.html
https://www.postgresql.org/docs/current/extend-pgxs.html
https://github.com/bigsql/plprofiler
https://github.com/tcdi/plrust
https://github.com/plv8/plv8
https://postgis.net/
https://www.postgresql.org/docs/current/pgbench.html
https://www.postgresql.org/docs/current/pgbench.html
https://www.postgresql.org/docs/15/sql-createextension.html
https://www.postgresql.org/docs/15/sql-createextension.html
https://www.postgresql.org/docs/9.1/textsearch-indexes.html
https://www.postgresql.org/developer/core/
https://www.postgresql.org/docs/current/isn.html
https://www.postgresql.org/docs/current/isn.html
https://github.com/postgrespro/lsm3
https://github.com/postgrespro/lsm3
https://www.postgresql.org/docs/current/passwordcheck.html
https://www.postgresql.org/docs/current/passwordcheck.html
https://github.com/pgbigm/pg_bigm
https://github.com/pgbigm/pg_bigm
https://github.com/citusdata/pg_cron
https://github.com/citusdata/pg_cron
https://github.com/ossc-db/pg_hint_plan
https://github.com/ossc-db/pg_hint_plan
https://github.com/sraoss/pg_ivm
https://github.com/sraoss/pg_ivm
https://github.com/pgpointcloud/pointcloud
https://github.com/pgpointcloud/pointcloud
https://github.com/rjuju/pg_queryid
https://github.com/rjuju/pg_queryid


[78] 2024. PostgreSQL: pg_repack. Retrieved 2025-04-04 from https://github.com/
reorg/pg_repack

[79] 2024. PostgreSQL: pgsentinel. Retrieved 2025-04-04 from https://github.com/
pgsentinel/pgsentinel

[80] 2024. PostgreSQL: pg_show_plan. Retrieved 2025-04-04 from https://github.
com/cybertec-postgresql/pg_show_plans

[81] 2024. PostgreSQL: pgstatkcache. Retrieved 2025-04-04 from https://github.com/
powa-team/pg_stat_kcache

[82] 2024. PostgreSQL: pg_stat_monitor. Retrieved 2025-04-04 from https://github.
com/percona/pg_stat_monitor

[83] 2024. PostgreSQL: pg_stat_statements. Retrieved 2025-04-04 from https://www.
postgresql.org/docs/current/pgstatstatements.html

[84] 2024. PostgreSQL: postgres_fdw. Retrieved 2025-04-04 from https://www.
postgresql.org/docs/current/postgres-fdw.html

[85] 2024. PostgreSQL: Pre�x Range Module. Retrieved 2025-04-04 from https:
//github.com/dimitri/pre�x

[86] 2024. PostgreSQL: Rust Extensions Framework (pgrx). Retrieved 2025-04-04
from https://docs.rs/pgrx/latest/pgrx/

[87] 2024. PostgreSQL: SECURITY LABEL. Retrieved 2025-04-04 from https://www.
postgresql.org/docs/current/sql-security-label.html

[88] 2024. PostgreSQL: test_decoding. Retrieved 2025-04-04 from https://www.
postgresql.org/docs/current/test-decoding.html

[89] 2024. PostgreSQL: Trusted Language Extensions. Retrieved 2025-04-04 from
https://github.com/aws/pg_tle

[90] 2024. PostgreSQL: User-De�ned Operators. Retrieved 2025-04-04 from https:
//www.postgresql.org/docs/current/xoper.html

[91] 2024. Provide a function hook to let plug-ins get control around ExecutorRun.
Retrieved 2025-04-04 from https://git.postgresql.org/gitweb/?p=postgresql.git;
a=commit;h=6cc88f0af5b12b22ce1826a26b1a953c434bd165

[92] 2024. Python PIP. Retrieved 2025-04-04 from https://pypi.org/project/pip/
[93] 2024. Redis. Retrieved 2025-04-04 from https://redis.io/
[94] 2024. Redis Adopts Dual Source-Available Licensing. Retrieved 2025-04-04 from

https://redis.io/blog/redis-adopts-dual-source-available-licensing/
[95] 2024. Redis: Commands. Retrieved 2025-04-04 from https://redis.io/docs/latest/

develop/reference/modules/
[96] 2024. Redis Modules (Archived from 2024-04-06). Retrieved 2024-04-06 from https:

//web.archive.org/web/20240406192236/https://redis.io/resources/modules/
[97] 2024. Redis Modules Software Development Kit. Retrieved 2025-04-04 from

https://github.com/RedisLabsModules/RedisModulesSDK
[98] 2024. Redis: pam_auth. Retrieved 2025-04-04 from https://github.com/

RedisLabsModules/pam_auth
[99] 2024. RediSearch. Retrieved 2025-04-04 from https://github.com/RediSearch/

RediSearch
[100] 2024. RedisGraph. Retrieved 2025-04-04 from https://github.com/RedisGraph/

RedisGraph
[101] 2024. RUM - RUM access method. Retrieved 2025-04-04 from https://github.

com/postgrespro/rum
[102] 2024. Rust Cargo. Retrieved 2025-04-04 from https://github.com/rust-lang/cargo
[103] 2024. Some infrastructure changes for the upcoming auto-explain contrib module:.

Retrieved 2025-04-04 from https://git.postgresql.org/gitweb/?p=postgresql.git;
a=commit;h=cd35e9d7468e8f86dd5a7d928707f4ba8cdae44d

[104] 2024. SQLite. Retrieved 2025-04-04 from https://www.sqlite.org/index.html
[105] 2024. SQLite: Encryption Extension. Retrieved 2025-04-04 from https://www.

sqlite.org/see/doc/trunk/www/readme.wiki
[106] 2024. SQLite Extensions. Retrieved 2025-04-04 from https://github.com/riyaz-

ali/sqlite
[107] 2024. SQLite: os_unix. Retrieved 2025-04-04 from https://sqlite.org/src/�le?

name=src/os_unix.c&ci=trunk
[108] 2024. SQLite: sqlean. Retrieved 2025-04-04 from https://github.com/nalgeon/

sqlean
[109] 2024. SQLite: sqlite-loadable-rs. Retrieved 2025-04-04 from https://github.com/

asg017/sqlite-loadable-rs
[110] 2024. SQLite: sqlite-vss. Retrieved 2025-04-04 from https://github.com/asg017/

sqlite-vss
[111] 2024. SQLite: sqlite3ext.h. Retrieved 2025-04-04 from https://www2.sqlite.

org/src/�le?name=src/sqlite3ext.h
[112] 2024. TimescaleDB. Retrieved 2025-04-04 from https://github.com/timescale/

timescaledb
[113] 2024. Vector Similarity Search. Retrieved 2025-04-04 from https://github.com/

duckdb/duckdb_vss
[114] 2024. wal2json. Retrieved 2025-04-04 from https://github.com/eulerto/wal2json
[115] 2024. zeeSQL. Retrieved 2025-04-04 from https://zeesql.com
[116] 2025. Database Extensions Analyzer. Retrieved 2025-04-04 from https://github.

com/cmu-db/ext-analyzer
[117] 2025. DuckDB. Retrieved 2025-04-04 from https://duckdb.org/
[118] 2025. Oracle: Introduction to Oracle Database Extensions for .NET. Retrieved 2025-

04-04 from https://docs.oracle.com/cd/E11882_01/win.112/e17724/intro.htm
[119] 2025. PostgreSQL. Retrieved 2025-04-04 from https://www.postgresql.org

[120] Sam Ansmink. 2024. DuckDB – C API Extensions. Retrieved 2025-04-04 from
https://github.com/duckdb/duckdb/pull/12682

[121] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and Aaron Boodman. 2010.
Protecting Browsers from Extension Vulnerabilities. In Network and Distributed
System Security Symposium.

[122] D.S. Batoory, J.R. Barnett, J.F. Garza, K.P. Smith, K. Tsukuda, B.C. Twichell,
and T.E. Wise. 1988. GENESIS: an extensible database management system.
IEEE Transactions on Software Engineering 14, 11 (1988), 1711–1730. https:
//doi.org/10.1109/32.9057

[123] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker,
C. Chambers, and S. Eggers. 1995. Extensibility Safety and Performance in
the SPIN Operating System. SIGOPS Oper. Syst. Rev. 29, 5 (dec 1995), 267–283.
https://doi.org/10.1145/224057.224077

[124] Fuyuan Cao, Jiye Liang, and Liang Bai. 2009. A new initialization method
for categorical data clustering. Expert Syst. Appl. 36 (09 2009), 10223–10228.
https://doi.org/10.1016/j.eswa.2009.01.060

[125] Michael Carey and Laura Haas. 1990. Extensible DatabaseManagement Systems.
SIGMOD Rec. 19, 4 (dec 1990), 54–60. https://doi.org/10.1145/122058.122064

[126] Michael J. Carey, David J. DeWitt, Daniel Frank, Goetz Graefe, Joel E. Richardson,
Eugene J. Shekita, and M. Muralikrlshna. 1991. The Architecture of the EXODUS
Extensible DBMS. 231–256. https://doi.org/10.1007/978-3-642-84374-7_15

[127] Claude. 2024. Generating small UDT datasets. Retrieved 2025-04-04 from
https://claude.ai/chat

[128] Umur Cubukcu, Ozgun Erdogan, Sumedh Pathak, Sudhakar Sannakkayala, and
Marco Slot. 2021. Citus: Distributed PostgreSQL for Data-Intensive Applications.
In Proceedings of the 2021 International Conference on Management of Data
(SIGMOD ’21). 2490–2502. https://doi.org/10.1145/3448016.3457551

[129] Voltron Data. 2023. The Composable Codex. Retrieved 2025-04-04 from https:
//voltrondata.com/codex

[130] Brian Dean. 2024. Google Chrome Statistics. Retrieved 2025-04-04 from https:
//backlinko.com/chrome-users

[131] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. 2021. RocksDB:
Evolution of Development Priorities in a Key-value Store Serving Large-scale
Applications. ACM Trans. Storage 17, 4, Article 26 (Oct. 2021), 32 pages. https:
//doi.org/10.1145/3483840

[132] D. R. Engler, M. F. Kaashoek, and J. O’Toole. 1995. Exokernel: An Operating
System Architecture for Application-Level Resource Management. In Proceed-
ings of the Fifteenth ACM Symposium on Operating Systems Principles (SOSP ’95).
251–266. https://doi.org/10.1145/224056.224076

[133] Joseph M Hellerstein, Je�rey F Naughton, and Avi Pfe�er. 1995. Generalized
Search Trees for Database Systems. In Proceedings of the 21th International
Conference on Very Large Data Bases. 562–573.

[134] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun
Li, Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas
Cameron, Liquan Pei, and Xin Tang. 2020. TiDB: a Raft-based HTAP database.
Proc. VLDB Endow. 13, 12 (Aug. 2020), 3072–3084. https://doi.org/10.14778/
3415478.3415535

[135] IBM. 2000. DB2 Universal Database for OS/390 IBM Release Planning Guide
Version 6. International Business Machines Corporation.

[136] International Organization for Standardization 1996. ISO/IEC 9075-4:1996 (1st
ed.). International Organization for Standardization.

[137] International Organization for Standardization 1999. ISO/IEC 9075-2:1999 (1st
ed.). International Organization for Standardization.

[138] Sergiy S. Kolesnikov, Norbert Siegmund, Christian Kästner, and Sven Apel.
2017. On the Relation of External and Internal Feature Interactions: A Case Study.
Technical Report 1712.07440. arXiv. https://arxiv.org/abs/1712.07440

[139] David M Martin Jr, Richard M Smith, Michael Brittain, Ivan Fetch, and Hailin
Wu. 2001. The privacy practices of web browser extensions. Commun. ACM 44,
2 (2001), 45–50.

[140] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New
Architecture for User-Level Packet Capture. In Proceedings of the USENIXWinter
1993 Conference Proceedings on USENIX Winter 1993 Conference Proceedings (San
Diego, California) (USENIX’93). USENIX Association, USA, 2.

[141] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and Gunter
Saake. 2016. On Essential Con�guration Complexity: Measuring Interactions
in Highly-Con�gurable Systems (ASE ’16). 483–494. https://doi.org/10.1145/
2970276.2970322

[142] Hannes Mühleisen and Mark Raasveldt. 2025. Runtime-Extensible Parsers.
In 15th Annual Conference on Innovative Data Systems Research (CIDR ’25),
Amsterdam, The Netherlands, January 19-22, 2025. www.cidrdb.org. https:
//duckdb.org/pdf/CIDR2025-muehleisen-raasveldt-extensible-parsers.pdf

[143] James Ong, Dennis Fogg, and Michael Stonebraker. 1983. Implementation of
data abstraction in the relational database system INGRES. SIGMOD Rec. 14, 1
(sep 1983), 1–14. https://doi.org/10.1145/984540.984541

[144] Sylvia L. Osborn and T. E. Heaven. 1986. The Design of a Relational Database
System with Abstract Data Types for Domains. ACM Trans. Database Syst. 11,
3 (aug 1986), 357–373. https://doi.org/10.1145/6314.6461

1975

https://github.com/reorg/pg_repack
https://github.com/reorg/pg_repack
https://github.com/pgsentinel/pgsentinel
https://github.com/pgsentinel/pgsentinel
https://github.com/cybertec-postgresql/pg_show_plans
https://github.com/cybertec-postgresql/pg_show_plans
https://github.com/powa-team/pg_stat_kcache
https://github.com/powa-team/pg_stat_kcache
https://github.com/percona/pg_stat_monitor
https://github.com/percona/pg_stat_monitor
https://www.postgresql.org/docs/current/pgstatstatements.html
https://www.postgresql.org/docs/current/pgstatstatements.html
https://www.postgresql.org/docs/current/postgres-fdw.html
https://www.postgresql.org/docs/current/postgres-fdw.html
https://github.com/dimitri/prefix
https://github.com/dimitri/prefix
https://docs.rs/pgrx/latest/pgrx/
https://www.postgresql.org/docs/current/sql-security-label.html
https://www.postgresql.org/docs/current/sql-security-label.html
https://www.postgresql.org/docs/current/test-decoding.html
https://www.postgresql.org/docs/current/test-decoding.html
https://github.com/aws/pg_tle
https://www.postgresql.org/docs/current/xoper.html
https://www.postgresql.org/docs/current/xoper.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=6cc88f0af5b12b22ce1826a26b1a953c434bd165
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=6cc88f0af5b12b22ce1826a26b1a953c434bd165
https://pypi.org/project/pip/
https://redis.io/
https://redis.io/blog/redis-adopts-dual-source-available-licensing/
https://redis.io/docs/latest/develop/reference/modules/
https://redis.io/docs/latest/develop/reference/modules/
https://web.archive.org/web/20240406192236/https://redis.io/resources/modules/
https://web.archive.org/web/20240406192236/https://redis.io/resources/modules/
https://github.com/RedisLabsModules/RedisModulesSDK
https://github.com/RedisLabsModules/pam_auth
https://github.com/RedisLabsModules/pam_auth
https://github.com/RediSearch/RediSearch
https://github.com/RediSearch/RediSearch
https://github.com/RedisGraph/RedisGraph
https://github.com/RedisGraph/RedisGraph
https://github.com/postgrespro/rum
https://github.com/postgrespro/rum
https://github.com/rust-lang/cargo
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=cd35e9d7468e8f86dd5a7d928707f4ba8cdae44d
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=cd35e9d7468e8f86dd5a7d928707f4ba8cdae44d
https://www.sqlite.org/index.html
https://www.sqlite.org/see/doc/trunk/www/readme.wiki
https://www.sqlite.org/see/doc/trunk/www/readme.wiki
https://github.com/riyaz-ali/sqlite
https://github.com/riyaz-ali/sqlite
https://sqlite.org/src/file?name=src/os_unix.c&ci=trunk
https://sqlite.org/src/file?name=src/os_unix.c&ci=trunk
https://github.com/nalgeon/sqlean
https://github.com/nalgeon/sqlean
https://github.com/asg017/sqlite-loadable-rs
https://github.com/asg017/sqlite-loadable-rs
https://github.com/asg017/sqlite-vss
https://github.com/asg017/sqlite-vss
https://www2.sqlite.org/src/file?name=src/sqlite3ext.h
https://www2.sqlite.org/src/file?name=src/sqlite3ext.h
https://github.com/timescale/timescaledb
https://github.com/timescale/timescaledb
https://github.com/duckdb/duckdb_vss
https://github.com/duckdb/duckdb_vss
https://github.com/eulerto/wal2json
https://zeesql.com
https://github.com/cmu-db/ext-analyzer
https://github.com/cmu-db/ext-analyzer
https://duckdb.org/
https://docs.oracle.com/cd/E11882_01/win.112/e17724/intro.htm
https://www.postgresql.org
https://github.com/duckdb/duckdb/pull/12682
https://doi.org/10.1109/32.9057
https://doi.org/10.1109/32.9057
https://doi.org/10.1145/224057.224077
https://doi.org/10.1016/j.eswa.2009.01.060
https://doi.org/10.1145/122058.122064
https://doi.org/10.1007/978-3-642-84374-7_15
https://claude.ai/chat
https://doi.org/10.1145/3448016.3457551
https://voltrondata.com/codex
https://voltrondata.com/codex
https://backlinko.com/chrome-users
https://backlinko.com/chrome-users
https://doi.org/10.1145/3483840
https://doi.org/10.1145/3483840
https://doi.org/10.1145/224056.224076
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.14778/3415478.3415535
https://arxiv.org/abs/1712.07440
https://doi.org/10.1145/2970276.2970322
https://doi.org/10.1145/2970276.2970322
https://duckdb.org/pdf/CIDR2025-muehleisen-raasveldt-extensible-parsers.pdf
https://duckdb.org/pdf/CIDR2025-muehleisen-raasveldt-extensible-parsers.pdf
https://doi.org/10.1145/984540.984541
https://doi.org/10.1145/6314.6461


[145] Sasha Pachev. 2007. Understanding MySQL Internals. O’Reilly Media, Inc.,
Chapter 1. MySQL History and Architecture.

[146] Pedro Pedreira, Orri Erling, Konstantinos Karanasos, Scott Schneider, Wes
McKinney, Satya R Valluri, Mohamed Zait, and Jacques Nadeau. 2023. The
Composable Data Management System Manifesto. Proceedings of the VLDB
Endowment 16, 10 (2023), 2679–2685.

[147] Danica Porobic. 2019. Revisiting RISC-style Data Management System Design..
In CIDR.

[148] P. Schwarz, W. Chang, J. C. Freytag, G. Lohman, J. McPherson, C. Mohan, and H.
Pirahesh. 1986. Extensibility in the Starburst Database System. In Proceedings
on the 1986 International Workshop on Object-Oriented Database Systems (OODS
’86). 85–92.

[149] Marco Slot. 2024. . Retrieved 2025-04-04 from https://twitter.com/marcoslot/
status/1858132850383421570

[150] Larissa Soares, Jens Meinicke, Sarah Nadi, Christian Kästner, and Eduardo
Almeida. 2018. VarXplorer: Lightweight Process for Dynamic Analysis of
Feature Interactions. In VAMOS 2018: Proceedings of the 12th International
Workshop on Variability Modelling of Software-Intensive Systems. 59–66. https:
//doi.org/10.1145/3168365.3168376

[151] Michael Stonebraker. 2023. Personal Correspondence.
[152] Michael Stonebraker and Ugur Çetintemel. 2005. "One Size Fits All": An Idea

Whose Time Has Come and Gone (Abstract). In Proceedings of the 21st Interna-
tional Conference on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan.

IEEE Computer Society, 2–11. https://doi.org/10.1109/ICDE.2005.1
[153] Michael Stonebraker, Gerald Held, Eugene Wong, and Peter Kreps. 1976. The

design and implementation of INGRES. ACM Trans. Database Syst. 1, 3 (sep
1976), 189–222. https://doi.org/10.1145/320473.320476

[154] Michael Stonebraker and Lawrence A. Rowe. 1986. The Design of POSTGRES. In
Proceedings of the 1986 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’86). 340–355. https://doi.org/10.1145/16894.16888

[155] Michael M. Swift, Steven Martin, Henry M. Levy, and Susan J. Eggers. 2002.
Nooks: An Architecture for Reliable Device Drivers. In Proceedings of the 10th
Workshop on ACM SIGOPS European Workshop (EW 10). 102–107. https://doi.
org/10.1145/1133373.1133393

[156] Mike Ter Louw, Jin Soon Lim, and Venkat N Venkatakrishnan. 2007. Extensible
web browser security. In Detection of Intrusions and Malware, and Vulnerability
Assessment: 4th International Conference, DIMVA 2007 Lucerne, Switzerland, July
12-13, 2007 Proceedings 4. Springer, 1–19.

[157] Mike Ter Louw, Jin Soon Lim, and Venkat N Venkatakrishnan. 2008. Enhancing
web browser security against malware extensions. Journal in Computer Virology
4 (2008), 179–195.

[158] Wikipedia. 2024. Comparison of MySQL database engines — Wikipedia, The
Free Encyclopedia. Retrieved 2025-04-04 from https://en.wikipedia.org/wiki/
Comparison_of_MySQL_database_engines

1976

https://twitter.com/marcoslot/status/1858132850383421570
https://twitter.com/marcoslot/status/1858132850383421570
https://doi.org/10.1145/3168365.3168376
https://doi.org/10.1145/3168365.3168376
https://doi.org/10.1109/ICDE.2005.1
https://doi.org/10.1145/320473.320476
https://doi.org/10.1145/16894.16888
https://doi.org/10.1145/1133373.1133393
https://doi.org/10.1145/1133373.1133393
https://en.wikipedia.org/wiki/Comparison_of_MySQL_database_engines
https://en.wikipedia.org/wiki/Comparison_of_MySQL_database_engines

	Abstract
	1 Introduction
	2 Background
	3 Database Extensibility Taxonomy
	3.1 Extensibility Types
	3.2 Interfaces
	3.3 State Modification
	3.4 Protection Mechanisms
	3.5 System Components
	3.6 Developer Ecosystem

	4 System Survey
	4.1 Extensibility Types
	4.2 Interfaces
	4.3 State Modification
	4.4 Protection Mechanisms
	4.5 System Components
	4.6 Developer Ecosystem

	5 Extension Analysis
	5.1 Source Analysis: Extension Characteristics
	5.2 Source Analysis: Duplicate Code
	5.3 Source Analysis: Versioning Logic
	5.4 Runtime Analysis: Compatibility

	6 Discussion
	6.1 Safety vs. Flexibility
	6.2 Extension Composability
	6.3 Extension Redundancies
	6.4 DBMS Extensibility in the Cloud
	6.5 API Lessons

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

