
Fucci: Database Transaction Fuzzing via Random Conflict
Construction and Multilevel Constraint Solving

Xiyue Gao
Xidian University

xygao@xidian.edu.cn

Zhuang Liu
Xidian University

zliu_01@stu.xidian.edu.cn

Yiran Shen
Xidian University

yrshen@stu.xidian.edu.cn

Hui Li∗
Xidian University
hli@xidian.edu.cn

Yingfan Liu
Xidian University

liuyingfan@xidian.edu.cn

Hongjun Xiao
Xidian University

23031212454@stu.xidian.edu.cn

Yanguo Peng
Xidian University

ygpeng@xidian.edu.cn

Jiangtao Cui
Xidian University
cuijt@xidian.edu.cn

ABSTRACT
Ensuring the ACID properties of transactions is the fundamental
functionality of transactional DBMSs. However, through our study
on existing solutions on transaction management, we found that
transaction implementations in some mainstream databases, such
as MySQL, MariaDB and TiDB, may violate what they claim in their
documentation, in the form of incorrect database state or query
results. Since there is still a lack of efficient and comprehensive
testing methods to detect bugs within transaction management im-
plementation for off-the-shelf DBMSs at present, we propose Fucci,
a fuzzing framework, to solve the problem. Given a target DBMS,
Fucci improves the efficiency of detecting transaction bugs through
three key components: Random Conflict Construction (RCC), Mul-
tilevel Constraint Solving (MCS), and Experience-driven Automatic
Simplification (EAS). RCC addresses the issue of inadequate case va-
lidity by ensuring the presence of read-write or write-write conflicts
between transactions. MCS enhances the accuracy and efficiency
of the transaction oracle by employing an external multi-version
control system to solve data visibility. EAS is ultimately adopted to
improve the efficiency of simplification and the readability of the
identified bug cases. All of the above strategies are tested on com-
mercial databases such as MySQL, MariaDB and TiDB. Accordingly,
6 previously unknown transaction bugs and 14 known duplicate
transaction bugs have been newly discovered, most of which have
been officially acknowledged.

PVLDB Reference Format:
Xiyue Gao, Zhuang Liu, Yiran Shen, Hui Li, Yingfan Liu, Hongjun Xiao,
Yanguo Peng, and Jiangtao Cui. Fucci: Database Transaction Fuzzing via
Random Conflict Construction and Multilevel Constraint Solving. PVLDB,
18(6): 1879 - 1891, 2025.
doi:10.14778/3725688.3725713

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Reverie4u/Fucci.

∗Hui Li is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 6 ISSN 2150-8097.
doi:10.14778/3725688.3725713

1 INTRODUCTION
Database Management Systems (DBMS), serving as the founda-
tional infrastructure for managing and organizing data, have exten-
sive applications in almost all software systems [1]. Ensuring their
reliability and security is of paramount importance. A database
transaction refers to a logical unit of work consisting of a series
of operations, characterized by four properties: Atomicity, Consis-
tency, Isolation and Durability (ACID) [28]. It is utilized to maintain
the integrity of the database and has become an indispensable
feature of modern DBMSs.

To effectively support ACID, DBMSs employ complex techniques.
Undo/redo logs or protocols such as ARIES [38] ensure atomicity
and durability. Lock-based concurrency control, multi-version con-
currency control (MVCC) [33, 44] and optimistic concurrency con-
trol (OCC) [34, 47] are used to guarantee isolation. However, these
technologies often exhibit design and implementation flaws, result-
ing in transaction management bugs [15, 16], which may manifest
themselves as incorrect query results, blocking states and final data-
base states. Therefore, conducting a thorough test for transaction
management is crucial prior to the release of a DBMS.

Fuzzing, as a popular automated testing technique, detects soft-
ware bugs by randomly generating and executing test cases [2, 4–
6, 8, 29]. Compared to manual testing, symbolic execution [20] and
model check [24], fuzzing offers lower cost and higher coverage.
Currently, fuzzing has been extensively used to detect crashes, logic
bugs, and performance bugs in DBMSs [36]. It works by randomly
generating SQL statements and constructing appropriate test or-
acles [29] to verify the correctness of the execution results, thus
detecting potential bugs in DBMSs.

Unfortunately, existing fuzzing methods for detecting transac-
tion management bugs, such as DT2 [25] and Troc [26], suffer from
low testing efficiency and accuracy. Specifically, DT2 [25] utilizes
differential testing to verify transaction correctness, which can only
validate the same syntax among different databases and fails to de-
tect bugs shared by the tested and reference DBMSs. Although it
is able to detect numerous compatibility issues between different
databases, it can only identify a few transaction management bugs.
Troc [26] considers confirming transaction management bugs by
comparing the execution results under two equivalent scenarios:
transactional and non-transactional modes. In non-transactional
mode, the visible views of statements are first captured and dumped
into temporary tables in the database. Then, the statements are exe-
cuted on these temporary tables to simulate transaction execution.

1879

https://doi.org/10.14778/3725688.3725713
https://github.com/Reverie4u/Fucci
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3725688.3725713
https://www.acm.org/publications/policies/artifact-review-and-badging-current

However, its correctness relies on the accuracy of individual state-
ment executions, which could lead to missed detections due to bugs
in expression calculations within single statements. Moreover, ex-
isting methods employ entirely random methods to generate trans-
action test cases, often resulting in numerous invalid test cases and
lower efficiency in vulnerability detection. More importantly, the
test cases in the bug reports generated by DT2 and Troc require
manual simplification to locate bugs, which greatly hinders both
the reporting and the fixing of these bugs.

To effectively detect transaction management bugs in modern
DBMSs, we introduce Fucci, a fuzzing tool based on Random Con-
flict Construction (RCC), Multilevel Constraint Solving (MCS) and
Experience-driven Automatic Simplification (EAS). We start by ran-
domly generating a database and transaction pairs. Then, we intro-
duce random read-write conflicts or write-write conflicts between
transaction pairs, providing a rich and effective selection space
for transaction test cases. Next, we develop a constraint-solving
oracle for testing the transaction functionality of DBMSs. It simu-
lates transaction execution under different isolation levels using an
external multi-version chain, an Abstract Syntax Tree (AST)-based
statement solver and refined transaction analysis, and can obtain
the ground truth of transaction execution. Finally, we present a bug
case simplification model that maintains syntactic validity. This
model prioritizes simplification layers and incorporates dynamic
probability tables with the Epsilon-Greedy strategy to facilitate
self-learning and decision-making for simplification operations.

To demonstrate the effectiveness and efficiency of Fucci, in line
with experimental target DBMSs from previous research [26, 45],
we conducted experiments in the pessimistic transaction mode
across three widely-used DBMSs compatible with the MySQL pro-
tocol, i.e., MySQL [11], MariaDB [10], and TiDB [12]. Fucci is also
applicable to other DBMSs like SQL Server, PostgreSQL and Oracle,
but due to their different SQL dialects and isolation level definitions,
extensive engineering adaptations are required, which will be a fo-
cus of our future efforts. Experiments show that Fucci identified six
unique bugs in the transaction modules of the three tested DBMSs:
one each in MySQL and TiDB, and four in MariaDB. These bugs
have been reported to the developers and confirmed as new bugs.
In particular, the MariaDB development team extensively discussed
the cause of bug MDEV-27992 and proposed a preliminary solu-
tion, which includes introducing additional error codes and the
‘innodb_snapshot_isolation’ switch. One of the developers even
commented ‘Thank you for the great work! May I ask which tool
you used to find this?’. This paper’s contributions are as follows:

(1) We develop a multilevel constraint-solving oracle for de-
tecting bugs in DBMS transaction management modules,
effectively solving the false positive problem caused by
relying on the correctness of single-statement executions.

(2) We introduce random conflicts and the hierarchical auto-
matic simplification to enhance the effectiveness and read-
ability of transaction test cases, thereby improving the effi-
ciency of fuzzing.

(3) We implement these methods as Fucci and employed it to
test three widely-used DBMSs, i.e., MySQL, MariaDB and
TiDB. Fucci detected six unique transaction management
bugs in these DBMSs.

2 PRELIMINARIES
2.1 Notations
The notations used in this paper are summarized in Table 1.

Table 1: Commonly Used Notations in This Paper
Notation Definition

𝑅𝑈 Read Uncommitted
𝑅𝐶 Read Committed
𝑅𝑅 Repeatable Read
𝑆𝐸𝑅 Serializable

𝑇𝑥
A transaction, which begins with ‘BEGIN’ and ends with
‘COMMIT’ and contains some statements

𝑆
A statement in a transaction, which can be any SQL
sentence supported by the target DBMS

𝑡 A table in a database
𝑝 A predicate in a SQL statement

𝑅𝑆 (𝑆) The result set of the statement S
𝐼𝑆 (𝑆) The insertion set of the INSERT statement S

2.2 Transaction Management
A transaction is a logical unit comprising a sequence of operations
(e.g., read, write, insert) and should satisfy the ACID properties.

Transaction modes. There are two main modes: optimistic and
pessimistic. Optimistic transactions skip row locks and validate
conflicts at commit time, potentially requiring rollbacks. Pessimistic
transactions acquire exclusive locks and block others until the locks
are released. This work focuses on the pessimistic mode.

Isolation levels. Transactions operate under different isolation
levels that balance consistency and concurrency. Higher levels offer
stronger consistency but reduce concurrency. Different DBMSs
may support various isolation levels. MySQL-compatible DBMSs
typically support four levels: 𝑅𝑈 , 𝑅𝐶 , 𝑅𝑅, and 𝑆𝐸𝑅.

2.3 DBMS Fuzzing
Fuzzing is an efficient technique to identify issues in DBMSs by au-
tomatically generating and executing invalid, abnormal, or random
test cases. It typically involves the following components:

Generator. Generator automatically produces test cases and
serves as the first step of DBMS fuzzing. Test cases can be created
using either generation-based [26, 41, 45] or mutation-based [19, 23,
35] methods. Mutation-based approaches rely on the quality of seed
test cases and are more error-prone. We adopt the generation-based
approach for better coverage and robustness.

Oracle. The oracle determines the expected outcomes of test
cases. Existing oracles can be divided into four types: crash ora-
cles [46, 49], differential oracles [25], metamorphic oracles [43] and
constraint-solving oracles [41, 45]. Constraint-solving oracle, used
in our work, generally relies on forward or backward solving to
derive the ground truth of transaction execution.

Comparator. Comparator compares the execution results from
the target DBMS with the expected results obtained from the ora-
cle. If the results are inconsistent, it indicates a bug; otherwise, it
confirms the system is functioning correctly.

Reducer. Reducer can automatically parse complex cases and
perform simplification operations to obtain the simplified and human-
readable format. However, existing reducers [23, 41] are limited to
simplifying single SQL statements, not entire transactions.

1880

Figure 1: Overview of Fucci Framework

3 APPROACH
Overview. Figure 1 presents an overview of Fucci, divided into four
modules. Test case generator employs a basic AST model men-
tioned in our previous review [27] to generate random databases
and SQL statements. These statements are then combined with
BEGIN, COMMIT or ROLLBACK to form transactions. We fur-
ther enhance the effectiveness of these transaction cases through
RCC, obtaining conflicting transaction pairs. Previous transaction
oracles [26], based on mutation testing, often faced false positives
due to reliance on the correctness of single-statement executions.
Fucci’s constraint-solving oracle is a fully external oracle that
guarantees precise execution results by leveraging a multi-version
chain, an AST-based statement solver and refined transaction anal-
ysis. While weak isolation levels might allow multiple correct out-
comes due to indeterminate transaction commit orders, Fucci en-
sures unique results by fixing transaction commit order. Result
comparator compares the results of the target DBMS and the ora-
cle from three aspects: blocking condition, query result and final
state of the database, to detect isolation bugs. The blocking condi-
tion ensures the blocking state of the oracle and actual execution
align. Fuzzing methods often produce extremely complex test cases
and therefore rely on manual simplification to enhance readability,
which is inefficient [27]. In Fucci’s transaction case reducer, a
hierarchical simplification model simplifies complex transaction
bug cases, while an experience-driven simplification module uses
empirical feedback to guide the selection of simplification opera-
tions. They work together to generate most simplified bug reports.
Next, we will elaborate on the core innovations of these modules.

3.1 Random Conflict Construction
Based on the definition of transaction anomalies [22], transactions
will conflict on certain data items when dirty read and fuzzy read
occur and also conflict within some predicate scope when phantom
occurs. Additionally, analysis of known transaction bugs also shows
they all involve read-write or write-write conflicts. To detect po-
tential transaction bugs, it is necessary to construct test cases that
contain the above conflicts to increase the probability of triggering

Table 2: Statement combinations and conflict strategies
No Statement A Statement B Strategy
1 SELECT (FOR SHARE) SELECT (FOR SHARE)

FSF
PSF
CTC

2 SELECT (FOR UPDATE) SELECT (FOR UPDATE)
3 UPDATE UPDATE
4 DELETE DELETE
5 SELECT UPDATE
6 SELECT DELETE
7 SELECT (FOR SHARE/UPDATE) UPDATE
8 SELECT (FOR SHARE/UPDATE) DELETE
9 UPDATE DELETE
10 SELECT INSERT

CTC
11 SELECT (FOR SHARE/UPDATE) INSERT
12 UPDATE INSERT
13 DELETE INSERT

anomalies. Table 2 shows all SQL statement types supported by
Fucci, where 13 combinations can be used to construct conflicts.
Notably, the combination of two common SELECT statements can-
not trigger conflicts. Similarly, we do not consider the condition
that two different INSERT statements add the same record because
DBMSs will directly report an error or rollback the operation in-
stead of of causing an transaction level conflict. However, SELECT
(FOR SHARE/UPDATE) are two types of read statements that lock
selected rows during queries. As a result, their combinations are
considered viable candidates. To effectively construct conflicts, we
introduce three strategies: Fully Shared Filters (FSF), Partially Shared
Filters (PSF) and Conflict Tuple Containment (CTC).

FSF. Given that the SELECT, UPDATE and DELETE statements
generated by the generator all involve predicates, it is easy to ensure
they access the same items by keeping the predicates consistent. The
left side of Figure 2 illustrates an example of FSF. Firstly, randomly
select a statement from each of the two generated transactions,
such as 𝑆2 and 𝑆7, where 𝑝1 and 𝑝2 respectively represent predicate
expressions of the two statements. Then, change 𝑝2 to 𝑝1 to obtain
a new statement 𝑆

′
7. Finally, since the predicate 𝑝1 is fully shared

by 𝑆
′
7 and 𝑆2, it satisfies 𝑅𝑆 (𝑆2) = 𝑅𝑆 (𝑆 ′7).

PSF. This strategy involves making the predicate of one state-
ment contain that of another. In other words, the tuples filtered
by one predicate become a subset of those filtered by the other. In

1881

Figure 2: An Example of Random Conflict Strategies

Figure 2, the statements for PSF are the same as those for FSF. How-
ever, by altering 𝑝2 to (𝑝1;𝑂𝑅;𝑝2), a new statement 𝑆

′′
7 is created,

satisfying 𝑅𝑆 (𝑆2) ⊆ 𝑅𝑆 (𝑆 ′′7).
CTC. Since INSERT statements have no predicates, we propose

CTC to facilitate conflict construction of them. In Figure 2, 𝑆3 is an
INSERT statement, while 𝑆6 is an UPDATE statement with the pred-
icate 𝑝3. We dump the tuples to be inserted from the INSERT into
a new table 𝑡2, which has the same table definition as the original
table 𝑡1. Then, construct a SELECT statement 𝑆

′
6 and execute it on

table 𝑡2 to verify whether the inserted rows satisfy the predicate
𝑝3. If the result contains 𝑇𝑅𝑈𝐸/1, it indicates a conflict between
the inserted data and 𝑝3. If the result contains 𝐹𝐴𝐿𝑆𝐸/0 or 𝑁𝑈𝐿𝐿,
a conflict can still be created by appending 𝑁𝑂𝑇 or 𝐼𝑆 𝑁𝑈𝐿𝐿 to 𝑝3.
Once the conflict is constructed, it satisfies 𝑅𝑆 (𝑆 ′′6) ∩ 𝐼𝑆 (𝑆3) ≠ ∅.
CTC can also be extended to non-INSERT scenarios (No.1-13 in
Table 2). To achieve this, we first still randomly select some tuples
from the test table into a new table, simulating the rows inserted
by an INSERT. Then, for each statement randomly chosen from
the two transactions, we construct two SELECT statements which
are then executed on the new table to verify whether the selected
tuples satisfy these predicates. Conflicts can be constructed by ei-
ther adding 𝑁𝑂𝑇 or 𝐼𝑆 𝑁𝑈𝐿𝐿 or by not modifying them, using a
similar strategy with INSERT scenarios.

Commit Order. While the above strategies generate conflicting
statements, not all transaction commit orders trigger conflicts. We
propose three filtering rules to exclude invalid orders: (1) The exe-
cution timelines of the two transactions must overlap; (2) The first
transaction must not commit before the second statement in the
combination is executed; (3) For consecutive BEGIN statements,
only commit orders with different BEGIN sequences are redundant.
Despite filtering, many orders may still remain. Exhaustively testing
all of them is inefficient and unlikely to reveal new bugs. Therefore,
we randomly sample 𝑘 commit orders for testing. Empirical data
indicates that 𝑘 = 10 achieves highest detection efficiency with
minimal cost. All experiments in this paper use this value.

Randomness in RCC is reflected in several aspects: (1) Ran-
dom generation of initial transactions and databases; (2) Random
selection of statements for conflict construction; (3) Conflict con-
struction strategies can also be randomly chosen; (4) In CTC, when
TRUE, FALSE and NULL coexist, whether to add NOT or IS NULL
is also random. These random mechanisms allow RCC to maximize
the test case search space within an effective range.

Figure 3: An Illustration of Multilevel Constraint Solving

3.2 Multilevel Constraint Solving
Constraint-solving oracle in Fucci constructs a fully external multi-
version control system. It maintains a version chain for each tuple
in test table and performs multilevel constraint solving on specified
views to obtain the ground truth of transaction execution.

Figure 3 illustrates the process, including four key steps: transac-
tion partition, block analysis, version updating and result obtaining.
The latter three rely on a statement solver and a multi-version chain.
Transaction partition involves dividing transactions into individual
statements identified by transaction IDs. These IDs facilitate the
analysis of data visibility of statements, as visibility varies from one
transaction to another. Block analysis refers to obtaining the row
lock of a single statement and checking for conflicts with existing
locks. If a conflict exists, the current statement is blocked, and the
process switches to a statement from the other transaction for exe-
cution. For unblocked UPDATE, DELETE and INSERT statements,
version updating is performed, meaning new versions or deletion
tags are inserted into the influenced scope of the solved statement
to maintain the external multi-version chain. For unblocked SE-
LECT statements, the visible data view of each statement is solved
on the version chain based on the statement type and isolation
level. Finally, through AST-based statement solving, we obtain the
expected execution results, including the blocking condition of each
statement, execution results and the final state of the database.

Statement Solver. In amulti-branch tree representation of an ex-
pression, leaf nodes typically represent constants or column names,
while non-leaf nodes correspond to 𝑁 -ary operators. Expression
solving involves assigning a tuple to the column nodes of this tree
and solving it from the bottom up to the root node. Algorithm 1
outlines this process, where the input is the root node 𝑟𝑜𝑜𝑡 and a
tuple list 𝑡𝑢𝑝𝑙𝑒𝑠 , and the output is a result list 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 . For each tuple
in 𝑡𝑢𝑝𝑙𝑒𝑠 , the recursive function 𝑆𝑜𝑙𝑣𝑒𝑉𝑎𝑙𝑢𝑒 is invoked, and the re-
sults are added to 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 . If 𝑟𝑜𝑜𝑡 is a leaf node, 𝑆𝑜𝑙𝑣𝑒𝑉𝑎𝑙𝑢𝑒 returns
its constant value or retrieves the value from the tuple. Otherwise,
it recursively evaluates child nodes and combines their results at
the parent node. The final 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 contains values of𝑇𝑅𝑈𝐸, 𝐹𝐴𝐿𝑆𝐸
or 𝑁𝑈𝐿𝐿 for each tuple. Using this approach, the statement solving
process becomes straightforward: traverse 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 to locate rows
where the expression evaluates to 𝑇𝑅𝑈𝐸, thereby determining the
influenced scope for SELECT, UPDATE, and DELETE statements.

Block Analysis. Locking mechanisms vary across different
DBMSs. For example, MySQL supports gap locks [7], while TiDB
does not. Table 3 summarizes the lock strategies used in MySQL,

1882

Algorithm 1: Expression solving based on AST model
Input: Expression root node - 𝑟𝑜𝑜𝑡 , table tuples - 𝑡𝑢𝑝𝑙𝑒𝑠
Output: Solved results - 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

1 Function 𝑆𝑜𝑙𝑣𝑒𝑉𝑎𝑙𝑢𝑒(𝑟𝑜𝑜𝑡, 𝑡𝑢𝑝𝑙𝑒):
2 if 𝑟𝑜𝑜𝑡 is a leaf node then
3 if 𝑟𝑜𝑜𝑡 is constant then
4 return constant value;
5 else
6 return column value from 𝑡𝑢𝑝𝑙𝑒 ;

7 else
8 foreach 𝑐ℎ𝑖𝑙𝑑 of 𝑟𝑜𝑜𝑡 do
9 𝑠𝑢𝑏𝑅𝑒𝑠𝑢𝑙𝑡 [𝑖] ← 𝑆𝑜𝑙𝑣𝑒𝑉𝑎𝑙𝑢𝑒 (𝑐ℎ𝑖𝑙𝑑, 𝑡𝑢𝑝𝑙𝑒);

10 𝑟𝑒𝑠 ← Combine all 𝑠𝑢𝑏𝑅𝑒𝑠𝑢𝑙𝑡 to obtain the result of
the parent expression;

11 return 𝑟𝑒𝑠;

12 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← ∅;
13 foreach 𝑡𝑢𝑝𝑙𝑒 in 𝑡𝑢𝑝𝑙𝑒𝑠 do
14 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑆𝑜𝑙𝑣𝑒𝑉𝑎𝑙𝑢𝑒(𝑟𝑜𝑜𝑡, 𝑡𝑢𝑝𝑙𝑒);
15 Add 𝑟𝑒𝑠𝑢𝑙𝑡 to 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ;
16 return 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

MariaDB and TiDB.MySQL andMariaDB share identical lock strate-
gies, whereas TiDB supports only 𝑅𝐶 and 𝑅𝑅 isolation levels. In
these DBMSs, regular SELECT statements are generally executed
using snapshot reads: under 𝑅𝑈 , they read the latest data; under
𝑅𝐶 , they read from latest committed snapshot and under RR, they
read from snapshot at the transaction begin. Locking is applied
only under 𝑆𝐸𝑅 to ensure SELECT strict serializability. SELECT
FOR SHARE and FOR UPDATE are two modes of current read,
applying shared and exclusive locks, respectively, to the queried
data. Both MySQL and MariaDB fully support these two reading
modes, whereas TiDB does not support FOR SHARE by default.
Although TiDB is compatible with LOCK IN SHARE MODE syntax
(equivalent to FOR SHARE), it defaults to treating it as a regular,
non-locking read. Additionally, under 𝑅𝑅 and 𝑆𝐸𝑅 in MySQL and
MariaDB, most locking read and write operations include predicate
locks to mitigate the effects of phantom reads.

The locking rules above clarify whether a statement will acquire
a lock under different isolation levels. To analyze blocking, it is also
necessary to determine the rows and index ranges involved when
locking occurs. These ranges are closely related to the WHERE
expression of the statement. Typically, the row lock range is ob-
tained by solving the expression on the latest version of the test
table. However, under 𝑅𝐶 of MySQL and MariaDB, semi-consistent
reads [14] are used for UPDATE, and theWHERE condition is there-
fore evaluated based on the latest committed version.

Based on this information, the row lock of a statement can be
modeled as a triplet comprising the lock type, row range and index
range. The lock type is either shared or exclusive. The row range
includes the tuples accessed by the statement, while the index range
is defined as a pair consisting of the index name and corresponding
values, which can be a primary key or other unique index. The
left part of Figure 4 illustrates the lock analysis process for an
UPDATE statement under the 𝑅𝑅 isolation level. First, the latest

Table 3: Lock strategies in different DBMSs. Lock types in-
clude shared locks (S LOCK) and exclusive locks (X LOCK),
which can apply to rows (R), indexes (I), and predicates (P).

Type MySQL & MariaDB TiDB
RU RC RR SER RC RR

SELECT
No LOCK
(latest
data)

No LOCK
(latest

committed
snapshot)

No LOCK
(transaction

begin
snapshot)

S LOCK
(R, I, P)

No LOCK
(latest

committed
snapshot)

No LOCK
(transaction

begin
snapshot)

SELECT
FOR

SHARE

S LOCK
(R, I)

S LOCK
(R, I, P)

No LOCK
(latest

committed
snapshot)

No LOCK
(transaction

begin
snapshot)

SELECT
FOR

UPDATE

X LOCK
(R, I)

X LOCK
(R, I, P)

X LOCK
(R, I)

UPDATE X LOCK
(R, I)

X LOCK
(R, I, P)

X LOCK
(R, I)DELETE

INSERT X LOCK
(R, I)

X LOCK
(R, I)

version (𝑛𝑢𝑙𝑙,−1), (2, 1), (𝑛𝑢𝑙𝑙,−1) is obtained from the external
multiversion chain. Then, the Statement Solver is used to determine
the set of row numbers (2) that satisfy the conditions of the state-
ment. According to the 𝑅𝑅 isolation level’s locking strategy, the
lock type is an exclusive lock. Based on the index metadata, the anal-
ysis identifies the locked index ranges as < 𝑝𝑟𝑖𝑚𝑎𝑟𝑦, (2, 1) > and
< 𝑖𝑛𝑑𝑒𝑥 (𝑐2), (1) >, corresponding to the primary key index (2, 1)
and the unique index on column 𝑐2 with value (1), respectively.

For all statements after Transaction Partition, the row lock are
analyzed sequentially and recorded. If the lock range of the current
statement overlaps with that of previously accessed statements, the
transaction containing the current statement is blocked until the
other transaction commits or aborts (releasing all its locks). Under
𝑅𝑅 and 𝑆𝐸𝑅, MySQL and MariaDB employ gap locks in different
degrees, making it necessary to check for potential gap lock con-
flicts. Gap locks lock the gaps between tuples that satisfy predicate
expressions to prevent phantom reads caused by insertion or dele-
tion of tuples meeting the conditions. While determining precise
gap lock ranges is computationally expensive, identifying conflicts
between gap locks and row locks does not require exact ranges.
Consider two statements, 𝐴 and 𝐵, from different transactions. If
the row lock analysis for statement 𝐵 changes before and after the
execution of statement 𝐴 on the multi-version chain, it indicates a
conflict between gap locks and row locks. The same holds true if
the execution order of 𝐴 and 𝐵 is reversed.

External Multi-version Chain Maintenance. Considering
that INSERT, UPDATE and DELETE statements all modify tuples in
a table, we use an external multi-version chain to store the mod-
ification history of each tuple. To uniquely identify each tuple, a
row number is maintained, with each corresponding to a linked
list of historical versions. A version of a tuple is represented as a
triple consisting of a data row, a transaction number and a deletion
tag. The transaction number specifies which transaction added the
version, and the deletion tag indicates whether the tuple has been
deleted. For INSERT statements, a new tuple is generated with a
new line number and its initial version is added to the version
chain. Generally, determining the influenced scope of UPDATE and
DELETE can follow the same approach as in block analysis. But
the definition of the latest version differs slightly across isolation
levels in MySQL and MariaDB. Under 𝑅𝑅, unlike other levels, the

1883

Figure 4: An Example of Multilevel Constraint Solving

latest version includes deleted rows. Once determined, the influ-
enced range results leads to updates in the multi-version chain. For
UPDATE statements, the updated tuple is added as a new version
in the chain. For DELETE statements, the latest version is copied,
its deletion tag is set to deleted, and it is added as a new version.
Figure 4 also shows the process of maintaining the external multi-
version chain. Initially, each tuple has a single version. The visible
data view for Tx2 is retrieved, and the expression 𝑐2 = 1 is evaluated
to determine the scope, identified as (2). The visible view is then
modified, and a new updated version is added to the corresponding
row, updating the 𝑐1 column to 5.

Result Obtaining. Table 3 provides an explanation of the visibil-
ity rules for SELECT statements under the 𝑅𝑈 , 𝑅𝐶 , and 𝑅𝑅 isolation
levels. In the 𝑆𝐸𝑅 isolation level, due to full transaction serializa-
tion, SELECT, FOR SHARE, and FOR UPDATE statements can only
see versions committed by other transactions before the current
transaction begins. However, under the 𝑅𝑈 , 𝑅𝐶 , and 𝑅𝑅 isolation
levels, the snapshots for FOR SHARE and FOR UPDATE statements
are always the latest committed snapshot. This is because these op-
erations require acquiring shared or exclusive locks, which causes
the current statement to be blocked until the conflicting write trans-
action is committed, ultimately allowing only committed versions
to be read. Notably, our research differs from TROC in terms of
data visibility. In particular, the difference between TROC and our
work in data visibility is that the UPDATE, INSERT and DELETE
statements in our work always obtain the latest version to construct
the data view, while TROC has special rule definitions for them.
Finally, the visible range is determined by evaluating the WHERE
expression on these visible versions, leading to the expected results.

Limitation. MCS focuses on the dual-transaction scenario as
most transaction bugs can be reproduced in it. However, there may
indeed be a few bugs that need to be triggered in three or more
concurrent transactions scenarios. If MCS is extended to the multi-
transaction scenario, it will face uncertainty in oracle construction.
For example, given three transactions𝑇𝑥1,𝑇𝑥2 and𝑇𝑥3, if both𝑇𝑥1
and 𝑇𝑥2 are blocked by 𝑇𝑥3, then the recovery order of 𝑇𝑥1 and
𝑇𝑥2 is uncertain after 𝑇𝑥3 commits, which will make oracle fail to
obtain accurate results. A straightforward solution is to enumerate

Algorithm 2: Hierarchical simplification
Input: text, maxReduceCount, categoryCount
Output: simplifiedText

1 𝑇𝑥1,𝑇𝑥2, 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙𝑠, 𝑠𝑢𝑏𝑚𝑖𝑡𝑂𝑟𝑑𝑒𝑟 − 𝑡𝑒𝑥𝑡
2 𝑠𝑡𝑚𝑡𝐿𝑖𝑠𝑡, 𝑎𝑠𝑡𝐿𝑖𝑠𝑡 ← 𝑇𝑥1,𝑇𝑥2
3 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ← 𝑡𝑥𝑃𝑎𝑟𝑠𝑒 (𝑡𝑒𝑥𝑡)
4 foreach 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝐶𝑛𝑡 do
5 foreach𝑚𝑎𝑥𝑅𝑒𝑑𝑢𝑐𝑒𝐶𝑜𝑢𝑛𝑡 do
6 𝑐𝑙𝑜𝑛𝑒𝑑𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ← 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝐶𝑙𝑜𝑛𝑒 (𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒)
7 𝑜𝑝 [𝑗] ← 𝑔𝑒𝑡𝑇𝑦𝑝𝑒 (𝑟𝑒𝑑𝑢𝑐𝑒𝑂𝑝𝐿𝑖𝑠𝑡 [𝑖])
8 𝑠𝑡𝑚𝑡𝐼𝑑𝑥 ← 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑡𝑚𝑡 (𝑐𝑙𝑜𝑛𝑒𝑑𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒)
9 𝑐𝑙𝑜𝑛𝑒𝑑𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ← 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑆𝑡𝑚𝑡 (𝑜𝑝 [𝑗], 𝑠𝑡𝑚𝑡𝐼𝑑𝑥)

10 if 𝑜𝑟𝑎𝑐𝑙𝑒𝐶ℎ𝑒𝑐𝑘 (𝑐𝑙𝑜𝑛𝑒𝑑𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒) == 𝑓 𝑎𝑙𝑠𝑒 then
11 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ← 𝑐𝑙𝑜𝑛𝑒𝑑𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒

12 𝑠𝑖𝑚𝑝𝑙𝑖 𝑓 𝑖𝑒𝑑𝑇𝑒𝑥𝑡 ← 𝑡𝑒𝑥𝑡𝐶𝑎𝑠𝑒

all possible recovery orders. If none match the observed execution,
a transaction bug is detected. However, this approach is clearly
inefficient, making it a key problem for future research.

3.3 Experience-driven Automatic Simplification
To enhance simplification efficiency and accuracy, we propose EAS,
comprising a hierarchical simplification model and an experience-
driven simplification module.

Hierarchical Simplification. We prioritize simplification lay-
ers as follows: statement deletion, statement simplification, expres-
sion simplification, and constant simplification. Operations within
the same layer share equal priority. Statement deletion types match
3. Statement simplification includes removing expressions, updat-
ing columns, table definitions and projection columns. Expression
simplification removes operators from WHERE clauses, while con-
stant simplification targets complex constants in predicates. These
AST-based operations ensure syntactic validity.

Algorithm 2 illustrates the hierarchical simplification process.
Firstly, the input 𝑡𝑒𝑥𝑡 is parsed, and up to𝑚𝑎𝑥𝑅𝑒𝑑𝑢𝑐𝑒𝐶𝑜𝑢𝑛𝑡 simpli-
fication operations are performed in the 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝐶𝑛𝑡-𝑡ℎ reduction
layer. In each operation, clone the 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 and select simplification
operations based on the decision algorithms. Then, randomly sim-
plify a conditional statement from the 𝑐𝑙𝑜𝑛𝑒𝑑𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒 . If the simpli-
fied 𝑐𝑙𝑜𝑛𝑒𝑑𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒 still triggers a bug (𝑜𝑟𝑎𝑐𝑙𝑒𝐶ℎ𝑒𝑐𝑘 returns false),
it updates the current 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 . The final output 𝑠𝑖𝑚𝑝𝑙𝑖 𝑓 𝑖𝑒𝑑𝑇𝑒𝑥𝑡 is
the most simplified, readable test case.

Experience-driven Simplification. Although operationswithin
the same layer have equal theoretical priority and can be randomly
selected, their success rates and effects vary, making selection chal-
lenging. To address this, we propose two simplified sequential de-
cision algorithms, dynamic probability table and Epsilon-Greedy
algorithm, which optimize future decisions through feedback from
simplification results and self-learning. The dynamic probability
table algorithm maintains a probability table for each layer, record-
ing the selection probability of each simplification operation. If
the simplification type SELECT is chosen in the statement deletion
layer, a SELECT statement from 𝑇𝑥1 or 𝑇𝑥2 is randomly deleted.

1884

Figure 5: Updating process of known simpilificaiton benefit

The oracle then verifies if the bug is reproduced and updates the
probabilities based on the simplification results.

The number of simplification operations is limited, as excessive
simplification is time-consuming and may block the program. To
maximize effectiveness within this limit, we model it as a multi-
armed bandit problem and adopt the Epsilon-Greedy algorithm,
selecting the highest-profit operation with a certain probability and
randomly choosing the next with the rest.

action(𝑡) =
{

argmax
𝑖=1...𝑘

(𝑄𝑖 (𝑡)) (1 − 𝜖)

random(𝑘) (𝜖)
(1)

𝑄𝑖 (𝑡 + 1) = 𝑄𝑖 (𝑡) +
𝑔𝑖 −𝑄𝑖 (𝑡)

𝑡 + 1 (2)

The simplification module uses Eq. 1 to select the 𝑡-𝑡ℎ simplifi-
cation operation, where 𝑘 is the number of candidate operations,
𝑄𝑖 (𝑡) represents the known profit of the 𝑖-𝑡ℎ operation at time
𝑡 , and 𝜖 is a fixed probability between 0 and 1. At each step, the
operation with the highest profit is selected with probability 1 − 𝜖 ,
while a random operation is chosen with probability 𝜖 . 𝑄𝑖 (𝑡 + 1)
is updated based on the 𝑖-𝑡ℎ operation’s profit at time 𝑡 and the
simplification profit 𝑔𝑖 (see Figure 5). The known profit 𝑄𝑖 (𝑡 + 1) is
calculated as a standard average because the profit contribution of
the 𝑖-𝑡ℎ operation is consistent across iterations (Eq. 2). The sim-
plified profit 𝑔𝑖 is determined by oracle validation: if the simplified
bug is reproducible, the profit is 1; otherwise, it is 0.

Adaptability. Fucci currently supports only MySQL-compatible
DBMSs but has the potential to be extended to other DBMSs. For
Fucci’s generator, adapting to database dialects and adjusting for
differences in data types, functions, and cross-database CRUD op-
erations is essential, including updates to the AST model. Existing
dialect conversion tools may assist in this process. Due to differ-
ences in isolation levels and locking strategies, adapting to Oracle
introduces additional challenges, requiring clear definitions of lock
types, granularity, and snapshot read rules to adjust Fucci’s data
view strategy. The statement solver also needs syntax adjustments,
and the simplifier may need to optimize or expand its hierarchical
strategies for better compatibility.

4 EVALUATION
To validate the superiority of Fucci, we conducted experiments
across multiple DBMSs, including overall performance, oracle com-
parison, and conflict construction. Additionally, we analyzed the
reasons behind the experimental results.

Table 4: New transaction bugs reported by Fucci

Issue Isolation Transaction
Bug Status Severity Affected

Versions
MySQL
#113228 RR Yes Verified Serious 8.0, 8.2

MariaDB
#32898 RR Yes Fixed Critical 10.4-10.6, 10.11,

11.0-11.2
MariaDB
#33802

RU, RC,
RR, SER Yes Fixed Critical 10.2-11.4

MariaDB
#34106 RC Yes Verified Critical 10.6, 10.11, 11.0-

11.2, 11.4
MariaDB
#34108

RU, RC,
RR, SER Yes Verified Critical 10.6

TiDB
#48960 RR Yes Verified Minor 7.1

4.1 Experimental Setup
We conducted experiments on MySQL 8.0.25, TiDB 7.1.2, and Mari-
aDB 11.2.2 on a machine configured with a 16-core AMD Ryzen
7-5800H, running Ubuntu 20.04, and 16GB of RAM. The test case
generator runs in a single-threaded environment with minimal
system configuration requirements.

In the overall performance comparison experiment, we compared
the bug detection efficiency of DT2, Troc, and Fucci. In the oracle
comparison experiment, we further evaluated the oracle-solving
capabilities of these fuzzers. DT2 and Troc were selected as base-
lines because other database fuzzing tools, such as SQLsmith [31],
Squirrel [49], and NoREC [41], focus primarily on non-transactional
modes. They generate SQL statements to detect bugs related to syn-
tax, logic, memory, and performance optimization but are unable
to identify transaction-related bugs involving isolation levels. Addi-
tionally, DT2 claims to be the first fuzzing tool that uses differential
testing to detect transaction bugs [26], while Troc detects trans-
action bugs through transaction decoupling and mutation testing,
making them ideal benchmarks for this study. In the conflict con-
struction comparison experiment, we assess the effectiveness of
FSF, PSF and CTC algorithms using a consistent oracle to validate
the results. In these experiments, our SQL statements generation
algorithm is the same for all cases.

4.2 Overall Evaluation
To evaluate the effectiveness of our fuzzing tool Fucci, we con-
ducted approximately two weeks of testing on above-mentioned
DBMSs. This effort resulted in the successful discovery of six new
transaction bugs. Table 4 presents all the new transaction bugs de-
tected in various databases. These six bugs lead to incorrect query
results, with three causing phantom rows. One bug in MySQL is
labeled serious, four in MariaDB as critical, and one in TiDB as mi-
nor. Currently, MariaDB#32898 and MariaDB#33802 are both fixed.
They have been persistent issues since version 10.4, respectively.
To fix MariaDB#32898, MariaDB introduced a new switch, ‘inn-
odb_snapshot_isolation’, enabling a stricter snapshot isolation level
compared to the default repeatable read. To fix MariaDB#33802, the
MariaDB developers improve the error code ‘db_record_changed’
and the function of cursor restoration. We will provide more details
about these bugs in Section 5.

Additionally, we compared Fucci with the state-of-the-art fuzzers
DT2 [25] and Troc [26] for detecting transaction bugs. We com-
pared the number of unique and duplicate bugs within the same

1885

Table 5: Comparision of different fuzzers

Fuzzer MySQL Bugs MariaDB Bugs TiDB Bugs Total Avg LatencyUnique Duplicate Total Unique Duplicate Total Unique Duplicate Total
DT2 [25] 1 4 5 1 1 2 0 0 0 7 10.3 h
Troc [26] 2 2 4 2 4 6 1 2 3 13 5.5 h
Fucci 3 3 6 2 10 12 2 2 4 22 3.3 h

time frame and evaluated the average time to find a bug. The ex-
perimental results are presented in Table 5. The difference between
a unique and a duplicate bug is whether the cause of the bug is
the same as the cause of these identified bugs. Meanwhile, whether
the bugs found in our work are unique or duplicate is defined by
the database development team after we submit these bugs, so the
evaluation of these found bugs is objective and authoritative. Both
MariaDB and MySQL utilize InnoDB as their storage engine, po-
tentially leading to vulnerabilities stemming from historical legacy
issues associated with InnoDB. In contrast, TiDB’s storage engines,
TiKV and TiFlash, are built from scratch, mitigating such concerns.
In general, our proposed fuzzing tool, Fucci, detected the highest
number of total bugs and the shortest average detection latency
across all three DBMSs. After 24 hours of testing, Fucci found 22
bugs, which is 3.1x more than DT2 and 1.7x more than Troc. On
average, Fucci discovered a bug every 3.3 hours, while DT2 took
10.3 hours and Troc took 5.5 hours.

Specifically, on MySQL, Fucci identified the highest number of
unique and total bugs, and the second-highest number of duplicate
bugs, while DT2 identified the highest number of duplicate bugs
and the second-highest number of total bugs. The effectiveness of
DT2may be due to the divergence of development teams for MySQL
and MariaDB since an early version. Since then, these teams have
added distinct features or accidentally introduced new bugs, which
DT2 can catch. On the other hand, on MariaDB and TiDB, thanks
to random conflicts construction and multilevel constraint solving,
Fucci detected the most unique bugs and duplicate bugs, while
DT2 performed the worst. The significant differences in MVCC
and locking mechanisms between the test and reference databases
lead to numerous false positives and affect the effectiveness of DT2.
For instance, during testing on TiDB, DT2 generated over 100 bug
reports, yet none of them turned out to be transaction bugs.

We also performed cross-validation to check whether transaction
bugs reported by DT2 and Troc could be confirmed by Fucci, and
vice versa. Fucci’s multilevel constraint-solving oracle successfully
verified all 4 transaction bugs reported by DT2 and all 10 reported
by Troc. However, DT2 only detected 1 out of 4 bugs reported by
Fucci, as the remaining 3 were common bugs shared across the test
DBMSs, beyond DT2’s testing capabilities.

4.3 Comparison of test oracles
We conducted separate experiments on the test oracle, comparing
our method with related works on differential oracle and metamor-
phic testing to validate the effectiveness of the multilevel constraint-
solving oracle. In particular, the differential oracle adopts a pairwise
comparison method. For instance, when testing MySQL, MariaDB
serves as the reference DBMS. The implementation of the differ-
ential oracle is consistent with DT2, while the implementation of
the metamorphic oracle aligns with Troc. Our experiments use the

same generator to generate statements and transactions, meaning
that the set of test cases solved by all oracles is identical.

The experimental results in Figure 6 demonstrate that each ora-
cle achieves an accuracy of over 98%, indicating the effectiveness
of both related works and our oracle. Moreover, there is a notable
disparity in the cases solved per minute and correctly solved cases
per minute for the metamorphic oracle across different databases.
It performs best on MariaDB and least effectively on TiDB, pri-
marily due to performance variations among the tested databases.
We conducted experiments on a single-node TiDB, thus obtaining
lower efficiency in statement and transaction execution compared
to standalone MySQL and MariaDB instances. Additionally, meta-
morphic testing requires executing test cases twice on the target
database, once in transaction mode and once in non-transaction
mode, significantly magnifying performance disparities.

From Figure 6 (a), (d), and (g), it is obvious that on MySQL, our
multilevel constraint-solving oracle outperforms all the baselines
in the aspects of accuracy (over 99.99%), cases solved per minute,
and correctly solved cases per minute, respectively. As shown in
Figure 6 (a), our oracle exhibits higher accuracy compared to DT2.
It is because of the significant differences in the implementation
of transaction management between MySQL and MariaDB, which
may result in false positives for the differential oracle. Our oracle
does not show a significant improvement in accuracy compared
to Troc, as Troc already achieves an accuracy of over 99.95%, and
further improvement is challenging. However, our oracle exhibits a
52% increase in the cases solved per minute and correctly solved
cases per minute compared to Troc and a 97% increase compared to
DT2. The primary reason is that our multilevel constraint-solving
oracle operates independently of database execution, thus avoiding
additional database connection overheads, leading to significantly
higher solving efficiency for small-scale datasets.

From Figure 6 (b), (e), and (h), it is evident that on MariaDB, our
oracle achieves the highest accuracy (100%), as well as the highest
number of cases solved per minute and correctly solved cases per
minute. It indicates that our method performs better overall on
MariaDB than other methods. Figure 6 (b) indicates a minimal
accuracy gap among the three oracles on MariaDB. It is because
the differences in SQL syntax and locking mechanisms between
MariaDB and TiDB are relatively small, causing DT2’s accuracy to
approach that of the other two oracles.

From Figure 6 (c), (f), and (i), it’s evident that our oracle continues
to outperform others on TiDB. Unlike MySQL and MariaDB, the
number of cases solved per minute and correctly solved cases per
minute for metamorphic testing is lowest on TiDB. Troc requires
executing test cases twice on TiDB, while DT2 executes them once
on TiDB and MySQL, and our oracle executes them only once on
TiDB. The performance differences between TiDB and the other
two contribute to the experimental results in Figure 6 (f) and (i).

1886

(a) MySQL oracle acc (b) MariaDB oracle acc (c) TiDB oracle acc

(d) MySQL solved cases per minute (e) MariaDB solved cases per minute (f) TiDB solved cases per minute

(g) MySQL correctly solved cases per minute (h) MariaDB correctly solved cases per minute (i) TiDB correctly solved cases per minute

Figure 6: Comparison between different oracles. This figure shows the oracle accuracy, cases solved per minute, and correctly
solved cases per minute over time. We run each oracle for 24 hours in MySQL, MariaDB, and TiDB.

In conclusion, the multilevel constraint-solving oracle outper-
forms DT2 and Troc across the three DBMSs. One reason is that
its constraint-solving oracle operates independently of the data-
base execution’s correctness, effectively avoiding missed detections
in metamorphic testing caused by erroneous execution statement
results. It also mitigates false positives in differential testing aris-
ing from inconsistent transaction concurrency control mechanisms
across DBMSs. Another reason is that the constraint solver operates
faster than database execution for small-scale datasets, leading to
faster solving speed compared to DT2 and Troc.

4.4 Evaluation of random conflict construction
We conducted a separate evaluation of the algorithms for con-
structing random conflict to demonstrate their effectiveness. The
experiment utilized the same statement generator and oracle, with
evaluation metrics including total bugs, total cases, and case quality.
Among them, case quality is defined as the ratio of total bugs to
total cases, reflecting the contribution of individual cases to bug
detection. The experimental results are shown in Figure 7.

The results show that all conflict construction algorithms can
increase the number of detected bugs within the same timeframe.
Among them, the CTC algorithm detects the most bugs across all
test DBMSs and exhibits the highest case quality. It is attributed to
the CTC algorithm’s ability to construct partial conflicts between
transactions without increasing transaction complexity, thus en-
hancing bug detection efficiency. Similarly, the PSF algorithm can

achieve partial conflicts but is less effective than CTC. It is because
transactions generated by the PSF algorithm tend to have longer
execution times, resulting in the fewest test cases executed within
24 hours, approximately 89.3% compared to no conflicts.

The performance of algorithms on MySQL and TiDB is similar.
Although FSF detects more bugs than PSF, it also executes more
cases, resulting in similar case quality. With the total cases be-
ing similar among None, FSF, and CTC, we compared their total
bugs and concluded that partial conflicts between transactions are
more effective than full conflicts, which are more effective than
no conflicts. On MariaDB, the PSF algorithm outperforms the FSF
algorithm. We conducted an in-depth study of all newly discovered
bugs on MariaDB and found that most bugs can only be triggered
by partial conflicts, further validating our conclusion.

4.5 Comparison of Simplification Algorithms
We conducted separate experiments on MySQL, MariaDB and TiDB
with different simplification algorithms. To demonstrate the ef-
fectiveness and applicability of experience-driven simplification
algorithms, we compared themwith the random simplification algo-
rithm under the same database. The experiments utilized the same
transaction bug detection components and hierarchical simplifi-
cation model, with reduction rate and validity are selected as the
evaluation indexes. Among them, reduction rate is defined as the
proportion of the number of characters that have been simplified
to the number of original case’s characters, and reduction validity

1887

(a) MySQL total bugs (b) MariaDB total bugs (c) TiDB total bugs

(d) MySQL total cases (e) MariaDB total cases (f) TiDB total cases

(g) MySQL case quality (h) MariaDB case quality (i) TiDB case quality

Figure 7: Comparison between different conflict construction algorithms. This figure shows the number of total bugs and total
cases as well as case quality. We test each algorithm for 24 hours in MySQL, MariaDB, and TiDB.

refers to the ratio of successful simplification times to the total
simplification times. These two reflect the simplification degree
and efficiency of cases respectively.

Figure 8 reveals that initially, the random simplification algo-
rithm achieves the highest simplification rates, overall reduction
validity and first-level reduction validity across three test databases.
The inferior performance of the probability table and Epsilon-
Greedy algorithms in the early stages is due to lack of experien-
tial information. As the testing progresses, the performance of
the Epsilon-Greedy and the probability table algorithms gradually
surpasses that of the random simplification algorithm, with the
Epsilon-Greedy algorithm ultimately performing the best.

Figure 8 (a), (b) and (c) indicate that when the number of sim-
plification is certain, the final simplification rate of each algorithm
under different databases stabilizes at 29.5%, 29% and 28%. At the
same time, both the probability table and the Epsilon-Greedy algo-
rithm are higher than the random simplification algorithm, which
indicates that the hierarchical simplification model proposed in this
paper has the ability to simplify cases to the same complexity in
any database, and the experience-driven information algorithm can
effectively improve its simplification ability.

Figure 8 (d), (e) and (f) show that the effectiveness of empirical
algorithms in different databases improves over time, reaching 43%
and 39%, respectively. In contrast, the effectiveness of the random

simplification algorithm decreases from 44% to 37%, highlighting
the superior efficiency and applicability of experience-driven infor-
mation algorithms in enhancing simplification.

Lastly, Figure 8 (g), (h) and (i) show that the reduction validity of
the first level, specifically the statement deletion layer, surpasses the
random approach with the guidance of the experience-driven sim-
plification, stabilizing at values around 75%, 74%. This confirms the
effectiveness of the experience-driven information simplification.
In addition, regardless of which database is running, the reduction
validity of the first level is nearly 32% higher than the overall one,
highlighting the significant impact of the statement deletion layer
in improving case simplification efficiency.

5 CASE STUDY
5.1 Phantom rows caused by UPDATE
Code Snippet 1 shows the bug of MySQL#113228 [16] and Mari-
aDB#32898 [15], it can be reproduced on𝑅𝑅 level.When anUPDATE
statement modifies the primary key, phantom rows may appear
during transaction execution and disappear after commitment.

In Code Snippet 1, lines 1-3 are the table creation statements,
and lines 4-11 are SQL statements arranged in the order of trans-
action execution. The comments before the statements represent
the transaction numbers, with the initial database belonging to
the init session, and Tx1 and Tx2 denote two transactions under

1888

(a) MySQL Reduce Rate (b) MariaDB Reduce Rate (c) TiDB Reduce Rate

(d) MySQL Reduce Validity (overall) (e) MariaDB Reduce Validity (overall) (f) TiDB Reduce Validity (overall)

(g) MySQL Reduce Validity (1th level) (h) MariaDB Reduce Validity (1th level) (i) TiDB Reduce Validity (1th level)

Figure 8: Comparison of Simplification Decision Algorithms. This figure shows the reduction rate and validity in MySQL,
MariaDB and TiDB. We test each algorithm for 24 hours.

different sessions. First, Tx2 queries the data from table t, returning
[(1, 1), (2, 2)] (line 6). Next, Tx1 applies an exclusive lock to the
row (2, 2) that satisfies the UPDATE predicate and creates a new
version (3, 2) at primary key position 3 (line 7), releasing the lock
upon commit (line 8). Then, Tx2’s UPDATE statement reads the
latest versions of all data items, acquires locks, and generates new
versions (1, 3) and (3, 3) (line 9). The query in line 10 of Tx2 is a
snapshot query, which can see the snapshot of Tx2’s own UPDATE.
Therefore, the expected result is [(1, 3), (3, 3)]. However, the ac-
tual result is [(1, 3), (2, 2), (3, 3)], where (2, 2) is a shadow row that
disappears after Tx2 commits.
1 /*init*/ CREATE TABLE t(a INT PRIMARY KEY , b INT);
2 /*init*/ INSERT INTO t VALUES (1, 1);
3 /*init*/ INSERT INTO t VALUES (2, 2);
4 /*Tx1*/ BEGIN;
5 /*Tx2*/ BEGIN;
6 /*Tx2*/ SELECT * FROM t;-- [(1, 1), (2, 2)]
7 /*Tx1*/ UPDATE t SET a=3 WHERE b = 2;
8 /*Tx1*/ COMMIT;
9 /*Tx2*/ UPDATE t SET b=3;
10 /*Tx2*/ SELECT * FROM t;-- actual: [(1, 3), (2, 2),

(3, 3)], expected: [(1, 3), (3, 3)]
11 /*Tx2*/ COMMIT; -- [(1, 3), (3, 3)]

Code Snippet 1: phantom rows caused by UPDATE

The cause of this bug lies in Tx2’s UPDATE statement (line 9),
which locks the record (2, 2) that is invisible in Tx2’s snapshot,

making it visible to subsequent statements in Tx2. The MariaDB
community developers have fixed this bug by reporting an error
‘db_record_changed’ when ‘innodb_snapshot_isolation’ is on.

5.2 Weird read view after ROLLBACK
Code Snippet 2 shows the issue of bug MariaDB#33802 [17], it can
be reproduced on isolation level 𝑆𝐸𝑅. When a SELECT statement
projects the primary key and UNIQUE columns before ROLLBACK,
the same projection rows appear.

In Code Snippet 2, lines 1-2 are table creation statements, and
lines 3-8 are SQL statements executed according to the transaction
execution order. First, Tx1 inserts row [(1, 𝑛𝑢𝑙𝑙)] (line 5). Secondly,
Tx2 projects the primary key a and unique column b in table t (line
6). Then, before Tx2 COMMIT (line 8), Tx1 ROLLBACK (line 7).
Consequently, the query result of Tx2 changes to [(1, null), (1, null)].
1 /* init */ CREATE TABLE t(a INT PRIMARY KEY , b INT

UNIQUE);
2 /* init */ INSERT INTO t(a) VALUES (1);
3 /* Tx1 */ BEGIN;
4 /* Tx2 */ BEGIN;
5 /* Tx1 */ INSERT INTO t(a) VALUES (2);
6 /* Tx2 */ SELECT a, b FROM t;-- actual: [(1, null),

(1, null)], expected: [(1, null)]
7 /* Tx1 */ ROLLBACK;
8 /* Tx2 */ COMMIT;

Code Snippet 2: update shadow row bug

1889

One reason for this bug is that the fix for MariaDB#32898 is not
comprehensive. The error code ‘db_record_changed’ does not cover
all exceptional cases. Another reason is that cursor restoration does
not account for the possibility of multipleNULL records in a unique
index. The MariaDB community developers have addressed this
bug from both of these aspects.

5.3 Inconsistent behaviors of UPDATE
Code Snippet 3 demonstrates a transaction bugMariaDB#34108 [13]
which can be reproduced on isolation level 𝑅𝐶 . When an UPDATE
statement of 𝑇𝑥2 is executed between two UPDATE statements of
𝑇𝑥1, the query result after COMMIT of 𝑇𝑥1 and 𝑇𝑥2 is incorrect.

In Code Snippet 3, lines 1-2 are table creation statements, and
lines 3-9 are statements executed in the committed order. Line 10
is an extra query of table 𝑡 . First, 𝑇𝑥1 updates column 𝑏 in table 𝑡
(line 5), followed by 𝑇𝑥2 attempting to update column 𝑏 (line 6).
However, since 𝑇𝑥1’s UPDATE statement locks the tuples, 𝑇𝑥2’s
UPDATE statement is blocked. Next, 𝑇𝑥1 sets column 𝑎 to 1 (line
7). After 𝑇𝑥1 commits, the exclusive locks are released, and the
current committed version becomes [(1, 3), (1, 3)]. Subsequently,
𝑇𝑥2’s UPDATE statement proceeds, updating all values in column 𝑏
to 2 and then committing. Therefore, the expected snapshot query
result should be [(1, 2), (1, 2)], but the actual result is [(1, 3), (1, 2)].
1 /* init */ CREATE TABLE t(a INT , b INT);
2 /* init */ INSERT INTO t VALUES (null , 1), (1, 1);
3 /* Tx1 */ BEGIN;
4 /* Tx2 */ BEGIN;
5 /* Tx1 */ UPDATE t SET b=3;
6 /* Tx2 */ UPDATE t SET b=2 WHERE a is not null; --

blocked
7 /* Tx1 */ UPDATE t SET a=1;
8 /* Tx1 */ COMMIT; -- statement of line 6 recovered
9 /* Tx2 */ COMMIT;
10 /* Tx1 */ SELECT * FROM t; -- actual: [(1, 3), (1 ,2)

], expected: [(1, 2), (1, 2)]

Code Snippet 3: inconsistent update behaviors bug

The bug likely stems from an implementation flaw where the
UPDATE operation fails to lock records modified by uncommitted
transactions duringWHERE clause scans, opting instead for a semi-
consistent, non-locking read.

6 RELATED WORK
In this section, we provide a concise overview of current progress
in DBMS fuzzing. For an in-depth exploration, refer to our previous
review [27]. Current research focuses on test case generation and
oracle construction. Test case generation includes generation-based
and mutation-based approaches. Oracle construction includes dif-
ferential testing, mutation testing and constraint-solving testing.

Generator type and strategy. Generation-based methods are
categorized into AST-based andAlloy-basedmodels [30]. RAGS [42]
adjusts ASTmodel generation using a static configuration file, while
APOLLO [32] enhances statement validity with a dynamic prob-
ability table. TQS [48] generates unique connection patterns by
randomly traversing schema graphs. Alloy-based models [18] en-
able database fuzz tests with higher semantic correctness.

Mutation-based methods. SQL Server [21] uses an AST-based
mutation method to generate test cases by adding, modifying, and

deleting projection lists and clauses. However, strict type con-
straints and complex operations make AST mutation as challenging
as modifying SQL statements directly. Squirrel [49] simplifies this
by converting the AST into an Intermediate Representation (IR)
and performing semantically correct mutations on the IR.

Differential Oracle. Differential oracles detect logical bugs or
performance issues by comparing execution results across DBMSs
or versions. RAGS [42] identifies bugs by comparing the execu-
tion results of the same SQL statements on different commercial
databases. SQLSmith [31] and Go-randgen [9], popular open-source
tools, also use differential oracles for results verification. DT2 [25]
detects compatibility and transaction bugs by comparing transac-
tion blocking, query results, and database states across databases.
APOLLO [32] uses differential testing across database versions to
detect performance regressions.

Metamorphic Oracle. Metamorphic oracles construct equiva-
lent statements by transforming the original statement to ensure
consistent execution results [3, 9, 21, 25, 42]. NoREC [40] rewrites
statements to bypass database optimization, detecting incorrect op-
timizations. DQE [43] converts SELECT statements into equivalent
UPDATE and DELETE statements. TLP [41] ensures predicate eval-
uations always fall within TRUE, FALSE, or NULL, enabling queries
to be decomposed into three partitioned queries, also applicable for
detecting transaction isolation bugs. Troc [26] tests two equivalent
modes: transaction mode, submitting multiple transactions directly,
and non-transaction mode, splitting transactions into individual
statements with transaction identifiers.

Constraint-SolvingOracle. Not all queries can obtain expected
results through constructing equivalent queries, so some fuzzing
methods generally use constraint-solving oracles to generate the
desired results. These methods [18, 37, 41, 45] infer the logical truth
of query outputs through forward or backward solving. Forward
solving evaluates each tuple based on predicate constraints using
an external solver (e.g., SAT solver) to obtain the basic truth values
of statement execution results [18, 37]. In this process, a logical
solver can also be used instead of a SAT solver. TQS [48] accelerates
this process by converting join predicates into logical operations.
Backward solving [39] involves randomly selecting some tuples as
the basis truth values and uses a SAT solver to work backward and
obtain statements whose execution results include these tuples.

7 CONCLUSION
In this paper, we propose a novel, efficient and universal DBMS
transaction fuzzing framework, Fucci. To tackle issues of inadequate
case validity, low oracle accuracy and inefficient bug simplification,
Fucci employs three novel techniques, RCC, MCS and EAS to gen-
erate valid transaction test cases with their expected results and
obtain the most readable bug cases. We conducted experiments on
MySQL, MariaDB, and TiDB, and successfully found 6 previously
unknown transaction bugs and 14 known transaction bugs. We plan
to further expand Fucci’s engineering applications to adapt to more
DBMSs. It can serve as an important tool for DBMS development.

ACKNOWLEDGMENTS
This work supported by National Natural Science Foundation of
China under Grant No. 62302370, 62272369, 62372352, 62172314.

1890

REFERENCES
[1] 2011. Data science revealed: A data-driven glimpse into the burgeoning new

field. https://www.ndm.net/datawarehouse/pdf/EMC-Data_Science_Study_
White_Paper.pdf. Last accessed September 1, 2024.

[2] 2015. AFL: American fuzzy lop. http://lcamtuf.coredump.cx/afl/ Last accessed
September 1, 2024.

[3] 2015. SQLsmith. https://github.com/anse1/sqlsmith Last accessed September 1,
2024.

[4] 2016. Honggfuzz. https://google.github.io/honggfuzz/ Last accessed September
1, 2024.

[5] 2016. OSS-Fuzz: Continuous fuzzing for open source software. https://github.com/
google/oss-fuzz Last accessed September 1, 2024.

[6] 2017. LibFuzzer - A library for coverage-guided fuzz testing. http://llvm.org/docs/
LibFuzzer.html Last accessed September 1, 2024.

[7] 2018. Mysql InnoDB Locking. https://dev.mysql.com/doc/refman/8.0/en/innodb-
locking.html Last accessed September 1, 2024.

[8] 2019. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl. Last accessed
September 1, 2024.

[9] 2023. go-randgen. https://github.com/pingcap/go-randgen Last accessed Sep-
tember 1, 2024.

[10] 2023. MariaDB. https://mariadb.org/ Last accessed September 1, 2024.
[11] 2023. MySQL. https://github.com/mysql/mysql-server Last accessed September

1, 2024.
[12] 2023. TiDB. https://github.com/pingcap/tidb Last accessed September 1, 2024.
[13] 2024. Inappropriate semi-consistent read in RC. https://jira.mariadb.org/browse/

MDEV-34108. Last accessed September 1, 2024.
[14] 2024. Innodb transaction isolation levels. https://dev.mysql.com/doc/refman/8.0/

en/innodb-transaction-isolation-levels.html Last accessed September 1, 2024.
[15] 2024. Phantom rows caused by UPDATE of PRIMARY KEY. https://jira.mariadb.

org/browse/MDEV-32898. Last accessed September 1, 2024.
[16] 2024. Phantom rows caused by update statements which changes value of

the primary key. https://bugs.mysql.com/bug.php?id=113228. Last accessed
September 1, 2024.

[17] 2024. Weird read view after ROLLBACK of other transactions. https://jira.
mariadb.org/browse/MDEV-33802. Last accessed September 1, 2024.

[18] Shadi Abdul Khalek and Sarfraz Khurshid. 2010. Automated SQL query genera-
tion for systematic testing of database engines. In International Conference on
Automated Software Engineering. ACM, 329–332.

[19] Jinsheng Ba and Manuel Rigger. 2023. Testing database engines via query plan
guidance. In International Conference on Software Engineering. IEEE, 2060–2071.

[20] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A survey of symbolic execution techniques. Comput.
Surveys 51, 3 (2018), 1–39.

[21] Hardik Bati, Leo Giakoumakis, Steve Herbert, and Aleksandras Surna. 2007.
A genetic approach for random testing of database systems. In International
Conference on Very Large Data Bases. VLDB Endowment, 1243–1251.

[22] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. 1995. A critique of ANSI SQL isolation levels. ACM SIGMOD Record 24
(1995), 1–10.

[23] Xinyue Chen, Chenglong Wang, and Alvin Cheung. 2020. Testing query execu-
tion engines with mutations. In Workshop on Testing Database Systems. ACM,
1–5.

[24] Edmund M Clarke. 1997. Model checking. In Foundations of Software Technology
and Theoretical Computer Science. Springer, 54–56.

[25] Ziyu Cui, Wensheng Dou, Qianwang Dai, Jiansen Song, Wei Wang, Jun Wei, and
Dan Ye. 2022. Differentially testing database transactions for fun and profit. In
International Conference on Automated Software Engineering. ACM, 1–12.

[26] Wensheng Dou, Ziyu Cui, Qianwang Dai, Jiansen Song, Dong Wang, Yu Gao,
Wei Wang, Jun Wei, Lei Chen, Hanmo Wang, et al. 2023. Detecting isolation
bugs via transaction oracle construction. In International Conference on Software
Engineering. IEEE.

[27] Xiyue Gao, Zhuang Liu, Jiangtao Cui, Hui Li, Hui Zhang, Kewei Wei, and
Kankan Zhao. 2023. A Comprehensive Survey on Database Management System
Fuzzing: Techniques, Taxonomy and Experimental Comparison. arXiv preprint
arXiv:2311.06728 (2023).

[28] Jim Gray and Andreas Reuter. 1992. Transaction processing: concepts and tech-
niques. Elsevier.

[29] William E Howden. 1978. Theoretical and empirical studies of program testing.
Transactions on Software Engineering SE-4, 4 (1978), 293–298.

[30] Daniel Jackson. 2002. Alloy: A lightweight object modelling notation. Transac-
tions on Software Engineering and Methodology 11, 2 (2002), 256–290.

[31] Matt Jibson. 2019. SQLsmith: Randomized sql testing in cockroachdb. https:
//www.cockroachlabs.com/blog/sqlsmith-randomized-sql-testing/ Last accessed
September 1, 2024.

[32] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, andWoonhak Kang. 2019. Apollo:
Automatic detection and diagnosis of performance regressions in database sys-
tems. Very Large Data Bases Endowment 13, 1 (2019), 57–70.

[33] Jongbin Kim, Jaeseon Yu, Jaechan Ahn, Sooyong Kang, and Hyungsoo Jung. 2022.
Diva: Making MVCC Systems HTAP-Friendly. In International Conference on
Management of Data. ACM, 49–64.

[34] Hsiang-Tsung Kung and John T Robinson. 1981. On optimistic methods for
concurrency control. ACM Transactions on Database Systems 6, 2 (1981), 213–
226.

[35] Jie Liang, Yaoguang Chen, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Yu Jiang,
Xiangdong Huang, Ting Chen, Jiashui Wang, and Jiajia Li. 2023. Sequence-
oriented DBMS fuzzing. In International Conference on Data Engineering. IEEE,
668–681.

[36] Yu Liang, Song Liu, and Hong Hu. 2022. Detecting Logical Bugs of DBMS
with Coverage-based Guidance. In 31st USENIX Security Symposium (USENIX
Security 22). USENIX Association, Boston, MA, 4309–4326. https://www.usenix.
org/conference/usenixsecurity22/presentation/liang Last accessed September 1,
2024.

[37] Kaiming Mi, Chunxi Zhang, Weining Qian, and Rong Zhang. 2021. Artemis:
An automatic test suite generator for large scale OLAP database. In Benchmark-
ing, Measuring, and Optimizing: Third BenchCouncil International Symposium.
Springer, 74–89.

[38] Chandrasekaran Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and
Peter Schwarz. 1992. ARIES: A transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead logging. ACM Trans-
actions on Database Systems 17, 1 (1992), 94–162.

[39] Manuel Rigger. 2019. Cast of string with newlines to signed/unsigned returns
unexpected result. https://bugs.mysql.com/bug.php?id=96294 Last accessed
September 1, 2024.

[40] Manuel Rigger and Zhendong Su. 2020. Detecting optimization bugs in database
engines via non-optimizing reference engine construction. In Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ACM.

[41] Manuel Rigger and Zhendong Su. 2020. Testing database engines via pivoted
query synthesis. In USENIX Symposium on Operating Systems Design and Imple-
mentation. USENIX Association, 667–682.

[42] Donald R Slutz. 1998. Massive stochastic testing of SQL. In International Confer-
ence on Very Large Data Bases. VLDB Endowment, 618–622.

[43] Jiansen Song, Wensheng Dou, Ziyu Cui, Qianwang Dai, Wei Wang, Jun Wei, Hua
Zhong, and Tao Huang. 2023. Testing database systems via differential query
execution. In International Conference on Software Engineering. IEEE, 2072–2084.

[44] Xiaohui Song and Jane W-S Liu. 1990. Performance of multiversion concurrency
control algorithms in maintaining temporal consistency. In Proceedings Four-
teenth Annual International Computer Software and Applications Conference. IEEE
Computer Society, 132–133.

[45] Xiu Tang, Sai Wu, Dongxiang Zhang, Feifei Li, and Gang Chen. 2023. Detecting
logic bugs of join optimizations in DBMS. International Conference on Manage-
ment of Data 1, 1 (2023), 1–26.

[46] Shihao Wen, Peng Jia, Pin Yang, and Chi Hu. 2023. Squill: Testing DBMS with
correctness feedback and accurate instantiation. Applied Sciences 13, 4 (2023),
2519.

[47] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. Tictoc:
Time traveling optimistic concurrency control. In International Conference on
Management of Data. ACM, 1629–1642.

[48] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou. 2020.
EcoFuzz: Adaptive energy-saving greybox fuzzing as a variant of the adversarial
multi-armed bandit. In USENIX Security Symposium. USENIX Association, 2307–
2324.

[49] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Dinghao
Wu. 2020. Squirrel: Testing database management systems with language validity
and coverage feedback. In Conference on Computer and Communications Security.
ACM, 955–970.

1891

https://www.ndm.net/datawarehouse/pdf/EMC-Data_Science_Study_White_Paper.pdf
https://www.ndm.net/datawarehouse/pdf/EMC-Data_Science_Study_White_Paper.pdf
http://lcamtuf.coredump.cx/afl/
https://github.com/anse1/sqlsmith
https://google.github.io/honggfuzz/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html
 http://lcamtuf.coredump.cx/afl
https://github.com/pingcap/go-randgen
https://mariadb.org/
https://github.com/mysql/mysql-server
https://github.com/pingcap/tidb
https://jira.mariadb.org/browse/MDEV-34108
https://jira.mariadb.org/browse/MDEV-34108
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://jira.mariadb.org/browse/MDEV-32898
https://jira.mariadb.org/browse/MDEV-32898
https://bugs.mysql.com/bug.php?id=113228
https://jira.mariadb.org/browse/MDEV-33802
https://jira.mariadb.org/browse/MDEV-33802
https://www.cockroachlabs.com/blog/sqlsmith-randomized-sql-testing/
https://www.cockroachlabs.com/blog/sqlsmith-randomized-sql-testing/
https://www.usenix.org/conference/usenixsecurity22/presentation/liang
https://www.usenix.org/conference/usenixsecurity22/presentation/liang
https://bugs.mysql.com/bug.php?id=96294

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Transaction Management
	2.3 DBMS Fuzzing

	3 Approach
	3.1 Random Conflict Construction
	3.2 Multilevel Constraint Solving
	3.3 Experience-driven Automatic Simplification

	4 Evaluation
	4.1 Experimental Setup
	4.2 Overall Evaluation
	4.3 Comparison of test oracles
	4.4 Evaluation of random conflict construction
	4.5 Comparison of Simplification Algorithms

	5 Case Study
	5.1 Phantom rows caused by UPDATE
	5.2 Weird read view after ROLLBACK
	5.3 Inconsistent behaviors of UPDATE

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

