
GPEmu: A GPU Emulator for Faster and Cheaper Prototyping and
Evaluation of Deep Learning System Research

Meng Wang

University of Chicago

wangm12@uchicago.edu

Gus Waldspurger

University of Chicago

gus@waldspurger.com

Naufal Ananda

Telkom University

naufalrezkyananda@student.

telkomuniversity.ac.id

Yuyang Huang

University of Chicago

yuyangh@uchicago.edu

Kemas Wiharja

Telkom University

bagindokemas@telkomuniversity.ac.id

John Bent

LANL

johnbent@gmail.com

Swaminathan Sundararaman

IBM Research

swami@cs.wisc.edu

Vijay Chidambaram

UT Austin

vijayc@utexas.edu

Haryadi S. Gunawi

University of Chicago

haryadi@cs.uchicago.edu

ABSTRACT

Deep learning (DL) system research is often impeded by the limited

availability and expensive costs of GPUs. In this paper, we intro-

duce GPEmu, a GPU emulator for faster and cheaper prototyping

and evaluation of deep learning system research without using

real GPUs. GPEmu comes with four novel features: time emulation,

memory emulation, distributed system support, and sharing sup-

port. We support over 30 DL models and 6 GPU models, the largest

scale to date. We demonstrate the power of GPEmu by successfully

reproducing the main results of nine recent publications and easily

prototyping three new micro-optimizations.

PVLDB Reference Format:

Meng Wang, Gus Waldspurger, Naufal Ananda, Yuyang Huang, Kemas

Wiharja, John Bent, Swaminathan Sundararaman, Vijay Chidambaram,

and Haryadi S. Gunawi. GPEmu: A GPU Emulator for Faster and
Cheaper Prototyping and Evaluation of Deep Learning System
Research. PVLDB, 18(6): 1919 - 1932, 2025.
doi:10.14778/3725688.3725716

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/mengwanguc/gpemu.

1 INTRODUCTION

Deep Neural Networks (DNNs) have significantly advanced vari-

ous machine learning domains, including image recognition, video

classification, and natural language processing. This surge in DNN

applications has led to a substantial increase in the demand for

graphical processing units (GPUs), the preferred hardware for DNN

training and inference due to their computational capabilities. How-

ever, the high costs of GPUs [3, 6, 18] and their limited availability

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 6 ISSN 2150-8097.

doi:10.14778/3725688.3725716

in public research clouds [8, 40] often result in resource scarcity,

causing delays in numerous DNN-related research projects.

For example, the Chameleon research cloud [8] offers only four

servers with NVIDIA V100 GPUs, which are highly competitive and

often require reservations weeks in advance. While GPU servers are

more accessible on commercial clouds, their reservation costs are

very high [3, 6, 18], often exceeding budgets allocated for system

research. For instance, CloudBank [9, 65] provides up to $5000 per

6-month period for system-focused research, even with machine

learning involved. However, this budget is insufficient for large-

scale experiments. Reserving four AWS p3.16xlarge instances [3],

similar to the setup used in the Synergy [60] paper, would deplete

this budget in just 51 hours. Commercial clouds also face limitations,

such as GPU unavailability for tens of hours during peak usage [15,

16] and delays of weeks for quota increases [4, 5, 7, 14].

This work is driven by the insight that for a number of DNN

research projects, real, physical GPUs are not required. For example,

some researchers and engineers aim to increase GPU utilization

by working on the layers above the GPU in the stack, focusing

on aspects such as data loading, preprocessing, job scheduling,

and many others [34, 43, 54, 55, 58, 60, 61, 70, 73, 77, 80, 81, 83–

85, 87, 89, 90].

For this type of research, rather than the results of GPU com-

putations, what matters is the performance of the GPU. Thus, we

argue that the research community needs a GPU emulator capa-

ble of replicating GPU behaviors without the need for physical

GPUs. Such an emulator would greatly enhance research prototyp-

ing efficiency and also reduce costs, addressing the GPU resource

limitations outlined above.

While there are some preliminary emulators available in the

industry such as MLPerf storage [23] or ad-hoc emulators created

by authors for evaluation purposes [49, 83], these emulators lack

crucial components like memory emulation and data preprocessing,

as explained more below. Moreover, they are capable of supporting

only a small number of configurations and domains.

We present GPEmu, a GPU emulator for faster and cheaper pro-

totyping and evaluation of research on deep learning systems. The

design of GPEmu is general, supporting over 30 models and six

GPUs. GPEmu is easy to use: a user can run a typical deep learning

1919

https://doi.org/10.14778/3725688.3725716
https://github.com/mengwanguc/gpemu
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3725688.3725716
https://www.acm.org/publications/policies/artifact-review-and-badging-current

system stack (e.g., PyTorch, TensorFlow) on top of GPEmu. GPEmu

works in both single node and distributed setups (such as Kuber-

netes). GPEmu is focused on deep learning training workloads.

Building GPEmu involved surmounting a number of challenges.

First, GPEmu had to emulate a number of different aspects: compu-

tation time, preprocessing time, data transfer time, GPU memory

consumpution to name a few. Focusing on only one or few of these

aspects leads to inaccurate emulation results; emulation can report

20% or higher time compared to real runs. Second, GPEmu has to

support a number of different deep learning models, different GPUs,

and different batch sizes. Finally, GPEmu has to support distributed

training, job scheduling and GPU sharing.

Our goals with GPEmu encompass four key facets: (1) We fo-

cus on DL training workloads, where GPU compute time is more

predictable. (2) Extensive support for emulating a wide range of

models, GPUs, and batch sizes, ensuring broad applicability. (3)

Users can use GPEmu to effectively reveal DL system bottlenecks

during emulations, providing valuable insights into system per-

formance. (4) Users can use GPEmu to quickly show the benefits

of new system optimizations across a comprehensive spectrum of

research areas. To achieve these goals, we introduce four important

features in GPEmu, as explained below.

Time emulation (Section 2.1): We employ a sleep-based method

to accurately mimic the time costs associated with GPU-related

steps within DL workloads. These steps include GPU-based model

computations, host-to-GPU data transfers, and GPU-driven data

preprocessing. Based on extensive profiling efforts, we support

time emulation for a wide spectrum of DL workloads, covering

30+ DL models (e.g., AlexNet) from widely-used computer vision

and speech task catogories, and six GPU models (e.g., P100), with

various batch sizes. These capabilities are encapsulated within a

Python library, which can be easily integrated into popular DL

frameworks such as PyTorch [66].

Memory emulation (Section 2.2): We provide memory emula-

tion for each DL workload. First, we emulate GPU memory usage

following the observed patterns. By profiling various DL workloads,

we focus on three key metrics: compute peak, model persistent,

and preprocessing GPU memory usage. These metrics are essential

for assessing model compatibility with specific GPUs and funda-

mental to GPU sharing emulations. Second, we emulate pinned

host memory, originally managed by CUDA for DMA between host

and GPU memory. To emulate it, we developed our own pinned

memory manager using the mlock system call and integrated it

into PyTorch, enhancing emulation accuracy.

Distributed system support (Section 2.3): We provide support

for emulating DL workloads in distributed setups. First, we emulate

multi-GPU single-node training by adjusting time and memory

emulations accordingly. Second, we emulate multi-node distributed

training based on existing distributed data parallel modules. Third,

we support emulating multi-job (cluster) GPU scheduling by intro-

ducing an emuGPU (emulated GPU) resource type and implementing

a custom device plugin for it in Kubernetes. This custom device

plugin facilitates the detection and scheduling of emuGPU resources
within Kubernetes, closely mirroring the scheduling of real GPUs.

GPU sharing support (Section 2.4): We provide emulation sup-

port for GPU sharing [45, 76, 81] among multiple DL workloads.

To achieve this, we implement an emulation sharing manager. The

Table 1: Features and configurations supported by prior GPU

emulators and GPEmu (§2). The features’ abbreviations read

from top to bottom. Labeled by “x”, supported features are compared

across five categories: (1) GPU-Free (GF); (2) Time emulation: Compute

(TC), Data Transfer (TT), and Preprocessing (TP); (3) Memory emu-

lation: GPU Memory Consumption (MC) and Pinned memory (MP);

(4) Distributed system support: Multi-GPU training (DG), Multi-Node

(DN) training, andMulti-Job scheduling (DJ); (5) GPU Sharing Support

(SS). Furthermore, we evaluate the configurations that they support,

including the number of DL models (#DL), GPU models (#GPU), and

batch sizes (#BS).

G TTT MM DDD S
Features F CTP CP GNJ S #DL #GPU #BS

Silod [83] . x.. .. xxx . 8 1 N/A

DLCache [49] x x.. 2 1 5

MLPerf [23] x x.. .. x.. . 3 2 1

GPEmu x xxx xx xxx x 36 6 256

manager receives emulation requests from DL workloads via Rab-

bitMQ [27] and coordinates their emulation executions to facilitate

emuGPU sharing. We support GPU sharing emulation for both single-

node setups and Kubernetes environments.

To demonstrate the benefits of GPEmu, we first (a) reproduce the

main experimental results from various papers across diverse setups

and complexities (Section 3). These experiments range from single-

node DL training to multi-node distributed training, extending to

13-node clusters for GPU scheduling emulation. The reproduced

results cover analyses and optimizations such as data stall analysis

in DL training [61], single-node data loader optimizations [55],

disaggregated data preprocessing [34, 73], caching optimizations in

distributed training [61, 80], GPU cluster scheduling [54, 60], and

GPU sharing with related optimizations [81, 89].

Next, we show (b) how to use GPEmu to introduce and evaluate

new micro-optimizations (Section 4). First, we extend MinIO caching

[61] by prioritizing small file caching, maximizing sequential reads

while maintaining the same cache hit ratio. Second, we enable

the concurrent submission of numerous file read requests to the

OS, leveraging its I/O reordering capabilities to reduce disk seek

overhead and accelerate data loading for DL training. Finally, we

introduce file grouping, which trades minor sampling randomness

for improved I/O performance. All optimizations are implemented

and evaluated on CPU nodes using GPEmu, demonstrating the em-

ulator’s effectiveness in enabling and testing these enhancements.

We discuss the non-goals and future extensions in Section 5 and

related work in Section 6.

2 DESIGN FEATURES

To prototype and evaluate without GPUs, people resort to many

simulation approaches [35, 44, 47, 51, 54, 60] but impedes end-to-

end/full-stack experiments. Others try “emulation” approaches as

summarized in Table 1. Silod [83] for example, profiled model

compute time on the expensive V100 GPU and emulated it on a

cluster of cheaper K80 GPUs to evaluate GPU cluster scheduling.

MLPerf [23] and DLCache [49] provide a host-side emulator that

only performs compute time emulation. As hinted in the table,

1920

these approaches lack vital emulation components and support

only limited configurations and experiments.

To the best of our knowledge, GPEmu is the first advanced GPU

emulator to offer comprehensive time emulation (compute, data

transfer, preprocessing), memory emulation (GPU and pinned mem-

ory), distributed system support (multi-GPU training, multi-node

training, multi-job scheduling), and GPU sharing capabilities. Ad-

ditionally, GPEmu supports the largest number of DL models, GPU

models, and configurations to date, as shown on the right side

of Table 1. Below, we detail GPEmu’s design and the emulation

challenges it addresses.

2.1 Time Emulation

Time emulation is a feature where the emulator “fakes” the GPU-

side operation with a simple sleep timer. While this sounds simple,

providing an accurate time emulation requires understanding of

the various steps of DL workloads: (1) Reading samples; (2) Pre-

processing; (3) Data Transfer (from host memory to GPU memory);

(4) Forward Propagation; (5) Backpropagation [42]. It’s also worth

noting that some frameworks, such as DALI [10], allow for the

preprocessing step to be shifted from the CPU to the GPU, altering

the sequence of steps 2 and 3.

To emulate DL workloads without actual GPUs, we replace GPU-

related steps (steps #3–5, and Step 2 if GPU-based) with simple

sleep(𝑇) calls, where𝑇 represents the projected time for each step.

This method emulates the wait time for data transfer between host

and GPU memory, as well as GPU preprocessing and model com-

putation. We provide these time emulation methods as a Python

package, offering user-friendly APIs like emuForward(config) to
emulate specific operations. The config parameter specifies work-

load details such as the DLmodel, batch size, and GPUmodel, which

are essential for accurately predicting operation times.

We support both synchronous (sync) and asynchronous (async)
modes for emulation. In sync mode, the sleep-based emulation

blocks until the specified duration has elapsed. In async mode, the

emulation is non-blocking, enabling the simulation of pipelining

optimizations commonly used in frameworks like PyTorch [26] and

TensorFlow [62]. For PyTorch, asyncio is used to implement non-

blocking behavior, while in TensorFlow, the sleep is integrated

into the computation graph. Maintaining operation dependencies is

critical in asyncmode to prevent unexpected reordering or pruning

during execution. For example, we ensure that forward propagation

emulation (Step 4) begins only after the input tensor has been

transferred to the GPU (Step 3).

Finally, accurately predicting the emulated sleep time for each

step, tailored to the user’s specific configuration (model, batch size,

GPU type), is essential. The following subsections explain this.

2.1.1 Compute/Propagation Time: We first predict GPU com-

pute time for forward and backward propagations (Steps 4 and 5),

a critical aspect of DL workloads. Fortunately, these operations

are predictable with minimal variability, as they involve a prede-

fined sequence of tensor operations without conditional branches

[45, 77]. As shown in Figure 1a, training ResNet50 on a NVIDIA

V100 GPU for 1000 batches at batch size 128 exhibits consistent

forward and backward durations, except for the first 1-2 batches,

which take longer due to initialization.

0 100 200

Batch compute time (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

(a) CDF of batch compute time

Fwd Bwd

0 32 64 96 128

Batch size

0

50

C
o
m

p
u
te

 t
im

e
 (

m
s
)

(b) Compute time vs. batch sz

Figure 1: Compute time’s pattern (§2.1.1). The figures show

that (a) compute time is consistent within the same setup, (b) compute

time doesn’t always linearly correlate with batch size.

ResNet50 Alexnet
Model

0.0

0.5

1.0

T
im

e
 (

n
o

rm
a

liz
e

d
)

(a) Amount of Transfer Time

Compute Transfer

0 10 20

Per-batch preproc. time (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

(b) CDF of per-batch prep. time

Norm-GPU-FFCV

Decode-Mix-DALI

Figure 2: (a) Amount of data transfer time (§2.1.2) and (b)

CDF of preprocessing time (§2.1.3).

To predict per-batch GPU compute time, we profile models, GPU

types, and batch sizes. We calculate the average compute time, ex-

cluding initialization outliers, and store the results in a database.

When emulating training for a specific configuration, GPEmu re-

trieves the profiled compute time for that setting from the database.

Some might assume GPU compute time linearly correlates with

batch size, allowing projections from just two profiled batch sizes.

However, this holds mainly for computation-heavy models like

ResNet101. For computation-light models such as AlexNet, the rela-

tionship is more complex and less predictable. As shown in Figure

1b, AlexNet on a P100 GPU exhibits a piecewise linear pattern

rather than a simple linear correlation. Empirically, we found that

models with compute times exceeding 0.2 seconds at batch size

64 on a specific GPU typically exhibit a stable linear correlation

with batch size. Profiling these models across all batch sizes is time-

intensive, so we use linear projections for quick prototyping. For

models below this threshold, we conduct extensive profiling over a

broader range of batch sizes.

We provide a profiling tool to support custom settings (§2.6).

2.1.2 Data Transfer Time: We also predict the time required to

transfer the input tensor from host to GPU memory. This aspect

is often overlooked by other emulation tools [23, 49], yet its im-

portance varies depending on the model and GPU. For instance, as

indicated in Figure 2a, in larger models like ResNet50 where GPU

compute time predominantly dictates performance, the transfer

time can be relatively negligible. However, for computation-light

models such as AlexNet, the input transfer time becomes more

significant, reaching as much as 20% of the GPU compute time.

Like GPU compute time, host-to-GPU data transfer time shows

little variability for a fixed-size tensor on a given GPU and typically

1921

scales linearly with data volume. Therefore, we predict the input

transfer time based on this linear relationship.

2.1.3 Preprocessing Time: Most DL frameworks perform data

preprocessing (Step 2) on CPUs, which does not require specific em-

ulation as preprocessing continues to run on CPUs. However, some

libraries, like DALI and FFCV, support offloading preprocessing to

GPUs [10, 55], and GPEmu supports this as well. The challenge is

that GPU-side preprocessing time is highly variable. For instance,

Figure 2b shows the CDF of two preprocessing operations: normal-

ization and decoding from FFCV and DALI, respectively. Normaliza-

tion shows smaller variability due to its consistent computational

complexity across batches, whereas decoding exhibits significant

variability depending on factors such as file format, compression

quality, and image complexity. This variability is further compli-

cated in DALI, where batches of random images are processed in

parallel, making it computationally prohibitive to profile prepro-

cessing times for all possible image combinations.

To emulate GPU-side preprocessing time for DALI, we take a

practical approach: we first profile the time distribution of various

operations across different batch sizes and store it in a database.

During emulation, we sample times from this distribution instead

of relying on a fixed average value. This profiling is dataset-based

rather than model-based, as many models share the same prepro-

cessing operations when training on the same dataset. While this

method is limited to scenarios where GPU preprocessing is not the

primary optimization focus, it is still useful when DALI is used as a

baseline for evaluating data loading and CPU-based preprocessing

optimizations [55, 61, 73]. For tasks requiring GPU preprocessing

optimization, we recommend using real GPUs.

For operations like decoding in DALI, which involve both CPU

and GPU processing, the time cost depends on the number of CPUs

used. Since DALI’s CPU-GPU mix is embedded in its native code

and hard to decouple, we emulate both. To account for CPU con-

sumption during decoding, we profile time distributions for various

CPU counts and use busy-wait loops to replicate the time cost.

2.2 Memory Emulation

Next, we discuss the need for memory emulation. We divide this

into two features: tracking GPU memory consumption and pinning

host-side memory.

2.2.1 GPU memory consumption: Not all DL workloads can run

on a specific GPU; a job’s GPU memory requirement might exceed

the GPU’s memory capacity. To precisely emulate if a DL workload

can fit into a GPU’s memory capacity, it’s crucial to understand

three types of memory usage in DL jobs: (1) compute peak, (2)

model persistent, and (3) preprocessing memory usages.

Compute peak memory usage means the maximum memory

to hold all intermediate results produced by model computation

during the propagation phase. Persistent memory usage pertains to

storing model parameters over time and plays a role in emulating

GPU sharing (§2.4). For these two types of usages, we analyze

how a DL model uses memory during propagations. Fortunately,

they follow a repeating pattern, as seen in Figure 3a. This happens

because each batch goes through the same calculations andmemory

(de)allocations. We also found that both of these usages remain

consistent across different GPUs and demonstrate a strong linear

0 5

Time (s)

0

5

M
e

m
.

u
s
a

g
e

 (
G

B
)

(a) RN50 GPU Mem. Usage

0 50 100

Time (s)

0

2

(b) DALI Prep. GPU Mem.

Real
GPU

Emu.
w/o PM

Emu.
w/ PM

0

200

400

E
p

o
c
h

 t
im

e
 (

s
)

330
400

329

(c) Pinned Mem Impact

Figure 3: Memory emulation (§2.2). The figures show (a) the

GPU memory consumption of propagation and (b) GPU-driven pre-

processing, as well as (c) the impact of emulating pinned memory.

correlation with batch size. To mimic this predictable behavior, we

profile both usages after processing a few batches across different

models. This data serves as the basis for predicting memory usage

for configurations that we have not profiled yet.

For GPU-side preprocessing memory usage (e.g., in DALI), we

analyze its behavior as shown in Figure 3b. Memory consump-

tion steadily grows to a maximum after several batches and then

remains constant. This happens because DALI avoids freeing and

reallocating memory during training to reduce overhead. Peak

memory usage typically occurs when processing a batch with high

preprocessing demands. To replicate this behavior, we profile the

maximum memory usage after a few epochs to ensure it stabilizes.

2.2.2 Pinned memory: To ensure accurate memory emulation,

we need to emulate pinned memory at the host that is managed

by CUDA. In real GPU runs, during data transfer from the host to

GPU memory, CUDA first allocates a pinned (page-locked) host

memory region, copies the host data into it, and then transfers the

data from the pinned region to the GPU memory [19].

Failure to emulate pinned memory can lead to inconsistent per-

formance compared to real GPU runs. For example, as shown in

Figure 3c, AlexNet’s epoch time differs across various PyTorch se-

tups.Without pinnedmemory emulation (orange bar), epoch time is

up to 20% longer than in real GPU runs (red bar). Our investigation

of PyTorch internals revealed that this additional time stems from

Python garbage collection (GC) in the main training loop when

pageable input data is dereferenced. In real GPU runs, this overhead

is avoided as GC occurs in background workers after copying page-

able input data to pinned memory. CUDA retains pinned memory

during training to avoid costly reallocations, preventing Python

GC in the main loop.

For these reasons, we support pinned memory emulation. Since

host-side pinned memory is originally managed by CUDA, which

does not run on CPU nodes, we developed a custom pinned memory

manager. This manager uses the mlock() system call to allocate gen-

uine page-locked memory on the host. We mimic CUDA’s memory

management to allocate the same space and avoid deallocation. As

shown by the green bar in Figure 3c, our pinnedmemory emulation

effectively resolves the GC stall issue.

2.3 Distributed System Support

Next we discuss how to emulate DL workloads in distributed setups,

covering multi-GPU, multi-node, and multi-job (cluster) scheduling.

2.3.1 Multiple-GPU (Single-Node) Training:When emulat-

ing multiple GPUs within the same machine, we support PyTorch’s

1922

DataParallel (DP) module for its simplicity and convenience. DP

divides a batch of input data into smaller chunks, distributing each

chunk to a different GPU for training. Our time and memory emu-

lation mechanisms can adapt to each GPU’s training workload. For

example, when training with a batch size of 256 on 4 GPUs, each

GPU processes a chunk of 64 samples, leveraging our profiled time

and memory data for batch size 64.

An additional step in multi-GPU training is the communication

of gradients. After each GPU completes its forward and backward

computations, the gradients are gathered across GPUs, averaged

on GPU 0, and redistributed. To account for this communication

cost in emulation, we profile it for different numbers of GPUs (up

to 8). The final per-GPU training time is then computed as the sum

of the per-GPU compute time and the GPU communication cost.

We also support emulating Distributed DataParallel (DDP) train-

ing [57] for multi-GPU workloads. Unlike DP, DDP overlaps inter-

GPU communication for gradient reduction with the backward

pass. Accurately emulating this overlap is challenging, as gradient

reduction is triggered when a bucket of gradients is ready. Precise

emulation requires fine-grained profiling of backward pass opera-

tions and handling DDP’s multi-process nature, adding complexity.

Fortunately, DDP introduces synchronization points at the for-

ward and backward passes [17], simplifying batch-level GPU time

emulation. Based on it, we profile total batch time for multi-GPU

workloads (up to 8 GPUs), including both compute and overlapped

communication costs. To emulate this, we insert two barrier()
operations at the start and end of each batch, ensuring synchroniza-

tion across GPUs. Between these barriers, we simulate the profiled

batch GPU time using a sleep operation.

2.3.2 Multi-Node Training: PyTorch leverages DDP for multi-

node training [57], which we support in our emulation. Similar to

single-node DDP emulation, we insert barriers in each batch to

enforce synchronization across all nodes. Without these barriers,

each node would run the emulation independently.

PyTorch overlaps gradient reduction with the backward pass,

complicating accurate emulation of inter-node communication

costs. Capturing these costs requires fine-grained per-operation

profiling, which we leave for future work. Instead, like single-node

DDP, we profile batch-level GPU time for multi-node setups (up to

4 nodes), including compute and overlapped communication costs,

and use this for emulation. For setups with more than 4 nodes, we

reuse the 4-node profiled time.

We acknowledge that this approach does not precisely replicate

network communication costs, especially at larger scales. However,

it enables functional multi-node training emulation and is effec-

tive for evaluations less sensitive to gradient communication, as is

shown in Section 3.4.

2.3.3Multi-Job (Cluster) Scheduling:We support emulating

multi-job (cluster) GPU scheduling for both custom schedulers and

Kubernetes environments, each presenting unique challenges.

Custom schedulers like Synergy [60] rely on predefined cluster

configuration files containing detailed resource information for

the GPU cluster. To enable GPU scheduling emulation, we provide

emulated GPU availability data within these configuration files.

This allows the scheduler to continue using its original scheduling

algorithm to allocate resources for DL jobs. Each DL job runs within

a container integrated with GPEmu, which performs the emulation

based on the allocated GPU configurations.

Kubernetes scheduling operates differently by discovering the

availability of custom resources, such as GPUs, through the custom

device plugin [11]. To accommodate this, we introduced a new

resource type, “emuGPU” (emulated GPU), and developed a custom

device plugin specifically for it. Each emuGPU is represented as a

file on the worker node. The emuGPU device plugin runs on each

worker node, identifies these files, and reports their availability

to the Kubernetes scheduler. Based on this data, the Kubernetes

scheduler allocates emuGPUs using the same algorithm it uses for

real GPUs. Once a job is scheduled, the device plugin receives

the allocation decision and mounts the corresponding emuGPU files
to the job’s container. The job then accesses the emulated GPU

information from these files to emulate DL workloads.

We support multi-GPU, multi-node setups, and multi-job sched-

uling in the emulation. A multi-GPU training job is a GPEmu-

integrated container requesting multiple GPUs for scheduling. Sim-

ilarly, a multi-node training job is a Kubernetes job deploying mul-

tiple emulation container replicas.

2.4 Sharing Support

DL workloads often need to time-share the GPU, a technique com-

monly used in both academia [45, 76, 81] and industry [30, 31].

They typically time-slice the GPU at the granularity of a batch

or an inference request. Hence, we build time-sharing support in

GPEmu for both single-node setups and Kubernetes environments.

We begin with single-node configurations, which present two

key challenges. First, we must coordinate the time emulation of

multiple DL applications sharing the GPU to ensure only one ap-

plication uses the GPU at a time. Second, we must emulate GPU

memory usage during sharing. If the combined memory usage of

model-persistent memory from waiting applications and compute-

peak memory from the running application exceeds the GPU’s

memory capacity, the application will crash.

Based on these considerations, we’ve developed an emulation

sharing manager. DL applications first register with their model per-

sistent memory usage. Registered applications seeking GPU access

send time emulation requests to the manager via RabbitMQ [27].

When dealing with a shared GPU, the manager handles one request

at a time, sleeping for the requested duration and returning a com-

pletion response. The request is rejected if the combined memory

usage exceeds the GPU memory capacity.

For Kubernetes setups, to mimic real GPU time sharing on Ku-

bernetes [31], we create multiple replica files for each emuGPU. This
allows our device plugin to allocate them to multiple DL job con-

tainers. Additionally, we deploy a RabbitMQ broker and a sharing

manager for each node as Kubernetes daemonsets, facilitating com-

munication and emulating GPU time-sharing management.

2.5 Applications and Use Cases

With its features, GPEmu can replace real GPUs in a wide range of

scenarios. Below, we present examples of currently supported use

cases. Non-goals and future work are discussed in Section 5.

Identifying bottlenecks in DL training: While DL training is

compute-intensive, the true bottlenecks often lie in other layers,

1923

such as data loading in the storage layer or preprocessing in the

CPU layer [34, 43, 55, 61, 73, 85, 87]. GPEmu helps identify these

bottlenecks for specific workloads and resources, enabling better

resource allocation to minimize data stalls.

Evaluating Data Loader Optimizations: Many studies optimize

data loaders in DL training [48, 55, 61, 79]. GPEmu enables the eval-

uation of these optimizations across workloads and configurations.

Evaluating Preprocessing Optimizations: Data preprocessing, a

common CPU-intensive bottleneck in DL training, has been tackled

with techniques such as disaggregation, offloading, and reorder-

ing [34, 43, 73, 75, 85–87]. GPEmu enables users to evaluate these

techniques and analyze their impact on training performance.

Distributed Training Optimizations: Multi-node distributed

training presents unique system challenges. For example, distributed

caching optimizations seek to minimize data stalls during training

[58, 61, 70, 80, 90]. GPEmu enables prototyping and evaluating such

optimizations with its distributed training emulation capabilities.

Evaluating GPU Cluster Scheduling and Sharing: Numerous

techniques have been proposed to improve GPU scheduling in

clusters [54, 60, 63, 83, 84, 89]. GPEmu provides scheduling and

GPU sharing support, enabling users to evaluate these policies

under realistic scenarios.

2.6 Framework for Unification and Extensibility

We have unified GPEmu’s diverse features into a modular frame-

work designed to support various use cases and future extensibility.

The framework consists of the following components:

Profiler: GPEmu provides a modular, user-friendly profiler to mea-

sure key metrics such as model compute time, CPU-GPU data trans-

fer time, and GPU memory consumption under user-specified con-

figurations. We have pre-profiled over 30 models on 6 different

GPUs across various batch sizes to build a comprehensive dataset.

Time and Memory Emulation Modules: GPEmu includes mod-

ular components for various types of time and memory emulation.

These modules can be easily customized by users to integrate cus-

tom time distributions or values from their profiling data.

Distributed Training Emulation Modules: GPEmu supports dis-

tributed training emulation with modular components that include

synchronization mechanisms and emulation considering inter-GPU

communication cost. These modules are designed to replicate real-

istic distributed training environments.

Container-Based Benchmarking: GPEmu offers a container that

wraps its emulationmodules and example trainingworkloads. Users

can run these containers to benchmark configurations and identify

system bottlenecks. Leveraging PyTorch’s modular data loader sup-

port, users can also evaluate custom data loading and preprocessing

mechanisms for single- and multi-GPU/node setups.

Emulated GPU Scheduling Framework: Built on Kubernetes,

GPEmu enables users to create emulated GPU devices on host ma-

chines and leverage our custom device plugin and sharingmanagers

to support GPU scheduling and sharing. Users can easily launch em-

ulation jobs on Kubernetes using provided custom containers. Since

the framework integrates with Kubernetes’s support for custom

schedulers, users can evaluate their own GPU scheduling algo-

rithms with minimal effort, requiring just a one-line change in the

scheduled resource type (GPU → emuGPU).

Table 2: Implementation efforts (§2.5). The left table shows the

LOCs for implementing GPEmu. The right table shows the LOCs for

re-implementing work from existing papers and for implementing

our new micro-optimizations.

(a) LOC

Emulation lib 916

K8s device plugin 488

Profiler 1482

PyTorch integration 79

TF integration 20

DALI integration 46

Total 3031

(b) Reimpl. LOC

CoorDL 2756

LADL 96

Muri 298

Micro-Opt.

SFF 45

Async Batch 1171

File grouping 695

Total 5061

Extensibility: GPEmu already supports many popular models and

GPUs, and extending its capabilities to additional models and GPU

architectures is straightforward. Using the profiler, users can gather

data for new configurations and add it to GPEmu’s library for future

use, benefiting the broader community.

GPEmu’s modular implementation also allows users to integrate

their own time measurement techniques, such as compute time

modeling [36, 37], or external profiling data for scenarios like PCIe

link sharing. By supporting custom time distributions and profiling

data, GPEmu is highly adaptable, encouraging collaboration within

the community to expand its coverage and capabilities.

2.7 Implementation Efforts

Our entire effort is quantified in Table 2a, a total of 3031 LOC for

the GPEmu implementation, comprising an all-in-one emulation

library (in Python), a Kubernetes device plugin, a Profiler, and 20-80

LOC “hooks,” for integration into various platforms such as PyTorch,

TensorFlow, and DALI.

Furthermore, for showing many case studies in the next two sec-

tions, we wrote another 5061 LOC (Table 2b) for re-implementing

existing work from scratch (either because they are not available

or not fully functional) and for adding new micro-optimizations.

For example, we reimplemented CoorDL (§3.4), LADL (§3.4), and

Muri (§3.6). We also wrote three micro-optimizations: small-file

first (SFF) caching policy (§4.1), asynchronous batch reading (§4.2),

and random-class file grouping (§4.3). We have open-sourced our

code on Github (https://github.com/mengwanguc/gpemu).

3 CASE STUDIES OF SUPPORTED RESEARCH

To demonstrateGPEmu’s versatility and capabilities, we reproduced

experiments from nine papers [34, 54, 55, 60, 61, 61, 73, 80, 81, 89],

each utilizing different GPEmu features. Table 3 summarizes the

GPEmu design features used (marked with "x") in each reproduction.

These experiments range in complexity from single-node training

to multi-node distributed training and even a 13-node cluster for

GPU scheduling emulation. The papers span various analyses and

optimization techniques relevant to deep learning systems, covering

the use cases described in Section 2.5.

The advantage of GPEmu over existing emulators can be seen

by joining Table 1 with Table 3. If an emulator in Table 1 lacks

features required by a paper inTable 3, it cannot evaluate that paper.

1924

https://github.com/mengwanguc/gpemu

Table 3: GPEmu features for paper reproductions (§3). The

features’ short names are identical to the names in Table 1.

T T T M M D D D S
C T P C P G N J S

§3.1 DataStall [61], VLDB ’21 x x . x x x x . .
§3.2 TF-DS [34], SoCC ’23 x x . x . x . . .
§3.2 FastFlow [73], VLDB ’23 x x . x
§3.3 FFCV [55], CVPR ’23 x x x x x
§3.4 LADL [80], HiPC ’19 x x . x x x x . .
§3.5 Synergy [60], OSDI ’22 x x . x x x . x .
§3.5 Allox [54], EuroSys ’20 x x . x x . . x .
§3.6 Salus [81], MLSys ’20 x x . x x . . . x
§3.6 Muri [89], SIGCOMM ’22 x x . x x . . . x

For instance, MLPerf [23] does not support the multi-job scheduling

(DJ) feature and therefore cannot evaluate the Synergy [60] and

Allox [54] papers listed in Table 3.

A primary use case of GPEmu is to enable faster prototyping and

evaluation of systems research in deep learning, especially given

the scarcity of GPU resources. Our evaluation validated GPEmu

’s ability to replicate patterns observed in the original papers by

comparing our results with their figures. We also evaluated GPEmu

’s accuracy by comparing its results to actual GPU runs. Our findings

show that GPEmu can replace real GPUs in many system research

scenarios, with its non-goals and limitations discussed in Section 5.

In the following subsections, we illustrate how GPEmu can sup-

port different types of deep learning system research.

3.1 Data Stall Analysis

A common use case for GPEmu is analyzing system behaviors

under varying DL training workloads. Here, we reproduce the

DataStallVLDB22 [61] paper ("DS" for short). The DS paper studied

the impact of input data pipelines on training durations for popular

deep learning models. It found that data stalls—time spent waiting

for data fetching and CPU preprocessing—accounted for most train-

ing time in many cases.We show how GPEmu can reproduce this

conclusion without requiring real GPUs.

The first step in the DS paper measured fetch stall percentage

(time spent waiting for data fetching divided by total training time)

when only 35% of data could be cached in memory. In Figure 4a, we

reproduced these measurements for six models using GPEmu, with

two key observations. First, the pattern is consistent. Fetch stalls are

common, with varying percentages (y-axis) across models. AlexNet,

with lightweight computations, spends more time waiting for data,

resulting in the highest fetch stall. In contrast, Vgg11, with heavier

computations, performs better as GPU computation via prefetching

hides most data fetch time. Second, emulation values differ from the

original paper but align with our GPU runs. These differences stem

from setup variations, such as SSD models, page cache fluctuations

during training (due to PyTorch memory use), and different data

loaders (PyTorch default vs. DALI). Nonetheless, emulation results

match our GPU runs, demonstrating GPEmu’s accuracy.

The DS paper next assessed how cached data amounts affect

training time. In Figure 4b, our GPEmu reproduction shows that

lower cache percentages increase training times due to more fetch

stalls, following a pattern similar to DS paper’s [61, Fig.4a]. The

AN RN18 SN MN RN50 V11

0

50

100

%
 o

f
e
p
o
c
h
 t
im

e

AN-AlexNet RN18-ResNet18
SN-SqueezeNet MN-MobileNet
RN50-ResNet50 V11-VGG11

(a) Fetch stalls across varying models

DS Paper

w/ GPU

w/ GPEmu

25 35 50 100
0

100

200

300

E
p
o
c
h
 t
im

e
 (

s
)

(i) DS Paper

25 35 50 100
% of dataset cached

0

100

200

300 (ii) w/ GPU

(b) Stall/cache analysis

Compute Ideal Stall Extra Stall

25 35 50 100
0

100

200

300 (iii) GPEmu

13 6 12 24

1K

2K

3K

4K

#
 o

f
im

g
s
 t
ra

in
e
d
/s

(i) Paper

13 6 12 24

of CPU cores per GPU

1K

2K

3K

4K
(ii) w/ GPU

(c) Impact of CPU cores
AN MN RN18 RN50

13 6 12 24

1K

2K

3K

4K
(iii) GPEmu

Figure 4: Data stall analysis with GPEmu (§3.1).

figure also highlights the inefficiency of the OS page cache in DL

training due to thrashing. For instance, with 25% data cached, the

ideal cache hit rate suggests a fetch stall of 248 seconds per epoch,

yet the OS page cache can lead to up to 290 seconds. Our emulation

aligns with GPU runs and shows patterns similar to the DS paper,

though exact values differ due to setup differences.

Finally, the DS paper evaluated the relationship between CPUs

per GPU and training speed in images per second [61, Fig. 5]. In

Figure 4c, we reproduced this using GPEmu for four models. The

pattern matches the DS paper, with each model showing distinct

CPU requirements per GPU to minimize prep stalls (i.e., delays

from CPU data preprocessing). For example, ResNet50 (purple line),

a computation-heavy model, requires 3 CPUs per GPU to elimi-

nate prep stalls, while AlexNet (cyan line), with lighter computa-

tions, needs 24 CPUs per GPU. The emulated training speed closely

matches our GPU runs but differs from the original paper due to

hardware and software variations. We think these differences are

acceptable as the patterns align.

3.2 Preprocessing Disaggregation

To address data stalls, lots of research has focused on optimizing the

data preprocessing stage, often a bottleneck in DL training in vari-

ous scenarios. A common approach is preprocessing disaggregation

[34, 43, 73, 85, 87]. In this subsection, we reproduce two studies us-

ing GPEmu: tf.data serviceSoCC23 [34] and FastFlowVLDB23 [73].

The first system, tf.data service (TF-DS) [34], is a data prepro-

cessing disaggregation framework built on TensorFlow’s tf.data

module. Unlike traditional methods relying on local CPUs, which

often cannot keep up with GPU demands, TF-DS offloads prepro-

cessing to remote worker CPUs, enabling scalable preprocessing

by adding more workers.

1925

0 200 400 600

of workers

4

8

12

S
p

e
e

d
u

p

(a) Paper

0 20 40 60

of workers

5

10

15

20 (b) GPU

Speedup Baseline

0 20 40 60

of workers

5

10

15

20 (c) GPEmu

Figure 5: TF-DS [34] training speedup with GPEmu (§3.2).

7:7 7:14 14:7

0

50

100

150

E
p

o
c
h

 D
u

ra
ti
o

n
 (

s
)

(a) Paper

3:3 3:6 6:3

0

20

40

60

80

Local CPU # : Remote CPU #

(b) GPU

TF-NO TF-DS TF+FF

3:3 3:6 6:3

0

20

40

60

80
(c) GPEmu

Figure 6: FastFlow’s [73] benefits with GPEmu (§3.2).

ImageFolder DALI FFCV

Data Loader

0.0

0.5

1.0

E
p

o
c
h

 T
im

e
 (

n
o

rm
.)

FFCV Paper

w/ Real GPU

w/ GPEmu

Figure 7: FFCV’s [55] benefits shown with GPEmu (§3.3).

We reproduced the results from the TF-DS paper using GPEmu.

Our experiments emulated GAN model training on the CUB-200-

2011 dataset with a single training client (4 CPUs) and 8 V100 GPUs

in TensorFlow integrated with GPEmu. The baseline used local pre-

processing on the client machine. We then offloaded preprocessing

to a variable number of remote workers, each with 4 CPUs. Training

time speedups relative to the baseline are shown in Figure 5.

We observe two key points from this figure. First, the speedup

increases with more workers, demonstrating TF-DS’s effectiveness.

Second, beyond 32 workers, adding more yields minimal training

time improvements, as preprocessing becomes fast enough and the

bottleneck shifts to (emulated) GPU compute. These findings align

with those in the TF-DS paper [34, Fig. 9], though we use a different

configuration due to the anonymization of their model.

Next, we reproduce FastFlow [73], built atop TF-DS. FastFlow

improves preprocessing disaggregation by utilizing both local and

remote CPUs. It dynamically splits the preprocessing pipeline be-

tween them based on performance metrics.

We obtained the FastFlow source code from their GitHub [13]

and reproduced experiments for the Transformer ASR workload

usingGPEmu. Our setups varied local-to-remote CPU ratios (3:3, 3:6,

6:3). Figures 6 compare epoch times across three policies: TF-NO

(no preprocessing disaggregation), TF-DS, and TF+FF (FastFlow).

FastFlow consistently outperforms the others in all scenarios. TF-

NO struggles with limited local CPUs, while TF-DS falls behind

with few remote CPUs. Our emulation results match our GPU runs

and follow the patterns reported in the FastFlow paper [73, Fig. 6].

3.3 Data Loader Optimization

Another approach to reducing data stall is optimizing the data

loading phase in DL training. For example, FFCVCVPR23 [55] in-

troduces techniques like efficient file storage formats, optimized

process-level caching, and just-in-time compiled data preprocessing.

Here we demonstrate FFCV’s benefits using GPEmu.

In Figure 7, we show results from three setups: a real RTX-6000

GPU (red bars), the original FFCV paper (blue bars), and GPEmu

(green bars). Our emulation demonstrates FFCV’s performance im-

provement, cutting training time by 80% compared to PyTorch’s

default ImageFolder data loader (leftmost vs. rightmost green bars).

The emulation closely matches real GPU results and aligns with the

FFCV paper. The y-axis is normalized to the maximum training time

per configuration, as we used a smaller dataset for faster research.

GPEmu highlights its value for rapid prototyping.

3.4 Distributed Training Optimization

In previous subsections, we used GPEmu to reproduce single-node

training analyses and optimizations. Here, we demonstrate how

GPEmu can also reproduce distributed training optimizations, such

as distributed caching, which reduces data stalls in distributed

training [58, 61, 70, 80, 90]. We reproduce two papers: CoorDL from

the DataStallVLDB21 ("DS") paper [61], and the locality-aware data

loading ("LADL") paper from HiPC 2019 [80].

Let’s start with CoorDL [61], which introduces partitioned

caching. In this approach, different compute nodes cache distinct

parts of the dataset and coordinate to speed up data loading in dis-

tributed training. With partitioned caching, a local cache miss leads

to fetching the missing data from remote caches on other nodes via

network communication. CoorDL applies this technique to their

MinIO caching algorithm, demonstrating significant advantages.

Now, we show usingGPEmu to assess CoorDL’s benefits. Initially,

we tried to obtain CoorDL’s source code from its GitHub repository

[22], but faced challenges in compiling due to dependency issues

with an older version of DALI. As a result, we re-implemented

CoorDL’s MinIO and partitioned caching from scratch in PyTorch.

To reproduce CoorDL’s results, we used GPEmu for distributed

training on compute nodes, each emulating 8 GPUs, with local

cache percentages of 65% and 40%. Figure 8 shows normalized

training speedups: orange bars represent the baseline, blue bars

show CoorDL results from the DS paper, and green bars indicate

CoorDL with GPEmu. The DS paper shows CoorDL’s speedups

increasing with more nodes due to partitioned caching. Our em-

ulation reproduces this trend, though values differ due to setup

variations. For example, with 65% local cache and 1 node, CoorDL

with GPEmu achieves a 3x speedup, primarily from MinIO caching,

rising to 6x with 2 nodes as combined cache covers the full dataset.

Next, let’s move to “locality-aware data loading” (or “LADL”)

[80]. Distributed caching techniques like CoorDL offer impressive

gains with few nodes and adequate bandwidth but face scalability

challenges in large-scale distributed training. These challenges are

mainly due to increased network traffic, potentially causing band-

width bottlenecks. LADL addresses this by altering the sampling

algorithm to prefer locally cached samples, reducing data fetching

1926

1 2

0

4

8

12

S
p
e
e
d
u
p w/ 65% cache Baseline

CoorDLPaper

CoorDLGPEmu

1 2 3
of nodes

w/ 40% cache

Figure 8: CoorDL’s benefits with GPEmu (§3.4).

1 2 4
of nodes

0

100

200

E
p

o
c
h

 T
im

e
 (

s
)

w/ GPEmu Regular

LADL

Figure 9: LADL’s [80] benefits shown with GPEmu (§3.4).

from remote cache. Though this slightly reduces sampling ran-

domness, it significantly decreases network traffic, thus enhancing

scalability for distributed training.

Here we use GPEmu to showcase LADL’s advantages. With the

original source code unavailable and no response to our request,

we re-implemented it in PyTorch based on our earlier CoorDL im-

plementation. While the original paper used a 16-128 node cluster

to show distributed cache scalability challenges, our resources are

more limited. However, as GPEmu is designed for rapid prototyp-

ing, we emulated results on a 4-node cluster. To mimic network

bandwidth bottlenecks typical in large-scale training, we limited

our cluster’s network bandwidth to 3Gbps.

The emulation results are shown in Figure 9, with orange bars

representing regular distributed cache and cyan bars for LADL. The

results demonstrate LADL’s improvement in distributed training

scalability. For example, in 4-node training with all data cached

(locally or remotely), regular distributed cache requires 60 seconds

per epoch due to network bandwidth limitations. In contrast, LADL

reduces the epoch time to just 12 seconds by lowering network

bandwidth demands. These findings align with the original paper.

3.5 GPU Scheduling

Next, we explore using GPEmu in GPU scheduling. Numerous tech-

niques have been proposed for enhancing GPU scheduling in clus-

ters [54, 60, 63, 78, 83, 84]. We reproduce two: SynergyOSDI22 [60]

and AlloxEurosys20 [54]. Synergy is selected for its custom sched-

uler’s easy compatibility with GPEmu, and we also reproduce Allox

to demonstrate GPEmu’s ability to support Kubernetes scheduling.

We first reproduce some Synergy experiments [60]. Synergy is

a scheduler that optimistically profiles each job’s resource needs

and allocates GPUs, CPUs, and memory accordingly. This method

effectively prevents data stalls and maximizes GPU utilization.

To reproduce the Synergy paper, we obtained its source code

from their GitHub repository [29] and integrated it with GPEmu,

using GPEmu for resource demand profiling and GPU scheduling

emulation. Synergy was designed for jobs that utilize DNN-aware

cache systems like MinIO [61]. We opted for our implementations

of MinIO instead of the original, as it faced compilation issues due

to dependency conflicts.

0 4 8 12

JCT Hour

0

0.2

0.4

0.6

0.8

1

C
D

F
 o

f
J
C

T

(a) Synergy

PropGPEmu

SynGPEmu

PropPaper

SynPaper

DRFF DRFS Allox

Scheduling Policy

0.0

0.5

1.0

N
o

rm
a

liz
e

d
 J

C
T

(b) Allox

Paper w/ GPEmu

Figure 10: (a) Synergy [60] and (b) Allox’s [54] JCT reduction

with GPEmu.

We conducted experiments scheduling 40 DL jobs on a 4-node

cluster, with each node equipped with 24 CPUs, 100GB DRAM, and

8 emulated GPUs. Our evaluation compared Synergy with GPU-

proportional resource allocation using Least Attained Service (LAS)

policies. Figure 10a shows the CDF of job completion time (JCT)

for both policies, with results from the original paper and GPEmu.

Consistent with the original paper, our emulation demonstrates

Synergy’s effectiveness in reducing JCT. For example, Synergy

reduces average JCT by 22% and 95th percentile JCT by 25% (solid

orange vs. green lines).

Next, we reproduce Allox [54] to showcase our Kubernetes

scheduling support. Allox is designed for DL jobs with interchange-

able resource configurations, such as CPU versus GPU. It strategi-

cally schedules jobs across various compute resources, selecting

the optimal configuration for each while maintaining fairness.

We acquired the Allox source code from GitHub [2] and inte-

grated it with GPEmu using our Kubernetes support. Our exper-

iments used a cluster with one master node, four emuGPU worker
nodes, and eight CPU worker nodes. We scheduled 40 PyTorch jobs

across four users, with GPU vs. CPU worker speedups ranging from

1.3 to 8.2. Figure 10b shows the normalized average JCT for three

scheduling policies: Dominant Resource Fairness with First Come

First Serve (DRFF), Dominant Resource Fairness with Shortest Job

First (DRFS), and Allox. Consistent with the original paper, our

emulation demonstrates Allox’s effectiveness, reducing average

JCT by 42% compared to DRFF (leftmost vs. rightmost green bar).

3.6 GPU Sharing

Finally, we reproduce papers on GPU sharing. There’s been con-

siderable research into enabling GPU sharing among DL work-

loads and optimizing GPU job scheduling based on this sharing

[45, 77, 78, 81, 89]. We focus on two notable studies: SalusMLSys20

[81] andMuriSIGCOMM22 [89]. Salus is chosen for its focus on en-

abling fine-grained GPU sharing in DL applications, and Muri for

its insights on GPU sharing’s impact on GPU job scheduling.

We begin with reproducing Salus [81], which offers an efficient

execution service for fine-grained GPU sharing through iteration-

level computation scheduling, thereby enabling rapid job switching

between different DL applications.

Using our GPU sharing emulation, we successfully reproduced

iteration-level job switching as in Salus. We integrated GPEmu into

PyTorch and emulated [81, Fig. 9] by running three ResNet50 train-

ing jobs on a single machine, fairly sharing an emulated P100 GPU.

1927

0 200 400

Time (s)

100

200

Im
a

g
e

s
 p

e
r

s
e

c

w/ GPEmu Job 1

Job 2

Job 3

Figure 11: Salus’s [81] GPU sharing with GPEmu (§3.6).

0 200 400 600

Time (s)

0

5

10

Q
u

e
u

e
 l
e

n
g

th w/ GPEMu

(a) Queue length by time

SRTF

Muri-S

SRTF Muri-S

Scheduler

0

1

2
M

a
k
e

s
p

a
n

 (
n

o
rm

a
liz

e
d

) (b) Normalized Makespan

Paper

w/ GPEmu

Figure 12: Muri’s benefits shown using GPEmu (§3.6).

Figure 11 depicts the emulated training throughput. Initially, Job 1

achieves 220 images/sec, fully utilizing the GPU. At 30s, Job 2 starts,

halving throughput (dashed blue line). At 60s, Job 3 starts, reducing

throughput to a third. As jobs finish in reverse order, throughput

gradually restores. The pattern aligns with [81, Fig. 9].

Next, we reproduce Muri [89], a DL job scheduler for multi-

resource clusters using GPU time sharing. Muri interleaves jobs

bottlenecked by different resources (e.g., GPU, CPU, storage, net-

work) and groups them on the same machine to optimize utilization.

To reproduce Muri, we obtained its code from GitHub [24]. How-

ever, the testbed deployment code was mostly pseudocode, and

the original industry implementation was unavailable. Thus, we

developed a simplified version of Muri, focusing on single-machine

scheduling and CPU-GPU interleaving for fast reproduction. GPU

interleaving was implemented via our GPU sharing emulation.

In our experiments, we usedMuri withGPEmu to schedule 10 em-

ulated training jobs, ranging from CPU-bound models like AlexNet

to GPU-bound models like ResNet50. We compared two algorithms:

SRTF and Muri-S (Muri with SRTF). Figure 12a shows job queue

length changes over time for each policy. Muri outperforms SRTF

by reducing queue length faster, running more jobs concurrently,

and utilizing GPUs more efficiently, consistent with [89, Fig. 8].

Figure 12b presents normalized makespan, showing Muri’s 1.35x

speedup over SRTF. These results validate Muri’s effectiveness and

align with the original paper.

4 MICRO-OPTIMIZATIONS

Besides reproducing existing work, we showcase the power of

GPEmu by prototyping and evaluating new micro-optimizations

without using real GPUs. Below, we present several storage-stack

optimizations that can improve DL training epoch time, such as

small-file first (SFF) caching policy (§4.1), asynchronous batched

data (§4.2), and random-class file grouping (§4.3).

4.1 Cache Small Files

In this subsection, we explore how tailoring caching algorithms

to the characteristics of DL training datasets and HDDs impacts

20 40 60 80 100

% of dataset cached

0

500

E
p

o
c
h

 T
im

e
 (

s
)

w/ GPEMu

(a) Cache Replacement Algo. Impact on Epoch Time

Page Cache
MinIO

SFF+MinIO

0 200 400 600 800 1K

File size (KB)

0

20

40

60

80

100

S
iz

e
 C

D
F

 (
in

 %
)

(b) CDF of ImageNet file SZ

64 256 512 1024

File size per read (KB)

0

20

40

60

80

100

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

(c) HDD RAND RD throughput

Figure 13: SFF’s benefit with GPEmu (§4.1).

performance, demonstrating the benefits with GPEmu. Inspired by

the “MinIO” algorithm proposed in the DataStall paper [61], we

explore its design. MinIO leverages DL training’s unique data access

pattern: data is read in epochs, with each epoch accessing every

item exactly once in random order. Thus, if X% of data is cached,

the maximum attainable cache hit rate is also X%. To address this,

MinIO avoids evictions once the cache is filled, mitigating thrashing

caused by premature evictions in previous policies.

We implementedMinIO in PyTorch and evaluated it usingGPEmu.

Figure 13a demonstrates MinIO’s benefits, with purple bars show-

ing OS page cache performance and orange bars depicting MinIO

results. At the same cache percentage, MinIO consistently outper-

forms the OS page cache. For instance, with a 40% cache size, MinIO

achieves an epoch time of 394 seconds compared to 537 seconds

for the OS page cache.

However, we found a limitation in MinIO: it treats all data items

as equal and populates the cache with random items. Storage reads,

however, often exhibit preferences for certain files within the same

dataset. For instance, Figure 13b shows the cumulative distribution

function (CDF) of file sizes in the ImageNet dataset [68], revealing

significant variability in file sizes, spanning orders of magnitude.

Storage systems, particularly HDDs, favor large file reads due to

their sequential nature, which reduces seek and rotation overheads.

Figure 13c illustrates that, when reading files randomly from disk,

larger files achieve higher read throughput than smaller ones.

To address this limitation, we propose the Small Files First

(SFF) caching, prioritizing small files when populating the MinIO

cache. Before training, we read dataset metadata, sort files by size,

and set a threshold (Th) such that all files smaller than Th exactly
fill the cache. MinIO is then configured to cache only these files

during the first epoch. This approach ensures that more small files

are cached, leaving only large files to be read from storage.

We implemented SFF in MinIO and evaluated it using GPEmu.

The cyan bars in Figure 13a show the training performance with

MinIO+SFF. With the same cache size, SFF outperforms MinIO,

especially at lower cache percentages. For example, with 20% cache,

1928

NO 1 2 4 8 16 32 64
Superbatch ratio

400

800

E
p

o
c
h

 t
im

e
 (

s
)

w/ GPEMu Sync
Async

Async+Super

Figure 14: Async batch’s benefit shown with GPEmu (§4.2).

1 2 4 8 16 32 64

File Group Size

0

200

400

E
p
o
c
h
 T

ra
in

in
g
 T

im
e
 (

s
)

w/ GPEMu

(a) Grp's Effect on Epoch Time

0 50

Epochs

0

20

40

60

A
c
c
u
ra

c
y
 (

%
)

(b) Grp's Effect on Accuracy

No Group
Rnd. Group
Seq. Group

Figure 15: File grouping’s effect (§4.3).

SFF reduces training time by 28% compared to MinIO. As the cache

percentage increases, SFF’s benefits diminish, as the files cached by

MinIO increasingly align with the SFF strategy.

4.2 Async Batch

Another way to reduce the overhead of random reads is by leverag-

ing I/O reordering, a technique employed by the Linux I/O scheduler

[21]. The I/O scheduler reorders I/O requests based on their logical

block addresses (LBA) in order to reduce seek time and rotational

latency, hence increasing the overall throughput. The more requests

the scheduler can process together, the greater the reduction is.

Unfortunately, we found that PyTorch’s data loader does not fully

benefit from I/O reordering. More specifically, PyTorch’s official

ImageNet training script [20] employs four workers to load data,

with each worker handling one batch. Each worker reads one image

at a time, waiting for the read to complete. Consequently, at most

four read requests are simultaneously sent to the OS.

PyTorch’s design is simple to implement; every worker can read

and preprocess each image synchronously (without having to worry

about concurrency issues). Overall, it also uses minimal memory;

each worker only has a single batch in memory during loading.

However, it is not efficient because the OS does not have enough

in-flight I/Os to reorder to improve the I/O performance and the

LBA gaps between the four target I/Os remain large, causing high

seek and rotational overhead.

Ideally we should send more concurrent requests to the OS so

that it may benefit more from reordering. To do this, we send all the

requests in the entire batch. While this sounds simple, one minor

complication is that we must move from the blocking/synchronous

style to an asynchronous I/O design, otherwise the OS cannot

see all the requests. To achieve this, we (1) utilize io_uring [32]

asynchronous system call, (2) organize the sending and receiving

of asynchronous I/Os using input and completion queues, and (3)

carefully employ spinlocks and atomics to handle concurrency

issues when using io_uring. Furthermore, since the OS is limited

by its maximum queue depth of 2048 requests [1], when submitting

more than this limit, we must pre-sort the requests by LBA at the

application level before sending them to the OS.

Within this “asynchronous-batch” design, we found more room

for optimization. The number of concurrent I/O requests is currently

bottlenecked by the training batch size, and in some scenarios the

batch size can be as small as 2 [25], limiting the benefits of I/O

reordering. To overcome this limitation, we introduce “superbatch,

” which is a multiple (e.g., 2x) of the regular batch size. During data

loading, we asynchronously send a superbatch of requests to the

OS, maximizing the advantages of I/O reordering. It is important

to note that superbatch only affects data loading and does not alter

the training batch size or other training steps.

We evaluated the benefits of asynchronous (super)batch read-

ing with GPEmu. Figure 14 shows the epoch time for emulating

AlexNet training with 4 workers and batch size of 16 using different

data reading policies. Employing the asynchronous batch reading

alone (yellow bar) reduces epoch time by 19% compared to the origi-

nal PyTorch data loader (purple bar). After applying the superbatch

approach, the reduction can be up to 50% (the cyan bars). Increas-

ing the superbatch size too big yields minimal additional benefits,

as I/O reordering is already efficiently utilized. Excessively large

superbatch is also not recommended as it increases the memory

pressure, which can adversely affect the epoch time.

4.3 File Grouping

The last two micro-optimizations have focused on reducing the

penalty of random file reads for disk-based systems without altering

the original random sampling order. In this subsection, we propose

another optimization, termed “file grouping,” which slightly reduces

sampling randomness in exchange for enhanced I/O performance.

The file grouping approach works as follows: (a) Prior to training,

we group every 𝑋 random small files into one large file, storing

location and labels in the metadata. For a dataset with𝑀 files, this

results in𝑀/𝑋 large files; (b) During training, instead of reading N

random small files per batch, we read 𝑁 /𝑋 random large files.

With GPEmu, we evaluated file grouping’s impact on AlexNet

training time with various group sizes, as is shown in Figure 15a.

For example, without grouping (group size = 1), the training time is

498 seconds. With 8 images per group, the training time reduces by

2.4x. Interestingly, grouping the images more than 32 images offers

no further improvement, implying that the disk seek overhead is

already minimal compared to the data transfer time.

One concern about file grouping is its potential impact on model

accuracy. Could the model become biased and lose accuracy? We

experimented with random-class grouping, where each group mixes

random “classes” (e.g., “cat”, “dog”, “snake” in the ImageNet dataset)

and found no loss in accuracy (compared to no grouping) as shown

in Figure 15b. We validated this across three different tasks (image

classification, object detection, audio classification), using three

datasets (ImageNet, COCO, Speech Commands) and five models

(AlexNet, ResNet18, ResNet50, Faster R-CNN, M5), consistently

observing the same pattern.

However, employing a naive “sequential” grouping (i.e., grouping

the unzipped ImageNet dataset images sequentially) significantly

reduced accuracy, shown in the orange line in Figure 15b. This

decline is likely because sequential groups contain images from

1929

the same category, like all “cat”’ pictures, leading to biased learn-

ing. This bias can cause catastrophic forgetting [41], where the

model temporarily excels in the current category but may forget

the previously learned ones.

5 DISCUSSION

We believe that we have built the major features for GPEmu. How-

ever, we acknowledge thatGPEmu cannot fully replace real GPUs in

all scenarios and can be extended to include more detailed features.

Below, we discuss its non-goals and potential future extensions.

5.1 Non-goals

The following are GPEmu ’ non-goals: (1) GPEmu cannot be used

for evaluating accuracy metrics. (2) GPEmu cannot be used for opti-

mizations that rely on (e.g. are tuned based on) dynamic values that

evolve during training runtime, such as gradients, model parameter

values, or popularity of embedding entries [33, 38, 52, 67].

5.2 Future extensions

Layer-level profiling: Currently, our profiling operates at

the model level. A valuable enhancement would involve collecting

runtime statistics at the layer level (e.g., linear layers and convolu-

tional layers), allowing for the computation time of various models

to be derived from a combination of these layers.

Comprehensive support fordistributedtraining:GPEmu

can be extended to emulate the network communication of gra-

dient synchronization during Distributed Data-Parallel Training.

Additionally, we aim to support other distributed training tech-

niques, such as Fully Sharded Data Parallel (FSDP) [88] and Model

Parallelism (MP) [69], in the future.

Support for DL Inference: While our work focuses on DL

training, we believe GPEmu can be extended to emulate DL infer-

ence. Inference workloads are generally easier to emulate compared

to training workloads, as they do not involve the complexities of

backpropagation or gradient updates. Profiling for inference would

primarily focus on forward pass computations and memory usage,

which are relatively consistent for a given model and batch size.

This extension would enable evaluating and reproducing system

optimizations for DL inference, as explored in works like [45, 64, 82].

GPU spatial sharing: The sharing support in GPEmu currently

focuses on time sharing. A valuable extension would be to support

spatial sharing, which enables multiple DL jobs to run concurrently

on a GPU, considering the interference between DL jobs [71, 74, 77].

Transfer time variability: Our current data transfer time

emulation assumes a dedicated PCIe link and does not explicitly

account for scenarios involving PCIe link sharing or dynamically

changing workloads. These scenarios can introduce significant

variability in data transfer times. Future work may explore profiling

techniques to better capture these complexities.

Support Large Language Models: GPEmu has primarily fo-

cused on traditional DL workloads. Given the rapid evolution and

popularity of large language models (LLMs) recently, it would be

valuable to extendGPEmu to emulate LLMs and foundationmodels.

6 RELATEDWORK

Emulation ofOtherResourceTypes:An emulator replicates

a special piece of a system to enable it to run on a different platform.

There have been a great number of emulation tools for emulating

system pieces other thanGPU, such as FEMU [56] and RAMSSD [28]

for SSD emulation, FAME [59] andHME [39] for memory emulation,

and Emulab [46] and CloudLab [12, 40] for network emulation.

Simulation of GPU: A simulator attempts to model the behav-

iors of a real-world system for analysis. The examples are GPU

performance simulators like MacSim [53], GPGPU-Sim [35], MGPU-

Sim [72], and Accel-Sim [51], as well as GPU cluster scheduling

simulators used in prior papers [44, 47, 54, 60].

GPU simulators like GPGPU-Sim can simulate the execution of

models on GPUs and report GPU-related performance statistics

such as GPU memory usage and clock cycle count. However, they

do not support end-to-end/full-stack DL system experiments which

include other layers like storage, CPU, host memory, and network.

In contrast, GPEmu can evaluate these experiments.

Emulation of GPU: There are a limited number of existing GPU

emulators for DLworkloads. Silod [83] profiledmodel compute time

on the expensive V100 GPU and emulated it on a cluster of cheaper

K80 GPUs to evaluate GPU cluster scheduling, but still requires real

GPUs. MLPerf Storage [23] and DLCache [49] provide a simple host-

side emulator that only performs compute time emulation. They all

lack vital emulation components and support only a limited range

of configurations and experiments.

Modeling DNN latency: Several studies have proposed meth-

ods to model the latency of DNNs [36, 37], where latency is es-

timated based on individual operations in the network, allowing

generalization across different models. We recognize that these

approaches are more scalable, and we believe their latency models

could be integrated into GPEmu to support emulation of new mod-

els. On the other hand, our brute-force profiling offers real-world

latency results, which are more reliable for capturing unpredictable

interactions between GPU types and the components of AI models.

7 CONCLUSION

We present GPEmu, a comprehensive GPU emulator tailored for DL

workloads, equipped with a wide array of emulation features and

extensive support for diverse DL configurations. We hope GPEmu

will follow prior emulators’ successes and bring a strong impact

to the community by enabling faster and cheaper prototyping and

evaluation of deep learning system research.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their tremendous feed-

back and comments. This material was supported by funding from

NSF (grant Nos. CCF-2119184, CNS-2402327, CNS-2027170, and

CNS-2431425) as well as generous donations from Seagate. The ex-

periments in this paper were performed on Chameleon [8, 50] and

also used Google Cloud thru the CloudBank project [65] supported

by NSF grant #1925001. Any opinions, findings, and conclusions, or

recommendations expressed herein are those of the authors and do

not necessarily reflect the views of the NSF or other institutions.

1930

REFERENCES

[1] Accessed in November 2024. 8.4. Configuration Tools Red Hat Enterprise Linux

7 | Red Hat Customer Portal. https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/7/html/performance_tuning_guide.

[2] Accessed in November 2024. Allox GitHub.

https://github.com/lenhattan86/allox.

[3] Accessed in November 2024. Amazon EC2 P3 Instances.

https://aws.amazon.com/ec2/instance-types/p3.

[4] Accessed in November 2024. AWS service quotas.

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html.

[5] Accessed in November 2024. Azure and AWS’s ‘GPU general availability’ lies.

https://www.fast.ai/posts/2016-12-19-gpu-lies.html.

[6] Accessed in November 2024. Azure Machine Learning pricing.

https://azure.microsoft.com/en-us/pricing/details/machine-learning/.

[7] Accessed in November 2024. Cannot Extend GPU Quota on Google Cloud.

https://stackoverflow.com/questions/48362544/cannot-extend-gpu-quota-on-

google-cloud.

[8] Accessed in November 2024. Chameleon - A configurable experimental

environment for large-scale cloud research. https://www.chameleoncloud.org.

[9] Accessed in November 2024. Cloudbank Website. https://www.cloudbank.org.

[10] Accessed in November 2024. DALI. https://developer.nvidia.com/dali.

[11] Accessed in November 2024. Device Plugins | Kubernetes.

https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-

net/device-plugins/.

[12] Accessed in November 2024. Emulating multipath wireless links on CloudLab

and FABRIC. https://witestlab.poly.edu/blog/emulating-multipath-wireless/.

[13] Accessed in November 2024. FastFlow GitHub.

https://github.com/SamsungLabs/FastFlow.

[14] Accessed in November 2024. GCE Discussion: GPU Quota. https:

//groups.google.com/g/gce-discussion/c/mtHV1NlKKBo/m/i9uyk-PeAgAJ.

[15] Accessed in November 2024. GCE Discussion: No P100 GPUs in any us zone.

https://groups.google.com/g/gce-discussion/c/34zBBmTV8Tg.

[16] Accessed in November 2024. GCE Discussion: Not enough resources to fulfill

for the past 14 hours.

https://groups.google.com/g/gce-discussion/c/8vCwUKaGs2o.

[17] Accessed in November 2024. Getting Started with Distributed Data Parallel.

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html.

[18] Accessed in November 2024. Google Cloud GPU Pricing.

https://cloud.google.com/compute/gpus-pricing.

[19] Accessed in November 2024. How to Optimize Data Transfers in CUDA C/C++.

https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/.

[20] Accessed in November 2024. ImageNet training in PyTorch.

https://github.com/pytorch/examples/tree/main/imagenet.

[21] Accessed in November 2024. Linux I/O schedulers.

https://wiki.ubuntu.com/Kernel/Reference/IOSchedulers.

[22] Accessed in November 2024. MinIO GitHub.

https://github.com/msr-fiddle/CoorDL.

[23] Accessed in November 2024. MLPerf Storage Benchmark Suite GitHub.

https://github.com/mlcommons/storage.

[24] Accessed in November 2024. Muri GitHub. https://github.com/pkusys/Muri.

[25] Accessed in November 2024. Object detection reference training scripts.

https://github.com/pytorch/vision/tree/main/references/detection.

[26] Accessed in November 2024. PyTorch CUDA Asynchronous Execution.

https://pytorch.org/docs/master/notes/cuda.html#asynchronous-execution.

[27] Accessed in November 2024. RabbitMQ: easy to use, flexible messaging and

streaming — RabbitMQ. https://www.rabbitmq.com.

[28] Accessed in November 2024. RAMSSD GitHub.

https://github.com/thustorage/ramssd.

[29] Accessed in November 2024. Synergy GitHub.

https://github.com/msr-fiddle/synergy.

[30] Accessed in November 2024. Time-sharing GPUs on GKE | Google Kubernetes

Engine (GKE) | Google Cloud.

https://cloud.google.com/kubernetes-engine/docs/concepts/timesharing-gpus.

[31] Accessed in November 2024. Time-Slicing GPUs in Kubernetes — NVIDIA GPU

Operator. https://docs.nvidia.com/datacenter/cloud-native/gpu-

operator/latest/gpu-sharing.html.

[32] Accessed in November 2024. What is io-uring?

https://unixism.net/loti/what_is_io_uring.html.

[33] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, and

Prashant J Nair. 2021. Accelerating Recommendation System Training by

Leveraging Popular Choices. Proceedings of the VLDB Endowment (PVLDB) 15, 1

(2021), 127–140.

[34] Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiří Šimša, and

Chandramohan A Thekkath. 2023. tf. data service: A case for disaggregating ML

input data processing. In Proceedings of the 2023 ACM Symposium on Cloud

Computing (SoCC). 358–375.

[35] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M

Aamodt. 2009. Analyzing CUDA workloads using a detailed GPU simulator. In

2009 IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS). IEEE, 163–174.

[36] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2019.

Once-for-all: Train one network and specialize it for efficient deployment. arXiv

preprint arXiv:1908.09791 (2019).

[37] Han Cai, Ligeng Zhu, and Song Han. 2018. Proxylessnas: Direct neural

architecture search on target task and hardware. arXiv preprint arXiv:1812.00332

(2018).

[38] Weijian Chen, Shuibing He, Yaowen Xu, Xuechen Zhang, Siling Yang, Shuang

Hu, Xian-He Sun, and Gang Chen. 2023. icache: An

importance-sampling-informed cache for accelerating i/o-bound dnn model

training. In 2023 IEEE International Symposium on High-Performance Computer

Architecture (HPCA). IEEE, 220–232.

[39] Zhuohui Duan, Haikun Liu, Xiaofei Liao, and Hai Jin. 2018. HME: A lightweight

emulator for hybrid memory. In 2018 Design, Automation & Test in Europe

Conference & Exhibition (DATE). IEEE, 1375–1380.

[40] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon

Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, et al.

2019. The Design and Operation of CloudLab. In 2019 USENIX annual technical

conference (USENIX ATC). 1–14.

[41] Robert M French. 1999. Catastrophic forgetting in connectionist networks.

Trends in cognitive sciences 3, 4 (1999), 128–135.

[42] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT

press.

[43] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramohan A

Thekkath, and Ana Klimovic. 2022. Cachew: Machine learning input data

processing as a service. In 2022 USENIX Annual Technical Conference (USENIX

ATC). 689–706.

[44] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeongjae Jeon,

Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019. Tiresias: A GPU cluster

manager for distributed deep learning. In 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI). 485–500.

[45] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir

Vigfusson, and Jonathan Mace. 2020. Serving DNNs like Clockwork:

Performance Predictability from the Bottom Up. In 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI). 443–462.

[46] Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi Guruprasad,

Tim Stack, Kirk Webb, and Jay Lepreau. 2008. Large-scale virtualization in the

emulab network testbed. In 2008 USENIX Annual Technical Conference (USENIX

ATC).

[47] Suhas Jayaram Subramanya, Daiyaan Arfeen, Shouxu Lin, Aurick Qiao, Zhihao

Jia, and Gregory R Ganger. 2023. Sia: Heterogeneity-aware, goodput-optimized

ML-cluster scheduling. In Proceedings of the 29th Symposium on Operating

Systems Principles (SOSP). 642–657.

[48] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phanishayee, and Shivaram

Venkataraman. 2019. The case for unifying data loading in machine learning

clusters. In 11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud

19).

[49] Zhuangwei Kang, Ziran Min, Shuang Zhou, Yogesh D Barve, and Aniruddha

Gokhale. 2023. Dataset Placement and Data Loading Optimizations for

Cloud-Native Deep Learning Workloads. In 2023 IEEE 26th International

Symposium on Real-Time Distributed Computing (ISORC). IEEE, 107–116.

[50] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan

Stanzione, Mert Cevik, Jacob Colleran, Haryadi S Gunawi, Cody Hammock,

et al. 2020. Lessons learned from the chameleon testbed. In 2020 USENIX annual

technical conference (USENIX ATC). 219–233.

[51] Mahmoud Khairy, Zhesheng Shen, Tor M Aamodt, and Timothy G Rogers. 2020.

Accel-Sim: An extensible simulation framework for validated GPU modeling. In

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture

(ISCA). IEEE, 473–486.

[52] Redwan Ibne Seraj Khan, Ahmad Hossein Yazdani, Yuqi Fu, Arnab K Paul, Bo Ji,

Xun Jian, Yue Cheng, and Ali R Butt. 2023. SHADE: Enable Fundamental

Cacheability for Distributed Deep Learning Training. In 21st USENIX Conference

on File and Storage Technologies (FAST). 135–152.

[53] Hyesoon Kim, Jaekyu Lee, Nagesh B Lakshminarayana, Jaewoong Sim, Jieun

Lim, and Tri Pho. 2012. Macsim: A cpu-gpu heterogeneous simulation

framework user guide. Georgia Institute of Technology (2012), 1–57.

[54] Tan N Le, Xiao Sun, Mosharaf Chowdhury, and Zhenhua Liu. 2020. Allox:

compute allocation in hybrid clusters. In Proceedings of the Fifteenth European

Conference on Computer Systems (EuroSys). 1–16.

[55] Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi

Salman, and Aleksander Mądry. 2023. FFCV: Accelerating training by removing

data bottlenecks. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR). 12011–12020.

[56] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman,

Matias Bjørling, and Haryadi S Gunawi. 2018. The CASE of FEMU: Cheap,

accurate, scalable and extensible flash emulator. In 16th USENIX Conference on

File and Storage Technologies (FAST). 83–90.

1931

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide
https://github.com/lenhattan86/allox
https://aws.amazon.com/ec2/instance-types/p3
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://www.fast.ai/posts/2016-12-19-gpu-lies.html
https://azure.microsoft.com/en-us/pricing/details/machine-learning/
https://stackoverflow.com/questions/48362544/cannot-extend-gpu-quota-on-google-cloud
https://stackoverflow.com/questions/48362544/cannot-extend-gpu-quota-on-google-cloud
https://www.chameleoncloud.org
https://www.cloudbank.org
https://developer.nvidia.com/dali
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://witestlab.poly.edu/blog/emulating-multipath-wireless/
https://github.com/SamsungLabs/FastFlow
https://groups.google.com/g/gce-discussion/c/mtHV1NlKKBo/m/i9uyk-PeAgAJ
https://groups.google.com/g/gce-discussion/c/mtHV1NlKKBo/m/i9uyk-PeAgAJ
https://groups.google.com/g/gce-discussion/c/34zBBmTV8Tg
https://groups.google.com/g/gce-discussion/c/8vCwUKaGs2o
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://cloud.google.com/compute/gpus-pricing
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://github.com/pytorch/examples/tree/main/imagenet
https://wiki.ubuntu.com/Kernel/Reference/IOSchedulers
https://github.com/msr-fiddle/CoorDL
https://github.com/mlcommons/storage
https://github.com/pkusys/Muri
https://github.com/pytorch/vision/tree/main/references/detection
https://pytorch.org/docs/master/notes/cuda.html#asynchronous-execution
https://www.rabbitmq.com
https://github.com/thustorage/ramssd
https://github.com/msr-fiddle/synergy
https://cloud.google.com/kubernetes-engine/docs/concepts/timesharing-gpus
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-sharing.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-sharing.html
https://unixism.net/loti/what_is_io_uring.html

[57] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,

Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. PyTorch

distributed: experiences on accelerating data parallel training. Proceedings of the

VLDB Endowment (PVLDB) 13, 12 (2020), 3005–3018.

[58] Jie Liu, Bogdan Nicolae, and Dong Li. 2022. Lobster: Load balance-aware I/O for

distributed DNN training. In Proceedings of the 51st International Conference on

Parallel Processing (ICPP). 1–11.

[59] Krishna T Malladi, Mu-Tien Chang, John Ping, and Hongzhong Zheng. 2015.

FAME: A fast and accurate memory emulator for new memory system

architecture exploration. In 2015 IEEE 23rd International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS). IEEE, 43–46.

[60] Jayashree Mohan, Amar Phanishayee, Janardhan Kulkarni, and Vijay

Chidambaram. 2022. Looking Beyond GPUs for DNN Scheduling on

Multi-Tenant Clusters. In 16th USENIX Symposium on Operating Systems Design

and Implementation (OSDI). 579–596.

[61] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay

Chidambaram. 2021. Analyzing and mitigating data stalls in DNN training.

Proceedings of the VLDB Endowment (PVLDB) 14, 5 (2021), 771–784.

[62] Derek G Murray, Jiří Šimša, Ana Klimovic, and Ihor Indyk. 2021. tf. data: a

machine learning data processing framework. Proceedings of the VLDB

Endowment (PVLDB) 14, 12 (2021), 2945–2958.

[63] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee,

and Matei Zaharia. 2020. Heterogeneity-Aware Cluster Scheduling Policies for

Deep Learning Workloads. In 14th USENIX Symposium on Operating Systems

Design and Implementation (OSDI). 481–498.

[64] Kelvin KW Ng, Henri Maxime Demoulin, and Vincent Liu. 2023. Paella:

Low-latency model serving with software-defined gpu scheduling. In

Proceedings of the 29th Symposium on Operating Systems Principles (SOSP).

595–610.

[65] Michael Norman, Vince Kellen, Shava Smallen, Brian DeMeulle, Shawn Strande,

Ed Lazowska, Naomi Alterman, Rob Fatland, Sarah Stone, Amanda Tan, et al.

2021. Cloudbank: Managed services to simplify cloud access for computer

science research and education. In Practice and Experience in Advanced Research

Computing (PEARC). 1–4.

[66] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

et al. 2019. Pytorch: An imperative style, high-performance deep learning

library. Advances in Neural Information Processing Systems (NIPS) 32 (2019).

[67] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger,

Qirong Ho, Hao Zhang, Gregory R Ganger, and Eric P Xing. 2021. Pollux:

Co-adaptive cluster scheduling for goodput-optimized deep learning. In 15th

USENIX Symposium on Operating Systems Design and Implementation (OSDI).

[68] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

2015. Imagenet large scale visual recognition challenge. International journal of

computer vision (IJCV) 115 (2015), 211–252.

[69] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared

Casper, and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion

parameter language models using model parallelism. arXiv preprint

arXiv:1909.08053 (2019).

[70] Dheeraj Sreedhar, Vaibhav Saxena, Yogish Sabharwal, Ashish Verma, and

Sameer Kumar. 2018. Efficient training of convolutional neural nets on large

distributed systems. In 2018 IEEE International Conference on Cluster Computing

(CLUSTER). IEEE, 392–401.

[71] Foteini Strati, Xianzhe Ma, and Ana Klimovic. 2024. Orion: Interference-aware,

Fine-grained GPU Sharing for ML Applications. In Proceedings of the Nineteenth

European Conference on Computer Systems (EuroSys). 1075–1092.

[72] Yifan Sun, Trinayan Baruah, Saiful A Mojumder, Shi Dong, Xiang Gong, Shane

Treadway, Yuhui Bao, Spencer Hance, Carter McCardwell, Vincent Zhao, et al.

2019. MGPUSim: Enabling multi-GPU performance modeling and optimization.

In Proceedings of the 46th International Symposium on Computer Architecture

(ISCA). 197–209.

[73] Taegeon Um, Byungsoo Oh, Byeongchan Seo, Minhyeok Kweun, Goeun Kim,

and Woo-Yeon Lee. 2023. Fastflow: Accelerating deep learning model training

with smart offloading of input data pipeline. Proceedings of the VLDB

Endowment (PVLDB) 16, 5 (2023), 1086–1099.

[74] Guanhua Wang, Kehan Wang, Kenan Jiang, Xiangjun Li, and Ion Stoica. 2021.

Wavelet: Efficient DNN training with tick-tock scheduling. Proceedings of

Machine Learning and Systems (MLSys) 3 (2021), 696–710.

[75] Meng Wang, Gus Waldspurger, and Swaminathan Sundararaman. 2024. A

Selective Preprocessing Offloading Framework for Reducing Data Traffic in DL

Training. In Proceedings of the 16th ACM Workshop on Hot Topics in Storage and

File Systems (HotStorage). 63–70.

[76] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. 2023.

Transparent GPU Sharing in Container Clouds for Deep Learning Workloads. In

20th USENIX Symposium on Networked Systems Design and Implementation

(NSDI). 69–85.

[77] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,

Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu

Zhang, et al. 2018. Gandiva: Introspective cluster scheduling for deep learning.

In 13th USENIX Symposium on Operating Systems Design and Implementation

(OSDI). 595–610.

[78] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui

Feng, Wei Lin, and Yangqing Jia. 2020. AntMan: Dynamic Scaling on GPU

Clusters for Deep Learning. In 14th USENIX Symposium on Operating Systems

Design and Implementation (OSDI). 533–548.

[79] Lijie Xu, Shuang Qiu, Binhang Yuan, Jiawei Jiang, Cedric Renggli, Shaoduo Gan,

Kaan Kara, Guoliang Li, Ji Liu, Wentao Wu, et al. 2022. In-database machine

learning with corgipile: Stochastic gradient descent without full data shuffle. In

Proceedings of the 2022 International Conference on Management of Data

(SIGMOD). 1286–1300.

[80] Chih-Chieh Yang and Guojing Cong. 2019. Accelerating data loading in deep

neural network training. In 2019 IEEE 26th International Conference on High

Performance Computing, Data, and Analytics (HiPC). IEEE, 235–245.

[81] Peifeng Yu and Mosharaf Chowdhury. 2020. Fine-Grained GPU Sharing

Primitives for Deep Learning Applications. In Proceedings of Machine Learning

and Systems (MLSys), I. Dhillon, D. Papailiopoulos, and V. Sze (Eds.), Vol. 2.

98–111.

[82] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and Ion Stoica. 2023.

SHEPHERD: Serving DNNs in the wild. In 20th USENIX Symposium on

Networked Systems Design and Implementation (NSDI). 787–808.

[83] Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang, Mingxia Li, Fan Yang,

Qianxi Zhang, Binyang Li, Yuqing Yang, Lili Qiu, et al. 2023. Silod: A co-design

of caching and scheduling for deep learning clusters. In Proceedings of the

Eighteenth European Conference on Computer Systems (EuroSys). 883–898.

[84] Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang, Fan Yang, Lidong Zhou,

Mao Yang, Francis CM Lau, Yuqi Wang, Yifan Xiong, et al. 2020. HiveD: Sharing

a GPU Cluster for Deep Learning with Guarantees. In 14th USENIX Symposium

on Operating Systems Design and Implementation (OSDI). 515–532.

[85] Hanyu Zhao, Zhi Yang, Yu Cheng, Chao Tian, Shiru Ren, Wencong Xiao, Man

Yuan, Langshi Chen, Kaibo Liu, Yang Zhang, et al. 2023. Goldminer: Elastic

scaling of training data pre-processing pipelines for deep learning. Proceedings

of the ACM on Management of Data 1, 2 (2023), 1–25.

[86] Mark Zhao, Emanuel Adamiak, and Christos Kozyrakis. 2024. cedar:

Composable and Optimized Machine Learning Input Data Pipelines. arXiv

preprint arXiv:2401.08895 (2024).

[87] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan, Mustafa

Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, et al. 2022.

Understanding data storage and ingestion for large-scale deep recommendation

model training: Industrial product. In Proceedings of the 49th Annual

International Symposium on Computer Architecture (ISCA). 1042–1057.

[88] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu,

Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. 2023. Pytorch

fsdp: experiences on scaling fully sharded data parallel. arXiv preprint

arXiv:2304.11277 (2023).

[89] Yihao Zhao, Yuanqiang Liu, Yanghua Peng, Yibo Zhu, Xuanzhe Liu, and Xin Jin.

2022. Multi-resource interleaving for deep learning training. In Proceedings of

the ACM SIGCOMM 2022 Conference (SIGCOMM). 428–440.

[90] Yue Zhu, Fahim Chowdhury, Huansong Fu, Adam Moody, Kathryn Mohror,

Kento Sato, and Weikuan Yu. 2018. Entropy-aware I/O pipelining for large-scale

deep learning on HPC systems. In 2018 IEEE 26th International Symposium on

Modeling, Analysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS). IEEE, 145–156.

1932

	Abstract
	1 Introduction
	2 Design Features
	2.1 Time Emulation
	2.2 Memory Emulation
	2.3 Distributed System Support
	2.4 Sharing Support
	2.5 Applications and Use Cases
	2.6 Framework for Unification and Extensibility
	2.7 Implementation Efforts

	3 Case Studies of Supported Research
	3.1 Data Stall Analysis
	3.2 Preprocessing Disaggregation
	3.3 Data Loader Optimization
	3.4 Distributed Training Optimization
	3.5 GPU Scheduling
	3.6 GPU Sharing

	4 Micro-Optimizations
	4.1 Cache Small Files
	4.2 Async Batch
	4.3 File Grouping

	5 Discussion
	5.1 Non-goals
	5.2 Future extensions

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

