
mLoRA: Fine-Tuning LoRA Adapters via Highly-Efficient Pipeline
Parallelism in Multiple GPUs

Zhengmao Ye∗
yezhengmaolove@gmail.com

Sichuan University

Dengchun Li∗
mikecovlee@163.com
Sichuan University

Zetao Hu∗
vinkle-hzt@outlook.com

Sichuan University

Tingfeng Lan
tafflan2001@gmail.com
Sichuan University

Jian Sha
jian.sha@antgroup.com

Ant Group

Shicong Zhang
zsc@ix.cn

Zhejiang New Internet Exchange
Center

Lei Duan
leiduan@scu.edu.cn
Sichuan University

Jie Zuo†
zuojie@scu.edu.cn
Sichuan University

Hui Lu
hui.lu@uta.edu

The University of Texas at Arlington

Yuanchun Zhou
zyc@cnic.cn

CNIC, Chinese Academy of Science

Mingjie Tang†
tangrock@gmail.com
Sichuan University

ABSTRACT
Transformer-based large language models (LLMs) have demon-
strated outstanding performance across diverse domains, partic-
ularly in the emerging pretrain-then-finetune paradigm. LoRA, a
parameter-efficient fine-tuning method, is commonly used to adapt
a base LLM to multiple downstream tasks. Further, LLM platforms
enable developers to fine-tune multiple models and develop vari-
ous domain-specific applications simultaneously. However, existing
model parallelism schemes suffer from high communication over-
head and inefficient GPU utilization.

In this paper, we present mLoRA, a parallelism-efficient fine-
tuning system designed for training multiple LoRA across GPUs
and machines. mLoRA introduces a novel LoRA-aware pipeline
parallelism scheme that efficiently pipelines LoRA adapters and
their distinct fine-tuning stages across GPUs and machines, along
with a new LoRA-efficient operator to enhance GPU utilization. Our
extensive evaluation shows that mLoRA can significantly reduce
average fine-tuning task completion time, e.g., by 30%, compared
to state-of-the-art methods like FSDP. More importantly, mLoRA
enables simultaneous fine-tuning of larger models, e.g., two Llama-
2-13B models on four NVIDIA RTX A6000 48GB GPUs, which is
not feasible for FSDP due to high memory requirements. Hence,
mLoRA not only increases fine-tuning efficiency but also makes it
more accessible on cost-effective GPUs.

PVLDB Reference Format:
Zhengmao Ye, Dengchun Li, Zetao Hu, Tingfeng Lan, Jian Sha, Shicong
Zhang, Lei Duan, Jie Zuo, Hui Lu, Yuanchun Zhou, and Mingjie Tang.
mLoRA: Fine-Tuning LoRA Adapters via Highly-Efficient Pipeline
Parallelism in Multiple GPUs. PVLDB, 18(6): 1948 - 1961, 2025.
doi:10.14778/3725688.3725718

∗These authors contributed equally to the paper
†Corresponding author
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/TUDB-Labs/mLoRA.

1 INTRODUCTION
Transformer-based, pre-trained large language models (LLMs), such
as Gemma [64], LLaMA [65], and Phi-3[8] have expanded their
reach beyond natural language processing to a broad range of
domain-specific tasks. This is achieved by adapting pre-trained
LLMs for downstream tasks via fine-tuning, which enhances model
performance for a particular task with brief training on task-specific
data [15, 49]. Examples of this adaptation include translating natural
language questions into SQL queries for relational databases [27],
converting heterogeneous data lakes into structured, queryable
tables [10], and others [26, 34, 37, 47, 54].

As the size of LLMs grows exponentially – rising from hundreds
of billions to the anticipated trillions of model parameters [68] –
fine-tuning these models using traditional full-weight approaches,
which require updating all parameters, becomes very expensive.
Instead, Parameter-Efficient Fine-Tuning (PEFT) methods [28], in-
cluding partial [9, 24, 78], additive [11, 30, 38, 59], and reparame-
terized [31] fine-tunings, have been developed. They train a much
smaller set of parameters, thus cutting training costs whilemaintain-
ing performance levels comparable to full-weight fine-tuning. Low-
Rank Adaptation (LoRA) [31], one of the most effective PEFT meth-
ods [77], freezes the parameters of an LLM while updating pairs
of low-rank matrices with far fewer parameters, namely adapter
weights. Models fine-tuned with LoRA not only match but also

this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 6 ISSN 2150-8097.
doi:10.14778/3725688.3725718

1948

https://doi.org/10.14778/3725688.3725718
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/TUDB-Labs/mLoRA
mailto:info@vldb.org
https://doi.org/10.14778/3725688.3725718
https://www.acm.org/publications/policies/artifact-review-and-badging-current

exceed the performance of fully fine-tuned models while remain-
ing extremely lightweight, e.g., requiring less than 1% of trainable
parameters [28]. The cost-effectiveness and high performance of
LoRA have spurred the development of numerous custom LLMs. For
example, as of Oct. 2024, approximately 143,920 LoRA adapters have
been published on HuggingFace [4], with most of them exhibiting
notable performance in its specific domain [13, 40, 71].

While recent attention has largely focused on LLM serving, such
as resource efficiency, serving latency, scalability, scheduling, fair-
ness, and multi-tenancy [17, 29, 36, 62, 63, 69, 70, 73], less attention
has been paid to addressing an equally important question: how
to effectively and efficiently build these fine-tuned variants? Unlike
training an LLM from scratch, which can require thousands of GPUs
and days of time [12, 61], lightweight LoRA enables a single GPU
to build multiple model variants simultaneously, with even greater
capacity when using multiple GPUs. Meanwhile, concurrently fine-
tuning multiple adapters has become increasingly crucial: LLM
platforms [2, 3, 6] enable developers to fine-tune multiple models
and develop various domain-specific applications simultaneously;
for individual developers, selecting multiple sets of hyperparame-
ters either manually or automatically [67] by fine-tuning multiple
adapters can quickly reveal the best-performing adapter.

However, the unique characteristics of LoRA present key chal-
lenges for parallel fine-tuning LoRA adapters. It can be envisioned
that sharing the same read-only base model with identical pre-trained
weights could facilitate the parallel training of multiple adapters.
This reduces GPU memory footprint and enhances training par-
allelism. Nevertheless, when fine-tuning massive LoRA adapters
exceeds the capacity of a single GPU, multiple GPUs become neces-
sary; distributing a base model across GPUs involves model paral-
lelism, which partitions the base model’s parameters and adapters
and distributes them among these GPUs. Unfortunately, existing
model parallelism methods, such as tensor parallelism [33, 53] and
pipeline parallelism [25, 32], are plagued by high communication
overhead due to the need for inter-GPU synchronization or inef-
ficient GPU utilization caused by pipeline bubbles. Moreover, the
small size of LoRA adapters exacerbates the issue – training small
LoRA adapters in parallel results in frequent GPU kernel launches,
which can substantially increase the total training time.

To overcome these challenges, we presentmLoRA, a fine-tuning
system designed and developed for efficiently fine-tuning LoRA
adapters across multiple GPUs and machines. The key goal of
mLoRA is to achieve high fine-tuning performance by fully utilizing
multi-GPU resources, including both computation and memory.

mLoRA first introduces a novel pipeline parallelism mechanism
called LoRAPP, which ensures low communication overhead, high
parallelism, and improved GPU efficiency for multi-LoRA, multi-
GPU fine-tuning. LoRAPP capitalizes on the observation that al-
though different LoRA adapters share the same base model, they
can be trained independently without computational dependen-
cies. This enables mLoRA to avoid pipeline stalls by freely and
concurrently scheduling distinct training stages (e.g., forward and
backward propagation) of different fine-tuning tasks, thus elimi-
nating pipeline bubbles (i.e., zero bubbles). Further, mLoRA boosts
GPU efficiency with a new operator, BatchLoRA. This operator
consolidates multiple LoRA fine-tuning tasks into a large batch
and performs collective matrix multiplication operations for all

Pretrained
Weights

𝑊 ∈ ℝℎ×𝑑

𝑥

ℎ

𝑨 = 𝓝(𝟎, 𝝈𝟐)

𝑩 = 𝟎

𝑟

(a) LoRA Approach

Pretrained
Weights

𝑊 ∈ ℝℎ×𝑑

𝑋 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛]

· · ·

𝐻 = [ℎ1, ℎ2 , ℎ3 , … , ℎ𝑛]

𝐴1

𝐵1
· · ·

𝐴2

𝐵2

𝐴𝑛

𝐵𝑛

ℎ1

𝑥1 𝑥2 𝑥3 𝑥𝑛

ℎ2 ℎ3 ℎ𝑛

· · ·

(b) BatchLoRA Approach

Figure 1: Sharing pre-trained model weights for fine-tuning
multiple LoRA adapters with reduced overhead.

involved adapters. This approach enhances GPU utilization and
reduces kernel launch overhead while maintaining model quality.

We have evaluated mLoRA by fine-tuning multiple adapters on
various publically available LLMs of different sizes, e.g., TinyLlama-
1.1B [75], Llama-2-7B, and 13B [66]. Experiments demonstrate that
mLoRA significantly reduces the completion time for fine-tuning
tasks. For instance, it achieves a reduction in fine-tuning time by
up to 45% for the Llama-2-7B model in fp32 precision across four
NVIDIA RTXA6000 48GB GPUs, compared to state-of-the-art meth-
ods like FSDP [79], which is an industry-grade parallel LLM training
strategy. Moreover, mLoRA enables the simultaneous fine-tuning
of larger models, e.g., two Llama-2-13B models in fp32 precision
with 4 NVIDIA RTX A6000 48GB GPUs, while FSDP cannot due to
higher memory requirements. With its high fine-tuning efficiency
and low cost, mLoRA addresses the critical issue of the scarcity and
expense of high-end GPUs and has been deployed in the production
environment at AntGroup, where it reduces the time for selecting
optimal hyperparameters for LLM models by 30%.

2 BACKGROUND AND MOTIVATION
2.1 LoRA-based LLM Finetuning
Training an LLM from scratch demands extensive computational
resources over days of time, often utilizing thousands of GPUs and
incurring significant financial costs [12, 61]. In contrast, fine-tuning
pre-trained language models (PLMs) has made LLM benefits more
accessible. Organizations like Meta and Google provide their PLMs,
such as LLaMA [65] and Gemma [64], to the public. Fine-tuning
these models for various downstream tasks is effective [56] and
offers a more cost-efficient way to harness LLM capabilities.

Conventionally, full-weight fine-tuning of large-scale pre-trained
models requires updating all parameters, which often incurs pro-
hibitive computational costs. In contrast, Parameter-Efficient Fine-
Tuning (PEFT) methods [48] selectively update only a small subset
of parameters, significantly reducing computational and memory
resources. LoRA [31], a state-of-the-art PEFT technique, achieves
efficient fine-tuning by freezing the pre-trained model and only
updating low-rank additive matrices with far fewer parameters, as
expressed in Equation 1.

ℎ = 𝑥𝑊
′
= 𝑥 (𝑊 +𝐴𝐵) = 𝑥𝑊 + 𝑥𝐴𝐵 (1)

1949

Where 𝑥 denotes the input data,𝑊 ∈ Rℎ×𝑑 represents the frozen
pre-trained model weights, and 𝐴 ∈ Rℎ×𝑟 and 𝐵 ∈ R𝑟×𝑑 are two
low-rank decomposition matrices, with rank 𝑟 ≪ min(ℎ,𝑑). Ad-
ditionally, techniques such as quantization [22], which compress
the parameters to low precision, and activation checkpointing [18],
which recompute activation values during gradient computation,
can be employed to reduce GPU memory footprint further.

Figure 1(a) shows a typical way to train a single LoRA adapter
from a frozen PLM. When training multiple LoRA adapters simul-
taneously, it makes intuitive sense to share the same read-only base
model among them to reduce the GPU memory footprint, as shown
in Figure 1(b). A naive implementation for such simultaneous fine-
tuning is listed in Algorithm 1: It keeps the base model on the
GPU throughout the entire training process for all LoRA tasks, only
swapping the adapter weights for each task sequentially.

Algorithm 1 Simply train multiple LoRAs, PyTorch-like.
for adapter , data in fine_tuning_task:

A, B = adapter # swap in the low -rank matrix A and B
output = data @ W + data @ A @ B
loss = loss_fn(data , output)
loss.backward ()

Algorithm 2 Use the BatchLoRA to train, PyTorch-like.
datas = [data for _, data in fine_tuning_task]
adapters = [adapter for adapter , _ in fine_tuning_task]
output = datas @ W # just call once
output += BatchLoRA.apply(datas , adapters)
loss = loss_fn(data , output)
loss.backward ()

2.2 Multi-LoRA Finetuning across Multi-GPU
When the need to fine-tune multiple high-precision LoRA adapters
or the read-only base model is too large and exceeds the capacity
of a single GPU – mainly due to limited GPU memory and/or
computation – parallelization through multiple GPUs is necessary.
Two common parallelism methods are data parallelism (DP) [43]
and model parallelism [53]. Data parallelism requires each GPU to
store a complete set of model parameters, which is inefficient and
even impossible for LLM training/fine-tuning when the model size
is large and the GPU memory is small.

To address this, model parallelism partitions and distributes
model parameters across GPUs. Tensor parallelism (TP), one of the
representative model parallelism strategies, splits a tensor (e.g., a
vector or matrix) in the model into multiple chunks along a spe-
cific dimension. Each GPU only holds one chunk of the tensor and
computes partial results based on the allocated tensor chunk. All
partial results are combined into the final result through collective
communication methods, such as all-reduce or all-gather. However,
this approach introduces significant synchronization overhead, par-
ticularly in inter-machine setups, where limited communication
bandwidth can substantially slow down LLM training.

To mitigate this, pipeline parallelism (PP) divides the model into
sequential groups, each containing one or more layers of the model.
Each GPU handles a separate group and computationally depends
on its previous GPU, which manages the preceding group. Conse-
quently, input data is processed in a sequential, pipelined manner,
passing through the dependent GPUs. PP reduces communication
overhead by transmitting only the results of the last layer in a group

LoRA Adapters

<Math Dataset>
Example Instructure: Calculate
Example Input: 1 + 1
Example Output: 2

Fine-tuning datasets LoRA hyper-parameter configurations

name
rank
alpha
priority

: math
: 16
: 16
: low

name
rank
alpha
priority

: translate
: 8
: 16
: high

Candidate Fine-tuning Tasks

... TASK 1TASK 2TASK 3TASK N

Scheduler (§6)

Profiler

Consolidated
Tasks

...

Priority?

Memory Use?
Will OOM?

LoRAPP (§4)

... ...

...

... ...

......

Stage 1 Stage N

FeedBack

...
LLM

GPU 1

GPU 2

Time

GPU 3

Model Partition

BatchLoRA Operator (§5)

Fr
ee

 M
em

o
ry

Fr
ee

 M
em

o
ry

M
em

o
ry

 U
sa

ge

... ...

Time Time Tasks

Stage 1 Stage N

La
ye

r
1

La
ye

r
2

La
ye

r
N

La
ye

r
N

-1TASK 1

TASK N

TASK 2

TASK 3...

TASK 1

TASK 2

TASK 3

TASK N

Multi-LoRA Trainer

mLoRA

...

...

Figure 2: Overview of mLoRA.

between adjacent GPUs rather than synchronizing the intermedi-
ate results of each tensor within each layer. Nevertheless, GPU
idle times can be significant due to the computational dependen-
cies of PP. Solutions like PipeDream [51] and PipeMare [72] relax
dependency constraints, e.g., using mismatched weight versions
between forward and backward propagation, to reduce pipeline
bubbles. However, recent works [42, 45, 50] suggest that these meth-
ods may lead to lower convergence performance. In the context of
LoRA-based fine-tuning, we have two key observations:

Observation 1: Unlike existing model parallelism strategies that
require pipelining the dependent processing stages when training a
single LLM, the independent nature of fine-tuning multiple LoRA
adapters, despite sharing the same base model, can enable more
efficient processing and greater parallelism. For example, we can
populate a fully occupied fine-tuning pipeline across multiple GPUs
and machines by scheduling distinct training stages for separate
LoRA adapters concurrently. Further, by overlapping GPU commu-
nication and computation across separate stages, we can effectively
hide I/O latencies and maximize overall GPU efficiency.

Observation 2: The overhead from calling the API to launch GPU
kernel functions can be substantial. This is particularly true when
we fine-tune numerous small LoRA adapters with a naive parallel
scheme like Algorithm 1, which leads to frequent kernel launches
and high overhead, e.g., accounting for up to 10% of the total train-
ing time. A promising solution to mitigate this overhead, as illus-
trated in Figure 1(b) and Algorithm 2, is to consolidate the training
data from multiple fine-tuning tasks into a larger batch. By per-
forming matrix operations for all involved adapters collectively, we
can achieve the same results as executing multiple fine-tuning tasks
sequentially (as that in Algorithm 1) but with fewer GPU kernel
launchers and reduced overall training time.

1950

3 DESIGN OF MLORA
The limitations of existing model parallelism methods and the ob-
servations in Section 2.2 motivate us to design mLoRA, a new fine-
tuning system for the efficient training of multiple LoRA adapters.
In this section, we first present an overview of mLoRA, including
its key design objectives and fine-tuning workflow, and then detail
the key techniques that underpin mLoRA.

3.1 Overview
Design objectives:mLoRA is developed to fine-tunemultiple LoRA
adapters efficiently across one or multiple (cost-effective) GPUs. It
optimizes training throughput and resource utilization via two new
techniques: 1) LoRA-aware pipeline parallelism, LoRAPP (§3.2), and
2) LoRA-efficient training operator, BatchLoRA (§3.3).

Architecture Overview: As illustrated in Figure 2, mLoRA con-
sists of two main components: 1) A multi-LoRA trainer capable of
simultaneously handling multiple LoRA fine-tuning tasks while
conducting runtime optimization via BatchLoRA and LoRAPP tech-
nologies. 2) A task scheduler that can choose a batch of fine-tuning
tasks based on user demands and metrics from the performance
profiler, e.g., to schedule tasks to maximize GPU resource utilization
and minimize the out-of-memory (OOM) issues.

Specifically, users initiate requests to mLoRA, providing hyper-
parameter configurations for the LoRA adapters and the datasets
used for fine-tuning. Based on this, mLoRA generates candidate
tasks with their initial configurations and places them in a candi-
date task queue. Then, the task scheduler chooses tasks from the
candidate task queue for parallel training (§ 3.2 and § 3.3) based on
various scheduling factors (§ 3.4), such as the memory footprint and
task priority. During the training, the multi-LoRA trainer provides
performance metrics to the profiler, including the actual memory
usage of the current task. The profiler then uses this information to
keep revising its memory estimation model (§ 3.4), enabling more
precise assessments of memory requirements for future tasks.

3.2 Multi-LoRA Training Parallelism
3.2.1 LoRA-aware Pipeline Parallelism (LoRAPP). As discussed in
Section 2, pipeline parallelism can lead to idle periods and ineffi-
ciencies due to computational dependencies between GPUs. For
example, in Figure 4 (a), the traditional pipeline parallel algorithm
GPipe [32] requires 𝐺𝑃𝑈 0 to wait for 𝐺𝑃𝑈 1 to complete 𝐵1 be-
fore𝐺𝑃𝑈 0 can execute 𝐵1, creating idle times for𝐺𝑃𝑈 0, known as
pipeline bubbles. Drawing on Observation 1 (§ 2.2), we propose Lo-
RAPP, a novel pipeline parallelism strategy to optimize fine-tuning
multiple LoRA tasks by reducing or eliminating these bubbles.

Base workflow of LoRAPP. As illustrated in Figure 3, the work-
flow of LoRAPP comprises twomain stages: In the preparation stage,
the model partition module partitions the pre-trained base LLM
– comprising consecutive transformer decoder layers – into sep-
arate groups and allocates these groups to available GPUs (e.g.,
one group for each GPU). Note that model partitioning is not
the focus of mLoRA and has been extensively covered in recent
work [25, 32, 51]; LoRAPP adopts the partitioning approach from
GPipe to ensure that each group has an equal computational load.
In the training stage, following mLoRA’s scheduling scheme (§ 3.4),

... ...

Transformer Decoder Layers

...

GPU 1 GPU N

Stage 1 Stage N

Model Partition

activation

error

peer-to-peer
communication...

Specification of
available devices

Fine-tuning tasks

LoRA Adapter
Loader

Task1

Task2

GPU 1

GPU 2

...

Task1 Task2 Time

GPU 3

... ...
...

...

...

...

Task1 Task2

Task1 Task2

Figure 3: The workflow of LoRAPP.

a set of fine-tuning tasks is selected for parallel training and popu-
lating the multi-GPU pipeline: 1) For each LoRA adapter, the LoRA
adapter loader module allocates a small amount of memory on each
GPU to store a portion of the adapter’s weights associated with the
linear layers of the base model. These weights are randomly ini-
tialized as described in LoRA [31]. 2) After initialization, each GPU
performs forward propagation using activation values received from
its previous GPU’s forward propagation. 3) After forward propaga-
tion, each GPU performs backward propagation using error values
received from its next GPU’s backward propagation.

During the pipelined processing, the first and last GPUs operate
slightly differently from others: 1) The first GPU in the pipeline
receives the training data for a fine-tuning task to initiate the train-
ing process and does not need to send error values. 2) The last
GPU computes the loss using the activation values and then begins
the backward propagation, without needing to send activation val-
ues. Once the fine-tuning task is finished, the weights of its LoRA
adapters are saved (e.g., to persistent storage), and the allocated
memory spaces can be released and used for new tasks.
Achieving Zero Bubbles in LoRAPP. A key goal of LoRAPP
is to reduce or eliminate pipeline bubbles and achieve high effi-
ciency in pipelined fine-tuning. Existing pipeline approaches, like
GPipe [32] as illustrated in Figure 4 (a), address this by dividing a
mini-batch into smaller micro-batches to populate the pipeline dur-
ing each training step or iteration. However, to ensure model con-
vergence, the mini-batch gradient descent algorithm [41] requires
that the pipeline waits for gradients from all micro-batches within
a mini-batch to accumulate before applying them. This stop-and-
wait synchronization introduces pipeline bubbles. One approach is
to increase the number of micro-batches to alleviate the pipeline
bubbles to some extent, but the number of micro-batches is con-
strained by the mini-batch size. Moreover, larger mini-batch sizes
can negatively impact model convergence [14, 20], further restrict-
ing the mini-batch size. Another approach is to launch multiple
GPipe instances, but coordinating multiple instances to utilize their
pipeline bubble is difficult, and each instance needs to load a copy
of the same read-only base model, leading to memory waste. As a
result, it is hard for existing pipeline parallel approaches to achieve
zero pipeline bubbles while ensuring model convergence.

In contrast, LoRAPP reduces the pipeline bubble to zero based
on Observation 1 (§ 2.2): Since each LoRA adapter independently
accumulates and applies gradients, there is no need to synchronize
gradients between different LoRA adapters. Thus, LoRAPP can use
mini-batches from different LoRA adapters to populate the pipeline.

1951

F1 F2 F3 F4

B1 B2 B3 B4

F1 F2 F3 F4
F1 F2 F3 F4

F1 F2 F3 F4
B1

B1
B1 F1

B2
F1B2

B2 F2

B3
B3

B3 F3

B4
B4

B4 F4

F1
F1 B1

F2
F2

F2 B2
B1

B1
B1 F1

F3
F3

F3 B3 B4F4 F1

B2 F2 B3 F3

B2
B2F4

F4 B3
B3F1

F1 B4
B4F2

F2
B1 F2

B1

GPU0
GPU1
GPU2
GPU3

𝐹1 𝐹2 𝐹3 𝐹4
𝐹1 𝐹2 𝐹3 𝐹4

𝐹1 𝐹2 𝐹3
𝐹1

GPU0
GPU1
GPU2
GPU3 𝐹2 𝐹3

𝐹4
𝐹4 𝐵4 𝐵3 𝐵2 𝐵1

𝐵4 𝐵3 𝐵2 𝐵1

𝐵4 𝐵3 𝐵2 𝐵1

𝐵4 𝐵3 𝐵2 𝐵1 𝐹1 𝐹2 𝐹3 𝐹4
𝐹1 𝐹2 𝐹3 𝐹4

𝐹1 𝐹2 𝐹3
𝐹1 𝐹2 𝐹3

𝐹4
𝐹4 𝐵4 𝐵3

𝐵4

(a) GPipe (A mini-batch of a fine-tuning task is split into 4 micro-batches)

(c) LoRAPP (4 fine-tuning tasks without splitting, 1F1B-mode)

(d) LoRAPP (2 fine-tuning tasks without splitting)

𝐹11 𝐹12

𝐵21 𝐵22

𝐹11 𝐹12
𝐹11 𝐹12

𝐹11

GPU0
GPU1
GPU2
GPU3

(e) LoRAPP (2 fine-tuning tasks, each mini-batch of the fine-tuning task is split into 3 micro-batches)

F1 F2

B1 B2

F1 F2
F1 F2

F1 F2
B1

B1
B1 F1

B2
F1B2

B2 F2

F1
F1 B1

F2
F2

F2 B2
B1

B1
B1 F1

F1

B2 F2

B2
B2 F1

F1
F2

F2
B1 F2

B1

GPU0
GPU1
GPU2
GPU3

sync

steady region

Time

𝐵11

𝐹21 𝐹22𝐹13
𝐹13

𝐹13
𝐹12 𝐵12

𝐹23
𝐹21 𝐹22 𝐹23

𝐹21 𝐵11 𝐹22 𝐵12 𝐹23
𝐹13 𝐵13 𝐹21 𝐹22 𝐹23 𝐵23

𝐵13

𝐵11 𝐵12

𝐵11 𝐵12
𝐵13

𝐹11 𝐵11 𝐹12 𝐵12 𝐹13 𝐵13

𝐵13 𝐹11

𝐵21

𝐵21

𝐵21

𝐵22

𝐵22𝐹11
𝐹11 𝐵23

𝐵23

𝐵23𝐵22

𝐵11

𝐵11

𝐵11

𝐵12

𝐵12
𝐵13

𝐹11𝐹12
𝐹12

𝐹12

𝐹13
𝐹13

𝐹13

𝐹21
𝐹21

𝐹21
𝐹21

F1 F2 F3 F4

B1 B2 B3 B4

F1 F2 F3 F4
F1 F2 F3 F4

F1 F2 F3 F4
B1

B1
B1 F1

B2
F1B2

B2 F2

B3
B3

B3 F3

B4
B4

B4 F4

F1
F1 B1

F2
F2

F2 B2
B1

B1
B1 F1

F3
F3

F3 B3 B4F4 F1

B2 F2 B3 F3

B2
B2F4

F4 B3
B3F1

F1 B4
B4F2

F2
B1 F2

B1

GPU0
GPU1
GPU2
GPU3

(f) LoRAPP (8 fine-tuning tasks with BatchLoRA)

F5 F6 F7 F8

B5 B6 B7 B8

F5 F6 F7 F8
F5 F6 F7 F8

F5 F6 F7 F8
B5

B5
B5 F5

B6
F5B6

B6 F6

B7
B7

B7 F7

B8
B8

B8 F8

F5
F5 B5

F6
F6

F6 B6
B5

B5
B5 F5

F7
F7

F7 B7 B8F8 F5

B6 F6 B7 F7

B6
B6F8

F8 B7
B7F5

F5 B8
B8F6

F6
B5 F6

B5

steady region

F1 F2 F3 F4

B1

B3

B4

F1 F2 F3 F4
F1 F2 F3 F4

F1 F2 B1

B2

B2F3 F4

B1
B1 F1

B2
B2

B2 F2

B3
B3

B3 F1
B4

B4F3
B4 F2

F1
F1

F2
F2

F4
F3

B1 B2 F3
B1

B3

B1
B1

B2F3
B2F4

F4
F4 B4

B3

F1
F1

F1
B3

steady region

GPU0
GPU1
GPU2
GPU3

(b) LoRAPP (4 fine-tuning tasks without splitting, GPipe-mode)

Figure 4: (a) GPipe. The training data of the fine-tuning task are divided into four micro-batches within a mini-batch. Here, 𝐹𝑖
represents the forward propagation of the 𝑖th micro-batch, while 𝐵𝑖 represents its backward propagation. GPipe requires all
micro-batches of the same mini-batch to be completed before proceeding to the next mini-batch. (b) (c) (d) LoRAPP without
mini-batch splitting. 𝐹𝑖 represents the forward propagation of the 𝑖th LoRA adapter, while 𝐵𝑖 is its backward propagation. (e)
LoRAPP with mini-batch splitting. 𝐹𝑖 𝑗 represents the forward propagation of the 𝑗th mini-batch, into which the macro-batch of
training data for the 𝑖th LoRA adapter is divided, while 𝐵𝑖 𝑗 represents its backward propagation. (f) LoRAPP with BatchLoRA.

For example, in Figure 4 (b), after 𝐺𝑃𝑈 0 completes the forward
propagation 𝐹1 of LoRA adapter 1, it immediately begins the for-
ward propagation 𝐹2 of LoRA adapter 2. When 𝐺𝑃𝑈 0 completes
the backward propagation 𝐵1 of LoRA adapter 1, it needs to choose
between executing 𝐹1 and 𝐵2. To minimize the pipeline bubble,
we prioritize executing 𝐹1 to maximize the number of different
LoRA adapters being fine-tuned simultaneously. Similarly, when
𝐺𝑃𝑈 3 completes the forward propagation 𝐹1 of LoRA adapter 1,
it needs to choose between executing 𝐹2 and 𝐵1. Since backward
propagation can free up a significant amount of memory used for
activations, optimizations, and weight gradients, we prioritize exe-
cuting backward propagation to free up memory. By default, we
adopt the 1F1B-mode (as shown in Figure 4 (c)), which has the same
steady region as GPipe-mode but saves memory.

One problem remains: LoRAPP cannot achieve zero bubbles with
fewer fine-tuning tasks, as shown in Figure 4 (d). To overcome this,
as illustrated in Figure 4 (e), within the same LoRA adapter, LoRAPP

adopts the same strategy as GPipe, which divides the mini-batch
into multiple (e.g., three) micro-batches to reduce the bubbles.

The independence of training multiple LoRA adapters also en-
ables the opportunity to overlap GPU communication and compu-
tation. As illustrated in Figure 5, since there is no dependency be-
tween the 𝑖th and 𝑗 th LoRA adapters, while the 𝑖th LoRA adapter’s
backward propagation 𝐵𝑖 is being executed on GPU 𝐾 + 1, it can
simultaneously receive the 𝑗th LoRA adapter’s forward propaga-
tion 𝐹 𝑗 from GPU 𝑘 . Such overlapping can greatly hide the I/O
latency from GPU computation, further improving the efficiency
of LoRAPP. More concretely, we create three independent and con-
current running CUDA streams for each GPU, each dedicated to
receiving, sending, and computing data.

3.2.2 Cost Analysis of LoRAPP. To quantify the overhead intro-
duced by pipeline bubbles in LoRAPP, we define the bubble ratio as
the ratio of GPU idle time to the total runtime of the pipeline.

1952

𝐹𝑗GPU K

GPU K+1

𝐵𝑖 − 1

𝐹𝑗-1 𝐵𝑖

𝐹𝑗+1 𝐵𝑖

𝐹𝑗 𝐵𝑖 + 1

. . .

. . .

. . .

. . .

GPU K

GPU K+1

𝐹𝑗 𝐵𝑖 − 1 𝐹𝑗+1 𝐵𝑖

𝐹𝑗-1 𝐵𝑖 𝐹𝑗 𝐵𝑖 + 1
R

S S

RS

RR

S

R RSS

S SRR

. . .

. . .

. . .

. . .

Forward propagation

Backward propagation

Communication

Overlapping Communication

S R

S R

S R

S R

S R

S R

S R

S R

Figure 5: Overlapping communication in LoRAPP. 𝐹𝑖 repre-
sents the forward propagation of the 𝑖th LoRA adapter, while
𝐵𝑖 is its backward propagation.

Bubble ratio in LoRAPP. As shown in Figure 4 (c), each sub-
sequent region repeats the steady region, so we can measure the
bubble ratio by focusing on one steady region. We define the for-
ward propagation time as 𝑇𝑓 , and the backward propagation time
as𝑇𝑏 , with a total of 𝐷 GPUs training 𝐿 tasks simultaneously. Then,
the total time of the steady region is𝐷2 (𝑇𝑓 +𝑇𝑏), and the idle region
is𝑚𝑎𝑥{𝐷 (𝑇𝑓 +𝑇𝑏) (𝐷 − 𝐿), 0}.

Therefore, the bubble ratio of LoRAPP without using mini-batch
splitting is𝑚𝑎𝑥{(𝐷 − 𝐿)/𝐷, 0}. Similarly, we can obtain the bubble
ratio of GPipe as (𝐷 − 1)/(𝑁 + 𝐷 − 1), where 𝑁 represents the
number of micro-batches. This means that if the number of LoRA
adapters trained in parallel is greater than or equal to the number
of GPUs, LoRAPP can fill the pipeline to fully utilize all GPUs. As
mentioned earlier, the number of macro-batches 𝑁 usually has a
small value, preventing GPipe from achieving a zero bubble ratio.

When the system has more GPUs and fewer LoRA adapters for
fine-tuning, LoRAPP achieves a relatively high bubble ratio. To
further decrease the bubble ratio, as shown in Figure 4 (e), LoRAPP
adopts the same strategy as GPipe. This way, its bubble ratio is
𝑚𝑎𝑥{(𝐷 − 1 + 𝑁 − 𝐿 × 𝑁)/(𝐷 + 𝑁 − 1), 0}.
Communication cost. As shown in Figure 5, mLoRA can overlap
communication and computation. For each GPU, without commu-
nication overlap, the latency per training step (i.e., one forward
and one backward) is 2𝐶𝑆 + 2𝐶𝑅 + 𝐷𝐹 + 𝐷𝐵 , where 𝐶𝑆 is the com-
munication latency for sending data, 𝐶𝑅 is the communication
latency for receiving data, 𝐷𝐹 is the computation latency for for-
ward propagation, and 𝐷𝐵 is the computation latency for backward
propagation. With communication overlap, the latency reduces to
𝑚𝑎𝑥{𝐶𝑆 ,𝐶𝑅, 𝐷𝐹 } +𝑚𝑎𝑥{𝐶𝑆 ,𝐶𝑅, 𝐷𝐵}.
Memory usage. One key difference between LoRAPP and GPipe
when simultaneously training 𝐿 number of LoRA adapters is that Lo-
RAPP shares the same read-only base model among these adapters,
whereas GPipe needs to launch multiple instances to load the base
model separately. Therefore, LoRAPP saves (𝐿 − 1)𝑊𝜃 memory,
where𝑊𝜃 is the size of the pre-trained model.

3.3 Multi-LoRA Training Operator
With zero bubbles and hiding communication latency, LoRAPP
(§ 3.2) achieves efficient pipelined fine-tuning across multiple GPUs.
However, we observe that the pipelined GPUs remain not fully

utilized. One reason lies in that, unlike complex tasks (e.g., full
fine-tuning), each LoRA fine-tuning task (i.e., forward or backward
propagation) performed by a GPU is relatively simple and cannot
fully exploit the parallel processing capabilities of the GPU. As
shown in Figure 4 (b), though theoretically, four fine-tuning tasks
can reduce the pipeline’s bubble to zero with four GPUs (i.e., accord-
ing to the bubble ratio in § 3.2.2), a single GPU only uses part of its
computation resources practically. For example, with the workload
and single-machine multi-GPU setup in Section 4.1, using Llama-2-
7B as the base model with four fine-tuning tasks, the average GPU
utilization is 83%, and the average memory utilization is only 30%.

To further improve GPU efficiency and utilization, one intuitive
approach is to maximize the number of distinct fine-tuning tasks in
the LoRAPP pipeline by scheduling as many LoRA adapters as pos-
sible. Note that the maximum number of LoRA adapters each GPU
can handle is constrained by its memory size. However, as high-
lighted in Observation 2 from Section 2.2, the overhead from calling
CUDA APIs to launch GPU kernel functions can be nontrivial when
training numerous small LoRA adapters (with Algorithm 1). To ad-
dress this, mLoRA introduces a new operator, BatchLoRA, which
allows multiple LoRA adapters to concurrently share the pre-trained
base model with reduced kernel launch overhead.

3.3.1 BatchLoRA Operator. As illustrated in Algorithm 2 and Fig-
ure 1(b), BatchLoRA consolidates the training data for a selected
number of LoRA fine-tuning tasks into a single large batch (i.e., a
large matrix) during each training iteration. Therefore, multiple
LoRA adapters can share the same pre-trainedmodel and participate
in training concurrently – instead of sequentially like Algorithm 1.

We use Figure 1 (b) as the running example. Suppose a set of fine-
tuning tasks, denoted as𝑇1, ...,𝑇𝑛 . Each fine-tuning task,𝑇𝑖 , consists
of the fine-tuning input data represented as 𝑥𝑖 , along with the low-
rank weights 𝐴𝑖 and 𝐵𝑖 of the LoRA adapters. Note that, all the
fine-tuning tasks share the same pre-trained weights𝑊 . Formally,
given the input data 𝑥𝑖 for the i-th fine-tuning task and the output
data ℎ𝑖 , the consolidated input data 𝑋 = (𝑥1⊺, . . . , 𝑥𝑛⊺)⊺ . The
calculation formula for forward propagation is shown as Formula 2.

𝐻 =
⎛⎜⎜⎝
ℎ1
.
.
.

ℎ𝑛

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝑥1
.
.
.

𝑥𝑛

⎞⎟⎟⎠𝑊 +
⎛⎜⎜⎝
𝑥1𝐴1𝐵1

.

.

.

𝑥𝑛𝐴𝑛𝐵𝑛

⎞⎟⎟⎠ = 𝑋𝑊 +
⎛⎜⎜⎝
𝑥1𝐴1𝐵1

.

.

.

𝑥𝑛𝐴𝑛𝐵𝑛

⎞⎟⎟⎠ (2)

For backward propagation, according to Formula 2, we derive the
gradient formula for each tensor involved in the computation as For-
mula 3 and 4. Note that𝑊 , i.e., the frozen pre-trained weights, does
not require training, so its gradients do not need to be computed.

⎛⎜⎜⎝
∇𝐴1
.
.
.

∇𝐴𝑛

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝑥1⊺∇ℎ1𝐵1⊺

.

.

.

𝑥𝑛
⊺∇ℎ𝑛𝐵𝑛⊺

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
∇𝐵1
.
.
.

∇𝐵𝑛

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝐴1⊺𝑥1⊺∇ℎ1

.

.

.

𝐴𝑛
⊺𝑥𝑛
⊺∇ℎ𝑛

⎞⎟⎟⎠ (3)

∇𝑋 =
⎛⎜⎜⎝
∇𝑥1
.
.
.

∇𝑥𝑛

⎞⎟⎟⎠ = ∇𝐻𝑊 ⊺ +
⎛⎜⎜⎝
∇ℎ1𝐵1⊺𝐴1⊺

.

.

.

∇ℎ𝑛𝐵𝑛⊺𝐴𝑛⊺

⎞⎟⎟⎠ ,∇𝐻 =
⎛⎜⎜⎝
∇ℎ1
.
.
.

∇ℎ𝑛

⎞⎟⎟⎠ (4)

1953

Therefore, based on Formula 2 and 4, we can find that after the
training data is consolidated, we only need to launch thematrix mul-
tiplication operation𝑋𝑊 and ∇𝐻𝑊 ⊺ once on the GPU, rather than
launching the matrix multiplication operation 𝑥𝑖𝑊 and ∇ℎ𝑖𝑊 ⊺
for each LoRA adapter, thereby reducing the overhead of kernel
launches. Note that training with consolidated data does not affect
the model performance and isolation between different fine-tuning
tasks, since each LoRA adapter only uses the specific portion of the
training data that belongs to this adapter for computation.

Workflow of BatchLoRA. mLoRA follows existing reverse-mode
automatic differentiation and gradient computation, implemented
through computational graphs [55]. It automatically determines a
backward propagation computational graph based on the forward
propagation computational graph (defined by the user) and then
computes the gradients through this graph. For example, the com-
putational graph of the BatchLoRA operator, as shown in Figure 6,
consists of two parts: the forward propagation defined by the user
(i.e., the left diagram) and the backward propagation automatically
determined (i.e., the right diagram).

For BatchLoRA’s forward propagation, the consolidated input
data 𝑋 is used to compute intermediate results 𝑌 = 𝑋𝑊 with the
frozen pre-trained weights𝑊 . Then, since the consolidated data 𝑋
represents the training data for multiple LoRA adapters, we need to
split it into multiple chunks 𝑥1, . . . , 𝑥𝑛 to make sure that each chunk
represents the training data for its corresponding LoRA adapter,
i.e., ensuring isolation among tasks (and their users). These data are
separately computed with their respective LoRA adapters, resulting
in intermediate results 𝐿𝑖 = 𝑥𝑖𝐴𝑖𝐵𝑖 . Finally, the intermediate results
𝐿𝑖 are added to 𝑌 based on their original positions before splitting
to obtain the final output 𝐻 .

The backward propagation of BatchLoRA consists of two parts.
In the first part, the gradients of the LoRA adapter ∇𝐴𝑖 and ∇𝐵𝑖
are computed as follows: Based on the split-position information
during the forward propagation, the input backward propagated
error ∇𝐻 is split into multiple chunks ∇ℎ1, . . . ,∇ℎ𝑛 , where each
chunk represents the input backward propagated error for each
LoRA adapter. Then, according to Formula 3, the gradients for each
LoRA adapter are computed separately. In the second part, the
output backward propagated error values ∇𝑋 are computed. Ac-
cording to Formula 4, first, the intermediate value ∇𝑌 = ∇𝐻𝑊 ⊺
is computed; then the backward propagated error for each LoRA
adapter is computed as ∇𝑥𝑖 = ∇ℎ𝑖𝐵𝑖⊺𝐴𝑖⊺ . Finally, the backward
propagated errors ∇𝑥1, . . . ,∇𝑥𝑛 are consolidated into an intermedi-
ate value through the derivative of the split operator and added to
∇𝑌 to generate the final output backward propagated error ∇𝑋 .

Graph pruning. The backward propagation process, determined
by the forward propagation computational graph, is usually subop-
timal. mLoRA addresses this by constructing more efficient compu-
tational graphs to reduce unnecessary overhead rather than relying
on the automatically generated computational graph. For example,
Figure 6’s right diagram illustrates how mLoRA prunes the deriva-
tives of the split operator within the backward propagation graph.
Once the intermediate values ∇𝑌 and all backward propagated er-
rors ∇𝑥𝑖 with LoRA adapters are computed, mLoRA adds ∇𝑥𝑖 to the
corresponding positions of ∇𝑌 using their positional information
from the forward propagation, thus generating the final result ∇𝑋

𝑯

𝑳𝟏 𝑳𝒏

𝒙𝟏 𝒙𝒏

𝑿 𝑾

𝒀

𝑳𝒐𝑹𝑨
𝑶𝒑𝒆𝒓𝒂𝒕𝒐𝒓

𝑺𝒑𝒍𝒊𝒕
𝑶𝒑𝒆𝒓𝒂𝒕𝒐𝒓

𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒆𝒓𝒂𝒕𝒐𝒓

𝑨𝟏

𝑩𝟏

𝑶𝑷

𝑨𝒏

𝑩𝒏

𝑰𝒏𝒅𝒆𝒙
𝑨𝒅𝒅

𝑳𝒐𝑹𝑨
𝑶𝒑𝒆𝒓𝒂𝒕𝒐𝒓

𝛁𝑯

𝛁𝒉𝟏𝛁𝒉𝒏

𝛁𝒙𝟏𝛁𝒙𝒏

𝑳𝒐𝑹𝑨
𝑶𝒑𝒆𝒓𝒂𝒕𝒐𝒓′

𝑰𝒏𝒅𝒆𝒙
𝑨𝒅𝒅′

𝑳𝒐𝑹𝑨
𝑶𝒑𝒆𝒓𝒂𝒕𝒐𝒓′

𝛁𝒀

𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒆𝒓𝒂𝒕𝒐𝒓′

𝛁𝑨𝒏

𝛁𝑩𝒏

𝛁𝑨𝟏

𝛁𝑩𝟏

𝑺𝒑𝒍𝒊𝒕
𝑶𝒑𝒆𝒓𝒂𝒕𝒐𝒓′

𝛁𝑿

𝑶𝑷′

Forward
Operators

Backward
Operators

𝑨

𝑩

LoRA Adapter
Gradients𝛁𝑨

𝛁𝑩

LoRA Adapter
Weights 𝑻

𝑶𝑷

Pruned
Tensors

Pruned
Operators

𝑻
Tensors

Reserve Memory

Tensors Do Not
Require Computation

𝛁𝑾

Graph Pruning

𝑻

… …

…

… …

…

Figure 6: Computational graphs of BatchLoRA operator with
graph pruning.

and avoiding expensive memory operation overhead associated
with split operator derivatives.
BatchLoRA-enahnced LoRAPP. BatchLoRA complements Lo-
RAPP to deliver highly efficient pipeline parallelism. As illustrated
in Figure 4 (f), mLoRA first aims for “zero bubbles” by matching
the number of fine-tuning tasks to the number of GPUs when-
ever possible. BatchLoRA then consolidates any additional tasks
to maintain this zero-bubble condition, ensuring that the number
of combined tasks equals the number of GPUs. As discussed in
Section 3.4, mLoRA schedules as many tasks as the GPU memory
allows, optimizing resource utilization.

3.3.2 Cost Analysis. To understand how BatchLoRA reduces over-
all training time formultiple fine-tuning tasks, we analyze its impact
on minimizing the overhead associated with launching GPU kernel
functions and the operational overhead introduced by BatchLoRA.
Kernel launch cost. As the cost of launching GPU kernel func-
tions is proportional to the number of times the CUDA API is
called [74], we define the kernel launch cost as the number of these
calls. We assume that when fine-tuning one LoRA and conducting
one complete forward and backward propagation, the kernel launch
cost incurred by the pre-trained model’s participation is 𝛼 , and the
kernel launch cost for each LoRA adapter is 𝛽 .

When fine-tuning𝑘 LoRA adapters without using the BatchLoRA
operator (Algorithm 1), each LoRA adapter and the pre-trained
model conducts one complete forward and backward propagation
using training data, resulting in the kernel launch cost of 𝑘𝛼 + 𝑘𝛽 .
When using the BatchLoRA operator (Algorithm 2), the pre-trained
model conducts one complete forward and backward propagation
using the consolidated data, and each LoRA adapter conducts one
complete forward and backward propagation using the training
data, resulting in the kernel launch cost of 𝛼 + 𝑘𝛽 .

Therefore, BatchLoRA can reduce the kernel launch cost by
approximately ((𝑘 − 1)𝛼)/(𝑘 (𝛼 + 𝛽)). Since LoRA adapters hold
significantly fewer parameters and matrix operations compared to

1954

the pre-trained model, it results in a much smaller cost, i.e., 𝛽 ≪ 𝛼 .
Thus, the reduction in kernel launch cost is approximately (𝑘−1)/𝑘 ,
where 𝑘 is the number of concurrently trained LoRA adapters.
BatchLoRA operator cost. The split operation pruned by the
BatchLoRA operator does not alter the computational workload but
reduces peak memory usage during the consolidation of multiple
LoRA. The memory savings equal the size of the input training data
gradients, which matches the size of the input data. Assuming the
total length of input tokens is 𝑂 , and the hidden size of the model
is ℎ, each operator can save peak memory of 4𝑂ℎ bytes in fp32
training precision. Moreover, it also reduces the latency associated
with allocating and copying the redundant memory on GPUs.

3.4 Task Scheduler
The default scheduling objective of mLoRA is to schedule as many
fine-tuning tasks as possible for high-throughput while satisfying
user priorities and avoiding out-of-memory (OOM) errors 1. This
section will explain how mLoRA achieve this goal.
Preemptive priority scheduling. mLoRA uses a priority schedul-
ing algorithm to address users’ priority needs – a common practice
in multi-tenant environments. Each fine-tuning task is assigned a
static priority, with the highest-priority tasks processed first. Tasks
with the same priority are handled on a first-come, first-served
basis. Scheduling decisions are made at the end of each iteration to
promptly accommodate the preemption of high-priority tasks.
Modeling memory usage. To achieve high parallelism and GPU
efficiency, mLoRA schedules as many fine-tuning tasks as possible
to maximize GPU memory utilization meanwhile avoiding OOM
errors. To this end, mLoRA estimates the memory requirements
of each fine-tuning task during task runtime. Specifically, mLoRA
infers the relationship between memory size and the size of input
training data as described in Vijay et al. [35]. The memory size
of the attention matrix is proportional to the square of the input
sequence length, while the memory size of the linear project matrix
is proportional to the input sequence length. Therefore, it conducts
online model fitting in the following manner:

𝑀𝑒𝑚 = 𝛽0 + 𝛽1𝐵𝑡𝐿𝑛 + 𝛽2𝐵𝑡𝐿𝑛2 (5)
Where 𝑀𝑒𝑚 represents the required memory; 𝐿𝑛 is the input

training data sequence length; 𝐵𝑡 is the input batch size; 𝛽0, 𝛽1, and
𝛽2 are non-negative coefficients. Throughout the model training
process, mLoRA continuously gathers data points (𝐵𝑡 , 𝐿𝑛 ,𝑀𝑒𝑚) via
the profiler (Figure 2) and utilizes a non-linear least squares solver to
determine the optimal coefficients for fitting this model [7]. mLoRA
only needs to ensure that the total memory required by all the
scheduled fine-tuning tasks is less than the available memory to
avoid OOM.

4 EVALUATION
To demonstrate the effectiveness of mLoRA, we first evaluate the
end-to-end performance in both single-GPU and multi-GPU envi-
ronments with one or multiple machines (§ 4.2). We then examine
the benefits of the LoRAPP parallelism strategy (§ 4.3) and the
BatchLoRA operator (§ 4.4), respectively.

1Other scheduling strategies can be easily integrated into mLoRA.

4.1 Experimental Setup
Models.We evaluate mLoRA using four publicly accessible LLaMA
model series, each with different parameter scales: Llama2-70B [66],
Llama2-13B, Llama2-7B, and TinyLlama-1.1B [75].
Platforms.Our experimental platforms include both single-machine
and multi-machine setups. In the single-machine setup, we use four
(or eight) NVIDIA RTX A6000 GPUs, each with 48GB of memory,
connected via PCIe 4.0x16. For the multi-machine setup, we utilize
eight NVIDIA GeForce RTX 3090 GPUs, each with 24GB of mem-
ory, distributed across eight machines connected through 1Gbps
networking 2. Each machine is equipped with an Intel Xeon Sil-
ver 4314 CPU and 256GB of RAM. In the single-machine setup,
we further distinguish between the single-GPU mode, using one
RTX A6000 GPU, and the single-machine, multi-GPU mode, which
defaults to four RTX A6000 GPUs unless specified otherwise. For
the multi-machine setup, the default configuration is the multi-
machine, multi-GPU mode with eight RTX 3090 GPUs. We use
eight NVIDIA RTX A6000 GPUs to test mLoRA’s scalability.
Workloads. In all experiments, we use the natural language gener-
ation (NLG) dataset GSM8K [21] to evaluate the performance of the
training systems. Following the default hyperparameter settings of
Alpaca-LoRA [1], we fine-tune the PLMs with a batch size of 8, a
sequence length of 512, 10 epochs, and a LoRA adapter rank of 16.
The LoRA adapter is applied to the linear layers of the PLMs, i.e.,
𝑞_𝑝𝑟𝑜 𝑗 , 𝑘_𝑝𝑟𝑜 𝑗 , 𝑣_𝑝𝑟𝑜 𝑗 , and 𝑜_𝑝𝑟𝑜 𝑗 .
Performance Metrics. We report the average fine-tuning task
completion time, which is the average time required to complete a
fine-tuning task, and the system throughput, defined as the total
number of tokens the system can train per second.
Baselines. In the single-GPU environment, we compare mLoRA
with HuggingFace PEFT [48], the state-of-the-art library for train-
ing parameter-efficient fine-tuning models. Due to memory con-
straints, it is not feasible to use 32fp precision to fine-tune PLMs in
this setup (unlike in a multi-GPU setup), so we use 8-bit quantiza-
tion and activation checkpointing techniques for both mLoRA and
PEFT to reduce memory overhead.

In the multi-GPU environments, whether for single-machine or
multiple-machine setups, we compare mLoRA with three state-of-
the-art model parallelism strategies: 1) One Forward Pass followed
by One Backward Pass (1F1B), a synchronous gradient update
pipeline parallelism similar to GPipe but more memory-efficient,
introduced by PipeDream-Flush [52]. 2) Tensor Parallelism for
Transformers (TP), an optimized model parallelism method for
the transformer architecture proposed by Megatron-LM [53]; 3)
Fully Sharded Data Parallel [79] (FSDP), an industry-grade par-
allel LLM training strategy which combines the data and model
parallelism and employs the Zero Redundancy Optimizer [57, 60]
technology proposed by DeepSpeed [58]. Note that training LoRA
models on multiple GPUs without model parallelism – where each
GPU holds a complete copy of the base model and trains separate
LoRA models – is impractical in our evaluation due to significant
memory limitations. As a result, we exclude the data parallelism
strategy from our multi-GPU environment comparisons.

2Note that we purposely configure the inter-machine connection with low networking
bandwidth to demonstrate the effect of communication overhead.

1955

1956

1957

1958

1959

REFERENCES
[1] 2023. Alpaca-LoRA. https://github.com/tloen/alpaca-lora.
[2] 2024. Announcing Anyscale Private Endpoints and Anyscale Endpoints Fine-

tuning. https://www.anyscale.com/.
[3] 2024. Customize a model with azure open AI service. https://learn.microsoft.

com/en-us/azure/ai-services/openai/how-to/fine-tuning.
[4] 2024. Hugging Face. https://huggingface.co/.
[5] 2024. NVIDIA Nsight Systems. https://developer.nvidia.com/nsight-systems.
[6] 2024. OpenAI fine-tuning. https://platform.openai.com/docs/guides/fine-tuning.
[7] 2024. SciPy: Solve a nonlinear least-squares problem with bounds on the vari-

ables. https://docs.scipy.org/doc/scipy-1.13.0/reference/generated/scipy.optimize.
least_squares.html.

[8] Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed
Awadallah, Hany Awadalla, Nguyen Bach, Amit Bahree, and Arash Bakhtiari et
al. 2024. Phi-3 Technical Report: A Highly Capable Language Model Locally on
Your Phone. arXiv:2404.14219 [cs.CL]

[9] Alan Ansell, EdoardoMaria Ponti, Anna Korhonen, and Ivan Vulić. 2021. Compos-
able sparse fine-tuning for cross-lingual transfer. arXiv preprint arXiv:2110.07560
(2021).

[10] Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Ho-
jel, Immanuel Trummer, and Christopher Ré. 2023. Language Models Enable
Simple Systems for Generating Structured Views of Heterogeneous Data Lakes.
Proceedings of the VLDB Endowment 17, 2 (2023), 92–105.

[11] Akari Asai, Mohammadreza Salehi, Matthew E Peters, and Hannaneh Hajishirzi.
2022. ATTEMPT: Parameter-efficient multi-task tuning via attentional mixtures
of soft prompts. arXiv preprint arXiv:2205.11961 (2022).

[12] Jehyeon Bang, Yujeong Choi, Myeongwoo Kim, Yongdeok Kim, and Min-
soo Rhu. 2023. vTrain: A Simulation Framework for Evaluating Cost-
effective and Compute-optimal Large Language Model Training. arXiv preprint
arXiv:2312.12391 (2023).

[13] Yakoub Bazi, Laila Bashmal, Mohamad Mahmoud Al Rahhal, Riccardo Ricci,
and Farid Melgani. 2024. RS-LLaVA: A Large Vision-Language Model for Joint
Captioning and Question Answering in Remote Sensing Imagery. Remote Sensing
16, 9 (2024). https://doi.org/10.3390/rs16091477

[14] Tal Ben-Nun and Torsten Hoefler. 2019. Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis. ACM Computing Surveys
(CSUR) 52, 4 (2019), 1–43.

[15] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, et al. 2021. On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258 (2021).

[16] Chi-Chung Chen, Chia-Lin Yang, and Hsiang-Yun Cheng. 2018. Efficient and
robust parallel dnn training through model parallelism on multi-gpu platform.
arXiv preprint arXiv:1809.02839 (2018).

[17] Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and Arvind Kr-
ishnamurthy. 2023. Punica: Multi-Tenant LoRA Serving. CoRR abs/2310.18547
(2023). https://doi.org/10.48550/ARXIV.2310.18547 arXiv:2310.18547

[18] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep
nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).

[19] Xie Chen, Adam Eversole, Gang Li, Dong Yu, and Frank Seide. 2012. Pipelined
Back-Propagation for Context-Dependent Deep Neural Networks.. In Interspeech.
26–29.

[20] Daning Cheng, Shigang Li, Hanping Zhang, Fen Xia, and Yunquan Zhang. 2021.
Why dataset properties bound the scalability of parallel machine learning training
algorithms. IEEE Transactions on Parallel and Distributed Systems 32, 7 (2021),
1702–1712.

[21] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,
Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,
Christopher Hesse, and John Schulman. 2021. Training Verifiers to Solve Math
Word Problems. arXiv preprint arXiv:2110.14168 (2021).

[22] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer.
2022. LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale.
arXiv:2208.07339 [cs.LG]

[23] Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu,
and Maosong Sun. 2023. Sparse low-rank adaptation of pre-trained language
models. arXiv preprint arXiv:2311.11696 (2023).

[24] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su,
Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen, et al. 2023. Parameter-
efficient fine-tuning of large-scale pre-trained language models. Nature Machine
Intelligence 5, 3 (2023), 220–235.

[25] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng,
Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, et al. 2021. DAPPLE: A pipelined
data parallel approach for training large models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 431–445.

[26] Benjamin Feuer, Yurong Liu, Chinmay Hegde, and Juliana Freire. 2024.
ArcheType: A Novel Framework for Open-Source Column Type Annotation
using Large Language Models. Proc. VLDB Endow. 17, 9 (2024), 2279–2292.
https://www.vldb.org/pvldb/vol17/p2279-freire.pdf

[27] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and
Jingren Zhou. 2024. Text-to-SQL Empowered by Large Language Models: A
Benchmark Evaluation. Proceedings of the VLDB Endowment 17, 5 (2024), 1132–
1145.

[28] Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. 2024.
Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey.
arXiv:2403.14608 [cs.LG]

[29] Yuchao Li Donglin Zhuang Zhongzhu Zhou Xiafei Qiu Yong LiWei Lin Shuaiwen
Leon Song Haojun Xia, Zhen Zheng. 2024. Flash-LLM: Enabling Cost-Effective
and Highly-Efficient Large Generative Model Inference with Unstructured Spar-
sity. Proceedings of the VLDB Endowment 17, 2 (2024), 211–224.

[30] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In International conference on
machine learning. PMLR, 2790–2799.

[31] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of
Large Language Models. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net.
https://openreview.net/forum?id=nZeVKeeFYf9

[32] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019.
Gpipe: Efficient training of giant neural networks using pipeline parallelism.
Advances in neural information processing systems 32 (2019).

[33] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and Model
Parallelism for Deep Neural Networks. Proceedings of Machine Learning and
Systems 1 (2019), 1–13.

[34] Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming
Shi, Pin-Yu Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen.
2023. Time-LLM: Time Series Forecasting by Reprogramming Large Language
Models. CoRR abs/2310.01728 (2023). https://doi.org/10.48550/ARXIV.2310.01728
arXiv:2310.01728

[35] Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, LawrenceMcAfee, Michael
Andersch, Mohammad Shoeybi, and Bryan Catanzaro. 2023. Reducing activation
recomputation in large transformer models. Proceedings of Machine Learning
and Systems 5 (2023).

[36] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serving with pagedattention. In
Proceedings of the 29th Symposium on Operating Systems Principles. 611–626.

[37] Jiale Lao, Yibo Wang, Yufei Li, Jianping Wang, Yunjia Zhang, Zhiyuan Cheng,
Wanghu Chen, Mingjie Tang, and Jianguo Wang. 2024. GPTuner: A Manual-
Reading Database Tuning System via GPT-Guided Bayesian Optimization. Pro-
ceedings of the VLDB Endowment 17, 8 (2024), 1939–1952.

[38] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for
parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021).

[39] Dengchun Li, Yingzi Ma, Naizheng Wang, Zhiyuan Cheng, Lei Duan, Jie Zuo,
Cal Yang, and Mingjie Tang. 2024. MixLoRA: Enhancing Large Language Models
Fine-Tuning with LoRA basedMixture of Experts. arXiv preprint arXiv:2404.15159
(2024).

[40] Ding Li and Zhang Xian. 2023. TianPeng: A Chinese chat model that is fine-tuned
using LoRA on top of the LLaMA-30B model. https://huggingface.co/pleisto/
tianpeng-lora-30B. https://doi.org/10.57967/hf/0528

[41] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. 2014. Efficient mini-
batch training for stochastic optimization. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. 661–670.

[42] Shigang Li, Tal Ben-Nun, Giorgi Nadiradze, Salvatore Di Girolamo, Nikoli Dryden,
Dan Alistarh, and Torsten Hoefler. 2020. Breaking (global) barriers in parallel
stochastic optimization with wait-avoiding group averaging. IEEE Transactions
on Parallel and Distributed Systems 32, 7 (2020), 1725–1739.

[43] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. [n. d.]. PyTorch
Distributed: Experiences on Accelerating Data Parallel Training. Proceedings of
the VLDB Endowment 13, 12 ([n. d.]).

[44] Youjie Li, Mingchao Yu, Songze Li, Salman Avestimehr, Nam Sung Kim, and
Alexander Schwing. 2018. Pipe-SGD: A decentralized pipelined SGD framework
for distributed deep net training. Advances in Neural Information Processing
Systems 31 (2018).

[45] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. 2018. Asynchronous decentral-
ized parallel stochastic gradient descent. In International Conference on Machine
Learning. PMLR, 3043–3052.

[46] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank
Wang, Kwang-Ting Cheng, and Min-Hung Chen. 2024. DoRA: Weight-
Decomposed Low-Rank Adaptation. CoRR abs/2402.09353 (2024). https:
//doi.org/10.48550/ARXIV.2402.09353 arXiv:2402.09353

[47] Gen Luo, Yiyi Zhou, Tianhe Ren, Shengxin Chen, Xiaoshuai Sun, and Rongrong
Ji. 2024. Cheap and quick: Efficient vision-language instruction tuning for large
language models. Advances in Neural Information Processing Systems 36 (2024).

1960

https://github.com/tloen/alpaca-lora
https://www.anyscale.com/
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning
https://huggingface.co/
https://developer.nvidia.com/nsight-systems
https://platform.openai.com/docs/guides/fine-tuning
https://docs.scipy.org/doc/scipy-1.13.0/reference/generated/scipy.optimize.least_squares.html
https://docs.scipy.org/doc/scipy-1.13.0/reference/generated/scipy.optimize.least_squares.html
https://arxiv.org/abs/2404.14219
https://doi.org/10.3390/rs16091477
https://doi.org/10.48550/ARXIV.2310.18547
https://arxiv.org/abs/2208.07339
https://www.vldb.org/pvldb/vol17/p2279-freire.pdf
https://arxiv.org/abs/2403.14608
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/ARXIV.2310.01728
https://huggingface.co/pleisto/tianpeng-lora-30B
https://huggingface.co/pleisto/tianpeng-lora-30B
https://doi.org/10.57967/hf/0528
https://doi.org/10.48550/ARXIV.2402.09353
https://doi.org/10.48550/ARXIV.2402.09353

[48] Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak
Paul, and Benjamin Bossan. 2022. PEFT: State-of-the-art Parameter-Efficient
Fine-Tuning methods. https://github.com/huggingface/peft.

[49] Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard
Socher, Xavier Amatriain, and Jianfeng Gao. 2024. Large language models: A
survey. arXiv preprint arXiv:2402.06196 (2024).

[50] Giorgi Nadiradze, Amirmojtaba Sabour, DanAlistarh, Aditya Sharma, IliaMarkov,
and Vitaly Aksenov. 2019. SwarmSGD: Scalable decentralized SGD with local
updates. arXiv preprint arXiv:1910.12308 (2019).

[51] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: generalized pipeline parallelism for DNN training. In Proceedings of
the 27th ACM symposium on operating systems principles. 1–15.

[52] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia.
2021. Memory-efficient pipeline-parallel dnn training. In International Conference
on Machine Learning. PMLR, 7937–7947.

[53] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model
training on gpu clusters using megatron-lm. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–15.

[54] Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu.
2024. Unifying large language models and knowledge graphs: A roadmap. IEEE
Transactions on Knowledge and Data Engineering (2024).

[55] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[56] Rajvardhan Patil and Venkat Gudivada. 2024. A Review of Current Trends,
Techniques, and Challenges in Large Language Models (LLMs). Applied Sciences
14, 5 (2024), 2074.

[57] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero:
Memory optimizations toward training trillion parameter models. In SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 1–16.

[58] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
speed: System optimizations enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 3505–3506.

[59] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. 2017. Learning
multiple visual domains with residual adapters. Advances in neural information
processing systems 30 (2017).

[60] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. {Zero-offload}:
Democratizing {billion-scale} model training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 551–564.

[61] Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. 2024. JetMoE: Reaching
Llama2 Performance with 0.1 M Dollars. arXiv preprint arXiv:2404.07413 (2024).

[62] Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang,
Christopher Chou, Banghua Zhu, Lianmin Zheng, Kurt Keutzer, et al. 2023. S-lora:
Serving thousands of concurrent lora adapters. arXiv preprint arXiv:2311.03285
(2023).

[63] Ying Sheng, Shiyi Cao, Dacheng Li, Banghua Zhu, Zhuohan Li, Danyang Zhuo,
Joseph E Gonzalez, and Ion Stoica. 2023. Fairness in serving large language

models. arXiv preprint arXiv:2401.00588 (2023).
[64] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupati-

raju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette
Love, et al. 2024. Gemma: Open models based on gemini research and technology.
arXiv preprint arXiv:2403.08295 (2024).

[65] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[66] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[67] C Tribes, S Benarroch-Lelong, P Lu, and I Kobyzev. 2023. Hyperparameter
optimization for Large Language Model instruction-tuning. Les Cahiers du
GERAD ISSN 711 (2023), 2440.

[68] Ben Wodecki. 2024. AI’s New Frontier: Training Trillion-Parameter Models with
Much Fewer GPUs. https://aibusiness.com/nlp/ai-s-new-frontier-training-trillion-
parameter-models (2024).

[69] Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang, Xuanzhe Liu, and
Xin Jin. 2023. Fast Distributed Inference Serving for Large Language Models.
arXiv:2305.05920 [cs.LG]

[70] Bingyang Wu, Ruidong Zhu, Zili Zhang, Peng Sun, Xuanzhe Liu, and Xin Jin.
2024. dLoRA: Dynamically Orchestrating Requests and Adapters for LoRA
LLM Serving. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24). USENIX Association, Santa Clara, CA, 911–927. https:
//www.usenix.org/conference/osdi24/presentation/wu-bingyang

[71] Ming Xu. 2023. pycorrector: Text Error Correction Tool. https://github.com/
shibing624/pycorrector

[72] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher Aberger, and
Christopher De Sa. 2021. Pipemare: Asynchronous pipeline parallel dnn training.
Proceedings of Machine Learning and Systems 3 (2021), 269–296.

[73] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-
Gon Chun. 2022. Orca: A Distributed Serving System for Transformer-Based
Generative Models. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). USENIX Association, Carlsbad, CA, 521–538.
https://www.usenix.org/conference/osdi22/presentation/yu

[74] Lingqi Zhang, Mohamed Wahib, and Satoshi Matsuoka. 2019. Understanding
the overheads of launching CUDA kernels. ICPP19 (2019), 5–8.

[75] Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. 2024. TinyLlama:
An Open-Source Small Language Model. arXiv:2401.02385 [cs.CL]

[76] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. 2023. Adaptive budget allocation for parameter-
efficient fine-tuning. In The Eleventh International Conference on Learning Repre-
sentations.

[77] Justin Zhao, Timothy Wang, Wael Abid, Geoffrey Angus, Arnav Garg, Jeffery
Kinnison, Alex Sherstinsky, Piero Molino, Travis Addair, and Devvret Rishi. 2024.
LoRA Land: 310 Fine-tuned LLMs that Rival GPT-4, A Technical Report. arXiv
preprint arXiv:2405.00732 (2024).

[78] Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hinrich Schütze. 2020. Masking
as an efficient alternative to finetuning for pretrained language models. arXiv
preprint arXiv:2004.12406 (2020).

[79] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu,
Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. 2023. PyTorch
FSDP: Experiences on Scaling Fully Sharded Data Parallel. Proceedings of the
VLDB Endowment 16, 12 (2023), 3848–3860.

1961

https://github.com/huggingface/peft
https://arxiv.org/abs/2305.05920
https://www.usenix.org/conference/osdi24/presentation/wu-bingyang
https://www.usenix.org/conference/osdi24/presentation/wu-bingyang
https://github.com/shibing624/pycorrector
https://github.com/shibing624/pycorrector
https://www.usenix.org/conference/osdi22/presentation/yu
https://arxiv.org/abs/2401.02385

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 LoRA-based LLM Finetuning
	2.2 Multi-LoRA Finetuning across Multi-GPU

	3 Design of mLoRA
	3.1 Overview
	3.2 Multi-LoRA Training Parallelism
	3.3 Multi-LoRA Training Operator
	3.4 Task Scheduler

	4 Evaluation
	4.1 Experimental Setup
	4.2 End-to-End Results
	4.3 Effectiveness of LoRAPP
	4.4 Effectiveness of BatchLoRA

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

