
Streaming Time Series Subsequence Anomaly Detection: A
Glance and Focus Approach

Wenjing Wang

Huazhong University of Science and

Technology

wenjingwang@hust.edu.cn

Ziyang Yue

Huazhong University of Science and

Technology

ziyangyue@hust.edu.cn

Bolong Zheng
∗

Huazhong University of Science and

Technology

bolongzheng@hust.edu.cn

ABSTRACT
Subsequence anomaly detection for time series is a crucial problem

in various real-world applications. However, existing methods pro-

posed so far design the anomaly score functions solely based on

either local neighborhood or global patterns, leading to unsatisfac-

tory detection accuracy. In addition, these methods either cannot

adapt, or yield insufficient accuracy and efficiency in streaming

scenario. Therefore, we propose Sirloin, an accurate and efficient

streaming time series subsequence anomaly detection framework.

First, Sirloin proposes a glance and focus anomaly score function

that takes both global and local information into consideration,

contributing to an accurate anomaly detection. Second, Sirloin dy-

namically maintains an inverted file index and product quantization

codebooks to index and compress the subsequences, hence is able

to cope with the time series evolution and to process streaming

batches efficiently. In addition, a dual index optimization strategy is

put forward that further improves the efficiency. An experimental

study in 11 different datasets from 5 domains offers insight into

the performance of Sirloin, showing that it improves throughput

on average 4× and enhances accuracy 58.02% compared to the

state-of-the-art streaming method.

PVLDB Reference Format:
Wenjing Wang, Ziyang Yue, and Bolong Zheng. Streaming Time Series

Subsequence Anomaly Detection: A Glance and Focus Approach. PVLDB,

18(6): 1892 - 1904, 2025.

doi:10.14778/3725688.3725714

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Wangwenjing1996/Sirloin.

1 INTRODUCTION
Anomaly detection for time series is a fundamental function in

various fields such as finance, healthcare, and industrial monitor-

ing [9, 20]. Related applications include detecting abnormal trans-

actions or market fluctuations, discovering deviations in patients’

physiological parameters, and monitoring the equipment failures.

Therefore, time series anomaly detection is crucial for maintaining

∗
Bolong Zheng is the corresponding author

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 6 ISSN 2150-8097.

doi:10.14778/3725688.3725714

system stability, enhancing safety, and optimizing operational effi-

ciency, etc., hence has attracted widespread attention in both fields

of industry and scientific research over decades [18, 25].

In time series, anomalies can manifest in various forms, such as

spikes, drops, or deviations from expected behavior. In this study,

we focus on the subsequence anomaly detection for time series,

where the anomaly is not reflected by a single value, but by a

continuous interval. Even in the case that each value in an interval

falls within the normal range, the trend of all values may still

exhibit anomaly [17]. For example, in industrial production, a series

of consecutive normal points in system operations could indicate

an impending equipment failure. Therefore, subsequence anomaly

detection is a significant and challenging task.

To solve the subsequence anomaly detection problem, existing

studies are proposed in two categories, namely neighborhood based

methods [6, 7, 13, 15, 22, 30, 34] and pattern based methods [3–

5, 14]. Neighborhood based methods measure the anomaly of a

subsequence by its nearest neighbor(s). One of the most prevailing

neighborhood based method is Matrix Profile [31]. It defines the

anomaly as the subsequence that has the largest distance to its

nearest neighbor in the time series, which is called discord. They

performs well when the time series contains only one anomaly.

However, these methods suffer from a so-called twin-freak prob-

lem, where repeated anomalies become the nearest neighbor of each

other with a small distance, leading to their failure on these anom-

alies. Recently, pattern based methods attract widespread attention.

They discover anomalies according to the global distribution. As a

well-known method in pattern based methods, SAND [5] applies

clustering to extract global patterns, and detects anomalies by com-

paring them with global patterns. Therefore, even if an anomaly

appears multiple times, they can still detect it due to its sparse distri-

bution. This is able to overcome the shortcoming of neighborhood

based methods. However, we observe two problems occur when

leveraging existing methods:

• Insufficient accuracy. Neighborhood based methods do not

consider the global distribution of subsequences, while pattern

based methods lack a focused view of the local neighborhood.

Both approaches exhibit a form of tunnel vision, as they only

rely on either the local or the global perspective, neglecting the

complementary insights provided by the other. Although pattern

based methods claim to solve the twin-freak problem, which

is the shortcoming of neighborhood based methods, neither of

them emerges as a front-runner. Therefore, designing an effective

anomaly score function that combines both global and local

information remains a significant challenge.

1892

https://doi.org/10.14778/3725688.3725714
https://github.com/Wangwenjing1996/Sirloin
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3725688.3725714
https://www.acm.org/publications/policies/artifact-review-and-badging-current

• Struggle to handle streaming data.Most existing methods are

designed for static scenarios, where the entire time series is avail-

able in advance. However, in real-world applications, time series

data often arrives in a streaming fashion, requiring real-time

anomaly detection based on historical data. The few methods

developed for streaming scenarios typically struggle to deliver

satisfactory performance.

To address these aforementioned challenges, we propose Sirloin,

an accurate and efficient streaming subsequence anomaly detection

framework. The novelty of Sirloin lies in three key aspects, namely

a glance and focus anomaly score function, the Sirloin index, and

the dual index optimization strategy. First, Sirloin employs a glance

and focus anomaly score function that effectively integrates global

and local information, avoiding the information loss that arises

from existing approaches. This function allows Sirloin to accurately

detect not only repeated anomalies but also subtle ones hidden

within normal subsequences. Second, Sirloin constructs and dynam-

ically updates its index to facilitate efficient approximate nearest

neighbor search, capture global patterns accurately, and minimize

memory usage. The update strategy provides flexibility in handling

varying pattern numbers while maintaining quantization quality

with high efficiency. Finally, the dual index optimization restruc-

tures the update and anomaly score computation stages for higher

efficiency. By postponing part of the update until after anomaly

score computation and enabling faster convergence of the best-so-

far result during the search, this optimization ensures that pruning

conditions are met more easily, further boosting performance.

The main contributions are summarized as follows:

• We carefully design a novel glance and focus anomaly score

function that incorporates both global and local information,

effectively addressing the shortcomings of existing methods.

• We develop the Sirloin index, integrating an inverted file

index and product quantization for fast anomaly score com-

putation. To handle the continuous evolution of time series,

we propose an update strategy that dynamically maintains

the Sirloin index in real-time. In addition, we introduce a dual

index optimization strategy that further enhances efficiency.

• We conduct extensive experiments across 11 datasets from

5 different domains, thoroughly verifying the effectiveness

and efficiency of Sirloin.

2 RELATEDWORK
We proceed to review related studies of subsequence anomaly de-

tection, which mainly fall into three categories: the neighborhood

based methods, the pattern based methods, and the deep learning

based methods.

Neighborhood based methods. Discord [7, 15, 30, 34] is one

of the most prevailing anomaly definition for its concise represen-

tation, which is defined as the subsequence whose distance to its

nearest neighbor is the largest in the time series. STAMP [30] pro-

poses a technique, namely Matrix Profile, that effectively computes

the Euclidean distances between all pairs of subsequences using

Fast Fourier Transform (FFT), and finds the Discord based on the

Matrix Profile. STAMPI is an online version of STAMP and is able

to update the Matrix Profile incrementally in stream. DAMP [15]

narrows the search space to only consider a part of subsequences

that occur before the current subsequence. In this way, it improves

the efficiency in a streaming fashion.

In addition to methods designed specifically for time series, out-

lier detection methods for multi-dimensional data are also proposed

in this category. LOF [6] focuses on the outlier degree of a data

point relative to the surrounding neighborhood. It defines outliers

based on the ratio of its nearest neighbors’ local densities over its

own local density. ABOD [13] considers both angles and distances

to measure the outlier, where an outlier can only form a small angle

with any pair of its nearest neighbors.

However, these methods face a so-called twin-freak problem,

where an anomaly appears multiple times [15]. In this case, multiple

repeated anomalies become the nearest neighbors of each other,

causing the neighborhood based methods fail.

Pattern based methods. Pattern based methods capture global

patterns and discover anomalies based on the patterns. S2G [4]

constructs a graph, where each vertex is a pattern formed by simi-

lar subsequences, and each edge connects two vertices with their

temporal adjacency. NormA [3] and SAND [5] use clustering to

extract normal patterns, and compute the anomaly score of each

subsequence by the sum of its distances to all the cluster centroids.

SAND further proposes a streaming subsequence anomaly detection

framework to update the cluster-based normal patterns. Isolation

Forest [14] employs random space partition trees to capture the

patterns. Anomalies located in sparse regions tend to be isolated at

shallow nodes.

Pattern based methods discover anomalies by considering the

distribution of all subsequences. Therefore, even an anomaly may

repeat multiple times, it is easy to distinguish it from normal pat-

terns due to its sparse distribution, which helps to tackle the twin-

freak problem. However, pattern extraction is often conducted in a

coarse-grained manner such that subtle anomalies may mix with

normal patterns and are difficult to discover.

Deep learning based methods. Recently, deep learning has

been widely applied in time series anomaly detection, such as Omni-

Anomaly [24], USAD [2], Anomaly Transformer [29], TranAD [27],

and SGAT-AE [33]. However, these methods require intensive train-

ing on massive labeled or anomaly free data. As deep learning based

methods are orthogonal to our study, we omit the discussion due

to the space limitations.

3 PRELIMINARIES
Weproceed to introduce the preliminaries. Frequently used notation

is summarized in Table 1.

3.1 Problem Setting
A time series refers to a sequence of data points collected in chrono-

logical order, and is typically used to describe the data changes over

time. We formally define it as follows.

Definition 1 (Time Series). A time series 𝑇 is an ordered se-
quence consisting of 𝑛 data points, represented as 𝑇 = [𝑡1, . . . , 𝑡𝑛],
where 𝑡𝑖 ∈ R, 𝑖 ∈ [1, 𝑛]. The length of 𝑇 is denoted as |𝑇 | = 𝑛.

In many real world applications, the time series is collected in a

streaming manner. The total length of the time series is unknown

in advance and is potentially infinite. Therefore, the analysis is

1893

Table 1: Summary of Notation

Notation Definition

𝑇 A time series

𝑛 The length of 𝑇

𝑙 Subsequence length

T The set of all subsequences in 𝑇 of length 𝑙

𝐵𝑖 The 𝑖-th batch in 𝑇

B𝑖 The set of all subsequences in 𝐵𝑖
𝑏 The length of batch

AS(·) The anomaly score function

usually conducted on a newly arriving batch of data points, which

is defined as follows:

Definition 2 (Batch). A batch of data points in a time series 𝑇
is a finite sequence, denoted as 𝐵𝑖 = [𝑡 𝑗 , . . . , 𝑡 𝑗+𝑏−1

], where 𝑏 is the
length of 𝐵𝑖 . Note that, for two consecutive 𝐵𝑖 and 𝐵𝑖+1, the last data
point of 𝐵𝑖 is immediately followed by the first data point of 𝐵𝑖+1.

Subsequence anomaly detection is a critical task that aims to

identify continuous anomalous data points in a time series rather

than isolated anomalous points. This is because a single data point

may fall within the normal range of the whole time series, but a se-

quence of similar points can form an anomalous pattern. Therefore,

we focus on the subsequence anomaly detection, and we define the

subsequence as follows:

Definition 3 (Subseqence). A subsequence 𝑇𝑖,𝑙 in a time series
𝑇 = [𝑡1, . . . , 𝑡𝑛] is defined as a sequence of 𝑙 contiguous data points
starting from 𝑡𝑖 , denoted as 𝑇𝑖,𝑙 = [𝑡𝑖 , . . . , 𝑡𝑖+𝑙−1

]. We denote 𝑇𝑖,𝑙
as 𝑇𝑖 for simplicity when there is no ambiguity. For a batch 𝐵 =

[𝑡𝑖 , . . . , 𝑡𝑖+𝑏−1
], we denote the set of all possible subsequences as B =

{𝑇𝑗 }, where 𝑗 ∈ [𝑖, 𝑖 + 𝑏 − 𝑙].

3.2 Problem Definition
We study the problem of detecting the 𝜂 most abnormal subse-

quences in streaming time series, which is defined as follows:

Definition 4 (Streaming Subseqence Anomaly Detection

(SSAD)). Given a streaming time series 𝑇 that data points arrive in
batches, a subsequence length 𝑙 , and a delicately designed subsequence
anomaly score function AS(·), the streaming subsequence anomaly
detection (SSAD) aims to dynamically maintain a set 𝑅 of 𝜂 most
abnormal subsequences in 𝑇 , i.e., for ∀𝑇𝑖 ∈ 𝑅 and 𝑇𝑗 ∉ 𝑅,AS(𝑇𝑖) ≥
AS(𝑇𝑗).

For each arriving batch B = {𝑇𝑖 }, we compute AS(𝑇𝑖) for each
subsequence 𝑇𝑖 , and update 𝑅 if necessary.

Example 1. Fig. 1(a) shows an example of the SSAD problem with
𝜂 = 1. On the top is the time series, followed by anomaly scores
computed by three different algorithms, namely SAND, Matrix Profile,
and Kmeans, denoted as ASSAND, ASMP, and ASKmeans, respectively.
The red cursors annotate positions of the highest anomaly scores, i.e.,
ASSAND (𝑇 [12354, 12434]) = 0.790, ASMP (𝑇 [12545, 12625]) = 0.296,
and ASKmeans (𝑇 [12362, 12442]) = 0.839, as indicated by shadowed
rectangles.

S
A

N
D

K
D

D
 C

u
p

D
at

as
et

D
at

as
et

A
n
o
m

a
ly

 S
co

re
s

E
C

G
8
0
5

S
A

N
D

M
P

K
m

ea
n
s

(a) ECG805 dataset and anomaly scores

(e) KDD Cup 2021 010 dataset and anomaly scores

A
n
o
m

a
ly

 S
co

re
s

M
P

(b) True Positive of SAND

(c) False Positive of MP

(f) True Positive of MP

(g) False Positive of SAND

NN: [10858,

10938]

𝑑 = 0.054

NN: [3124, 3204]

𝑑 = 0.296

𝑇 [12354, 12434]

𝑇 [12545, 12625]

𝑇 [12360, 12440]

Ground Truth:

𝑇 [12369,12471]

G
F

12100 12920

𝑇 [12362, 12442]

5300 6100

G
F

𝑇 [6031, 6055]

𝑇 [5349, 5373]

𝑇 [6031, 6055]

(d) True Positive of Kmeans

NN: [10864,

10944]

𝑑 = 0.060

𝑑 = 1.0

NN: [3871, 3895]

𝑑 = 0.732

NN: [3119, 3143]

Ground Truth: 𝑇 [6006,6054]

Figure 1: Pre-experiments in (a) ECG dataset and (e) KDDCup
2021 dataset, including the time series and anomaly scores.
The right plots the highlighted subsequence (red), its nearest
neighbor (green), and its nearest centroid (blue).

As the subsequences reported by SAND and Kmeans have overlaps
with the ground truth 𝑇 [12369, 12471], we consider they find a true
positive and correctly discover the anomaly. In contrast, Matrix Profile
reports a false negative that has no overlap with the ground truth,
hence it fails to discover the anomaly.

4 A GLANCE AND FOCUS ANOMALY SCORE
We proceed to analyze the limitations of existing methods and

propose a novel anomaly score function.

4.1 Limitations and Motivation
The SSAD problem usually involves two tasks, including designing

an effective anomaly score function and finding anomalies effi-

ciently. Existing anomaly score functions can be divided into two

categories w.r.t. anomaly detection methods. Neighborhood based

methods design the anomaly score functions by utilizing the lo-

cal information, such as the Matrix Profile series methods, LOF,

and ABOD. In contrast, pattern based methods employ the global

1894

information, including S2G, NormA, SAND, and IF. However, the

performance ranking of methods varies considerably across differ-

ent datasets, with no consistent front-runner. This phenomenon is

also observed in the TSB-UAD benchmark [19, 26] and TSAD bench-

mark [32]. Next, we analyze the reason why some methods are only

effective in specific datasets with pre-experiments in ECG [16] and

KDD Cup 2021 [12] datasets.

Pre-experiments in ECG. ECG is an electrocardiogram dataset

containing repeated anomalies generated by certain mechanisms,

such as atrial fibrillation or premature beats. We conduct a pre-

experiment on ECG805 dataset and show the results in Fig. 1(a).

On the top is a subset of the dataset, followed by corresponding

anomaly scores computed via two representative score functions

of SAND and Matrix Profile, respectively. The red line is the anno-

tation of the ground-truth anomaly, and the dashed boxes are the

reported anomalies by different methods. We can see that SAND

successfully distinguishes the anomaly (labeled in red), but Matrix

Profile mistakes a normal subsequence (labeled in gray) for the

anomaly. This is because Matrix Profile considers the local infor-

mation, and defines an anomaly as a subsequence that deviates

greatly from its neighborhood, hence suffers from the twin-freak

phenomenon. For SAND, which designs the score function based on

the data distribution, anomalies located in sparse areas can be dis-

tinguished easily, even when they repeat multiple times. Figs. 1(b)

and (c) show the true positive 𝑇 [12354, 12434] and false negative

𝑇 [12545, 12625] along with their nearest neighbors (in green), re-

spectively. Matrix Profile reports the false positive since its distance

to the nearest neighbor 𝑇 [3124, 3204] is 0.296, and is the largest

among all subsequences. The true positive and its nearest neighbor

𝑇 [10858, 10938] form a twin-freak with a distance of only 0.054,

which is why Matrix Profile fails.

Pre-experiments in KDD Cup 2021. KDD Cup 2021 dataset

consists of 250 univariate time series from various domains, and

each containing only one anomaly. Fig. 1(e) shows pre-experiment

results of the 10-th time series. Interestingly, the performance rank-

ing of two anomaly score functions is reversed compared to the

results observed in the ECG dataset. Matrix Profile successfully de-

tects the anomaly, while SAND fails. This can be attributed to two

main factors. First, the dataset lacks strong regularity and contains

various types of normal patterns, making it challenging for cluster-

ing to accurately capture the distribution of all normal patterns. As

a result, some normal subsequences also exhibit large distances to

their nearest cluster centroids. Second, the anomaly in this dataset

is rare and not sufficiently distinct from normal subsequences. In-

stead of forming an isolated cluster, the anomaly is scattered within

a normal pattern, causing both normal and abnormal subsequences

to have similar distances to the nearest centroids. In contrast, the

anomaly exhibits a larger nearest neighbor distance compared to

normal subsequences. The details of detected subsequences and

their nearest neighbors are illustrated in Figs. 1(f) and (g).

Effects of abnormal patterns. In addition, anomalies can in-

fluence the patterns and form abnormal patterns. To explore the

effects of abnormal patterns, we conduct another pre-experiment

on ECG805 dataset. Specifically, we employ Kmeans to generate

32 clusters, and take the distance to the nearest centroid as the

anomaly score function, denoted as ASKmeans. The anomaly score

is also plotted in Fig. 1(a). Intuitively, if a pattern fits an anomaly

behavior, anomalies belonging to this pattern should yield small

anomaly scores and cannot be detected. However, we observe a

counter-intuitive result.

Take Figs. 1(c) and (d) as examples. Fig. 1(c) shows a normal

subsequence 𝑇 [12545, 12625], and Fig. 1(d) shows an abnormal

subsequence 𝑇 [12360, 12440]. We draw a blue dashed line to show

their nearest centroids. Obviously, the centroid of the abnormal

subsequence fits an abnormal pattern. However, this abnormal

subsequence still has a larger distance to its nearest centroid.

As subsequences are obtained by sliding windows, two chrono-

logically successive subsequences are highly-overlapping, with a

small distance between them. Assume a normal and an abnormal

patterns successively occur in time series, then a transition area

exists between these two patterns in the subsequence space. When

fitting the distribution of subsequences, the transition area can be

assigned to either of them. In both cases, the centroid of the pattern

being assigned the transition area needs to shift towards that transi-

tion area, which decreases the fitting accuracy of the corresponding

pattern. Since the subsequences located in an abnormal pattern are

far fewer than those in a normal pattern, clustering tends assign the

transition area to the abnormal pattern, so that the total decrease

of fitting accuracy is minimized. Therefore, we argue that there is

no need to mitigate the influence of abnormal patterns.

The pre-experiments indicate that existing anomaly score func-

tions, whether based on global or local information, are only ef-

fective on datasets with specific characteristics. Relying solely on

either global or local information is insufficient to handle differ-

ent types of datasets. Next, we introduce a novel anomaly score

function that considers both information.

4.2 Anomaly Score
Based on the discussion above, we reach the conclusion that fo-

cusing only on local information makes methods vulnerable to

repeated anomalies, while relying solely on global information may

miss subtle anomalies hidden among normal subsequences. There-

fore, we propose a glance and focus novel anomaly score function,

denoted as ASGF, that considers both local and global information.

Considering local information. In Sec. 4.1, we demonstrate

that global information alone is not enough to distinguish normal

and abnormal subsequences. Therefore, we leverage the nearest

neighbor distance as local information. Given a subsequence𝑇𝑞 , we

denote its 𝑘 nearest neighbors (𝑘NN) as N𝑘 (𝑇𝑞) = {𝑇𝑜1
, . . . ,𝑇𝑜𝑘 }.

The nearest neighbor distance 𝑑 (𝑇𝑞,𝑇𝑜𝑖) implies to what extent

a subsequence deviates from its neighborhood and serves as a

focused compensation for the global information.

Considering global information.We choose Kmeans for clus-

tering subsequences and extracting the global information, due to

its intuitive interpretation and outstanding performance on subse-

quence anomaly detection [3, 5]. The accuracy evaluation demon-

strates that using Kmeans is enough to achieve satisfactory per-

formance, as indicated by Fig. 1(a). For a set of subsequences T,
we partition them into nlist disjoint clusters with nlist centroids,
denoted as 𝑐1, . . . , 𝑐nlist and 𝐶1, . . . ,𝐶nlist, respectively. Therefore,

we have a glance at the subsequence distribution and each pattern

is represented by a centroid. Each cluster contains similar subse-

quences that belong to a corresponding pattern. In the following,

1895

(a) t-SNE visualization (b) t-SNE visualization with clustering

𝑇𝑞1
𝑇𝑞2

ҧ𝑐

(c) A toy example

Figure 2: (a) t-SNE visualization of a time series in 2D space, anomalies are highlighted in red; (b) Clustering of the time series,
each color represents a cluster; (c) A toy example inspired by the t-SNE visualization.

we use pattern and centroid interchangeably. Given a subsequence

𝑇𝑞 and its 𝑘NN set N𝑘 (𝑇𝑞), we first select clusters that cover 𝑇𝑞 ’s
neighborhood, i.e., {𝐶𝑖 } that satisfy 𝐶𝑖 ∩ N𝑘 (𝑇𝑞) ≠ ∅. Then, the
distances between𝑇𝑞 and the centroids 𝑐𝑖 are employed to evaluate

𝑇𝑞 ’s abnormality.

We differ from existing studies [3, 5] in two aspects. First, these

studies compute distances to all patterns, whereas we only con-

sider the patterns similar to 𝑇𝑞 . Since both normal and abnormal

subsequence can have one or more extremely dissimilar patterns,

considering such patterns may cause deterioration in performance.

Second, existing studies design mechanisms to mitigate the effect

of abnormal patterns, such as assigning different weights to pat-

terns. However, we observe in the pre-experiments (Sec. 4.1) that

even a pattern fits an anomaly behavior, anomalies belong to this

pattern still yield larger distance to the centroid. Therefore, We do

not bother to introduce such mechanism that complicates the score

function and may bring additional overhead.

Best of both worlds. After both global and local information

are obtained, the remaining question is how to combine them. A

straightforward way is using the product of these two distances.

Given a subsequence 𝑇𝑞 and its 𝑘NN set N𝑘 (𝑇𝑞), we define a naive
anomaly score function as follows,

ASnaive (𝑇𝑞) = E

[︃⋃︂
𝑇𝑜𝑗

{𝑑 (𝑇𝑞, 𝑐𝑖) · (
.
𝑇𝑞,𝑇𝑜 𝑗)}

]︃
, (1)

where𝑇𝑜 𝑗 ∈ N𝑘 (𝑇𝑞), 𝑐𝑖 is the centroid w.r.t.𝑇𝑜 𝑗 , and E[·] computes

the mean value. Specifically, ASnaive reports the average value of all

products of the distances of 𝑇𝑞 to its centroid and to its neighbors.

In experiments, Table 5 shows that ASnaive already outperforms the

baseline methods.

However, we argue that this straightforward approach leads

to information loss. By employing a more thoughtful and effec-

tive combination, the performance can be further improved. The

intuition here is that simply measuring absolute deviations from

patterns and neighborhood is insufficient to capture anomalies. The

distribution of a neighborhood relative to the pattern also plays

a crucial role. In subsequence data, clusters often extend along a

specific direction, forming non-spherical shapes. Subsequences can

be viewed as a trajectory in high-dimensional space, where adjacent

subsequences are chronologically successive. Fig. 2(a) provides an

example of subsequences in a time series, reduced to 2D space using

t-SNE, where each point represents a subsequence and anomalies

are highlighted in red. The subsequences clearly form a trajectory

in the shape of an “∞”. In Fig. 2(b), Kmeans is applied and different

clusters are shown in distinct colors. Each cluster extends along the

trajectory. When comparing Fig. 2(a) with Fig. 2(b), it becomes clear

that some anomalies, such as those in the brown cluster, deviate

orthogonally from the trajectory, residing on the cluster’s border.

We plot this condition in a toy example (Fig. 2(c)). The dashed

ellipse is a cluster with centroid 𝑐 , and 𝑇𝑞1
, 𝑇𝑞2

are two suspicious

subsequences. Intuitively, 𝑇𝑞2
is more anomalous than 𝑇𝑞1

, because

𝑇𝑞1
aligns with the direction of the data distribution, whereas 𝑇𝑞2

deviates from it. However, compared with 𝑇𝑞2
, 𝑇𝑞1

has a similar

nearest neighbor distance and a larger distance to the centroid,

leading to a larger naive anomaly score (Eq. 1). The most essential

difference between𝑇𝑞1
and𝑇𝑞2

is that the neighbors of𝑇𝑞2
distribute

more dispersedly in direction, thus forming a larger angle repre-

sented by the red sector in Fig. 2(c). In fact, some studies [13, 21]

also find angle information useful in discovering data distribution.

Since it is impossible to find such an angle that covers all neigh-

bors in high dimensional space, we use the fluctuation of the angle

formed by the subsequence, the centroid, and a nearest neighbor,

to measure such dispersity. When neighbors distribute dispersedly,

larger angles can be formed and contribute to the fluctuation. In ad-

dition, distance still matters and should be taken into consideration.

Therefore, we define the anomaly score function as follows:

Definition 5 (A Glance and focus Anomaly Score). Given a
subsequence 𝑇𝑞 , its 𝑘NN set N𝑘 (𝑇𝑞), the clusters {𝐶1, . . . ,𝐶nlist}, and
the corresponding cluster centroids {𝑐1, . . . , 𝑐nlist}, the anomaly score
function of 𝑇𝑞 is defined as:

ASGF (𝑇𝑞) = Var

[︃⋃︂
𝑇𝑜𝑗

{−−→𝑇𝑞𝑐𝑖 ·
−−−−→
𝑇𝑞𝑇𝑜 𝑗 }

]︃
, (2)

where𝑇𝑜 𝑗 ∈ N𝑘 (𝑇𝑞), 𝑐𝑖 is the centroid w.r.t.𝑇𝑜 𝑗 , and Var[·] computes
the variance.

We choose the inner product as it satisfies all the necessary re-

quirements for evaluating both distances and angles. Specifically,

the inner product

−−→
𝑇𝑞𝑐𝑖 ·

−−−−→
𝑇𝑞𝑇𝑜 𝑗 = | |−−→𝑇𝑞𝑐𝑖 | | · | |

−−−−→
𝑇𝑞𝑇𝑜 𝑗 | | · cos ∠𝑐𝑖𝑇𝑞𝑇𝑜 𝑗 ,

where the distance terms measure the deviation from the patterns

1896

Figure 3: Framework Overview of Sirloin

and neighborhood, and the angle term measures the dispersity. In

the case of an anomaly that deviates significantly or a normal sub-

sequence within a cluster, distance terms dominate the variance

and distinguish subsequences correctly. In Figs. 1(a) and (e), the

glance and focus anomaly scores are illustrated at the bottom. Ob-

viously, the proposed anomaly score function not only discovers

both anomalies accurately, but also generates more distinguishable

anomaly scores between the anomaly and normal subsequences.

5 SOLUTION
We proceed to introduce the proposed Sirloin to solve the SSAD

problem, including initialization, anomaly score computation, and

streaming batch processing. Fig. 3 shows the framework overview

of Sirloin. First, we initialize Sirloin with the subsequences in the

initial batch. Then, we introduce how to compute the glance and

focus anomaly score for each subsequence with indexes of Sirloin.

Third, for each arriving batch, the index updates to adapt to the

evolution of the time series, with new subsequences inserted and

expired subsequences deleted.

5.1 Initialization
As aforementioned, the glance and focus anomaly score function

considers both global information and local information, derived

from clustering and nearest neighbors, respectively. The inverted

file product quantization (IVFPQ) [11]: (1) is one of the most prevail-

ing approximate nearest neighbor search (ANNS) algorithms that

efficiently finds the 𝑘NNs for vectors/data sequences; (2) partitions

the data via clustering; (3) employs an effective data compression

technique, hence is able to cope with gradually accumulated stream-

ing batches with a low memory footprint. Therefore, we believe it is

well-suited for addressing the SSAD problem. To be self-contained,

we briefly introduce the initialization of inverted file (IVF) index

and product quantization (PQ).

Initializing IVF index.When the initial batch B1 arrives, we

employ Kmeans to partition the subsequences of B1 into nlist clus-
ters, i.e., C = {𝐶1, . . . ,𝐶nlist}, and build an inverted list for each

cluster that stores the IDs of all subsequences assigned to that clus-

ter, which significantly reduces the search space for ANNS while

also capturing global patterns from the initial batch.

Initializing PQ. To reduce the memory footprint, PQ is em-

ployed to compress the subsequences. It splits each subsequence

into smaller segments, and quantizes segments in groups. The quan-

tization of a subsequence is then the concatenation of the quantiza-

tion of each segment. Specifically, given a subsequence𝑇𝑜 ∈ R𝑙 , PQ
evenly divides 𝑇𝑜 into𝑀 segments, denoted as 𝑇𝑜 = [𝑇 1

𝑜 , . . . ,𝑇
𝑀
𝑜],

where each segment 𝑇 𝑖𝑜 ∈ R𝑙/𝑀 , 𝑖 ∈ [1, 𝑀]. This divides the whole
subsequence space into𝑀 segment spaces. In each segment space,

Kmeans is applied to segments and generates 𝐾 segment centroids,

namely𝑊 𝑖 = {𝑤𝑖
1
, . . . ,𝑤𝑖

𝐾
} in the 𝑖-th segment space. Each segment

is quantized by the nearest segment centroid, denoted by an indica-

tor𝑢𝑖 (·). For example,𝑢𝑖 (𝑇 𝑖𝑜) = 𝑤𝑖𝑗 indicates that𝑇
𝑖
𝑜 is quantized by

the 𝑗-th segment centroid in the 𝑖-th segment space. This means𝑇 𝑖𝑜
is approximated by𝑤𝑖

𝑗
and encoded as a short integer 𝑗 . In this way,

PQ quantizes a subsequence 𝑇𝑜 as 𝑢 (𝑇𝑜) = [𝑢1 (𝑇 1

𝑜), . . . , 𝑢𝑀 (𝑇𝑀𝑜)]
and obtains its PQ code consisting of𝑀 short integers. We denote

𝑊 =𝑊 1 × · · · ×𝑊𝑀
as the codebook, where × means Cartesian

product.

Example 2. Fig. 3(a) shows an example of initialization in 2D
space. The subsequences of length 2 are partitioned into 4 clusters,
i.e. 𝐶1,𝐶2,𝐶3,𝐶4, where green points represent the centorids. Each
subsequence is divided into two segments of length 1. The blue points
represent the segment centroids.

1897

It is worth noting that Sirloin does not employ an optimization

technique of IVFPQ, called residuals [11]. This technique sacri-

fices efficiency for lower quantization loss and higher ANNS ac-

curacy. However, on the one hand, Sirloin does not require such

high quality results from ANNS. We compare Sirloinwith and with-

out residuals in static scenarios, and find that residuals improve

the accuracy only marginally. The experimental results are shown

in Table 4, where Sirloinres stands for Sirloin with residuals. On

the other hand, this technique cannot be directly applied to Sir-

loin in streaming scenarios. Because it quantizes the differences

between the subsequences and corresponding cluster centroids,

instead of the original subsequences. However, contrast to the orig-

inal subsequences that always remain unchanged, such differences

continuously change due to the update of centroids. To overcome

this issue, re-quantization is needed when the centroids update,

which leads to a further decrease in efficiency.

5.2 Anomaly Score Computation
For a newly arriving batch B𝜏 , Sirloin computes the glance and

focus anomaly scores for subsequences in a chronological order.

Specifically, for each subsequence 𝑇𝑞 , we first perform an ANNS to

obtain both the global and local information, and we then compute

the anomaly scores with almost no additional overhead.

Performing ANNS. Given𝑇𝑞 , Sirloin first computes its distance

to the centroid of each inverted list, and selects nprobe inverted
lists with the nearest nprobe centroids for further evaluation. Then,
in each segment space (say the 𝑖-th), the distances between 𝑇 𝑖𝑞
and all corresponding segment centroids are computed and stored

in a distance table. When evaluating a subsequence 𝑇𝑜 , Sirloin

approximates the Euclidean distance by the distance between 𝑇𝑞
and the quantization of 𝑇𝑜 , i.e.,

𝑑 (𝑇𝑞,𝑇𝑜) = 𝑑 (𝑇𝑞, 𝑢 (𝑇𝑜)) =
∑︂𝑀

𝑖=1

𝑑 (𝑇 𝑖𝑞, 𝑢𝑖 (𝑇 𝑖𝑜)), (3)

where 𝑑 (𝑇 𝑖𝑞, 𝑢𝑖 (𝑇 𝑖𝑜)) is acquired by table look-up. The subseqences

with top-𝑘 smallest distance are returned as the ANNS results.

Computing anomaly score. During the anomaly score com-

putation, we also use the quantizations of the nearest neighbors

instead of original subsequences, which are not stored. Therefore,

the anomaly score function becomes:

ASGF (𝑇𝑞) = Var

[︃⋃︂
𝑇𝑜𝑗

{−−→𝑇𝑞𝑐𝑖 ·
−−−−−−−→
𝑇𝑞𝑢 (𝑇𝑜 𝑗)}

]︃
, (4)

where we do not distinguish approximate nearest neighbor set to

avoid introducing additional notation. However, the straightfor-

ward computation of the inner product

−−→
𝑇𝑞𝑐𝑖 ·

−−−−−−−→
𝑇𝑞𝑢 (𝑇𝑜 𝑗) incurs com-

putation cost that linearly increases with the subsequence length.

To avoid this overhead, we transform the inner product as follows:

−−→
𝑇𝑞𝑐𝑖 ·

−−−−−−−→
𝑇𝑞𝑢 (𝑇𝑜 𝑗) =

1

2

(︂
𝑑2 (𝑇𝑞, 𝑐𝑖) + 𝑑2 (𝑇𝑞,𝑇𝑜 𝑗) − 𝑑2 (𝑐𝑖 ,𝑇𝑜 𝑗)

)︂
, (5)

where the first two terms are obtained during ANNS, and the third

term can be precomputed and stored in the inverted list. In this

way, the score computation requires only constant time and is

independent from the subsequence length.

Although Sirloin aims to solve the SSAD problem, it is also able

to solve subsequence anomaly detection in static scenario, with the

whole time series as the initial batch.

5.3 Processing Streaming Batches
In the streaming scenario, the time series evolves over time. There-

fore, the index structure of Sirloin should also evolve to accommo-

date the continuous evolution. However, it would lead to unbearable

time overhead if reconstructing the IVF index and PQ codebooks

from scratch every time a new batch arrives. To avoid this prob-

lem, we design a real-time update mechanism for Sirloin, including

updating the IVF index and PQ codebooks.

Update of IVF index. For each following batch B𝜏 (𝜏 > 1),
the purpose of updating IVF index is to adjust the centroids of

the inverted lists and reassign the historical subsequences along

with new subsequences to the inverted lists, so that the IVF index

can provide better global patterns for SSAD and more reasonable

candidate set for ANNS.

Under a fixed nlist, an optimal way to update the IVF index is

assigning new subsequences to the current centroids and running

additional Kmeans iterations to optimize the clustering. However,

optimizing the clustering by both historical and new subsequences

incurs high computation overheads, let alone the need to decode

the PQ codes back to subsequences, since Sirloin only stores the

PQ codes rather than original subsequences. Another way is up-

dating the centroids only once after assigning new subsequences.

However, if new subsequences drift away from the historical ones

in the subsequence space, they may be frequently assigned to sev-

eral clusters and drag the corresponding centroids along the drift

direction after centroid update, which forms a positive feedback.

In the worst case, new subsequences in streaming batches may be

totally assigned to a single cluster, making both functions of the

IVF index lose efficacy, i.e. capturing patterns and restricting search

space. We call this phenomenon as cluster explosion. In addition,

nlist is a parameter that is impossible to properly set beforehand.

The number of clusters should be more flexible to better adapt to

the distribution of subsequences.

Therefore, we propose an online update strategy that (1) avoids

processing historical subsequences, (2) is free of cluster explosion,

(3) generates flexible number of clusters. Specifically, Sirloin only

runs Kmeans on the arriving batch at first. Then, clusters of histori-

cal subsequences and new subsequences are emerged based on the

similarity of clusters. At last, expired subsequences are deleted to

avoid the effects of the out-of-date data.

When a batchB𝜏 arrives, assume the current cluster set isC. Note
that |C| = nlist does not hold because the number of clusters can

change during update. Sirloin applies Kmeans on B𝜏 and achieves

nlist clusters, denoted as C𝜏 = {𝐶𝜏
1
, . . . ,𝐶𝜏nlist}. Then, Sirloin does

not merge all clusters into existing clusters, since we have demon-

strated that this may lead to cluster explosion. Instead, for a cluster

𝐶𝜏
𝑖
∈ C𝜏 , it is emerged into an existing cluster𝐶 𝑗 ∈ C, iff.𝐶𝜏𝑖 is close

enough to 𝐶 𝑗 . In other words, the distance between two centroids

is small. Otherwise, it is treated as an independent cluster. How-

ever, the capabilities of existing clusters to absorb new clusters are

different. For example, we tend to merge new clusters to dense clus-

ters with more cautiousness compared to sparse clusters to avoid

cluster explosion and obtain more balanced clustering. Therefore,

for each cluster 𝐶 𝑗 , we employ a density parameter 𝜌 𝑗 to evaluate

its density, which is initialized as the maximum distance between

the subsequences located in 𝐶 𝑗 , i.e., 𝜌 𝑗 = max

{︁
𝑑 (𝑇𝑜 , 𝑐 𝑗) |𝑇𝑜 ∈ 𝐶 𝑗

}︁
.

1898

The intuition is that a larger maximum distance indicates that

the cluster is located in sparse area, only under which condition

Kmeans assigns far subsequence to it to minimize the global loss.

When the distance between two centroids is smaller than the den-

sity parameter, i.e. d(𝑐𝜏
𝑖
, 𝑐 𝑗) < 𝜌 𝑗 , 𝐶

𝜏
𝑖
is merged into 𝐶 𝑗 . After the

merge, Sirloin updates the centroid by the weighted sum of cor-

responding values of the two clusters, where 𝑐′
𝑗
=

|𝐶𝜏
𝑖
|∗𝑐𝜏

𝑖
+|𝐶 𝑗 |∗𝑐 𝑗

|𝐶𝜏
𝑖
|+|𝐶 𝑗 |

and 𝜌′
𝑗
=

|𝐶𝜏
𝑖
|∗𝜌𝜏

𝑖
+|𝐶 𝑗 |∗𝜌 𝑗

|𝐶𝜏
𝑖
|+|𝐶 𝑗 | . The unmerged clusters are inserted into

C as independent clusters. Then new subsequences are appended

to the corresponding inverted lists. Since only similar clusters are

merged, the original centroid change slightly, so we do not need to

reassign historical subsequences.

In addition, we only retain the most recent portion of subse-

quences and delete expired data, for three reasons. First, since the

total length of time series is unknown and potentially infinite, stor-

ing all historical subsequences leads to an uncontrollable storage

overhead. Second, the infinite growth of data volume in the index

also causes continuous declines in the ANNS efficiency. Third, as

the time series evolves over time, a normal pattern in history can

become no more normal. Retaining all the historical subsequences

in index does not increase but deteriorates the detection accuracy.

Therefore, we only retain the subsequences from the latest window

of length 𝐻 . For the expired data, we remove it from the IVF index.

When a cluster becomes empty, we delete it from C.

Example 3. Fig. 3(b) shows an example of the IVF index update.
The subseuqences in the arriving batch form 4 clusters marked by the
dashed orange circles. Three of them are merged into existing clusters
𝐶3 and 𝐶4, and one of them becomes an independent cluster. At last,
the expired data represented by the dashed points are deleted, where
𝐶2 becomes an empty cluster and is removed.

Online PQ. Although PQ is effective in subsequence compres-

sion, it is a static method that cannot fit the time series evolution.

In essence, the purpose of updating PQ is similar with updating

IVF index. The difference lies in that, for PQ there is a fixed budget

of segment centroids, i.e., the number of centroids in each segment

space should remain the same during the update. Therefore, we

employ online product quantization [28] to update the codebook

for each batch B𝜏 . Online PQ quantizes new subsequences with

the current codebook, and updates the segment centroids by the

quantization error.

Given that time series drift occurs gradually, we assume that the

subsequence distribution does not change dramatically in a short

period. As a result, the current codebook𝑊 can be used to quantize

the newly arriving subsequences. Namely, for a subsequence 𝑇𝑜 ,

we obtain the quantization 𝑢 (𝑜𝑖) = 𝑤𝑖
𝑗
in an arbitrary 𝑖-th segment

space. Next is to update the codebook. If only considering one sub-

sequence 𝑇𝑜 , to minimize the quantization loss in the 𝑖-th segment

space,𝑤𝑖
𝑗
should be updated as𝑤𝑖′

𝑗
= 𝑤𝑖

𝑗
+(𝑇 𝑖𝑜 −𝑤𝑖𝑗). Take the histor-

ical data into consideration, the quantization loss is averaged by the

number of segments quantized to𝑤𝑖
𝑗
, i.e.𝑤𝑖′

𝑗
= 𝑤𝑖

𝑗
+ (𝑇 𝑖𝑜 −𝑤𝑖𝑗)/𝑛

𝑖
𝑗
.

However, updating the codebook in a subsequence-wise manner

may cause frequent fluctuations in codebook and inconsistent quan-

tization quality within a batch, which deteriorates the performance.

Therefore, we update the codebook in a batch-wise manner that

agrees with the streaming scenario. Specifically, we quantize all

Clustering the current

batch & Merge clusters

Codebook update

& PQ encoding
Deletion ANNS on Sirloin

Update Score

Original Latency

Clustering the

current batch

Codebook update

& PQ encoding

Merge clusters

& Deletion

ANNS on

Sirloinaff

ANNS on

Sirloin

Optimized Latency

Figure 4: Dual Index Optimization

the subsequences in a batch and update the codebook by the total

quantization loss, i.e.:

𝑤𝑖′𝑗 = 𝑤𝑖𝑗 +
1

𝑛𝑖′
𝑗

∑︂
𝑢𝑖 (𝑇 𝑖

𝑜)=𝑤𝑖
𝑗

(𝑇 𝑖𝑜 −𝑤𝑖𝑗), (6)

where 𝑛𝑖′
𝑗
is the number of segments quantized to𝑤𝑖

𝑗
including the

current batch.

After the update is completed, we perform ANNS and compute

anomaly scores in the same procedure as in static scenarios, which

has been discussed in Sec. 5.2.

6 DUAL INDEX OPTIMIZATION
We introduce an optimization strategy that further reduces compu-

tational overhead by restructuring the update and scoring stages

in a more efficient manner, referred to as Sirloin+. It accelerates

the ANNS process through a dual index structure, utilizing pruning

based on a distance lower bound provided by the triangle inequality.

This significantly enhances the performance by reducing unneces-

sary distance computations.

Most of the query time of Sirloin is spent on the update stage.

However, in the SSAD problem, the most urgent task when a new

batch arrives is to score each subsequence with low latency, rather

than focusing on maintaining a high-quality index. As for the up-

date, it can be completed at any time in the interval between the

arrivals of two successive batches without any negative effects.

Therefore, an aggressive optimization is to switch the update and

scoring stages, meaning subsequences could be scored based on the

current index without updating it. However, this could result in a

loss of critical information from the incoming batch. For instance, if

a new normal pattern emerges in the incoming batch, subsequences

from this pattern might be falsely recognized as anomalies due to

their deviation from the original patterns. To avoid this issue, we

still need to consider the global and local information in the current

batch, which necessitates performing clustering and ANNS. How-

ever, operations like merging clusters and deleting expired data

are not as time-sensitive and can be postponed. Therefore, we shift

part of the update operations to occur after the scoring process.

This idea is illustrated in Fig. 4, where Sirloin+ leverages an

affiliated Sirloin index to obtain the information in the current

batch separately. Specifically, the affiliated Sirloin index, denoted

as Sirloinaff, is the same as Sirloin in essence, and indexes the sub-

sequences from the incoming batch. Instead of initialization from

scratch, Sirloinaff fully reuses the intermediate results in the up-

date procedure to avoid incurring additional overheads. Recall that

1899

during update, we cluster the new batch, quantize the new subse-

quences, and update the codebook, which almost entirely covers the

cost of initialization. Sirloinaff directly employs the clustering cen-

troids, PQ codes, and codebook, hence is constructed with almost

no additional overheads. For ANNS, the overhead is mainly from

computing the distance table and performing a linear scan of subse-

quences in the probed clusters. Since Sirloin and Sirloinaff share the

same codebook, the distance table only needs to be computed once

and can be used by both indexes. For the linear scan, there is almost

no difference between the number of candidate subsequences from

two indexes and that from a single index without optimization. As a

result, the dual index structure for ANNS also incurs no additional

overheads during this process. In contrast, the postponed merge

of clusters and deletion of expired data no more contribute to the

detection latency.

Besides, in order to reduce distance computation overheads dur-

ing ANNS, we propose a pruning strategy based on the dual index

structure and a lower bound provided by the triangle inequality:

𝐿𝐵(𝑇𝑜) = |𝑑 (𝑇𝑜 , 𝑐𝑖) − 𝑑 (𝑇𝑞, 𝑐𝑖) |, (7)

where 𝑑 (𝑇𝑜 , 𝑐𝑖) and 𝑑 (𝑇𝑞, 𝑐𝑖) have already been computed. Once

𝐿𝐵(𝑇𝑜) exceeds the best-so-far nearest neighbor distance, 𝑇𝑜 can

be safely pruned.

However, in many cases pruning based on lower bound can-

not improve but reduce efficiency. It is because the distance to the

best-so-far 𝑘-th nearest neighbor converges too slowly to the fi-

nal result, and always remains a relative large value. Hence the

pruning condition is hard to meet and the increased overhead of

lower bound computation goes beyond the reduced overhead of

distance computation. On the contrary, the dual index structure

makes the best-so-far distance converge faster. As shifts exist in

time series, the nearest neighbors of a subsequence are temporally

close to it with high probability. Therefore, we first perform ANNS

on Sirloinaff index without pruning. In this way, a high quality

best-so-far distance is achieved with a small search space, since

Sirloinaff only indexes the incoming batch that makes up a small

portion of all retaining subsequences. Next, ANNS continues on

the main Sirloin index with pruning to obtain the final anomaly

scores.

7 EXPERIMENTAL EVALUATION
7.1 Experimental Setup
We implement Sirloin in C++ and compile it using GCC 8.3.1. All

experiments are run on a Linux machine with an Intel Xeon Gold

622R @ 2.90GHz processor and 92GB memory.

Datasets.We conduct the experiments in 11 datasets across 5

different domains. The details of datasets are shown in Table 2,

where 𝑙𝐴 represents the average length of anomalies, and 𝜂 is the

number of anomalies.

(1) IOPS [23] is non-periodic time series reflecting server per-

formance metrics.

(2) ECG [16] is a periodic electrocardiogram dataset, containing

atrial fibrillation and premature beats.

(3) Dodgers [10] is a loop sensor dataset from the Glendale of

the 101 North freeway, where anomalies are unusual traffic

after Dodgers games.

Table 2: Dataset Statistics

Datasets 𝑛 𝑙𝐴 𝑙 𝜂 Domain

IOPS_37aa 149K 16 16 63 Server Performance

IOPS_b37d 146K 14 16 59 Server Performance

IOPS_ee91 149K 12 16 59 Server Performance

ECG803 100K 75 80 62 Cardiology

ECG805 100K 75 80 133 Cardiology

ECG806 100K 75 128 27 Cardiology

ECG14046 100K 75 80 142 Cardiology

Dodgers 50K 42 64 133 Traffic

KPI-AIOPS_1 100K 84 64 88 KPI

KPI-AIOPS_2 100K 164 64 56 KPI

SED 100K 75 80 76 Electronic

Table 3: Comparison Methods

Methods Categories Scenarios

LOF Neighborhood based Static

ABOD Neighborhood based Static

Matrix Profile (MP) Neighborhood based Static

IF Pattern based Static

NormA Pattern based Static

S2G Pattern based Static

STAMPI Neighborhood based Streaming

DAMP Neighborhood based Streaming

SAND Pattern based Streaming

(4) KPI-AIOPS [8] comes from the 2018 International AIOps

Challenge and contains KPI data from real scenarios in

Internet companies.

(5) SED [1] is periodic simulated engine disk data that records

the disk speed from NASA Rotary Dynamics Laboratory.

Baselines.We compare Sirloin with 6 static methods (the data

input to methods is the entire time series) and 3 streaming methods

(the data input to the methods is batches in time series). The details

of comparison methods are shown in Table 3.

Metrics. We use Precision@𝜂 to evaluate the accuracy of all

methods, which is the ratio of correctly detected anomalies among

the top 𝜂 subsequences with the highest anomaly scores. To ensure

the result accuracy, we exclude surrounding subsequences when

selecting the subsequences with the highest anomaly score to avoid

the repeated selection of the same anomaly. In experiments, we

set 𝜂 to the number of true anomalies in time series. In addition,

we measure the efficiency with the throughput per second and

the execution time. The throughput is defined as the number of

subsequences processed per second. The execution time is the time

between the arrival of a batch and output of corresponding anomaly

scores.

7.2 Parameter Settings
The subsequence length 𝑙 is set identically for all methods, as spec-

ified in Table 2. We set 𝑀 = 8 and 𝐾 = 256 for all datasets, as

recommended in PQ [11]. For other parameters, we tune them on

1900

Execution Time Precision@´

40 80 120 160
nlist

0.0

0.5

1.0

E
x
ec

u
ti
o
n
 T

im
e

(s
)

0.7

0.8

0.9

P
re
ci
si
on

@
´

(a) Effects of nlist

15 25 35 45
k

0.0

0.5

1.0

E
x
ec

u
ti
o
n
 T

im
e

(s
)

0.7

0.8

0.9

P
re
ci
si
on

@
´

(b) Effects of 𝑘

0.5 1.5 2.5 3.5
b £104

0.0

2.0

4.0

E
x
ec

u
ti
on

 T
im

e
(s

)

0.7

0.8

0.9

P
re
ci
si
on

@
´

(c) Effects of batch size 𝑏

0.01 0.1 0.5 1
nprobe=nlist

0.0

0.8

1.6

E
x
ec

u
ti
on

 T
im

e
(s

)

0.7

0.8

0.9

P
re
ci
si
on

@
´

(d) Effects of nprobe

0.2 0.4 0.6 0.8
H=n

0.0

0.6

1.2

E
x
ec

u
ti
o
n
 T

im
e

(s
)

0.7

0.8

0.9

P
re
ci
si
on

@
´

(e) Effects of 𝐻

Figure 5: Effects of Parameters

one dataset to obtain the optimal values, and then apply them to

other datasets, which achieves satisfactory results. Thus, we con-

sider these parameters to be relatively generalizable. To reproduce,

users can adopt our parameter settings or tune them after collecting

part of the data. We study the effects of these parameters when

they vary around the optimal values in Fig. 5, including the number

of clusters per batch nlist, the number of nearest neighbors 𝑘 , the

batch size 𝑏, the number of inverted lists to evaluate nprobe, and
the length of the window retained 𝐻 . For baselines, parameters are

set to the default values as suggested in their studies.

Effects of varying nlist. As shown in Fig. 5(a), the execution

time per batch of Sirloin increases steadily with enlarging nlist,
because the time required to construct the index is proportional to

nlist. In addition, the accuracy is affected by varying nlist. If nlist is
too large or too small, the clustering may not align well with the

data distribution. We set nlist to 100 for all datasets.

Effects of varying k. As shown in Fig. 5(b), the execution time

remains stable as 𝑘 increases, since most of the time is spent on

ANNS, which is unaffected by 𝑘 . However, the accuracy initially

remains stable but gradually decreases as 𝑘 becomes too large. This

is because an excessive 𝑘 reduces the emphasis on local information,

which negatively impacts the accuracy. In our experiments, we set

𝑘 to 25 for all datasets.

Effects of varying b. As shown in Fig. 5(c), the execution time

per batch increases as batch size 𝑏 grows, as more subsequences

are processed in each batch. However, the accuracy remains stable

with varying 𝑏, as changes in 𝑏 have little effect on the neighbors

of subsequences and clusters. We set 𝑏 to 5000 for all datasets.

Effects of varying nprobe. As shown in Fig. 5(d), both the

execution time per batch and accuracy increase as nprobe grows.
Since a larger nprobe retrieves more candidate neighbors, which

achieves more accurate ANNS results at the cost of more distance

computations. Hence the accuracy is improved. In our experiments,

the nprobe is 10 for all datasets.
Effects of varying H . As shown in Fig. 5(e), when 𝐻 increases,

the execution time also increases, while the accuracy initially re-

mains stable but then begins to decline. A larger 𝐻 makes Sirloin

hold more subsequences, which reduces the ANNS efficiency. In

addition, since normal patterns in history may become abnormal

as the time series evolves, a larger 𝐻 reduces the accuracy. In our

experiments, we set 𝐻 to 0.2 times of 𝑛 for SED, and 0.5 times of 𝑛

for other datasets.

7.3 Accuracy Evaluation
We evaluate the accuracy of proposed methods with Precision@𝜂

in different datasets under both the static and streaming scenarios.

Static scenarios. The left of Table 4 reports results of Sirloin
and 6 competitive static methods in 11 datasets across 5 different

domains under static scenarios. Overall, Sirloin performs better

than other methods because it effectively combines both the lo-

cal and global information, allowing it to adapt to a variety of

datasets across different domains. Specifically, Sirloin achieves the

best Precision@𝜂 in 9 out of 11 datasets. It detects only 1 fewer

anomaly than NormA and S2G in ECG14046 and ECG806 datasets,

while performing comparably or better than the comparison meth-

ods in the other datasets.

We observe that pattern based methods, such as IF, NormA, and

SAND, struggle with non-periodic datasets (e.g., IOPS, Dodgers,

and KPI AIOPS), because they compute anomaly scores by relying

solely on the global information. These methods use clustering or

tree structures to identify potential patterns, but they often fail to

capture the intricacies of non-periodic data, resulting in large differ-

ences between normal subsequences and these patterns, making it

difficult to distinguish normal and abnormal subsequences, which

leads to poor anomaly detection results.

In contrast, neighborhood based methods, such as LOF and MP,

generally perform worse than other methods in periodic datasets

(ECG and SED), because they compute anomaly scores based solely

on local information, focusing on the relationship between subse-

quences and their neighbors. In periodic datasets, anomalies often

recur, and this local perspective can blur the distinctions between

abnormal subsequences and their neighbors, which leads to the so-

called twin-freak problem, and makes it hard to identify anomalies.

Note that, MP performs poorly in IOPS datasets due to its use of

𝑧-normalized Euclidean distance for finding nearest neighbors. In

non-periodic datasets, this normalization canmake dissimilar subse-

quences appear similar, hindering MP’s ability to detect anomalies.

Additionally, while ABOD incorporates both distance and angle

in its anomaly score design, its overall performance is still worse

than Sirloin. This is because ABOD primarily focuses on the dis-

tance between subsequences and their neighbors, relying solely on

local information, which limits its effectiveness in distinguishing

anomalies.

Streaming scenarios. We simulate the streaming scenarios by

dividing data points into batches. The right of Table 4 reports results

of Sirloin and 3 competitive streamingmethods in 11 datasets across

5 different domains under streaming scenarios.

1901

Table 4: The Accuracy Evaluation of Precision@𝜂 under Static and Streaming Scenarios

Static Streaming
Dataset LOF ABOD MP IF NormA S2G Sirloinres Sirloin STAMPI DAMP SAND Sirloin
IOPS_37aa 0.7937 0.8730 0.0159 0.2810 0.0000 0.8730 0.9206 0.9206 0.0000 0.0159 0.0016 0.9206
IOPS_b37d 0.7321 0.7500 0.0000 0.2536 0.0000 0.8929 0.9464 0.9464 0.0000 0.0000 0.0000 0.9643
IOPS_ee91 0.7797 0.8136 0.0000 0.3898 0.0000 0.8814 0.9661 0.9492 0.0000 0.0000 0.0136 0.9492
ECG803 0.1452 0.7097 0.6129 1.0000 0.9887 1.0000 1.0000 1.0000 0.5806 0.2419 0.8968 0.9838
ECG805 0.5000 0.9103 0.0769 0.9872 0.9872 0.9872 0.9872 0.9872 0.0641 0.6410 0.5603 0.9872
ECG806 0.9200 0.8800 0.8800 0.5240 0.7000 0.9600 0.9200 0.9200 0.8800 0.2000 0.7200 0.9200
ECG14046 0.6475 0.8197 0.5820 0.9836 1.0000 0.9426 1.0000 0.9918 0.5574 0.7787 0.4027 0.9836
Dodgers 0.5263 0.6391 0.3910 0.6195 0.2902 0.7068 0.8572 0.8195 0.4135 0.3157 0.4586 0.8271

KPI-AIOPS_1 0.0114 0.8068 0.1250 0.4671 0.0068 0.9205 1.0000 1.0000 0.0113 0.1250 0.0534 0.9886
KPI-AIOPS_2 0.0000 0.0000 0.0000 0.3312 0.0000 0.8621 0.9655 0.9655 0.0000 0.0000 0.0000 0.9655

SED 0.9388 0.9592 0.9796 0.0408 0.9980 1.0000 1.0000 1.0000 1.0000 0.3061 1.0000 1.0000
Average 0.5450 0.7419 0.3276 0.5339 0.4519 0.9115 0.9603 0.9546 0.3188 0.2386 0.3734 0.9536

As shown in Table 4, Sirloin achieves comparable accuracy under

streaming scenarios to that under static ones, and in some datasets,

it even outperforms results of static scenarios. This highlights the

effectiveness of online update strategy of Sirloin, which adapts to

the continuously changing data distribution in streaming contexts

and accurately captures global patterns, leading to more accurate

detection results. Additionally, Sirloin has clear advantages over

other methods. For example, STAMPI and DAMP evaluate the ab-

normality of subsequences using nearest neighbor distances, focus-

ing solely on local information. This approach becomes ineffective

when similar abnormal patterns emerge. Meanwhile, SAND only

captures the global information, which hinders its ability to detect

subtle anomalies and leads to poor performance in non-periodic

datasets. In contrast, Sirloin effectively integrates both the local

and global information, thereby avoiding the aforementioned short-

comings.

The experimental results reported in Table 4 fully demonstrate

the superiority of Sirloin and also confirm the effectiveness of online

update strategy of Sirloin.

7.4 Efficiency Evaluation
We study the efficiency of Sirloin and other competitive online

methods by comparing throughput.

Fig. 6 illustrates the throughput across different datasets with

varying batch sizes. Fig. 7 shows the average execution time per

batch of different methods. Both STAMPI and DAMP use a similar

approach, measuring the abnormality of subsequences using near-

est neighbor distance, but DAMP computes approximate nearest

neighbor distances, which leads to significantly higher efficiency

compared to STAMPI. Therefore, we report only the results for

DAMP and omit STAMPI to save space. We observe that Sirloin

achieves much higher throughput and shorter execution time than

both SAND and DAMP across different datasets. The improvements

are two-fold. For SAND, Sirloin has much lower complexity on clus-

tering. For DAMP, Sirloin has a smaller search space and computes

distance faster.

Additionally, Sirloin+ outperforms Sirloin in both throughput

and execution time due to its effective optimization strategy. This

Table 5: The Accuracy of Different Anomaly Scores

Function IOPS ECG Dodgers KPI-AIOPS SED

ASnaive 0.9286 0.8800 0.8271 0.9886 1.0000

ASGF 0.9464 0.9200 0.8346 0.9886 1.0000

improvement meets the real-time requirements of anomaly detec-

tion, making Sirloin+ more suitable for real-world applications.

7.5 Improvements of Optimizations
Improvements of anomaly score function. As shown in Table

5, ASGF outperforms ASnaive, highlighting the rationality and effec-

tiveness of ASGF. We combine the local and global information in

a more sophisticated way than ASnaive, which considers the distri-

bution of anomalies relative to its neighborhood and patterns. This

enables ASGF to detect subtle anomalies that are similar to normal

subsequences. Fig. 8 shows additional subtle anomalies detected

by ASGF, which ASnaive misses. Even in datasets with complex pat-

terns or subtle anomalies, ASGF accurately identifies them. These

experimental results highlight the superiority of ASGF.

Improvements of dual index optimization. We evaluate the

advantages of Sirloin+ over Sirloin and other baselines in terms of

throughput and average execution time per batch across different

datasets. As shown in Figs. 6 and 7, Sirloin+ outperforms all methods

in throughput and execution time. Compared to Sirloin, the dual

index structure pruning strategy in Sirloin+ effectively reduces

distance computation in ANNS. Compared to SAND and DAMP,

Sirloin+ has lower clustering time complexity and more efficient

distance computations in ANNS.

7.6 Memory Evaluation
Fig. 9 shows the theoretical and actual peak memory usage for

different methods. Although the actual memory usage is higher

than the theoretical one due to practical factors such as caching

and thread stacks, they show similar trends. Sirlon consumes the

most memory, while the trends of STAMPI, DAMP and SAND vary

across datasets. The theoretical memory usage is the sum of the

1902

Sirloin+ Sirloin SAND DAMP

1 2 3 4

Batch size £104

0.0

0.5

1.0

T
h
ro

u
gh

p
u
t

£104

(a) IOPS_37aa

1 2 3 4

Batch size £104

0.0

0.5

1.0

T
h
ro

u
gh

p
u
t

£104

(b) IOPS_b37d

1 2 3 4

Batch size £104

0

3

6

T
h
ro

u
gh

p
u
t

£103

(c) ECG805

1 2 3 4

Batch size £104

0

3

6

T
h
ro

u
gh

p
u
t

£103

(d) ECG14046

Figure 6: The Throughput in Different Datasets with Varying Batch Sizes

IOPS_37aa IOPS_b37d ECG803 ECG14046

Datasets

0

1

2

3

4

5

6

E
x
ec

u
ti
on

 T
im

e
(s

) DAMP

SAND

Sirloin

Sirloin+

Figure 7: The Average Execution Time per Batch

(a) Anomaly T(85366, 85441)

(b) Anomaly T(48044, 48078)

Figure 8: Anomalies in (a) ECG and (b) Dodgers

index size (for SAND and Sirloin) or raw data (for STAMPI and

DAMP), and the space required by anomaly score computation.

STAMPI and DAMP have no index structure, but need to store

the whole time series. When computing the anomaly score, they

store the distance of each subsequence to its top-1 nearest neighbor.

Therefore, STAMPI and DAMP consumemorememory on long time

series such as IOPS. SAND avoids storing the raw data, but its index

size scales quadratically with the subsequence length. Because it

needs to store a 4𝑙 by 4𝑙 matrix for each pattern. During anomaly

score computation, it stores the distances of each subsequence to all

patterns. Therefore, it requires more memory on the datasets where

IOPS_37aa ECG805 Dodgers

Datasets

0

1

2

3

4

5

6

M
em

or
y
 S

iz
e

(M
B

)

STAMPI

DAMP

SAND

Sirloin

(a) Theoretical memory usage

IOPS_37aa ECG805 Dodgers

Datasets

0

10

20

30

40

50

M
em

or
y
 S

iz
e

(M
B

)

STAMPI

DAMP

SAND

Sirloin

(b) Actual memory usage

Figure 9: The Peak Memory Usage of Different Methods

the subsequence length is long, such as ECG. For Sirloin, the index

size consists of the cluster centroids, the PQ codebook, and the PQ

codes of the latest subsequences. For each subsequence, the anomaly

score computation requires space for three kinds of distances in Eq.

(5) for the top-𝑘 nearest neighbors. With our experiment settings,

the anomaly score computation dominates the memory usage.

8 CONCLUSION
In this paper, we propose Sirloin for solving SSAD problem. First, Sir-

loin proposes a glance and focus anomaly score function that takes

both global and local information into consideration, contribut-

ing to an accurate anomaly detection. Second, Sirloin dynamically

maintains an IVF index and PQ codebooks to index and compress

the subsequences, hence is able to cope with the time series evolu-

tion and to process streaming batches efficiently. In addition, a dual

index optimization strategy is put forward that further improves

the efficiency. Extensive experiments demonstrate that Sirloin is

accurate and efficient compared to existing methods. Specifically,

compared to the state-of-the-art method SAND in streaming scenar-

ios, Sirloin achieves a 4× improvement in throughput on average

and a 58.02% increase in anomaly detection accuracy, demonstrating

its outstanding performance.

In future work, we plan to further investigate the storage and

I/O efficiency of Sirloin, particularly its behavior on SSDs under

high-throughput streaming scenarios.

ACKNOWLEDGMENTS
This work was supported in part by NSFC Grant No. 62372194.

1903

REFERENCES
[1] Ali Abdul-Aziz, Mark R Woike, Nikunj C Oza, Bryan L Matthews, and John D

lekki. 2012. Rotor health monitoring combining spin tests and data-driven

anomaly detection methods. Structural Health Monitoring. 11, 1 (2012), 3–12.
[2] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A.

Zuluaga. 2020. USAD: UnSupervised Anomaly Detection on Multivariate Time

Series. In KDD. 3395–3404.
[3] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed

Meftah, and Emmanuel Remy. 2021. Unsupervised and scalable subsequence

anomaly detection in large data series. VLDBJ. 30, 6 (2021), 909–931.
[4] Paul Boniol and Themis Palpanas. 2020. Series2Graph: Graph-based Subsequence

Anomaly Detection for Time Series. PVLDB. 13, 11 (2020), 1821–1834.
[5] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J. Franklin. 2021.

SAND: Streaming Subsequence Anomaly Detection. PVLDB. 14, 10 (2021), 1717–
1729.

[6] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000.

LOF: Identifying Density-Based Local Outliers. In SIGMOD Conference. 93–104.
[7] Yingyi Bu, Oscar Tat-Wing Leung, Ada Wai-Chee Fu, Eamonn J. Keogh, Jian Pei,

and Sam Meshkin. 2007. WAT: Finding Top-K Discords in Time Series Database.

In SDM. 449–454.

[8] International AIOPS Challenges. 2018. https://competition.aiops-challenge.com/

home/competition/1484452272200032281

[9] Medina Hadjem, Farid Naït-Abdesselam, and Ashfaq Khokhar. 2016. ST-segment

and T-wave anomalies prediction in an ECG data using RUSBoost. In Healthcom
2016. 1–6.

[10] Alexander Ihler, Jon Hutchins, and Padhraic Smyth. 2006. Adaptive event detec-

tion with time-varying poisson processes. In KDD. 207–216.
[11] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization

for Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1 (2011),
117–128.

[12] E. Keogh, T. Dutta Roy, U. Naik, and A. Agrawal. 2021. Multi-dataset Time-Series

Anomaly Detection Competition. https://compete.hexagon-ml.com/practice/

competition/39/

[13] Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. 2008. Angle-based

outlier detection in high-dimensional data. In KDD. 444–452.
[14] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In ICDM.

413–422.

[15] Yue Lu, Renjie Wu, Abdullah Mueen, Maria A. Zuluaga, and Eamonn J. Keogh.

2022. Matrix Profile XXIV: Scaling Time Series Anomaly Detection to Trillions

of Datapoints and Ultra-fast Arriving Data Streams. In KDD. 1173–1182.
[16] George BMoody and Roger GMark. 2001. The impact of theMIT-BIH arrhythmia

database. IEEE engineering in medicine and biology magazine. 20, 3 (2001), 45–50.
[17] Themis Palpanas. 2024. Time Series Anomaly Detection. SIGMOD Blog (2024).

[18] Themis Palpanas and Volker Beckmann. 2019. Report on the First and Second

Interdisciplinary Time Series Analysis Workshop (ITISA). SIGMOD Rec. 48, 3
(2019), 36–40.

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and

Michael J. Franklin. 2022. TSB-UAD: An End-to-End Benchmark Suite for Uni-

variate Time-Series Anomaly Detection. PVLDB. 15, 8 (2022), 1697–1711.

[20] Tuomas Pelkonen, Scott Franklin, Paul Cavallaro, Qi Huang, Justin Meza, Justin

Teller, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, In-Memory

Time Series Database. PVLDB. 8, 12 (2015), 1816–1827.
[21] Dehua Peng, Zhipeng Gui, Dehe Wang, Yuncheng Ma, Zichen Huang, Yu Zhou,

and Huayi Wu. 2022. Clustering by measuring local direction centrality for data

with heterogeneous density and weak connectivity. Nature communications. 13,
1 (2022), 5455.

[22] Ninh Pham and Rasmus Pagh. 2012. A near-linear time approximation algorithm

for angle-based outlier detection in high-dimensional data. In KDD. 877–885.
[23] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly

Detection in Time Series: A Comprehensive Evaluation. PVLDB. 15, 9 (2022),
1779–1797.

[24] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. 2019. Robust

Anomaly Detection for Multivariate Time Series through Stochastic Recurrent

Neural Network. In KDD. 2828–2837.
[25] Sharmila Subramaniam, Themis Palpanas, Dimitris Papadopoulos, Vana Kaloger-

aki, and Dimitrios Gunopulos. 2006. Online Outlier Detection in Sensor Data

Using Non-Parametric Models. PVLDB. (2006), 187–198.
[26] Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos E. Trahanias, and

Themis Palpanas. 2023. Choose Wisely: An Extensive Evaluation of Model

Selection for Anomaly Detection in Time Series. PVLDB. 16, 11 (2023), 3418–
3432.

[27] Shreshth Tuli, Giuliano Casale, and Nicholas R. Jennings. 2022. TranAD: Deep

Transformer Networks for Anomaly Detection in Multivariate Time Series Data.

PVLDB. 15, 6 (2022), 1201–1214.
[28] Donna Xu, Ivor W. Tsang, and Ying Zhang. 2018. Online Product Quantization.

IEEE Trans. Knowl. Data Eng. 30, 11 (2018), 2185–2198.
[29] Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. 2022. Anomaly

Transformer: Time Series Anomaly Detection with Association Discrepancy. In

ICLR.
[30] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,

Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn J. Keogh.

2016. Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View

That Includes Motifs, Discords and Shapelets. In ICDM. 1317–1322.

[31] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,

Hoang Anh Dau, Zachary Zimmerman, Diego Furtado Silva, Abdullah Mueen,

and Eamonn J. Keogh. 2018. Time series joins, motifs, discords and shapelets:

a unifying view that exploits the matrix profile. Data Min. Knowl. Discov. 32, 1
(2018), 83–123.

[32] Aoqian Zhang, Shuqing Deng, Dongping Cui, Ye Yuan, and Guoren Wang. 2023.

An Experimental Evaluation of Anomaly Detection in Time Series. PVLDB. 17, 3
(2023), 483–496.

[33] Bolong Zheng, Lingfeng Ming, Kai Zeng, Mengtao Zhou, Xinyong Zhang, Tao

Ye, Bin Yang, Xiaofang Zhou, and Christian S. Jensen. 2024. Adversarial Graph

Neural Network for Multivariate Time Series Anomaly Detection. IEEE Trans.
Knowl. Data Eng. 36, 12 (2024), 7612–7626.

[34] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael

Yeh, Gareth J. Funning, Abdullah Mueen, Philip Brisk, and Eamonn J. Keogh.

2016. Matrix Profile II: Exploiting a Novel Algorithm and GPUs to Break the One

Hundred Million Barrier for Time Series Motifs and Joins. In ICDM. 739–748.

1904

https://competition.aiops-challenge.com/home/competition/1484452272200032281
https://competition.aiops-challenge.com/home/competition/1484452272200032281
https://compete.hexagon-ml.com/practice/competition/39/
https://compete.hexagon-ml.com/practice/competition/39/

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Setting
	3.2 Problem Definition

	4 A Glance and Focus Anomaly Score
	4.1 Limitations and Motivation
	4.2 Anomaly Score

	5 Solution
	5.1 Initialization
	5.2 Anomaly Score Computation
	5.3 Processing Streaming Batches

	6 Dual Index Optimization
	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Parameter Settings
	7.3 Accuracy Evaluation
	7.4 Efficiency Evaluation
	7.5 Improvements of Optimizations
	7.6 Memory Evaluation

	8 Conclusion
	Acknowledgments
	References

