
Infinite Stream Estimation under Personalized𝑤-Event Privacy
Leilei Du

Hunan University

Changsha, China

leileidu@hnu.edu.cn

Peng Cheng

Tongji University

Shanghai, China

cspcheng@tongji.edu.cn

Lei Chen

HKUST (GZ) & HKUST

Guangzhou & HK SAR, China

leichen@cse.ust.hk

Heng Tao Shen

Tongji University & UESTC

Shanghai & Chengdu, China

shenhengtao@hotmail.com

Xuemin Lin

Shanghai Jiaotong University

Shanghai, China

xuemin.lin@gmail.com

Wei Xi

Xi’an Jiaotong University

Xi’an, China

xiwei@xjtu.edu.cn

ABSTRACT
Streaming data collection is indispensable for stream data anal-

ysis, such as event monitoring. However, publishing these data

directly leads to privacy leaks.𝑤-event privacy is a valuable tool

to protect individual privacy within a given time window while

maintaining high accuracy in data collection. Most existing𝑤-event

privacy studies on infinite data stream only focus on homogeneous

privacy requirements for all users. In this paper, we propose per-

sonalized 𝑤-event privacy protection that allows different users

to have different privacy requirements in private data stream esti-

mation. Specifically, we design a mechanism that allows users to

maintain constant privacy requirements at each time slot, namely

Personalized Window Size Mechanism (PWSM). Then, we propose

two solutions to accurately estimate stream data statistics while

achieving𝒘-Event 𝝐-Personalized Differential Privacy ((𝒘 ,𝝐)-EPDP),
namely Personalized Budget Distribution (PBD) and Personalized

Budget Absorption (PBA). PBD always provides at least the same

privacy budget for the next time step as the amount consumed in

the previous release. PBA fully absorbs the privacy budget from the

previous 𝑘 time slots, while also borrowing from the privacy bud-

get of the next 𝑘 time slots, to increase the privacy budget for the

current time slot. We prove that both PBD and PBA outperform the

state-of-the-art private stream estimation methods while satisfying

the privacy requirements of all users. We demonstrate the efficiency

and effectiveness of our PBD and PBA on both real and synthetic

datasets, compared with the recent uniformity𝑤-event approaches,

Budget Distribution (BD) and Budget Absorption (BA). Our PBD

achieves 68% less error than BD on average on real datasets. Besides,

our PBA achieves 24.9% less error than BA on average on synthetic

datasets.
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Figure 1: Different event window sizes for different time slots.

The source code, data, and/or other artifacts have been made available at

https://github.com/dulei715/DynamicWEventCode.

1 INTRODUCTION
With the popularity of smart devices and high-quality wireless

networks, people can easily access the internet and utilize online

services. They continuously report data to platforms and receive

services like log stream analysis [34], event monitoring [19], and

video querying [27]. To provide better services, these platforms

collect data and conduct real-time analysis over aggregated data

streams.

However, collecting stream data directly poses severe privacy

risks, causing users to refuse communication with platforms. For

instance, an AIDS patient may decline to participate in an investi-

gation due to privacy concerns [18]. To resolve this conflict, differ-

ential privacy (DP) is proposed to protect individual privacy while

ensuring accurate data estimation [11].

Recently,𝑤-event privacy based on DP has emerged for private

stream data collection and analysis [29, 30, 33]. It effectively protects

the privacy of 𝑤 consecutive related events while offering accu-

rate stream statistics. However, different users may have different

privacy requirements. For instance, entertainers may be reluctant

to reveal too much about their locations (i.e., large𝑤-event size),

while street artists may be willing to expose their locations (i.e.,

small𝑤-event size) for more attention. Thus, if we fix the window

size𝑤 for all users, it is hard to make everyone satisfied.

We illustrate an example of online car-hailing shown in Figure 1.

Example 1. Consider a scenario with 100 drivers 𝑈 =

{𝑢1, ..., 𝑢100} who share their locations from {𝑙𝑜𝑐1, ..., 𝑙𝑜𝑐5} at each
time slot. Each driver 𝑢𝑖 is protected by 𝑤𝑖 -event privacy, meaning
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their location data is safeguarded through 𝜖-DP across at least 𝑤𝑖

consecutive time slots, where 𝜖 represents their required privacy pro-
tect stength. For example, 𝑢1 requires location protection across any
4 consecutive time slots, while 𝑢99 and 𝑢100 need protection across
any 8 consecutive time slots. For the drivers 𝑢𝑖 ∈ 𝑈 \{𝑢99, 𝑢100}, the
window size does not exceed 4.

Under traditional𝑤-event privacy, satisfying all drivers’ privacy
needs requires setting the event window size to the maximum value
(i.e., 𝑤 = 8) and making full use of the privacy budget to achieve
high utility while maintaining 8-event privacy. Let 𝐴𝐸𝑎𝑣𝑔 denote
the average square error at each time slot, defined as the variance
when adding Laplace noise (i.e., 𝐴𝐸𝑎𝑣𝑔 = 2𝑏2 = 2 ×

(︂
1

𝜖/𝑤

)︂
2

). With a total
privacy budget 𝜖 of 1 and using the Uniform method [22], the average
square error at each time slot under 8-event privacy is 𝐴𝐸𝑎𝑣𝑔 = 2 ×
( 𝑤𝜖 )

2 = 128. However, the first 98 drivers do not actually need 8-
event privacy. By setting the window size to 𝑤 = 4 and using the
threshold method [20] (or the sample method [20]), we can achieve
𝐴𝐸𝑎𝑣𝑔 ≈ 2 × ( 𝑤𝜖 )

2 = 32, which is significantly lower than the error
from traditional 8-event privacy.

In this paper, we define the Personalized𝑤-Event Private Pub-

lishing for Infinite Data Streams (PWEPP-IDS) problem to model

personalized privacy requirements in stream data publication. To

solve PWEPP-IDS, there are two challenges: 1) effectively unifying

the privacy budget across all users into a single value to maximize

publication utility; 2) effectively distribute each user’s personal-

ized privacy budget to their personalized window size to maximize

publication utility.

To improve publication utility, we address PWEPP-IDS using

the centralized DP model [11], which requires a single centralized

privacy budget for publishing statistics at each time slot. However,

users have different personalized privacy budgets (not the same

budgets), traditionally, satisfying everyone’s privacy requirements

means selecting theminimum budget among all users, which results

in the lowest utility. How to use a privacy budget higher than the
minimum one to achieve higher utility while satisfying the privacy re-
quirement of user with the minimum privacy? It seems unachievable

at a glance. We solve this challenge through elaborately applying

the Sampling Mechanism [20]. Our method theoretically guaran-

tees that even though the selected unified privacy budget is higher

than the minimum privacy budget, no privacy leakages for any

users exist.

Intuitively, time slots with higher rates of change contain more

valuable information and are thus more important. To maximize

utility, we need to allocate large privacy budgets to publications

at these important time slots while approximating others (allocat-

ing none). How to identify important time slots and allocate privacy
budgets to achieve maximum publication utility? To address this chal-
lenge, we design two methods: Personalized Budget Distribution

(PBD) and Personalized Budget Absorption (PBA). Both methods

identify important time slots by measuring the dissimilarity be-

tween current and historical statistics. The key difference lies in

their assumption: PBD assumes stream data has a stable and high

rate of change. Thus, it allocates budgets to each publication in an

exponentially decreasing fashion per window. PBA, however, as-

sumes stream data has an unstable and low rate of change. Thus, it

skipps or approximates many less important publications. Besides,

it maximizes the accuracy of important publications by utilizing

unused budget from skipped publications while nullifying future

time slot budgets. We prove that both PBD and PBA satisfy𝒘-Event
𝝐-Personalized Differential Privacy ((𝒘 ,𝝐)-EPDP) and provide their

average error upper bounds. We summarize our contributions as

follows.

• We formally define𝒘-Event 𝝐-Personalized Differential Privacy

for PWEPP-IDS in Section 3.

• We propose Personalized Window Size Mechanism (PWSM) and

two methods, namely Personalized Budget Distribution (PBD)

and Personalized Budget Absorption (PBA), to support personal-

ized𝒘-event privacy with theoretical analyses in Section 4.

• We test our methods on both real and synthetic data sets to

demonstrate their efficiency and effectiveness in Section 5.

2 RELATEDWORK
2.1 Data Stream Estimation under Differential

Privacy
Based on the privacy model, there are two types of data stream es-

timation methods: centralized differential privacy [11] (CDP) based

methods and local differential privacy [4] (LDP) based methods.

Data Stream Estimation under CDP. Dwork et al. first address

the problem of Differential Privacy (DP) on data streams [13]. They

define two types of DP levels: event-level differential privacy (event-

DP) and user-level differential privacy (user-DP).

In event-DP, each single event is hidden in statistic queries.

Dwork et al. focus on the finite event scenarios and propose a

binary tree method to achieve high statistical utility while main-

taining event-DP [13]. Chan et al. extend it to infinite cases, and

produce partial summations for binary counting [7]. Dwork et al.

introduce a cascade buffer counter that updates adaptively based

on stream density [12]. Bolot et al. propose decayed privacy which

reduces the privacy costs for past data [6]. Chen et al. develop

PeGaSus, a perturb-group-smooth framework for multiple queries

under event-DP [8]. However, event-DP assumes all element in a

stream are independent, making it unsuitable for correlated data

stream publishing.

In user-DP, all events for each user are hidden in statistic queries.

Fan et al. propose the FAST algorithm with a sampling-and-filtering

framework, counting finite stream data under user-DP [17]. Cum-

mings et al. address heterogeneous user data, estimating population-

level means while achieving user-DP [9]. However, they only con-

sider finite data. Offering user-DP for infinite data requires infinite

perturbation, leading to poor long-term utility [22].

To bridge the gap between event-DP and user-DP, Kellaris et

al. propose 𝑤-event DP for infinite streams [22]. It ensures 𝜖-DP

for any group of events within a time window of size 𝑤 . They

introduce two methods, Budget Distribution and Budget Absorption,
to optimize privacy budget use and estimate statistics effectively.

However, neither method handles stream data with significant

changes. Wang et al. apply the𝑤-event concept to the FASTmethod,

proposing a multi-dimensional stream release mechanism called

ResueDP, which achieves accurate estimation for both rapid and

slow data stream changes [30]. A limitation of all these methods is

their reliance on a trusted server to ensure privacy.
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Data Stream Estimation under LDP. To overcome the depen-

dence on a trusted server, LDP [4] has recently been proposed

and adopted by many major companies such as Microsoft, Apple

and Google. Erlingsson et al. introduce RAPPOR to estimate fi-

nite streams under LDP [16]. They design a two-layer randomized

response mechanism (i.e., permanent randomized response and

instantaneous randomized response) to protect each individual’s

data. However, RAPPOR is limited to uncorrelated stream data. To

address the problem of correlated time series data, Erlingsson et

al. develop a new privacy model that introduces shuffling to am-

plify the LDP privacy level [15]. However, this model only suits

finite stream data. Joseph et al. propose THRESH for evolving data

under LDP [21], which consumes privacy budget at global update

time slots selected by users’ LDP voting. However, it is not appli-

cable to infinite streams as it assumes a fixed number of global

updates. Wang et al. extend event-level privacy from CDP to LDP

and design the efficient ToPL method under event LDP [31]. Nev-

ertheless, event-level LDP focuses solely on event-level privacy,

lacking privacy protection for correlated data in streams. Bao et al.

propose an (𝜖, 𝛿)-LDP method (called CGM) for finite streaming

data collection using the analytic Guassian mechanism, but requires

periodic privacy budget renewal [3]. Ren et al. introduce LDP-IDS

for infinite streaming data collection and analysis under𝑤-event

LDP [29]. They propose two budget allocation methods and two

population allocation methods, bridging the gap between event

LDP and user LDP while improving estimation accuracy. However,

all these methods cannot be adopted to support personalized event

window sizes.

2.2 Non-Uniformity Differential Privacy
Recently, some studies address the non-uniform privacy require-

ments among items (table columns) or records (table rows) [28].

Alaggan et al. first examine scenarios where each database in-

stance comprises a single user’s profile [1]. They focus on varying

privacy requirements for different items and formally define Het-

erogeneous Differential Privacy (HDP).

Jorgensen et al. investigate the privacy preservation for individ-

ual rows, introducing Personalized Differential Privacy (PDP) [20].

They design two mechanisms leveraging non-uniform privacy re-

quirements to achieve better utility than standard uniform DP.

Kotsogiannis et al. recognize that different data have different sensi-

tivity, then define One-side Differential Privacy (OSPD) and propose

algorithms that truthfully release non-sensitive record samples to

enhance accuracy in DP-solutions [23].

Andrés et al. introduce a novel non-uniform privacy concept

called Geo-Indistinguishability (Geo-I), where the privacy level for

any point increases as the distance to this point decreases [2]. Wang

et al. [32] and Du et al. [10] explore PDP in spatial crowdsourcing,

and develop highly effective private task assignment methods to

satisfy diverse workers’ privacy and utility requirements. Liu et al.

investigate HDP in federated learning [26]. They assume different

clients hold DP budget and divide them into private and public

parts, then propose two methods to project the “public” clients’

models into “private” clients’ models to improve the joint model’s

utility. However, all above studies are not suitable for stream data.

Table 1: Summary for related work.

Model Types Methods Is infinite
and correlated

Is personalized
privacy

Finite B-tree [13] % %

Infinite B-tree [7] % %
Adaptive-density

Counter [12]

% %

Decayed Privacy [6] % %
event-level privacy

PeGaSus [8] % %

FAST [17] " %
user-level privacy Private heterogeneous

mean estimation [9]

" %

BD & BA [22] " %

Centralized DP

𝑤-event privacy

ResuseDP [30] " %

RAPPOR [16] % %
event-level privacy

ToPL [31] % %

Shuffling LDP [15] " %

THRESH [21] " %user-level privacy

CGM [3] " %

Local DP

𝑤-event privacy LDP-IDS [29] " %

Item heterogeneous HDP [1] % %

PDP [20] % "

OSDP [23] % "

Geo-I [2] % "

PWSM, VPDM [32] % "

PUCE, PGT [10] % "

Record heterogenous

PFA, PFA+ [26] % "

Our mechanisms " "

In this paper, we propose Personalized Window Size Mechanism

(PWSM) with two implementation methods: Personalized Budget

Distribution (PBD) and Personalized Budget Absorption (PBA).

Our approach extends traditional𝑤-event privacy mechanisms by

introducing 𝝐-personalized differential privacy methods to support

personalized privacy requirements. This enhancement enables our

mechanism and methods to handle both infinite correlated data

streams and personalized privacy requirements, building upon the

foundations of traditional𝑤-event privacy mechanisms.

3 PROBLEM SETTINGS
In this section, we first introduce key concepts, including data

streams. Next, we present the new definition of 𝒘-Event 𝝐-
Personalized Differential Privacy. Finally, we provide the problem

definition: Personalized 𝑤-Event Private Publishing for Infinite

Data Streams (PWEPP-IDS). Table 2 outlines the notations used

throughout this paper.

3.1 Data Stream
Definition 1. (Data Stream [22]). Let 𝐷𝑡 ∈ D be a database with

𝑑 columns and 𝑛 rows (each row representing a user) at 𝑡-th time

slot. The infinite database sequence 𝑆 = [𝐷1, 𝐷2, . . .] is called a data
stream, where 𝑆 [𝑡] is the 𝑡-th element in 𝑆 (i.e., 𝑆 [𝑡] = 𝐷𝑡 ).

For any data stream 𝑆 , its substream between time slot 𝑡𝑙 and 𝑡𝑟
(where 𝑡𝑙 < 𝑡𝑟 ) is noted as 𝑆𝑡𝑙 ,𝑡𝑟 = [𝐷𝑡𝑙 , 𝐷𝑡𝑙+1, . . . , 𝐷𝑡𝑟 ]. For 𝑡𝑙 = 1,

we denote 𝑆𝑡 = [𝐷1, 𝐷2, . . . , 𝐷𝑡 ] and call it the stream prefix of 𝑆 .

Definition 2. (Data Stream Count Publishing [22]). Let 𝑄 : D →
R𝑑 be a count query. Then,𝑄 (𝑆 [𝑡]) = 𝑄 (𝐷𝑡 ) = 𝒄𝑡 is the count data
to be published at time slot 𝑡 , where 𝒄𝑡 ( 𝑗) represents the count of
the 𝑗-th column of 𝐷𝑡 . The infinite count data series [𝒄1, 𝒄2, . . .] is
called a data stream count publishing.

3.2 𝒘-Event 𝝐-Personalized Differential Privacy
Definition 3. (𝑤-Neighboring Stream Prefixes [7, 22]). Let𝑤 be a

positive integer, two stream prefixes 𝑆𝑡 , 𝑆
′
𝑡 are𝑤-neighboring (i.e.,

𝑆𝑡 ∼𝑤 𝑆 ′𝑡 ), if
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Table 2: Notations.
Notations Description

D the database domain

𝐷𝑡 a database at time slot 𝑡

𝑆 a data stream

𝑢𝑖 the 𝑖-th user

𝒙𝑖,𝑡 𝑢𝑖 ’s data at time slot 𝑡

𝒄𝑡 a real statistical histogram at time slot 𝑡

𝒓𝑖 an estimation statistic histogram at time slot 𝑡

𝑤𝑖 𝑢𝑖 ’s privacy window size

𝜖𝑖 𝑢𝑖 ’s privacy budget

(1) for each 𝑆𝑡 [𝑘], 𝑆 ′𝑡 [𝑘] such that 𝑘 ≤ 𝑡 and 𝑆𝑡 [𝑘] ≠ 𝑆 ′𝑡 [𝑘], it holds
that 𝑆𝑡 [𝑘] and 𝑆 ′𝑡 [𝑘] are neighboring [22] in centralized DP,

and

(2) for each 𝑆𝑡 [𝑘1], 𝑆𝑡 [𝑘2], 𝑆 ′𝑡 [𝑘1], 𝑆 ′𝑡 [𝑘2] with 𝑘1 < 𝑘2, 𝑆𝑡 [𝑘1] ≠
𝑆 ′𝑡 [𝑘1] and 𝑆𝑡 [𝑘2] ≠ 𝑆 ′𝑡 [𝑘2], it holds that 𝑘2 − 𝑘1 + 1 ≤ 𝑤 .

Definition 4. (𝒘-Event 𝝐-Personalized Differential Privacy, (𝒘 ,𝝐)-
EPDP). LetM be amechanism that takes a stream prefix of arbitrary

size as input. Let O be the set of all possible outputs of M. Given a

universe of users 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢 |𝑈 | }, thenM is (𝒘, 𝝐)-EPDP if

∀𝑂 ⊆ O, ∀𝑤𝑖 ∈ 𝒘 and ∀𝑆𝑡 , 𝑆′𝑡 satisfying 𝑆𝑡 ∼𝑤𝑖 𝑆
′
𝑡 , it holds that

Pr[𝑀 (𝑆𝑡 ) ∈ 𝑂 ] ≤ 𝑒𝜖𝑖 Pr[𝑀 (𝑆′𝑡 ) ∈ 𝑂 ],

where𝑢𝑖 ∈ 𝑈 requires𝑤𝑖 -event privacy and 𝜖𝑖 denotes𝑢𝑖 ’s privacy

budget requirement within𝑤𝑖 continuous events.

We denote the pair (𝑤𝑖 , 𝜖𝑖 ) as 𝑢𝑖 ’s privacy requirement. Specif-
ically, when 𝑤𝑖 = 1, it collapses as 𝝐-Personalized Differential

Privacy (𝝐-PDP) [20]. Besides, when (𝑤𝑖 , 𝜖𝑖 ) becomes constant (i.e.,

(𝑤, 𝜖)), it collapses as𝑤-Event Privacy[22, 29].

3.3 Definition of PWEPP-IDS
Given a data stream 𝑆 , the server aims to obtain the data stream

count publishing, denoted as 𝒄 = [𝒄1, 𝒄2, . . .]. However, to protect

user privacy, the server only receives the obfuscated version of

the data stream, 𝑆 ′, and subsequently publishes the estimated data

stream count (i.e., estimation count), denoted as 𝒓 = [𝒓1, 𝒓2, . . .].
We now define the problem as follows.

Definition 5. (PWEPP-IDS). Given a user set𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑛},
each 𝑢𝑖 holds a privacy requirement pair (𝑤𝑖 , 𝜖𝑖 ) and a series data

𝒙𝑖,𝑡 for 𝑡 ∈ N+
. All the 𝒙𝑖,𝑡 for 𝑢𝑖 ∈ 𝑈 at time slot 𝑡 form 𝐷𝑡 . All

the 𝐷𝑡 form an infinite data stream 𝑆 = [𝐷1, 𝐷2, . . .]. PWEPP-IDS

is to publish an obfuscated histogram 𝒓 = [𝒓1, 𝒓2, . . .] of 𝑆 at each

time slot 𝑡 achieving (𝒘, 𝝐)-EPDP with the error between 𝒓 and 𝒄
minimized, namely ∀𝑇 ∈ N+

:

min

𝜖𝜃

∑︂
𝑡 ∈ [𝑇 ]

∥𝒓𝑡 − 𝒄𝑡 ∥2

2

𝑠.𝑡 .

𝑡∑︂
𝑘=min (𝑡−𝑤𝑖+1,1)

𝜖𝑖,𝑘 ≤ 𝜖𝑖 , ∀𝑢𝑖 ∈ 𝑈

where 𝜖𝑖,𝑘 indicates the privacy budget at time slot 𝑘 .

4 PERSONALIZEDWINDOW SIZE
MECHANISM

In this section, we analyze the errors in reporting obfuscated

data stream counts and introduce Optimal Budget Selection (OBS)

method to minimize these errors. We then propose Personalized

Window Size Mechanism (PWSM) to address PWEPP-IDS. The core

idea of PWSM is to select the optimal privacy budget 𝜖𝑜𝑝𝑡 (𝑡) and
report obfuscated count results that satisfy 𝜖𝑜𝑝𝑡 (𝑡)-DP at each time

slot 𝑡 .

4.1 Reporting Errors
For each time slot, we use the Sampling Mechanism (SM) [20] to

satisfy all users’ privacy requirements (i.e., achieving 𝝐-PDP). The
SM consists of two steps: sample (𝑆𝑀𝑠 ) and disturb (𝑆𝑀𝑑 ). In 𝑆𝑀𝑠 ,

the server first sets a privacy budget threshold 𝜖𝜃 , then constructs

a sampling subset 𝐷𝑆 by appending items 𝑥𝑖 with 𝜖𝑖 ≥ 𝜖𝜃 to 𝐷𝑆 ,

while sampling other items 𝑥 𝑗 with 𝜖 𝑗 < 𝜖𝜃 at a probability of

𝑝 𝑗 =
𝑒
𝜖𝑗 −1

𝑒𝜖𝜃 −1
. In 𝑆𝑀𝑑 , the server employs a DP mechanism (e.g., the

Laplace Mechanism) to report an obfuscated result that achieves

𝜖𝜃 -DP.

SM introduces two types of errors: sampling error and noise error.
At each time slot 𝑡 , given a privacy budget threshold 𝜖𝜃 , the data

reporting error is 𝑒𝑟𝑟 (𝜖𝜃 ) = 𝑒𝑟𝑟𝑠 (𝜖𝜃 ) + 𝑒𝑟𝑟𝑑𝑝 (𝜖𝜃 ). Here, 𝑒𝑟𝑟𝑠 (𝜖𝜃 )
represents the sampling error from sampling users with privacy

budgets below 𝜖𝜃 , while 𝑒𝑟𝑟𝑑𝑝 (𝜖𝜃 ) represents the noise error from
adding noise to achieve 𝜖𝜃 -DP. Next, we introduce these sampling

and noise errors in detail.

Definition 6. (Sampling Error [20]). Given a privacy budget thresh-

old 𝜖𝜃 and𝑚 kinds of privacy budget requirements �̃�1, �̃�2, . . . , �̃�𝑚
from 𝑛 users with �̃�𝑖 < �̃� 𝑗 for 𝑖 < 𝑗 and 𝑖, 𝑗 ∈ [𝑚] where �̃�𝑖 is

declared by 𝑛𝑖 users (
𝑚∑︁
𝑖=1

𝑛𝑖 = 𝑛), the sampling error 𝑒𝑟𝑟𝑠 (𝜖𝜃 ) is
defined as

𝑒𝑟𝑟𝑠 (𝜖𝜃 ) = 𝑉𝑎𝑟 (𝑐𝑜𝑢𝑛𝑡 (𝒓𝑡 ) ) + 𝑏𝑖𝑎𝑠 (𝒓𝑡 )2 =
∑︂

�̃�𝑖<𝜖𝜃

𝑛𝑖𝑝𝑖 (1 − 𝑝𝑖 ) +
⎛⎜⎝

∑︂
�̃�𝑖<𝜖𝜃

𝑛𝑖 (1 − 𝑝𝑖 )
⎞⎟⎠

2

,

(1)

where 𝑝𝑖 =
𝑒�̃�𝑖 −1

𝑒𝜖𝜃 −1
.

Definition 7. (Noise Error). The noise error 𝑒𝑟𝑟𝑑𝑝 (𝜖𝜃 ) is defined
as the error of the Laplace mechanism, namely,

𝑒𝑟𝑟𝑑𝑝 (𝜖𝜃 ) =
2

𝜖2

𝜃

.
(2)

Various metrics exist to measure the errors of Laplace mecha-

nisms for noise error, including variance [20, 29], scale [14, 22], and

(𝛼, 𝛽)-usefulness [5, 14]. In this work, we employ variance as our

metric [20].

Based on Equations (1) and (2), we can observe that 𝑒𝑟𝑟𝑠 depends

on 𝑛𝑖 , �̃�𝑖 and 𝜖𝜃 , and is independent of 𝒓𝑡 . Similarly, 𝑒𝑟𝑟𝑑𝑝 depends

on 𝜖𝜃 , and is independent of 𝒓𝑡 .

4.2 Optimal Budget Selection
Given the privacy budget requirements (𝜖1,𝑡 , 𝜖2,𝑡 , . . . , 𝜖𝑛,𝑡 ) of 𝑛

users, we can determine the frequency of each privacy budget

requirement and select the optimal 𝜖𝜃 that minimizes the data re-

porting error 𝑒𝑟𝑟 . This process is detailed in Algorithm 1.

Taking 𝑛 privacy budgets as input, the Optimal Budget Selec-

tion (OBS) algorithm counts the different privacy budgets. Assume

there are �̃� distinct privacy budgets, with 𝑛𝑘 users requiring �̃�𝑘
for 𝑘 ∈ [�̃�]. Let �̃� be the set of different privacy budget and 𝑁 be

their corresponding frequencies (Lines 1-2). Then, OBS finds the

minimum reporting error 𝑒𝑟𝑟𝑚𝑖𝑛 (lines 4-8). Specifically, it iterates
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Algorithm 1: Optimal Budget Selection (OBS)

Input: personalized privacy budget set 𝝐 = (𝜖1, 𝜖2, . . . , 𝜖𝑛 )
Output: 𝜖𝑜𝑝𝑡 , 𝑒𝑟𝑟𝑚𝑖𝑛

1 Set �̃� = (�̃�1, �̃�2, . . . , �̃��̃� ) as the set of different 𝜖 ∈ 𝝐 ;

2 Set 𝑁 = (𝑛1, 𝑛2, . . . , 𝑛�̃� ) as the corresponding frequency of �̃�𝑘 ∈ �̃� ;

3 Initialize 𝑒𝑟𝑟𝑚𝑖𝑛 as the upper bound of error value;

4 for �̃�𝑘 ∈ �̃� do
5 𝑒𝑟𝑟 = 𝑒𝑟𝑟𝑠 (�̃�𝑘 ) + 𝑒𝑟𝑟𝑑𝑝 (�̃�𝑘 ) ;
6 if 𝑒𝑟𝑟 < 𝑒𝑟𝑟𝑚𝑖𝑛 then
7 𝑒𝑟𝑟𝑚𝑖𝑛 = 𝑒𝑟𝑟 ;

8 𝜖𝑜𝑝𝑡 as �̃�𝑘 ;

9 return 𝜖𝑜𝑝𝑡 , 𝑒𝑟𝑟𝑚𝑖𝑛

over all �̃�𝑘 ∈ �̃� and selects the value �̃�𝑘 with the smallest reporing

error 𝑒𝑟𝑟 = 𝑒𝑟𝑟𝑠 (�̃�𝑘 ) + 𝑒𝑟𝑟𝑑𝑝 (�̃�𝑘 ).

Example 2 (Running Example of the OBS Algorithm). Sup-
pose we have 10 privacy budgets as input: 𝝐 = (0.1, 0.4, 0.4, 0.1, 0.4, 0.4,
0.8, 0.8, 0.8, 0.4). OBS first determines �̃� = (0.1, 0.4, 0.8), �̃� = |�̃� | = 3,
and 𝑁 = (2, 5, 3). Based on these statistics, OBS iterates through the
3 privacy budgets in �̃� and calculates the errors: 𝑒𝑟𝑟1 = 0 + 2

0.12
= 200,

𝑒𝑟𝑟2 = 2 × 𝑒0.1−1

𝑒0.4−1

× (1 − 𝑒0.1−1

𝑒0.4−1

) + (2 × (1 − 𝑒0.1−1

𝑒0.4−1

) )2 + 2

0.42
= 15.31 and

𝑒𝑟𝑟3 = 2 × 𝑒0.1−1

𝑒0.8−1

× (1 − 𝑒0.1−1

𝑒0.8−1

) + 5 × 𝑒0.4−1

𝑒0.8−1

× (1 − 𝑒0.4−1

𝑒0.8−1

) + (2 × (1 −
𝑒0.1−1

𝑒0.8−1

) + 5 × (1 − 𝑒0.4−1

𝑒0.8−1

) )2 + 2

0.82
= 89.74. Finally, OBS returns 0.4 with

the minimal error 15.31.

4.3 Personalized Window Size Mechanism
Budget division [22, 29] is a traditional framework for publishing

private stream data under𝑤-event privacy. It comprises two basic

methods, namely Uniform and Sampling and two adaptive meth-

ods, namely Budget Distribution (BD) and Budget Absorption (BA).

The adaptive methods leverage the stream’s variation tendency,

resulting in more accurate obfuscated estimations.

In this subsection, we extend the adaptive budget division frame-

work to a personalized context and introduce our Personalized

Window Size Mechanism (PWSM). Based on PWSM, we propose

two methods: Personalized Budget Distribution (PBD) and Person-

alized Budget Absorption (PBA).

In real applications, users must specify their privacy budgets

and window sizes. System administrators first define a discretized

privacy budget range (e.g., {0.1, 0.5, 0.9}) and a window size range

(e.g., {40, 80, 120}). Then, they map ascending privacy budget values

to descending privacy budget levels (e.g., High, Medium, Low) and

ascending window size values to ascending window size levels

(e.g., Small, Medium, Large). Users can then select both a privacy

budget level and a window size level based on their needs and past

experience. After users submit these selections, the server converts

them into the corresponding values.

As shown in Algorithm 2, the PWSM algorithm takes three

inputs: the historical estimation 𝐻𝑖𝑠 , personalized privacy budget

𝝐 , and personalized window size set 𝒘 . Both 𝝐 and 𝒘 are fixed

values collected from all users during system initialization. PWSM

first calculates all users’ privacy budget resources 𝝐𝑡 at the current
time slot 𝑡 to satisfy (𝒘 ,𝝐)-EPDP (line 1). It then divides 𝝐𝑡 into

two parts: 𝝐 (1)𝑡 and 𝝐 (2)𝑡 (line 2). Using 𝝐 (1)𝑡 , PWSM calculates

Algorithm 2: PWSM

Input: historical estimation 𝐻𝑖𝑠 , privacy requirement (𝒘, 𝝐)
Output: 𝒓

1 Get the current privacy budgets 𝝐𝑡 of all users as 𝝐 and 𝒘;

2 Divide 𝝐𝑡 into two parts 𝝐 (1)
𝑡 and 𝝐 (2)

𝑡 satisfying 𝝐𝑡 = 𝝐 (1)
𝑡 + 𝝐 (2)

𝑡 ;

3 Calculate dissimilarity 𝑑𝑖𝑠 between current estimation and the last

estimation by 𝑆𝑀 (𝝐 (1)
𝑡 ) ;

4 Calculate the reporting error 𝑒𝑟𝑟 of current estimation by

𝑂𝐵𝑆 (𝝐 (2)
𝑡 ) ;

5 if 𝑑𝑖𝑠 >
√
𝑒𝑟𝑟 then

6 Calculate current estimation 𝒓 by 𝑆𝑀 (𝝐 (2)
𝑡 ) ;

7 else
8 Set current estimation 𝒓 as the last reporting value;

9 return 𝒓 ;

Figure 2: A non-null publishing example.

the dissimilarity 𝑑𝑖𝑠 between the current count value and the last

published one by invoking the SM method [20] (line 3). Next, it

sets the change threshold as the reporting error 𝑒𝑟𝑟 calculated with

𝝐 (2)𝑡 (line 4). Finally, PWSM adaptively decides whether to publish

a new obfuscated estimation or skip (i.e., use the last published one

to approximate) by comparing 𝑑𝑖𝑠 to
√
𝑒𝑟𝑟 (lines 5-9).

To determine whether to publish a new obfuscated estimation

or skip, we need to introduce a judgment measure called the per-
sonalized private dissimilarity measure.

Personalized Private Dissimilarity Measure. The person-

alized dissimilarity measure 𝑑𝑖𝑠∗ is defined as the absolute error

between the true statistic �̃�𝑡 under 𝑆𝑀𝑠 (i.e., the sample step of SM)

at current time slot 𝑡 and the last publishing 𝒓𝑙 , namely,

𝑑𝑖𝑠∗ =
1

𝑑

𝑑∑︂
𝑘=1

| �̃�𝑡 [𝑘 ] − 𝒓𝑙 [𝑘 ] | .

Our goal is to privately obtain the personalized dissimilarity 𝑑𝑖𝑠∗
using the optimal privacy budget 𝜖𝑜𝑝𝑡 calculated through 𝑂𝐵𝑆

algorithm. The personalized private dissimilarity measure 𝑑𝑖𝑠 is
defined as:

𝑑𝑖𝑠 = 𝑑𝑖𝑠∗ + 𝐿𝑎𝑝

(︃
1

𝑑 · 𝜖𝑜𝑝𝑡

)︃
,

where 𝐿𝑎𝑝 represents the Laplace mechanism.

4.4 Personalized Budget Distribution and
Personalized Budget Absorption

We first introduce some notations to further clarify PWSM in Algo-

rithm 2, and then propose two solutions to implement PWSM in

different scenarios.

Basic notations. For a sequence of publications (𝒓1, 𝒓2, ..., 𝒓𝑡 ) of
length 𝑡 , we define a null publishing as an approximation value and

non-null publishing as a new value. For any time slot 2 ≤ 𝜏 ≤ 𝑡 , we

refer to 𝒓𝜏−1 as the last reporting value (or last publishing) of time

slot 𝜏 . In the sequence (𝒓1, 𝒓2, ..., 𝒓𝜏 ), we define the most recent

non-null publishing 𝒓𝑙 where 𝑙 < 𝜏 as the last non-null publishing.

For example in Figure 2, the publications at time slots 𝜏, 𝜏 + 1, 𝜏 + 4
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Figure 3: A nullified time slot example.

Algorithm 3: Dissimilarity Calculation (DC)

Input: 𝐷𝑡 , current personalized privacy budget list 𝝐𝑡 , historical
data publication (𝒓1, 𝒓2, . . . , 𝒓𝑡−1 )

Output: 𝒓𝑡
1 𝜖𝑜𝑝𝑡= OBS(𝝐𝑡 ) ;

2 �̃�𝑡 = 𝑆𝑀𝑠 (𝐷𝑡 , 𝝐𝑡 , 𝜖𝑜𝑝𝑡 ) ;
3 �̃�𝑡 = 𝑄 (�̃�𝑡 ) ;
4 Get the last non-null publishing 𝒓𝑙 from (𝒓1, 𝒓2, . . . , 𝒓𝑡−1 ) ;
5 return 𝑑𝑖𝑠 = 1

𝑑

∑︁𝑑
𝑗=1

| �̃�𝑡 [ 𝑗 ] − 𝒓𝑙 [ 𝑗 ] | + 𝐿𝑎𝑝 (1/(𝑑 · 𝜖𝑜𝑝𝑡 ) ) ;

Algorithm 4: Personalized Budget Distribution

Input: 𝐷𝑡 , privacy requirement (𝒘, 𝝐), historical data publication
(𝒓1, 𝒓2, . . . , 𝒓𝑡−1 )

Output: 𝒓𝑡
1 Get the current window average budget 𝜖𝑖 = 𝜖𝑖/𝑤𝑖 for each 𝑖 ∈ [𝑛];
2 𝝐 (1)

𝑡 = (𝜖1/2, 𝜖2/2, . . . , 𝜖𝑛/2) ;
3 Get dissimilarity 𝑑𝑖𝑠 by DC(𝐷𝑡 , 𝝐

(1)
𝑡 , 𝒓1, ..., 𝒓𝑡−1) in Algorithm 3;

4 𝜖𝑟𝑚,𝑖 = 𝜖𝑖/2 − ∑︁𝑡−1

𝑘=𝑡−𝑤𝑖+1
𝜖
(2)
𝑖,𝑘

;

5 𝝐 (2)
𝑡 = (𝜖𝑟𝑚,1/2, 𝜖𝑟𝑚,2/2, . . . , 𝜖𝑟𝑚,𝑛/2) ;

6 𝜖
(2)
𝑜𝑝𝑡 , 𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 = OBS(𝝐 (2)

𝑡 );

7 if 𝑑𝑖𝑠 >

√︂
𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 then

8 �̃�
(2)
𝑡 = 𝑆𝑀𝑠 (𝐷𝑡 , 𝝐 (2)

𝑡 , 𝜖
(2)
𝑜𝑝𝑡 ) ;

9 �̃� (2)𝑡 = 𝑄 (�̃� (2)
𝑡 ) ;

10 return 𝒓𝑡 = 𝑆𝑀𝑑 (�̃� (2)𝑡 , 𝜖
(2)
𝑜𝑝𝑡 ) ;

11 else
12 return 𝒓𝑡 = 𝒓𝑡−1;

are non-null publishing, while those at 𝜏 + 2 and 𝜏 + 3 are null

publishing.

Given a privacy budget 𝜖 with window size𝑤 , the budget share

𝜖 = 𝜖/𝑤 represents the smallest unit of privacy budget. The target

is to maintain the total budget below 𝜖 within any𝑤 window while

maximizing utility. Assume publishing new obfuscated data costs

𝑥 budget shares (𝑥 > 1), the following 𝑥 − 1 time slots use approx-

imated values from their last reporting values. We refer to these

𝑥 −1 time slots as nullified time slots. For example, in Figure 3, with

𝜖 = 4 and𝑤 = 4, 𝜖 = 1. When time slot 𝜏 + 1 uses 3 shares, the time

slots 𝜏 + 2 and 𝜏 + 3 become nullified.

Personalized Budget Distribution (PBD). As shown in Algo-

rithm 4, PBD inputs the current user data 𝐷𝑡 , all users’ privacy

requirements, and historical data publication. The privacy budget

𝜖𝑖 of each user 𝑢𝑖 is divided into two parts: 1) calculate the dissimi-

larity between the current data distribution and the last published

obfuscated data distribution (denoted as Part𝐷𝐶 ) (Lines 2-3); 2)

calculate the new obfuscated publication at the current time slot

(denoted as Part𝑁𝑂𝑃 ) (Lines 4-6 and Lines 8-10).

Figure 4: An Information example for PBD.

In Part𝐷𝐶 , we allocate half of the average privacy budget per

time slot for dissimilarity calculation (i.e.,
𝜖𝑖

2𝑤𝑖
for 𝑢𝑖 ). The process

then calls the Dissimilarity Calculation (Algorithm 3) to determine

the dissimilarity. Within Algorithm 3, the OBS algorithm selects

the optimal budget threshold 𝜖𝑜𝑝𝑡 . Finally, it uses the SM [20] to

compute the dissimilarity 𝑑𝑖𝑠 (lines 2-5).

In Part𝑁𝑂𝑃 , we first calculate the remaining privacy budget 𝜖𝑟𝑚,𝑖

for each 𝑢𝑖 . We then set the publication privacy budget for each

𝑢𝑖 to half of 𝜖𝑟𝑚,𝑖 . Similar to dissimilarity calculation, we use the

OBS algorithm to determine the optimal privacy budget 𝜖
(2)
𝑜𝑝𝑡 and

its corresponding error 𝑒𝑟𝑟
(2)
𝑜𝑝𝑡 . At this point, we have obtained

two measurements: the dissimilarity 𝑑𝑖𝑠 and the square root of

error

√︂
𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 . We compare these two measurements to determine

whether to publish a new obfuscated statistic result or approximate

the current result with the last publication. If the 𝑑𝑖𝑠 is greater

than

√︂
𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 , it indicates that the difference between the current

data and the last published data exceeds the error of noise, then we

republish a new obfuscated statistic result. Otherwise, we take the

last published result instead.

We illustrate the process of Personalized Budget Distribution

with an example as follows:

Example 3. Suppose there are 𝑛 users distributed across 5 lo-
cations, forming a complete graph. Figure 4 illustrates the privacy
budget requirements, window size requirements and locations for the
first three users across time slots 1 to 5. Figure 5 demonstrates the
estimation process of PBD. The total privacy budget for each user 𝑢𝑖 is
evenly split into two parts, each containing 𝜖𝑖/2. The first part is allo-
cated for dissimilarity calculation, while the second is for publication
noise calculation. For instance, 𝜖1 is divided into 𝝐 (1)

1
(𝑢1) = 𝜖1/2 and

𝝐 (2)
1

(𝑢1) = 𝜖1/2. We compute the privacy budget usage 𝜖 (1)
𝑖,𝑡

for dis-

similarity and 𝜖 (2)
𝑖,𝑡

for noise statistic publication for each user at each
time slot. These values are recorded in an 𝑛 × 2 matrix at each time
slot in Figure 5. Using 𝑢1 as an example, 𝜖 (1)

1,𝑡
= 𝝐 (1)

1
(𝑢1)/𝑤1 = 𝜖1/8.

At time slot 1, 𝜖 (2)
1,1

= 𝝐 (2)
1

(𝑢1)/2 = 𝜖1/4. The algorithm calcu-

lates the dissimilarity 𝑑𝑖𝑠 at time slot 1 using all 𝜖 (1)
𝑖,1

, and the error

𝑒𝑟𝑟
(2)
𝑜𝑝𝑡 using all 𝜖 (2)

𝑖,1
. Assume 𝑑𝑖𝑠 >

√︂
𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 , then a new obfus-

cated statistic 𝒓1 is published at time slot 1. At time slot 2, assume

𝑑𝑖𝑠 ≤
√︂
𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 , then 𝜖

(2)
𝑖,2

is not used to publish a new obfuscated
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Figure 5: A process example for PBD.

statistic result, and its usage is set to zeros for all users. At time slot
3, 𝜖 (2)

1,3
= (𝜖1/2 − 𝜖

(2)
1,1

)/2 = 𝜖1/8. The vector below each matrix in
Figure 5 represents the total privacy budget used at the current time
slot for each user. For example, at time slot 1, the total privacy budget
usage for 𝑢1 is 𝜖 (1)

1,1
+ 𝜖

(2)
1,1

= 3𝜖1/8.

Personalized Budget Absorption (PBA). Algorithm 5 outlines

the process of PBA. The dissimilarity calculation (Part𝐷𝐶 ) in PBA is

identical to that of PBD. However, PBA and PBD differ significantly

in their strategies on allocating the publication privacy budget.

For Part𝑁𝑂𝑃 in PBA, we allocate an average privacy budget of

𝜖𝑖
2𝑤𝑖

(one share) for each 𝑢𝑖 at each time slot 𝑡 . A publication at time

slot 𝑡 can use more than one share by borrowing from its successor

time slots. The variable 𝑡𝑖,𝑁 in Line 5 represents the number of

successor time slots occupied by the last publication. We calculate

the maximal 𝑡𝑁 of all 𝑡𝑖,𝑁 and determine whether the current time

has been occupied (𝑡 − 𝑙 ≤ 𝑡𝑁 ). If so, we approximate the publi-

cation using the last published result. Otherwise, we calculate the

remaining budget shares from the precursor time slots (i.e., 𝑡𝐴,𝑖 in

Line 10) and set the current publication budget as the total absorbed

shares (Line 11). The subsequent steps follow the same process as

outlined in Algorithm 4.

Example 4. We continue use the demonstration case shown in
Figure 4. Figure 6 illustrates the estimation process of PBA. The dis-
similarity calculation process in PBA is identical to that in Exam-
ple 3. For Part𝑁𝑂𝑃 , at time slot 1, with no budget to absorb, all users
utilize one share (i.e., 𝜖𝑖/(2𝑤𝑖 )) to publish a new obfuscated statis-

tic result. Assume time slot 2 is skipped (i.e., 𝑑𝑖𝑠 ≤
√︂
𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 ). At

time slot 3, 𝑡1,𝑁 = 𝑡2,𝑁 = 𝑡3,𝑁 = 0. Thus, the nullified bound
𝑡𝑁 is 0. Since 𝑡 − 𝑙 = 3 − 1 = 2 > 𝑡𝑁 , a new obfuscated statis-
tic result is reported. The publication budget set is calculated as
𝝐 (2)

3
= (𝜖1/4, 𝜖2/2, 𝜖3/3, . . .). At time slot 4, 𝑡1,𝑁 = 𝑡2,𝑁 = 𝑡3,𝑁 = 1.

As 𝑡 − 𝑙 = 4 − 3 = 1 ≤ 𝑡𝑁 , no output is produced. At time slot
5, all 𝑡𝑖,𝑁 remain 1, and 𝑡 − 𝑙 = 5 − 3 = 2 > 𝑡𝑁 . The absorbed
time slots 𝑡𝐴,𝑖 all equal 1. The resulting publication budget set is
𝝐 (2)

5
= (𝜖1/8, 𝜖2/4, 𝜖3/6, . . .).

Algorithm 5: Personalized Budget Absorption

Input: 𝐷𝑡 , EPDP privacy requirement (𝒘, 𝝐), historical data
publication (𝒓1, 𝒓2, . . . , 𝒓𝑡−1 )

Output: 𝒓𝑡
1 Get the current window average budget 𝜖𝑖 = 𝜖𝑖/𝑤𝑖 for each 𝑖 ∈ [𝑛];
2 𝝐 (1)

𝑡 = (𝜖1/2, 𝜖2/2, . . . , 𝜖𝑛/2) ;
3 Get dissimilarity 𝑑𝑖𝑠 by DC(𝐷𝑡 , 𝝐

(1)
𝑡 , 𝒓1, ..., 𝒓𝑡−1) in Algorithm 3;

4 Initialize nullified time slots 𝑡𝑖,𝑁 as 0;

5 Set 𝑡𝑖,𝑁 =
𝜖
(2)
𝑖,𝑙

𝜖𝑖 /(2𝑤𝑖 ) − 1 for 𝑖 ∈ [𝑛] if 𝑙 exists where 𝑙 is the last
non-null publishing time slot;

6 Set nullified time slot bound 𝑡𝑁 = max𝑖∈ [𝑛] 𝑡𝑖,𝑁 ;

7 if 𝑡 − 𝑙 ≤ 𝑡𝑁 then
8 return 𝒓𝑡 = 𝒓𝑡−1;

9 else
10 Set absorbed time slots 𝑡𝐴,𝑖 = max (𝑡 − 𝑙 − 𝑡𝑖,𝑁 , 0) for 𝑖 ∈ [𝑛];
11 Set publication budget 𝜖

(2)
𝑖,𝑡

=
𝜖𝑖

2𝑤𝑖
· min (𝑡𝐴,𝑖 , 𝑤𝑖 ) for 𝑖 ∈ [𝑛];

12 𝝐 (2)
𝑡 =

(︂
𝜖
(2)
1,𝑡

, 𝜖
(2)
2,𝑡

, . . . , 𝜖
(2)
𝑛,𝑡

)︂
;

13 𝜖
(2)
𝑜𝑝𝑡 , 𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 = OBS(𝝐 (2)

𝑡 );

14 if 𝑑𝑖𝑠 >

√︂
𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 then

15 �̃�
(2)
𝑡 = 𝑆𝑀𝑠 (𝐷𝑡 , 𝝐 (2)

𝑡 , 𝜖
(2)
𝑜𝑝𝑡 ) ;

16 �̃� (2)𝑡 = 𝑄 (�̃� (2)
𝑡 ) ;

17 return 𝒓𝑡 = 𝑆𝑀𝑑 (�̃� (2)𝑡 , 𝜖
(2)
𝑜𝑝𝑡 ) ;

18 else
19 return 𝒓𝑡 = 𝒓𝑡−1;

Figure 6: A process example for PBA.

4.5 Analyses
Time Cost Analysis. Let 𝑚 be the number of distinct privacy

requirements (𝑤𝑖 , 𝜖𝑖 ), where𝑚 ≤ 𝑛. The time complexity of OBS is

𝑂 (𝑚) for both PBD and PBA. The Sample Mechanism and Query

operations each have a time complexity of 𝑂 (𝑛). Thus, the time

complexities of PBD and PBA both are 𝑂 (𝑛).
Privacy Analysis. The privacy analysis for PBD and PBA:

Theorem 4.1. PBD and PBA satisfy (𝒘, 𝝐)-EPDP.
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Proof. (1) PBD satisfies (𝒘, 𝝐)-EPDP.
In the process of Part𝐷𝐶 , for each user𝑢𝑖 , the dissimilarity budget

at each time slot is 𝜖𝑖/(2𝑤𝑖 ). Then for each time slot 𝑡 , we have∑︁𝑡
𝑘=max(𝑡−𝑤𝑖+1,1) 𝜖

(1)
𝑖,𝑘

= 𝜖𝑖/2.

In Part𝑁𝑂𝑃 , for each user 𝑢𝑖 at time slot 𝑡 , only half of the pub-

lication budget is used when publication occurs: 𝜖
(2)
𝑖,𝑡

= (𝜖𝑖/2 −∑︁𝑡−1

𝑘=max(𝑡−𝑤𝑖+1,1) 𝜖
(2)
𝑖,𝑘

)/2. For any time slot 𝑡 ∈ [1,𝑤𝑖 ], the summa-

tion publication budgets used for 𝑢𝑖 is at most

∑︁𝑤𝑖
𝑘=1

𝜖𝑖/(2 · 2
𝑘 ) ≤

(𝜖𝑖/2) · (1 − 1

2
𝑤𝑖

) ≤ 𝜖𝑖/2. Suppose

𝑡∑︁
𝑘=max(𝑡−𝑤𝑖+1,1)

𝜖
(2)
𝑖,𝑘

≤ 𝜖𝑖/2 for

𝑡 = 𝑤𝑖 + 𝑠 (i.e.,
𝑤𝑖+𝑠∑︁

𝑘=max(𝑠+1,1)
𝜖
(2)
𝑖,𝑘

≤ 𝜖𝑖/2). Then for 𝑡 = 𝑤𝑖 + 𝑠 + 1, we

have:

𝑤𝑖+𝑠+1∑︂
𝑘=max(𝑠+2,1)

𝜖
(2)
𝑖,𝑘

=

𝑤𝑖+𝑠∑︂
𝑘=max(𝑠+2,1)

𝜖
(2)
𝑖,𝑘

+ 𝜖
(2)
𝑖,𝑤𝑖+𝑠+1

. (3)

Since 𝜖
(2)
𝑖,𝑤𝑖+𝑠+1

is at most half of the remaining publication budget

at time slot𝑤𝑖 + 𝑠:

𝜖
(2)
𝑖,𝑤𝑖+𝑠+1

≤ (𝜖𝑖 /2 −
𝑤𝑖+𝑠∑︂

𝑘=max(𝑠+2,1)
𝜖
(2)
𝑖,𝑘

)/2. (4)

According to Equations (3) and (4), we have:

𝑤𝑖+𝑠+1∑︂
𝑘=max(𝑠+2,1)

𝜖
(2)
𝑖,𝑘

≤
𝑤𝑖+𝑠∑︂
𝑘=max(
𝑠+2,1)

𝜖
(2)
𝑖,𝑘

+ (𝜖𝑖 /2 −
𝑤𝑖+𝑠∑︂
𝑘=max(
𝑠+2,1)

𝜖
(2)
𝑖,𝑘

)/2

= 𝜖𝑖 /4 + (
𝑤𝑖+𝑠∑︂

𝑘=max(𝑠+2,1)
𝜖
(2)
𝑖,𝑘

)/2

≤ 𝜖𝑖 /4 + 𝜖𝑖 /4

= 𝜖𝑖 /2.

Therefore, for any 𝑡 ≥ 1, we have:

𝑡∑︂
𝑘=max (𝑡−𝑤𝑖+1,1)

𝜖
(2)
𝑖,𝑘

≤ 𝜖𝑖 /2.

According to the Composition Theorems [14], we have:

𝑡∑︂
𝑘=max(𝑡−𝑤𝑖+1,1)

𝜖𝑖,𝑘 =

𝑡∑︂
𝑘=max(𝑡
−𝑤𝑖+1,1)

𝜖
(1)
𝑖,𝑘

+
𝑡∑︂

𝑘=max(𝑡
−𝑤𝑖+1,1)

𝜖
(2)
𝑖,𝑘

≤ 𝜖𝑖 .

For any user 𝑢𝑖 and any two 𝑤𝑖 -neighboring stream prefixes

𝑆𝑡 and 𝑆 ′𝑡 (i.e., 𝑆𝑡 ∼𝑤𝑖 𝑆 ′𝑡 ), let 𝑡𝑠 be the earliest time slot where

𝑆𝑡 [𝑡𝑠 ] ≠ 𝑆 ′𝑡 [𝑡𝑠 ] and 𝑡𝑒 be the latest time slot where 𝑆𝑡 [𝑡𝑒 ] ≠ 𝑆 ′𝑡 [𝑡𝑒 ].
Then we have 𝑡𝑒 − 𝑡𝑠 + 1 ≤ 𝑤𝑖 . Denoting the output of our PBD as

𝑃𝐵𝐷 (𝑆𝑡 [𝑡]) = 𝑜𝑡 ∈ O, for any 𝑂 ⊆ O, we have:

Pr[𝑃𝐵𝐷 (𝑆𝑡 ) ] ∈ 𝑂

Pr[𝑃𝐵𝐷 (𝑆′𝑡 ) ] ∈ 𝑂
≤ Π𝑡𝑒

𝑘=𝑡𝑠

Pr[𝑃𝐵𝐷 (𝑆𝑡 [𝑘 ] ) = 𝑜𝑘 ]
Pr[𝑃𝐵𝐷 (𝑆′𝑡 [𝑘 ] ) = 𝑜𝑘 ]

≤ 𝑒

∑︁𝑡𝑒
𝑘=𝑡𝑠

𝜖𝑖,𝑘 ≤ 𝑒

∑︁𝑡𝑒
𝑘=max (𝑡𝑒 −𝑤𝑖+1,1) 𝜖𝑖,𝑘 ≤ 𝑒𝜖𝑖 .

Therefore, PBD satisfies (𝒘, 𝝐)-EPDP where 𝒘 = (𝑤1,𝑤2, . . . ,𝑤𝑛)
and 𝝐 = ((𝑢1, 𝜖1), (𝑢2, 𝜖2), . . . , (𝑢𝑛, 𝜖𝑛)).

(2) PBA satisfies (𝒘, 𝝐)-EPDP.
The Part𝐷𝐶 in PBA is identical to that that in PBD. Consequently,

for each time slot 𝑡 , we have:

𝑡∑︂
𝑘=max(𝑡−𝑤𝑖+1,1)

𝜖
(1)
𝑖,𝑘

= 𝜖𝑖 /2. (5)

In Part𝑁𝑂𝑃 , for any user 𝑢𝑖 and any window of size𝑤𝑖 , there are

𝑠𝑖 publication time slots in the window.We denote these publication

time slots as (𝑘1, 𝑘2, . . . , 𝑘𝑠𝑖 ). For any publication time slot 𝑘 𝑗 ( 𝑗 ∈

Figure 7: An example for parameters in PBA.

[𝑠𝑖 ]), the quantity of its absorbing unused budgets is denoted as

𝛼𝑖,𝑘 𝑗 . Figure 7 illustrates an example where 𝑠𝑖 = 3 and𝑤𝑖 = 9.

Based on Algorithm 5, we have:

𝑤𝑖 ≥
𝑠𝑖∑︂
𝑗=1

(1 + 2𝛼𝑖,𝑘𝑗
) − 𝛼𝑖,𝑘

1
− 𝛼𝑖,𝑘𝑠𝑖

.

Then, for the total publication budgets used in any window, we

have

𝑡∑︂
𝑘=max (𝑡−𝑤𝑖+1,1)

𝜖
(2)
𝑖,𝑘

≤ 𝜖𝑖

2𝑤𝑖
·
𝑠𝑖∑︂
𝑗=1

(1 + 𝛼𝑖,𝑘𝑗
)

≤
𝜖𝑖 ·

∑︁𝑠𝑖
𝑗=1

(1 + 𝛼𝑖,𝑘𝑗
)

2

∑︁𝑠𝑖
𝑗=1

(1 + 2𝛼𝑖,𝑘𝑗
) − 2𝛼𝑖,𝑘

1
− 2𝛼𝑖,𝑘𝑠𝑖

=
𝜖𝑖 ·

∑︁𝑠𝑖
𝑗=1

(1 + 𝛼𝑖,𝑘𝑗
)

2

∑︁𝑠𝑖
𝑗=1

(1 + 𝛼𝑖,𝑘𝑗
) + 2

∑︁𝑠𝑖 −1

𝑗=2
𝛼𝑖,𝑘𝑗

≤ 𝜖𝑖 /2.

(6)

Based on Equations (5) and (6), and applying the Composition

Theorems [14], we obtain:

𝑡∑︂
𝑘=max (𝑡−𝑤𝑖+1,1)

𝜖𝑖,𝑘 =

𝑡∑︂
𝑘=max(𝑡
−𝑤𝑖+1,1)

𝜖
(1)
𝑖,𝑘

+
𝑡∑︂

𝑘=max(𝑡
−𝑤𝑖+1,1)

𝜖
(2)
𝑖,𝑘

≤ 𝜖𝑖 .

The subsequent proof process follows the same steps as in PBD.

Ultimately, we demonstrate that PBA also satisfies (𝒘, 𝝐)-EPDP. □

Utility Analysis. For each user 𝑢𝑖 in PBD and PBA, we define

𝑤𝐿 as the smallest window size among all users. For each 𝑢𝑖 , given

(𝑤𝑖 , 𝜖𝑖 ), let 𝜖𝐿 = min𝑖∈[𝑛]
𝜖𝑖
𝑤𝑖

and 𝜖𝑅 = max𝑖∈[𝑛]
𝜖𝑖
𝑤𝑖

represent the

minimum and maximum values of
𝜖𝑖
𝑤𝑖
, respectively. Let 𝑛𝐴 be the

number of occurrences of 𝜖𝑅 across all users.

We make the following assumptions: At most 𝑠 ≤ 𝑤𝐿 publica-

tions occur at time slots 𝑞1, 𝑞2,. . . , 𝑞𝑠 in the window of size 𝑤𝐿 ,

with no budget absorption from past time slots outside the window.

Additionally, for each user, each publication approximates the same

number of skipped or nullified publications.

We first present a crucial lemma, followed by two theorems that

bound the average errors of PBD and PBA, respectively.

Lemma 4.1. Given𝑚 distinct privacy budget-quantity pairs 𝑃 =
{(𝜖 𝑗 , 𝑛 𝑗 ) | 𝑗 ∈ [𝑚],∑︁𝑗∈[𝑚] 𝑛 𝑗 = 𝑛} where pair (𝜖 𝑗 , 𝑛 𝑗 ) indicates that
𝜖 𝑗 appears 𝑛 𝑗 times in the user privacy requirement, and a query with
sensitivity 𝐼 , the error upper bound ˜︂𝑒𝑟𝑟𝑂 (𝑃) of the SM process with
privacy budget chosen from OBS is:

min

(︄
2𝐼2

min𝑗 𝜖
2

𝑗

, (𝑛 − 𝑛𝑀 ) (𝑛 − 𝑛𝑀 + 1

4

) + 2𝐼2

max𝑗 𝜖
2

𝑗

)︄
,

where 𝑛𝑀 = 𝑛𝑘 with 𝑘 = arg max𝑗∈[𝑚] 𝜖 𝑗 .

Proof. Let𝑀𝐿 be the SMwith privacy budget chosen as min𝑗 𝜖 𝑗 .

According to the SM process, all budget types will be selected. In

this case, the sampling error 𝑒𝑟𝑟𝑠 is 0 and the noise error 𝑒𝑟𝑟𝑑𝑝
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is 2 · ( 𝐼
min𝑗 𝜖 𝑗

)2 = 2𝐼 2

min𝑗 𝜖
2

𝑗

. Thus, the total error of 𝑀𝐿 is 𝑒𝑟𝑟𝑀𝐿 =

2𝐼 2

min𝑗 𝜖
2

𝑗

. Let𝑀𝑅 be the SMwith privacy budget chosen asmax𝑗 𝜖 𝑗 . In

this case, (𝑚−1) types of privacy budget are chosenwith probability
𝑝𝑘 = 𝑒𝜖𝑘 −1

𝑒
max𝑗 𝜖𝑗 −1

less than 1 (𝑘 ∈ [𝑚]). For the sampling error, we

have:

𝑒𝑟𝑟𝑠 =
∑︂

𝜖𝑘<max𝑗 𝜖𝑗

𝑛𝑘𝑝𝑘 (1 − 𝑝𝑘 ) +
⎛⎜⎝

∑︂
𝜖𝑘<max𝑗 𝜖𝑗

𝑛𝑘 (1 − 𝑝𝑘 )
⎞⎟⎠

2

<
∑︂

𝜖𝑘<max𝑗 𝜖𝑗

𝑛𝑘

(︃
𝑝𝑘 + 1 − 𝑝𝑘

2

)︃
2

+ ⎛⎜⎝
∑︂

𝜖𝑘<max𝑗 𝜖𝑗

𝑛𝑘
⎞⎟⎠

2

= (𝑛 − 𝑛𝑀 ) (𝑛 − 𝑛𝑀 + 1

4

) .

The noise error 𝑒𝑟𝑟𝑑𝑝 in this case is 2 · ( 𝐼
max𝑗 𝜖 𝑗

)2 = 2𝐼 2

max𝑗 𝜖
2

𝑗

. Thus,

the total error of 𝑀𝑅 is 𝑒𝑟𝑟𝑀𝑅 = (𝑛 − 𝑛𝑀 ) (𝑛 − 𝑛𝑀 + 1

4
) + 2𝐼 2

max𝑗 𝜖
2

𝑗

.

According to the OBS process, we have ˜︂𝑒𝑟𝑟𝑂 (𝑃) ≤ 𝑒𝑟𝑟𝑀𝐿 and˜︂𝑒𝑟𝑟𝑂 (𝑃) ≤ 𝑒𝑟𝑟𝑀𝑅 . Therefore,

˜︃𝑒𝑟𝑟𝑂 (𝑃 ) ≤ min (𝑒𝑟𝑟𝑀𝐿 , 𝑒𝑟𝑟𝑀𝑅 ) = min

(︄
2𝐼2

min𝑗 𝜖
2

𝑗

, (𝑛 − 𝑛𝑀 ) (𝑛 − 𝑛𝑀 + 1

4

) + 2𝐼2

max𝑗 𝜖
2

𝑗

)︄
.

□

For PBD, we present Theorem 4.2 as follows.

Theorem 4.2. The average error per time slot in PBD is at most
min

(︃
8

𝑑2𝜖𝐿
, 𝑍 + 8

𝑑2𝜖𝑅

)︃
+min

(︃
32· (4�̃� −1)

3�̃�𝜖𝐿
, 𝑍 + 32· (4�̃� −1)

3�̃�𝜖𝑅

)︃
where 𝑍 = (𝑛 −𝑛𝐴 ) (𝑛 −𝑛𝐴 +

1

4
), if at most 𝑠 publications occur in any window with size𝑤𝐿 .

Proof. Given a privacy budget-quantity pair set 𝑃 , let 𝐸𝑂𝑃𝑇 (𝑃)
be the optimal privacy budget chosen from OBS. Given a positive

number 𝛽 , we define 𝛽 ·𝑃 = {(𝛽 ·𝜖 𝑗 , 𝑛 𝑗 ) | (𝜖 𝑗 , 𝑛 𝑗 ) ∈ 𝑃}. For each user

𝑢𝑖 with privacy requirement pair (𝑤𝑖 , 𝜖𝑖 ), we calculate their average
budget per window as

𝜖𝑖
𝑤𝑖

. We denote the set of all average budgets

as 𝜖 = { 𝜖𝑖
𝑤𝑖

|𝑖 ∈ [𝑛]}. We then construct the privacy budget-quantity

pair set of each type of average budget as 𝑃𝐴 = {(𝜖 𝑗 , 𝑛 𝑗 ) |𝜖 𝑗 ∈ 𝜖}.
Let 𝑍 = (𝑛 − 𝑛𝐴) (𝑛 − 𝑛𝐴 + 1

4
) be the sampling error upper bound,

where 𝑛𝐴 is the quantity of max𝑖∈[𝑛]
𝜖𝑖
𝑤𝑖

in 𝜖 .

When Part𝐷𝐶 is not private, the error stems from Part𝑁𝑂𝑃 . In

Part𝑁𝑂𝑃 , errors arise from both publications and approximations.

According to the Part𝑁𝑂𝑃 , an approximation error does not exceed

the publication error at the most recent publication time slot. For

the average error 𝑒𝑟𝑟𝑁𝑂𝑃 of all time slots within the window of

size𝑤𝐿 , based on the PBD process, we have:

𝑒𝑟𝑟𝑁𝑂𝑃 =
1

𝑤𝐿

∑︂
𝑘∈ [�̃� ]

𝑤𝐿

𝑠
· ˜︃𝑒𝑟𝑟𝑂 (︃

1

2
𝑘+1

𝑃𝐴

)︃

<
1

𝑠

∑︂
𝑘∈ [�̃� ]

min
⎛⎜⎝ 2

( 𝜖𝐿

2
𝑘+1

)2

, 𝑍 + 2

( 𝜖𝑅
2
𝑘+1

)2

⎞⎟⎠
<

1

𝑠
min

⎛⎜⎝
∑︂
𝑘∈ [�̃� ]

8 · 4
𝑘

𝜖2

𝐿

, 𝑠 · 𝑍 +
∑︂
𝑘∈ [�̃� ]

8 · 4
𝑘

𝜖2

𝑅

⎞⎟⎠
= min

(︄
32 · (4�̃� − 1)

3𝑠𝜖2

𝐿

, 𝑍 + 32 · (4�̃� − 1)
3𝑠𝜖2

𝑅

)︄
.

(7)

When Part𝐷𝐶 is private, the error from Part𝐷𝐶 can lead to two

scenarios: (1) falsely skipping a publication or (2) falsely performs

a publication. Both cases are bounded by the error in Part𝐷𝐶 . In

Part𝐷𝐶 , we execute the SM with OBS. The sensitivity of 𝑑𝑖𝑠 is 1/𝑑 .

For the average error 𝑒𝑟𝑟𝐷𝐶 of each time slot in window size𝑤𝐿 ,

according to Lemma 4.1, we have:

𝑒𝑟𝑟𝐷𝐶 < min
⎛⎜⎝ 2

𝑑2
min𝑖∈ [𝑛] (

𝜖𝑖
2𝑤𝑖

)2

, 𝑍 + 2

𝑑2
max𝑖∈ [𝑛] (

𝜖𝑖
2𝑤𝑖

)2

⎞⎟⎠
= min

(︄
8

𝑑2𝜖2

𝐿

, 𝑍 + 8

𝑑2𝜖2

𝑅

)︄
.

(8)

Based on Equation (8) and (7), we can get the average error upper

bound as 𝑒𝑟𝑟𝐷𝐶 + 𝑒𝑟𝑟𝑁𝑂𝑃 .

□

PBD achieves low error when the number of publications 𝑠 per

window is small. However, the error increases exponentially with 𝑠 .

Additionally, the error in Part𝐷𝐶 (the first part of the error upper

bound in PBD) rises as 𝑤𝐿 increases, however, it diminishes as 𝑑

increases. This is because a large 𝑑 reduces sensitivity leading to

smaller noise error.

For PBA, assume 𝛼 skipped publications occur before a publi-

cation. Let 𝜖
�̃�
and 𝜖

�̃�
be the minimum and maximum publication

privacy budget among all users at time slots 𝑡 = 𝑤𝐿 and 𝑡 = (𝛼 + 1),
respectively. According to the PBA process, there will be 𝛼 nulli-

fied publications after the publication. These nullified publications

are filled by the last time slot’s publication without comparison.

Consequently, the nullified publication error depends on the data

distribution at nullified time slots. We denote the average error

of each nullified publication in PBA as 𝑒𝑟𝑟𝑛𝑙 𝑓 . For PBA, we have

Theorem 4.3 as follows.

Theorem 4.3. The average error per time slot in PBA is at
most min( 8

𝑑2𝜖𝐿
, 𝑍 + 8

𝑑2𝜖𝑅
) + 1

2𝛼+1
(˜︂𝑒𝑟𝑟 (𝑠,𝑝 )

𝑁𝑂𝑃
+ 𝛼 · 𝑒𝑟𝑟𝑛𝑙 𝑓 ) where˜︂𝑒𝑟𝑟 (𝑠,𝑝 )

𝑁𝑂𝑃
is min( 2

𝜖2

𝐿

𝐻2

𝛼+1
, (𝛼 + 1)𝑍 + 2

𝜖2

𝑅

𝐻2

𝛼+1
) when 𝛼 ≤ 𝑤𝐿 and

min( 2

𝜖2

𝐿

𝐻2

𝑤𝐿
,𝑤𝐿𝑍 + 2

𝜖2

𝑅

𝐻2

𝑤𝐿
) + (𝛼 −𝑤𝐿 + 1) min( 2

𝜖2

�̃�

, 𝑍 + 2

𝜖2

�̃�

) when

𝛼 > 𝑤𝐿 and 𝑍 = (𝑛 − 𝑛𝐴) (𝑛 − 𝑛𝐴 + 1

4
) and 𝐻2

𝑥 is the 𝑥-th square
harmonic number, if there are 𝛼 skipped publications occur in average
before each publication.

Proof. Similar to PBD, we first analyze the error of Part𝑁𝑂𝑃 in

PBA by assuming Part𝐷𝐶 is not private. We then add the error of

Part𝐷𝐶 , which is identical to that in PBD, to obtain the final total

error. When Part𝐷𝐶 is not private, the error stems from Part𝑁𝑂𝑃 .

In Part𝑁𝑂𝑃 , each publication corresponds to 𝛼 skipped publications

preceding it and 𝛼 nullified publications succeeding it.

For each user 𝑢𝑖 ’s skipped publication, the publication privacy

budget lower bound doubles with each time slot increase until

it reaches 𝜖𝑖/2 or a publication occurs. For example, in Figure 8,

where 𝛼 = 5, the publication time slot is 𝑡6. At time slot 𝑡1, each 𝑢𝑖 ’s

publication budget lower bound is 𝜖𝑖/(2𝑤𝑖 ). Take 𝑢1 as an example:

it reaches 𝜖1/2 at time slot 𝑡4. The publication lower bound for

𝑢1 remains at 𝜖1/2 until time slot 𝑡6. Let the publication budget

lower bound set for all users at skipped time slots (spanning 𝛼 time

slot) be �̂� = {𝝐1, 𝝐2, . . . , 𝝐𝛼 }. Then, the error upper bound of each

skipped publication is the error of publishing new data using 𝝐𝑘
(𝑘 ∈ [𝛼]). For example in Figure 8, the error upper bound at 𝑡3
is the error of publication a new obfuscated statistic result using

{ 3𝜖1

2
,
𝜖2

2
,

3𝜖3

16
,
𝜖4

4
}.
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Figure 8: An example of the publication budget lower bound in PBA.

Let 𝑍 = (𝑛−𝑛𝐴) (𝑛−𝑛𝐴 + 1

4
) be the sampling error upper bound,

where 𝑛𝐴 is the number of users with maximum value of
𝜖𝑖
𝑤𝑖
. We

now consider two cases: 𝛼 ≤ 𝑤𝐿 and 𝛼 > 𝑤𝐿 .

(1) case 1: 𝛼 ≤ 𝑤𝐿 .

In this case, the publication budget lower bound doubles with

each time slot increase. Let 𝑒𝑟𝑟
(𝑠𝑘 )
𝑁𝑂𝑃

(𝛼) and 𝑒𝑟𝑟 (𝑝𝑏 )
𝑁𝑂𝑃

be the total er-

ror upper bounds of the 𝛼 skipped publications and the publication

in Part𝑁𝑂𝑃 , respectively. Let 𝑒𝑟𝑟
(𝑠,𝑝 )
𝑁𝑂𝑃

be the error of all skipped pub-

lications and the publication in Part𝑁𝑂𝑃 . According to Lemma 4.1,

we have

𝑒𝑟𝑟
(𝑠𝑘 )
𝑁𝑂𝑃

(𝛼 ) <
∑︂
𝑘∈ [𝛼 ]

min

(︃
2

(𝑘𝜖𝐿 )2
, 𝑍 + 2

(𝑘𝜖𝑅 )2

)︃
≤ min

(︄
2

𝜖2

𝐿

𝐻2

𝛼 , 𝛼𝑍 + 2

𝜖2

𝑅

𝐻2

𝛼

)︄ (9)

and

𝑒𝑟𝑟
(𝑠,𝑝 )
𝑁𝑂𝑃

< 𝑒𝑟𝑟
(𝑠𝑘 )
𝑁𝑂𝑃

(𝛼 ) + 𝑒𝑟𝑟
(𝑝𝑏)
𝑁𝑂𝑃

= 𝑒𝑟𝑟
(𝑠𝑘 )
𝑁𝑂𝑃

(𝛼 + 1)

= min

(︄
2

𝜖2

𝐿

𝐻2

𝛼+1
, (𝛼 + 1)𝑍 + 2

𝜖2

𝑅

𝐻2

𝛼+1

)︄
.

(10)

Thus, we derive the average error upper bound 𝑒𝑟𝑟𝑁𝑂𝑃 of each

time slot in Part𝑁𝑂𝑃 as

𝑒𝑟𝑟𝑁𝑂𝑃 <
1

2𝛼 + 1

(˜︃𝑒𝑟𝑟 (𝑠,𝑝 )
𝑁𝑂𝑃

+ 𝛼 · 𝑒𝑟𝑟𝑛𝑙 𝑓 ), (11)

where ˜︂𝑒𝑟𝑟 (𝑠,𝑝 )
𝑁𝑂𝑃

is the final value in Equation (10).

(2) case 2: 𝛼 > 𝑤𝐿 .

In this case, we have

𝑒𝑟𝑟
(𝑠,𝑝 )
𝑁𝑂𝑃

<𝑒𝑟𝑟
(𝑠𝑘 )
𝑁𝑂𝑃

(𝑤𝐿 ) +
𝛼+1∑︂

𝑘=𝑤𝐿+1

min
⎛⎜⎝ 2

𝜖2

�̃�

, 𝑍 + 2

𝜖2

�̃�

⎞⎟⎠
=𝑒𝑟𝑟

(𝑠𝑘 )
𝑁𝑂𝑃

(𝑤𝐿 ) + (𝛼 − 𝑤𝐿 + 1) min
⎛⎜⎝ 2

𝜖2

�̃�

, 𝑍 + 2

𝜖2

�̃�

⎞⎟⎠
< min

(︄
2

𝜖2

𝐿

𝐻2

𝑤𝐿
, 𝑤𝐿𝑍 + 2

𝜖2

𝑅

𝐻2

𝑤𝐿

)︄
+ (𝛼 − 𝑤𝐿 + 1) min

⎛⎜⎝ 2

𝜖2

�̃�

, 𝑍 + 2

𝜖2

�̃�

⎞⎟⎠.
(12)

Therefore, we obtain the average error upper bound 𝑒𝑟𝑟𝑁𝑂𝑃 for

each time slot in Part𝑁𝑂𝑃 as

𝑒𝑟𝑟𝑁𝑂𝑃 <
1

2𝛼 + 1

(˜︃𝑒𝑟𝑟 (𝑠,𝑝 )
𝑁𝑂𝑃

+ 𝛼 · 𝑒𝑟𝑟𝑛𝑙 𝑓 ) (13)

where ˜︂𝑒𝑟𝑟 (𝑠,𝑝 )
𝑁𝑂𝑃

is the value derived in Equation (12).

When Part𝐷𝐶 is private, its error is identical to that in PBD:

𝑒𝑟𝑟𝐷𝐶 < min

(︄
8

𝑑2𝜖2

𝐿

, 𝑍 + 8

𝑑2𝜖2

𝑅

)︄
. (14)

(a) Taxi (b) Foursquare

Figure 9: Illustration of Real datasets.

Based on Equation (14), (11) and (13), we can derive the average

error upper bound for each time slot in PBA as:

min

(︄
8

𝑑2𝜖2

𝐿

, 𝑍 + 8

𝑑2𝜖2

𝑅

)︄
+ 1

2𝛼 + 1

(˜︃𝑒𝑟𝑟 (𝑠,𝑝 )
𝑁𝑂𝑃

+ 𝛼 · 𝑒𝑟𝑟𝑛𝑙 𝑓 ),

where ˜︂𝑒𝑟𝑟 (𝑠,𝑝 )
𝑁𝑂𝑃

is the final result from Equation (10) when 𝛼 ≤ 𝑤𝐿 ,

and from Equation (12) when 𝛼 > 𝑤𝐿 . □

5 EXPERIMENTS
5.1 Datasets
Real datasets.We use two real-world datasets, Taxi [37, 38] and
Foursquare [35, 36], to evaluate the performance of our algorithms.

Taxi. It contains real-time trajectories of 10, 357 taxis’ in Beijing

from February 2 to February 8, 2008. Each taxi has up to 154, 699

records, where each record comprises taxi id, data time, longitude
and latitude. For the spatial dimension, we first remove all duplicate

records, then extract records with longitude between 116 and 116.8

and latitude between 39.5 and 40.3, resulting in 14, 859, 377 records.

We denote this area ([116, 116.8] × [39.5, 40.3]) as 𝐴𝐸 . Figure 9(a)

shows 50% of uniformly extracted trajectory points in 𝐴𝐸 . We fur-

ther divide 𝐴𝐸 uniformly into a 10 × 10 grids, designating these

100 cells as the location space. For the time dimension, we sample

records every minute and get 8, 889 records.

Foursquare. It contains 33, 278, 683 Foursquare check-ins from

266, 909 users, during April 2012 to September 2013. Each record

consists of user id, venue id (place), and time. We convert the venue

id to the country where the venue is located. After removing invalid

records, we uniformly extract 5% of users’ check-ins as shown in

Figure 9(b). We set the publication time interval to 100 minutes,

thus divide the chick-ins period into 7, 649 time slots.

Synthetic datasets. We generate three binary stream datasets

using different sequence models. We set the length of each binary

stream as𝑇 and the number of users as 𝑁 . For each stream, we first

generate a probability sequence (𝑝1, 𝑝2, ..., 𝑝𝑇 ). At each time slot 𝑡 ,

each user’s real value is set to 1 with probability 𝑝𝑡 and 0 otherwise.

The probability function we use are as follows:

• TLNS function. In TLNS, 𝑝𝑡 = 𝑝𝑡−1 + N(0, 𝑄), where N(0, 𝑄)
is Gaussian noise with standard variance

√
𝑄 = 0.0025. We set

𝑝0 = 0.05 as the initial value. If 𝑝𝑡 < 0, we set 𝑝𝑡 = 0; If 𝑝𝑡 > 1,

we set 𝑝𝑡 = 1.

• Sin function. In Sin, 𝑝𝑡 = 𝐴 sin (𝜔𝑡) +ℎ, where𝐴 = 0.05,𝜔 = 0.01

and ℎ = 0.075.

• Log function. In Log, 𝑝𝑡 = 𝐴/(1 + 𝑒−𝑏𝑡 ), where 𝐴 = 0.25 and

𝑏 = 0.01.
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Table 3: Experimental settings.
Parameters Values

static privacy budget 𝜖 0.2, 0.4, 0.6, 0.8, 1.0
static window size 𝑤 40, 80, 120, 160, 200

personalized privacy budget 𝜖𝑖 𝜖, . . . , 0.8, 1.0

personalized window size 𝑤𝑖 40, 80, . . . , 𝑤

users’ quantity ratio 𝑜 0.1, 0.3, 0.5, 0.7, 0.9

5.2 Experiment Setup
We compare our PBD and PBA with two non-personalized methods:

Budget Distribution (BD) and Budget Absorption (BA) [22]. We also

compare against a simple personalized LDP method, Personalized

LDP Budget Uniform (PLBU), which extends LDP Budget Uniform

(LBU) [29] by replacing the inner CDP mechanism with an LDP

mechanism.

Let 𝜖 and 𝑤 be the privacy budget and window size in non-

personalized static methods (BD and BA). For non-personalized

static methods, we set the 𝜖 to vary from 0.2 to 1.0 and𝑤 to vary

from 40 to 200. To make our PBD and PBA comparable with BD

and BA, we set the lower bound of each user’s privacy budget as 𝜖

and the upper bound of each user’s window size as𝑤 in PBD and

PBA to match the requirement of privacy level.

Given �̃� different privacy budgets �̃� = {𝜖1, ..., 𝜖�̃�}, let 𝑁 (𝜖𝑖 ) be
the count of budget value 𝜖𝑖 , and 𝑁 (�̃�) = ∑︁�̃�

𝑖=1
𝑁 (𝜖𝑖 ) be the total

count of all the budgets. For any 𝜖𝑖 ∈ �̃� , we define the privacy

budget ratio of 𝜖𝑖 as
𝑁 (𝜖𝑖 )
𝑁 (�̃� ) . Similarly, we define the window size

ratio of any𝑤𝑖 in different window sizes �̃� = {𝑤1, ...,𝑤�̃�} as 𝑁 (𝑤𝑖 )
𝑁 (�̃� ) .

We set the privacy domain as {0.5, 1.0} and the window size domain

as {10, 20}. We alter the ratio 𝑜 of 𝜖𝑖 = 0.5 and𝑤𝑖 = 10 from 0.1 to

0.9.

The parameters are shown in Table 3, where the default values

are in bold font. We run the experiments on an Intel(R) Xeon(R)

Silver 4210R CPU@2.4GHzwith 128 RAM in Java. Each experiment

is run 10 times, and we report the average result.

5.3 Measures
We evaluate the performance of different mechanisms based on

their running time and data utility. We measure data utility as

Average Mean Relative Error (𝐴𝑀𝑅𝐸) and Average Jensen-Shannon
Divergence (𝐴𝐽𝑆𝐷 , �̄� 𝐽 𝑆 ). Let 𝑇 represent the number of time slots

and 𝑑 denote the dimension of data.

𝐴𝑀𝑅𝐸 is defined as the average value of Mean Relative Error

(𝑀𝑅𝐸), which is shown in Equation (15).

𝐴𝑀𝑅𝐸 =
1

𝑇

𝑇∑︂
𝜏=1

𝑀𝑅𝐸𝜏 =
1

𝑇

𝑇∑︂
𝜏=1

1

𝑑
∥𝒓𝜏 − 𝒄𝜏 ∥2

2
. (15)

𝐴𝐽𝑆𝐷 is defined as the average value of Jensen-Shannon Diver-

gence (𝐽𝑆𝐷 , 𝐷 𝐽 𝑆 ) [25], which is based on Kullback-Leibler Diver-

gence [24], as shown in Equation (16).

�̄� 𝐽 𝑆 (𝒓 ∥𝒄 ) =
1

𝑇

𝑇∑︂
𝜏=1

𝐷 𝐽 𝑆 (𝒓 ∥𝒄 ) =
1

𝑇

𝑇∑︂
𝜏=1

(︃
1

2

𝐷𝐾𝐿 (𝒓 ∥𝒗 ) +
1

2

𝐷𝐾𝐿 (𝒄 ∥𝒗 )
)︃

=
1

2𝑇

𝑇∑︂
𝜏=1

𝑑∑︂
𝑗=1

(︃
𝒓𝜏 ( 𝑗 ) log

(︃
𝒓𝜏 ( 𝑗 )
𝒗𝜏 ( 𝑗 )

)︃
+ 𝒄𝜏 ( 𝑗 ) log

(︃
𝒄𝜏 ( 𝑗 )
𝒗𝜏 ( 𝑗 )

)︃)︃
,

(16)

where 𝒗 represents the average distribution of 𝒓 and 𝒄 , i.e., 𝒗 ( 𝑗) =
1

2
(𝒓 ( 𝑗) + 𝒄 ( 𝑗)). For time slot 𝜏 , 𝑟𝜏 ( 𝑗) and 𝑐𝜏 ( 𝑗) represent the 𝑗-th

dimensional values in the obfuscated and original data, respectively.

5.4 Overall Utility Analysis
Figure 10 shows the natural logarithm of 𝐴𝑀𝑅𝐸 as the privacy

budget 𝜖 varies. Across all datasets, 𝐴𝑀𝑅𝐸 decreases as 𝜖 increases,

because a larger 𝜖 results in smaller noise variance, leading to a

lower 𝐴𝑀𝑅𝐸. The decrease in 𝐴𝑀𝑅𝐸 is more pronounced on real

datasets compared to synthetic ones. It is because data density

function changes rapidly in real datasets, while changing gradually

in synthetic datasets. When the density function changes rapidly,

the dissimilarity at each time slot becomes large. In this case, PBD

publishesmore new statistical results than PBA because PBD always

reserves part of its privacy budget for the next time slot, even

though the budget decreases over time within a window. Thus,

PBD leads to higher accuracy than PBA. When the density function

changes gradually, the dissimilarity at each time slot remains small.

In this case, publishing one highly accurate statistical result at a

time slot is more important than publishing multiple new statistical

results. Therefore, PBA performs significantly better than PBD.

PLBU performs worse than other methods across all datasets except

for TLNS, since LDP methods achieve lower accuracy than CDP

methods under the same privacy budget. In real datasets, our PBD

consistently outperforms other methods. The 𝐴𝑀𝑅𝐸 of PBD is on

average 70.8% (17.5% in terms of ln (𝐴𝑀𝑅𝐸)) lower than that of

BD on Taxi dataset and 69.6% (15.9% in terms of ln (𝐴𝑀𝑅𝐸)) lower
on Foursquare dataset. Our PBA performs slightly worse than BA,

since our PBA is more sensitive to noise in high-dimensional data.

For synthetic datasets, our PBA consistently outperforms other

methods. Compared to BA, the 𝐴𝑀𝑅𝐸 of PBA is lower on average

of 36.9% (6.0% in terms of ln (𝐴𝑀𝑅𝐸)) on TLNS dataset, 27.7% (4.2%

in terms of ln (𝐴𝑀𝑅𝐸)) on Sin dataset, and 28.9% (4.5% in terms

of ln (𝐴𝑀𝑅𝐸)) on Log dataset. Moreover, our PBD consistently

outperforms BD.

Figure 11 shows the natural logarithm of 𝐴𝑀𝑅𝐸 as the window

size𝑤 varies. As𝑤 increases,𝐴𝑀𝑅𝐸 rises gently, particularly on the

synthetic datasets. This occurs because a large window size results

in a small privacy budget at each time slot, leading to increased error.

PLBU shows lower performance than other methods on all datasets

except for TLNS, since LDP methods achieve lower accuracy than

CDP methods under equivalent privacy budgets. For real datasets,

our PBD achieves the lowest error compared to others methods. The

𝐴𝑀𝑅𝐸 of PBD is on average 63.1% (15.6% in terms of ln (𝐴𝑀𝑅𝐸))
lower than that of BD on Taxi dataset and 68.4% (16.5% in terms of

ln (𝐴𝑀𝑅𝐸)) on Foursquare dataset. For synthetic datasets, our PBA

demonstrates the lowest error among all methods. Compared to

BA, the 𝐴𝑀𝑅𝐸 of PBA is lower by average of 35.1% (5.4% in terms

of ln (𝐴𝑀𝑅𝐸)) for TLNS, 4.2% (0.4% in terms of ln (𝐴𝑀𝑅𝐸)) for Sin,
and 16.6% (2.2% in terms of ln (𝐴𝑀𝑅𝐸)) for Log. Moreover, our PBD

consistently outperforms BD across all datasets.

In summary, our PBD demonstrates superior performance on

real datasets, with 68% smaller 𝐴𝑀𝑅𝐸 on average than BD. For

synthetic datasets, our PBA outperforms BA with 24.9% smaller

𝐴𝑀𝑅𝐸 on average.

5.5 Impact of User Requirement Type
We define a set of users with privacy requirement as (𝑤𝑘 , 𝜖𝑘 )-
requirement type. In this subsection, we examine the impact of user

type on the utility.
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Figure 10: 𝐴𝑀𝑅𝐸 with 𝜖 varied.
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Figure 11: 𝐴𝑀𝑅𝐸 with 𝑤 varied.
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Figure 12: 𝐴𝑀𝑅𝐸 with ratio for privacy budget varied.
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Figure 13: 𝐴𝑀𝑅𝐸 with ratio for window size varied.

For the analysis, we consider 𝜖𝑘 ∈ {0.6, 1.0} with a default of 0.6,

and the𝑤𝑘 ∈ {40, 120} with a default of 120. We first vary the users’

quantity ratio of 𝜖𝑘 = 1.0 from 0.1 to 0.9 while keeping𝑤𝑘 = 120.

Then we vary the users’ quantity ratio of𝑤𝑘 = 40 from 0.1 to 0.9

while keeping 𝜖𝑘 = 0.6.

Figure 12 illustrates the change in users’ quantity ratio for 𝜖𝑘 =

1.0 from 0.1 to 0.9, with a fixed window size of𝑤𝑘 = 120. Figure 13

shows the effect on changing users’ quantity for𝑤𝑘 = 40 from 0.1 to

0.9, with a fixed privacy budget of 𝜖𝑘 = 0.6. We observe that as the

users’ quantity ratio increases, the 𝐴𝑀𝑅𝐸 remains relatively stable.

However, when the users’ quantity ratio of 𝜖𝑘 = 1.0 or 𝑤𝑘 = 40

exceeds 0.8, we can see a significant decrease in 𝐴𝑀𝑅𝐸 for PBD

and PBA. This occurs because when the ratios surpasses a certain

threshold, the optimal budget from OBS in Algorithm 1 becomes

dominated by a higher 𝜖 , resulting in lower error.

6 CONCLUSION
We address the Personalized𝑤-Event Private Publishing for Infinite

Data Streams problem by proposing a mechanism called Person-

alized Window Size Mechanism (PWSM). Based on PWSM, we

develop two methods: Personalized Budget Distribution (PBD) and

Personalized Budget Absorption (PBA). We evaluate both meth-

ods against recent solutions, Budget Distribution (BD) and Budget

Absorption (BA), to demonstrate their efficiency and effectiveness.

Our results show that PBD reduces error by 68% compared to BD

on real datasets, while PBA achieves 24.9% lower error than BA on

synthetic datasets.
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