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ABSTRACT
Workload execution can account for 90% of the total database knob
tuning time, which is often the bottleneck for efficient knob tun-
ing in practice. Reducing the tuning time by using a compressed
workload is a natural solution. However, many existing workload
compression methods are designed for OLAP workloads, which
reduce the number of queries needed for analysis tasks by sampling
a small subset of queries. These methods are less effective for OLTP
workloads in knob-tuning tasks, as they often disregard essential
contextual details, including query sequence and concurrency. As
a result, configurations that perform well on the compressed OLTP
workload may not deliver similar competitive performance on the
original workload. To address these challenges, we first define the
objective of OLTP workload compression for knob tuning. We then
propose a slice-based compression method, SCompression, which
compresses workloads by slicing based on time intervals while
preserving concurrency. SCompression achieves the objective by fo-
cusing on generating a compressed workload that (1) executes faster
than the original workload and (2) produces performance varia-
tions similar to the source workload under different configurations.
SCompression works in three steps: (1) dividing the workload into
segments to capture regular performance fluctuations, (2) slicing
each segment to preserve concurrency and transaction context, and
(3) sampling slices under execution time constraints using a cluster-
based approach to ensure representativeness. Finally, SCompression
replays the compressed workload to produce the performance that
mirrors the source workload. Extensive experiments on real-world
and benchmark OLTP workloads show that SCompression is a cost-
effective solution for knob tuning, accelerating tuning by up to 40×
with only a 5% performance reduction.
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1 INTRODUCTION
Database systems can have up to hundreds of configuration knobs
that can significantly impact their performance. Recent works have
proposed using machine-learning (ML) models to tune these knobs
by intelligently exploring their configuration space [4, 6, 25, 27,
28, 42, 43, 46, 48, 49]. These approaches typically employ an iter-
ative process that repeatedly (1) recommends configurations, (2)
evaluates the performance, and (3) fits the model. They aim to find
configurations that enhance the system’s performance automati-
cally.

However, these approaches often face a critical challenge in
real-world deployments: the workload execution cost. The tuning
process typically requires many iterations for the model training
and convergence [6, 49]. Each iteration requires executing the repre-
sentative workload, which can be expensive in production environ-
ments. While some studies use advanced ML techniques to reduce
the number of iterations required for convergence [49], each itera-
tion still inevitably involves a time-consuming workload execution.
Others employ parallel learning and exploration strategies, which
can be time-efficient but resource-intensive [6]. Thus, workload
execution cost often remains a bottleneck in the tuning process.

We tackle this problem by investigating workload compression
techniques to reduce the workload execution time for knob-tuning.
We focus on Online Transaction Processing (OLTP) workloads,
given their wide applications [16, 29, 30, 44]. Workload compression
finds a substitute workload of a smaller size that preserves the in-
formation from the source workload to speed up the target task [7].
Previous studies mostly focus on compressing Online Analytical
Processing (OLAP) workloads to reduce the number of queries for
workload analysis and index recommendation [7, 11, 34, 42]. They
effectively reduce the analysis time for OLAP workloads since they
are suitable for query-by-query execution or analysis. Nevertheless,
these approaches demonstrate limitations when applied to OLTP
workload compression for knob-tuning purposes, as they poten-
tially compromise essential query context information (e.g., the
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sequence and conflicts between queries) inherent in OLTP work-
loads. Specifically, the loss of sequence and concurrency data can
impair the accurate reproduction of OLTP workload performance
during query replay operations. According to the characteristics
of OLTP workloads and tuning requirements, an effective solution
requires navigating four principal challenges.

(C1) Contextual Information Integrity. In OLTP workloads,
performance features relate to a series of queries rather than a par-
ticular one. Since queries are executed concurrently and influence
each other when running simultaneously, the compression method
should maintain the context of the queries (e.g., the sequence and
conflicts between queries) and compress accordingly. However,
existing query-based compression methods select queries indepen-
dently, treating them as a set and ignoring the interactions between
queries during workload execution. Therefore, they fail to maintain
the sequence and concurrency of queries, making it difficult to
preserve contextual information in compressed workloads.

(C2) Time-oriented Compression. For analysis tasks, query-
based compression methods aim to reduce the number of queries.
However, fewer queries do not necessarily result in shorter execu-
tion times for tuning OLTP workloads. The tuning system needs to
replay the workload based on query timestamps to ensure perfor-
mance fidelity, which makes traditional compression methods less
effective at reducing replay time.

(C3) Large Query Volume. OLTP workloads generally contain
a larger number of queries compared to OLAP workloads. For exam-
ple, the highest number of queries in OLAP workload compression
studies [7, 11, 34, 42] is around 2,200, whereas OLTP workloads
may exceed 8 million queries. Compressing such a large volume
of queries with query-based methods is both time-consuming and
resource-intensive. For example, QCSA [42], a recent workload
compression method for knob tuning, requires about 150 minutes
to compress a 5-minute workload, as detailed in Section 9.2.

(C4) Replay Strategy. Even if the system can obtain a rep-
resentative compressed workload, achieving similar performance
when replaying the workload with different configurations remains
challenging. Since a compressed workload inevitably loses some
information from the source workload, minimizing the impact of
queries that exhibit abnormal performance deviations is crucial.

Our Approach. To address these challenges, we propose a novel
OLTP workload compression method for knob tuning, called SCom-
pression. The core idea of SCompression is to reduce the number
of slices rather than individual queries in the workload, where a
slice is defined as a small time interval within the workload that
contains all transactions starting during that interval. SCompression
preserves the query context by retaining the information within
sampled slices.

SCompression first slices the source workload into slices. Since
each slice contains all queries that start within its designated time in-
terval, it preserves the query sequence and concurrency, addressing
C1. To improve the slice quality, SCompression employs a dynamic
slicing strategy supported by workload segmentation. This segmen-
tation divides the source workload into multiple regular patterns
using Greedy Gaussian Segmentation (GGS) [15].

Next, SCompression implements a cluster-then-sample approach
that combines clustering and sampling techniques to identify rep-
resentative slices, which are then integrated into a compressed

Tuning
System

Database

Workload
Generator

Workload

Feedback

1 2

3

Knobs

(a) Workflow of knob tuning.

!"

#$"

%" !"

&'()*+,)-'..)/( 0',1*'2(+)3)-45)
6/'78+()9*': ;5<),8

(b) Time Distribution (TPC-C).

Figure 1: Example of knob tuning.

workload. Given that slices are delineated by temporal intervals,
this methodology naturally incorporates the execution duration of
the compressed workload, thereby satisfying requirement C2. To
reduce computation costs during clustering, SCompression aggre-
gates the query features within each slice into a single slice feature,
ensuring high processing speed and addressing C3.

Finally, SCompression employs a slice-based workload replay
strategy to reproduce performance characteristics that closely mir-
ror those of the source workload, addressing C4.

To evaluate SCompression, we perform extensive experiments
on real-world and benchmark OLTP workloads with state-of-the-
art tuning algorithms. Our empirical analysis demonstrates that
SCompression exhibits exceptional efficiency, delivering a 40× ac-
celeration in tuning while maintaining peak performance within a
5% margin of degradation. Our main contributions are as follows:

• We propose a novel context-aware OLTP workload com-
pression method. It partitions a workload based on slices
and splices sampled slices to build a compressed version,
resulting in similar performance between the compressed
and source workloads under the same configurations.

• We propose a dynamic slicing approach that preserves the
contextual integrity of queries.

• We design a slice sampling strategy based on clustering,
preserving workload diversity.

• We implement a replay strategy based on slices for com-
pressed OLTP workloads to achieve fast evaluation with
minimal performance distortion.

• Our experimental results demonstrate that SCompression
provides a cost-effective approach to optimize knob-tuning
performance.

2 PROBLEM SETTING
2.1 Preliminaries
Revisiting the problem of knob tuning, let� and � denote a work-
load (formed by query logs, as detailed in Section 2.3) and a database
configuration (a set of knobs), respectively. � (�,�) represents the
performance of the database when executing� under � , where
QPS (Queries Per Second) is a commonly used performance met-
rics [6, 18, 40, 42] and is adopted as the metric for � in this paper.
The objective of knob tuning is to identify a � within the search
space C that maximizes � (�,�):

argmax
�∈C

� (�,�) .
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Table 1: Details of Query Logs and Monitor Metrics.

Name Details

Query
Logs

Basic
Information

Timestamp, Sql, ThreadId,
TrxLivingTime

Additional
Features

AffectRows, ExecTime, SentRows,
CheckRows, CpuTime, IOWaitTime,
LockWaitTime

Monitor
Metrics Features CPU Utilization, IO Operations,

Network Traffic, Buffer Hit Rate, QPS.

Example. As shown in Figure 1a, a knob-tuning application typi-
cally follows an iterative process: (1) the tuning system suggests
𝐶 to deploy on the database, (2) the workload generator creates
𝑊 and replays it with 𝐶 to generate 𝑃 (𝑊,𝐶), and (3) the tuning
system fine-tunes the model with the performance results, enabling
accurate configuration recommendations in subsequent iterations.

In this process, the system relies on workload execution to esti-
mate 𝑃 (𝑊,𝐶). The workload execution time can account for over
90% of the tuning time in previous studies [28, 47], as shown in
Figure 1b. As a result, reducing workload execution time is essential
for improving knob-tuning efficiency.

2.2 Problem Statement
Let𝑊 and𝑊 denote the source workload and its compressed work-
load, respectively. Given a user-specified target compression rate
𝑐𝑟 , we define our compression rate 𝐶𝑅(𝑊 ) of𝑊 as the ratio of
the execution time of𝑊 to that of𝑊 , denoted as 𝐸 (𝑊 ) and 𝐸 (𝑊 ),
respectively. Formally:

𝐸 (𝑊 )
𝐸 (𝑊 )

= 𝐶𝑅(𝑊 ) ≥ 𝑐𝑟 .

For𝑊 , 𝐸 (𝑊 ) corresponds to the actual execution time. However,
we need to calculate 𝐸 (𝑊 ) based on the query logs for𝑊 , excluding
idle periods (i.e., intervals where no queries are executed), since
𝑊 ’s actual execution time cannot be determined until the workload
is executed. This calculation utilizes 𝑞Timestamp and 𝑞ExecuteTime
features to accurately identify and eliminate periods of inactivity,
as detailed in Section 2.3.

Meanwhile, the performance (e.g., QPS) of executing on𝑊 should
be close to that of𝑊 under the same configuration. As a result,
the objective is to find a𝑊 ⊆ 𝑊 , satisfying: ∀𝐶 ∈ C such that
min |𝑃 (𝑊,𝐶) −𝑃 (𝑊,𝐶) |, subject to: 𝐸 (𝑊 )

𝐸 (𝑊 )
≥ 𝑐𝑟 . To solve this prob-

lem, we formulate it as a constraint optimization problem and apply
appropriate approximation techniques. Formally,

argmin
𝑊 ⊆𝑊

∑︁
𝐶𝑖 ∈C

��𝑃 (𝑊,𝐶𝑖 ) − 𝑃 (𝑊,𝐶𝑖 )
��, subject to: 𝐸 (𝑊 )

𝐸 (𝑊 )
≥ 𝑐𝑟 .

2.3 Notation
In this section, we first introduce the data obtained from the cloud
for analysis, along with the relevant concepts and entities used to
construct the workload. Based on these concepts, we then provide
detailed definitions for Slice, Segment, and Workload.

In cloud databases, the data related to workloads primarily con-
sists of Query Logs and Monitoring Metrics.

Query Logs.The cloud databasemaintains comprehensive query
logs, also called audit logs, to track and document each query execu-
tion. As shown in Table 1, these logs capture both basic information
and additional features. The basic information, essential for recon-
structing the workload, includes the start time in nanoseconds
(Timestamp), details of the SQL statement (Sql), a unique identi-
fier for each connection (ThreadId), and transaction duration in
milliseconds (TrxLivingTime). The additional features that assist in
workload compression include the number of affected rows (Af-
fectRows), execution time in milliseconds (ExecTime), number of
rows returned to the client (SentRows), number of rows scanned
(CheckRows), CPU time in milliseconds (CpuTime), IO wait time
in milliseconds (IOWaitTime), and lock wait time in milliseconds
(LockWaitTime).

Formally, let 𝑞 denote a query and 𝑞feature represent the value of
a specific feature for query 𝑞. For instance, 𝑞AffectRows indicates the
number of affected rows of 𝑞. In addition, a transaction is denoted
as 𝑇 , which is obtained from the query log. Each 𝑇 consists of a
sequence of 𝑞s that are grouped and executed as a single unit.

Monitor Metrics. A performance monitor gathers database
performance metrics every 5 seconds. These metrics include CPU
utilization (CPU Utilization), the number of IO operations (IO Oper-
ations), network traffic (Network Traffic), the hit rate of the InnoDB
buffer pool (Buffer Hit Rate), and the number of queries per sec-
ond (QPS), as shown in Table 1. Formally,𝑚 denotes a monitoring
metric. As a result, for example,𝑚CPU_Utilization refers to the CPU
utilization recorded by the performance monitor.

Connection. A database connection is a communication link
established between a database management system (DBMS) and a
client, enabling the client to interact with the database. Each con-
nection sends queries sequentially to the DBMS, while different
connections can execute concurrently. Formally, we denote a con-
nection as 𝑁 . The set 𝑁 (𝑡𝑖 , 𝑡 𝑗 ) contains all queries in 𝑁 , where the
start time of 𝑞 denotes as StartTime(𝑞) that falls within the interval
[𝑡𝑖 , 𝑡 𝑗 ). Similarly, its end time is EndTime(𝑞).

Slice. A slice corresponds to a time interval of a workload,
which contains all queries that start within its interval. Formally,
when a slice corresponds to the interval [𝑡𝑖 , 𝑡 𝑗 ), it is defined as
𝑆 (𝑡𝑖 , 𝑡 𝑗 ) = {𝑁1 (𝑡𝑖 , 𝑡 𝑗 ), . . . , 𝑁𝑚 (𝑡𝑖 , 𝑡 𝑗 )}, where 𝑁1, . . . , 𝑁𝑚 denotes
all the connections in the workload. Note that 𝑆 can be viewed as a
minimal subset of a workload in this paper.

Segment. A segment consists of a sequence of slices, which
usually denotes an interval with regular performance. Formally, a
segment is defined as 𝑆𝐺 (𝑡𝑖 , 𝑡 𝑗 ) = [𝑆 (𝑡𝑖 , 𝑡𝑏 ), 𝑆 (𝑡𝑏 , 𝑡𝑐 ), . . . , 𝑆 (𝑡𝑦, 𝑡 𝑗 )],
where 𝑡𝑖 < 𝑡𝑏 · · · < 𝑡𝑦 < 𝑡 𝑗 .

Workload. A workload is spliced by all segments. Formally, a
workload can be represented as𝑊 = [𝑆𝐺1, 𝑆𝐺2, . . . , 𝑆𝐺𝑚], where
overlap is not allowed between 𝑆𝐺𝑖 and 𝑆𝐺 𝑗 . Similarly, since 𝑆𝑖
and 𝑆 𝑗 cannot overlap, the workload can also be expressed as𝑊 =

[𝑆1, 𝑆2, . . . , 𝑆𝑛].
Example. As shown in Figure 2, 𝑆𝑖 = 𝑆 (𝑡𝑖 , 𝑡𝑖+1) contains all concur-
rent connections {𝑁1, 𝑁2, 𝑁3} within the interval [𝑡𝑖 , 𝑡𝑖+1), each of
which consists of a sequence of 𝑞s (or transactions 𝑇 s). A sequence
of 𝑆s forms a 𝑆𝐺 , and all 𝑆𝐺s splice a𝑊 .
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Figure 2: Workload constructed by slices.

3 SOLUTION OVERVIEW
3.1 Our Solution
Based on the above definition, the problem can be further formu-
lated as follows: Given a� = [�1, . . . , ��], the objective is to find
a� = [� � , . . . , �� ] ⊆� such that � (� )/� (� ) is not less than �� .
Formally,

argmin
[� � ,...,�� ]

∑

�� ∈C

��� ( [�1, . . . , ��],�� ) − � ( [� � , . . . , �� ],�� )
��,

subject to:
� ( [�1, . . . , ��])
� ( [� � , . . . , �� ])

≥ �� .

A naïve approach involves randomly sampling �� ∈� to form
the compressed workload� ⊆� . However, random sampling may
result in a lack of representativeness of the sampled slices, which
affects the fidelity of the compressed workload.

To address this problem, SCompression adopts a cluster-then-
sample strategy, as detailed in Section 6. SCompression first groups
slices into clusters based on their features. Then, it samples rep-
resentative slices from each cluster to construct� . This strategy
ensures that� reflects the distribution and characteristics of the
� .

For knob tuning, executing the compressedworkloads is essential
to evaluate performance across various configurations, highlighting
the importance of accurately mirroring the performance character-
istics between the source and compressed workloads. To achieve
this, it is crucial to retain performance-critical information from
the source workload and carefully select slices using well-chosen
split points. To maintain the integrity of concurrency conflicts, we
avoid partitioning during high-concurrency periods while ensuring
these conflicts are preserved in the compressed workload.

To this end, we design a dynamic slicing strategy for determining
the appropriate slice length. While adding more split points can
improve the compression rate, it also increases the risk of losing
concurrent conflicts. Leveraging the Analyzer (Section 4) and Slicer
(Section 5), SCompression can implement it accurately. This effort
minimizes instances where query execution periods are across
two slices, thereby reducing cases where concurrent queries are
executed sequentially during replay, improving the accuracy of
performance evaluation on compressed workloads.

3.2 Architecture
We now elaborate on the slice-based compression solution named
SCompression. It is a compression framework for OLTP workloads

used for knob tuning. It aims to reduce workload replay time while
preserving the concurrency of queries in the workload, ensuring
that the same configuration produces similar performance varia-
tions on the compressed and source workloads.

We show the overview architecture of SCompression in Figure 3.
It consists of three components: Analyzer, Slicer, and Compressor.
In addition, we develop a Replayer based on the proposed slicing
strategy to execute the compressed workload.

Analyzer aims to segment a workload with varying stages into
segments with regular patterns by adopting Greedy Gaussian Seg-
mentation, a multidimensional time series segmentation algorithm.
It initially records query log data along with corresponding moni-
toring metrics, subsequently analyzing these metrics to determine
split points for workload segmentation.

Slicer divides eachworkload segment into numerous slices while
preserving the concurrency in each slice to maintain the charac-
teristics of the source workload. To this end, SCompression applies
a dynamic slicing strategy to calculate the slice length for each
segment, maintaining the integrity of context in a slice.

Compressor aims to sample representative slices under the con-
straint of the workload execution time to build the compressed
workload. Instead of analyzing the complete queries, SCompres-
sion summarizes the feature of transactions inside a slice and then
clusters slices. It samples slices from different clusters based on the
cluster’s scale to ensure representativeness.

Replayer executes the compressed OLTP workload. The above
components aim to preserve the features of the source workload,
while Replayer aims to reflect these features in workload perfor-
mance by executing transactions with proper orders. To achieve
this purpose, we design a slice-based workload replay strategy.
Workflow. The compression process starts with selecting an in-
terval (e.g., 10 minutes) from the query log for compression. We
designed SCompression for a cloud database that collects query
logs and performance monitoring metrics (details in Table 1). Ana-
lyzer first processes the query logs, organizing them into a source
workload. It then segments the workload based on performance
monitoring metrics, ensuring each segment reflects a regular per-
formance pattern, which improves slicing quality (as discussed in
Section 5). For each segment, Slicer divides it into numerous slices,
which are then passed to the Compressor. Compressor analyzes these
slices and selects representative ones based on a given workload
execution time, forming a compressed workload. Finally, Replayer
executes this compressed workload, delivering comparable perfor-
mance to running on the source workload. This approach saves time
on knob tuning by significantly reducing the workload execution
time.

4 ANALYZER
To implement the dynamic slicing strategy, we integrate Analyzer
and Slicer. Analyzer, a solution designed to generate representative
segments with a regular pattern in each segment systematically for
Slicer. It helps acquire a balanced number of slices across different
patterns in the workload and maintains contextual information
between transactions. We will further discuss the effectiveness of
Analyzer for slicing in Section 5.
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Figure 3: Overview Architecture and Workflow of SCompression.

Figure 4: The segmentation results on metrics via GGS.

We select the monitor metrics shown in Table 1, based on recom-
mendations from cloud database engineers, to determine segments.
To analyze these multidimensional time series, we employ Greedy
Gaussian Segmentation (GGS) [15], using the heuristic method to
model segmentation as a maximum likelihood problem regularized
by covariance. GGS segments a multivariate time series {�� }��=1,
where�� represents monitor metrics at time � , into�+1 contiguous
segments. Each segment is modeled as independent samples from a
multivariate Gaussian distribution with mean � and covariance Σ,
defined by � split points {�� }��=1. Despite the segmentation prob-
lem being NP-hard, GGS approximates the solution with linear time
complexity. It maximizes a covariance-regularized log-likelihood:

� (�, �, Σ) = ℓ (�, �, Σ) − �

�+1∑
�=1

Tr(Σ−1� ),

where ℓ (�, �, Σ) is the log-likelihood of the segmented time series, �
is a regularization parameter, and Tr(Σ−1

�
) denotes the trace of the

inverse covariance matrix for segment � . A higher � (�, �, Σ) value
indicates better segmentation quality.

For example, Figure 4 shows Normalized CPU Utilization, Nor-
malized Buffer Hit Rate, and Normalized QPS over approximately
750 seconds. During this period, the QPS plot displays periodic
spikes throughout. The CPUUtilization plot exhibits periodic spikes
before 350 seconds and after 430 seconds, with the Buffer Hit Rate
following a similar pattern. The section between the red dashed
lines clearly demonstrates a larger variance in metrics compared to
the rest of the workload. Consequently, we divide the workload into
three segments to maintain stable variance within each segment.

We use the elbow method to determine the appropriate number
of split points [37]. Using the time series data used in Figure 4 as an
example, we plot  (�) against � and analyze its objective values in
different split point counts, with � = 10−5. A significant change in
 (�) at � = 2, as shown in Figure 4 (the bottom right). Therefore,
we should set � = 2 for the data in Figure 4. This conclusion
is consistent with the reasonable result we observed in Figure 4,
where two red dashed lines illustrate how GGS segments the time
series data. It demonstrates that GGS can effectively recommend
appropriate split points and counts.

Time complexity. According to GGS [15], the time complexity
is � (�����3
 2), where � is the dimension of the metrics and 

is the number of points of metrics. In this paper, � = 5 because
there are five features in the monitor metrics, as shown in Table 1.
Meanwhile, monitor metrics use 5-second intervals, giving
 a small
range of up to 130. For the longer time series, downsampling can
be applied to mitigate computational overhead.

5 SLICER
When we define a workload� as being composed of [�1, ..., ��],
identifying the split points for slices to divide the workload remains
a significant challenge. As discussed in Section 3.1, splitting the
workload at a moment of high contention can compromise the
concurrency integrity. To address this problem, the key idea is to
set split points atmoments when there are few concurrencies.
Following this principle, Analyzer implements a coarse-grained
partitioning strategy on the workload from a global perspective,
getting segments. On each resultant segment, we maintain this
principle to execute a dynamic slicing strategy.

We utilize naïve slicing approaches - minimized, maximized, and
fixed-length slicing (with uniform slice durations of 30 ms) - to
demonstrate the significance of the principle. To compare these
strategies with ours, we first extract slices from the source work-
load and then replay them using the replay strategy outlined in
Section 7, without sampling. During replay, QPS and CPU utiliza-
tion are collected. The baseline metrics for the source workload
are presented in Figure 5. A slicing strategy that produces metrics
aligned to the baseline is considered more effective.

Using the monitor metrics shown in Table 1, we illustrate the dis-
tinct QPS and CPU utilization metrics produced by these strategies,
as shown in Figure 5. For comparison, Figure 5 presents the base-
line metrics for the source workload, which spans approximately
650 seconds. The baseline CPU utilization exhibits regular spikes
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Figure 5: Different slice lengths.

between 30% and 85%, while QPS ranges from 5 × 103 to 3 × 104.
Additionally, CPU utilization is positively correlated with QPS.

Using the minimized slice length (i.e., each slice contains a single
query, as shown in Figure 5), CPU utilization drops to around 3%,
QPS to approximately 600, and the total runtime exceeds 3 hours.
The positive correlation between CPU and QPS is no longer sig-
nificant. We attribute this performance degradation to sequential
query execution, which circumvents concurrency and conflict infor-
mation, resulting in prolonged execution time and loss of baseline
characteristics. A similar performance distortion occurs when using
the maximized slice length, i.e., all queries are in one slice, causing
all connections to run concurrently. As shown in Figure 5, CPU
utilization frequently spikes to nearly 100% and drops to about 0%
in short intervals. QPS mirrors this trend with a lower average
than the baseline, and the total runtime exceeds twice the base-
line. Excessive concurrency overloads the CPU, causing execution
anomalies and performance shocks. Recovery from these overloads
further increases execution time.

The above results suggest that extreme slice lengths are imprac-
tical, prompting us to test predefined slice lengths. Figure 6a shows
relatively desirable results with the fixed slicing approach, as it
preserves trends in performance changes. However, compared to
the baseline, both metrics decrease while execution time increases.
We believe this issue stems from slicing without maintaining the
context of queries, causing queries from the same or concurrent
transactions to be split into multiple independent slices for se-
quential execution. This reduction in concurrency decreases CPU
utilization and increases execution time.

To address this problem, we stipulate a dynamic slicing strategy
by selecting the split points with few concurrent conflicts on each
segment. To achieve it, we define a concept of instantaneous con-
currency (IC), i.e., the number of transactions being executed in an
interval Δ. Formally, 	� (�) = ����� (
������ ∈ [�, � + Δ)), where �
is the start time, and we set Δ = 3ms according to DBA’s advice. A
low 	� (�) indicates that connections are generally idle during the
[�, � +Δ), suggesting that slicing within this interval could minimize
the loss of concurrence. Specifically, Slicer slices at � + Δ/2 when
	� (�) is low, resulting in two slices from one slicing operation.

To determine the threshold of 	� for slicing, we compare two
slicing strategies: the dynamic slicing strategy, which slices each
segment based on a threshold of 	� calculated individually for that
segment, and the static slicing strategy, which applies a single 	�
threshold derived from the entire workload. We analyze the distri-
bution of 	� across all segments, shown at the bottom of Figure 6b.

The top of Figure 6b shows the locations and corresponding values
of 	� during the first second of the workload. Although slicing at
	� (�) = 0 is ideal (indicating the database is idle during [�, � + Δ)),
it occurs infrequently and can distort performance by pushing the
slice length toward the maximum. Therefore, following the Pareto
principle [33] and the histogram in Figure 6b, we measure 	� at
each Δ and perform slicing when 	� falls in the bottom 20% of
the histogram. Nevertheless, the results shown in Figure 6c closely
resemble those in Figure 6a. We attribute this to the bias caused by
the static slicing approach. When performance for a workload fluc-
tuates irregularly, the contextual information can vary significantly
across segments, meaning the appropriate 	� threshold might differ
for each segment. We show the distribution of 	� on a segment at
the bottom of Figure 6d, where the segment is divided from the
source workload by Analyzer. The top of Figure 6d shows 	� values
and locations during the segment’s first second. These results con-
firmed our hypothesis. Therefore, in dynamic slicing, we implement
segment slicing by utilizing values within the lowest quintile (20%)
of each segment’s respective histogram distribution.

Based on this dynamic slicing strategy, we get the new perfor-
mance metrics through replay and show them in Figure 6e. Execu-
tion time, performance trends, and positive correlations between
CPU utilization and QPS are maintained. Although both perfor-
mancemetrics are slightly below the baseline during certain periods,
likely due to the loss of concurrent conflicts, this is currently the
most accurate method for reproducing performance results.

Time complexity. Given that � represents the number of in-
stant time-points required to calculate 	� , the time complexity is
� (� log(�) + �), simplified as � (� log(�)). � (�) accounts for the
time for calculating all 	� values, while� (� log(�)) corresponds to
sorting time. In this paper, the longest workload contains approxi-
mately 2.16 × 105 instant time-points, given that Δ = 3ms.

6 COMPRESSOR
Slicing a workload produces numerous slices. To create a com-
pressed workload that retains the diversity of the source workload,
the Compressor samples these slices. Random sampling is inade-
quate as it often fails to identify representative slices. To address
this, we adopt a cluster-then-sample strategy. The Compressor first
clusters slices within each segment based on their features. It then
samples slices from different clusters, ensuring a balanced represen-
tation of the source workload’s characteristics. This approach en-
ables comparable performance between the compressed and source
workloads when using the same configurations.

6.1 Slice cluster
To vectorize a slice based on its multidimensional performance
features, we use the additional features shown in Table 1. Generally,
because each slice contains a finite number of queries, we define
the feature of a slice as the sum of features of all queries within
it. Formally, �� (�) =

∑
��∈� �� (���), where �� (���) represents

the value corresponding to the feature � of a query. For example,
��������� (���� ) denotes the execution time of ���� . Thus, the work-
load� can be represented as� = [� (�1), � (�2), ...], where � (�� ) =
[��1 (�� ), ��2 (�� ), ...]. For clustering, we normalize each � (�� ) ∈�
using �� (�� ) = 
� (�� )−min(
� )

max(
� )−min(
� ) , where �� = {�� (�� ), �� (� � ), . . . }
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(a) Fixed slicing. (b) IC of all segments. (c) Static slicing. (d) IC of a segment. (e) Dynamic slicing.

Figure 6: Workload replay with a dynamic slicing strategy.

represents the set of feature values for all slices corresponding to
feature � . We evaluate varying query feature aggregation methods,
including sum and max, and adopt sum as it achieves high empiri-
cal performance. We leave investigations of better query feature
aggregation methods as future work.

Based on � (�� ), we employ the Hierarchical Clustering Algorithm
(HCA) [31, 32] to group slices, resulting in an effective sampling ba-
sis. HCA is a state-of-the-art unsupervised ML clustering algorithm
that does not require predefining the number of clusters. It builds a
hierarchy of clusters by grouping objects based on their features,
forming a tree-like structure called a dendrogram. This dendrogram
can represent the nested grouping of objects and the sequence in
which clusters are merged or split, adapting to varying workload
compression rates without re-clustering. Note that SCompression
uses a “bottom-up” strategy to build this hierarchical structure. It
starts with each object in its own cluster and then successively
merges the closest pairs of clusters, with proximity measured using
the Euclidean Distance in this study, until all objects are in a cluster,
where each cluster starts with one slice.

Time complexity. The time complexity for clustering [31, 32]
is � (�2 log�), where � is the number of slices. In this paper, the
maximum number of slices is approximately 1.4 × 104.

6.2 Slice sampling
Based on the hierarchical tree, where each leaf node contains a
slice and other nodes denote clusters, we propose a “top-down”
sampling strategy to obtain a specified length of slices.

Our algorithm recursively samples slices, starting from the root
node (Algorithm 1). Given a node ���� and a given length (repre-
senting the execution time, as detailed in Section 2.2) of slices �, it
first adds all the leaf nodes of the given ���� to a pool of candidates
� . If there is a node �ℎ��� that is not a leaf node, the algorithm
calculates the length � and adds the candidate nodes ������ from
the node �ℎ��� into� . The length � of �ℎ��� is calculated by the
length of all leaves of both �ℎ��� and ���� :

� = � · � · �����ℎ(�ℎ���.���_������)/�����ℎ(����.���_������) .

To prevent � from being too small to contain any slices, we use
� to control its value. We set � = 1.3 to obtain more samples from
�ℎ��� nodes without influencing the length of the result.

Finally, the algorithm iterates through the candidate pool� and
randomly excludes one node from the closest pair each time until
the length of candidate nodes is less than the target length �.

Algorithm 1: SampleFromNodes
Input: Node ���� , given length of slices �
Output: Sampled Slices�

1 � = [ ]
2 foreach �ℎ��� ∈ ����.����� do
3 if �ℎ���.��_���  = 
��� then
4 � .append(�ℎ���)
5 else

6 � ← � · � · �����ℎ(�ℎ���.���_������)
�����ℎ(����.���_������)

7 ������ ← �������������� (�ℎ���, �)
8 � .append(������)
9 end

10 end
11 while �����ℎ(� ) > � do
12 argmin

�, �
�������� (�� , � � ), (�� , � � ∈�, � ≠ �)

13 Remove one of the leaves in {�� , � � } randomly
14 end
15 return

Time complexity.The time complexity for sampling is� (� log�),
where � is the number of slices in the compressed workload and�
is the total number of slices in the source workload, usually � ��.

7 REPLAYER
Given a compressed workload� = [�� , .., � � ], we propose a replay
strategy based on the concept of slices. The principle of replay is to
produce performance according to the sequence and concurrency of
transactions preserved in the� . To this end, we establish an intra-
slice replay policy and an inter-slice replay policy, respectively.

For the intra-slice replay policy, i.e., replay a slice �� , we use
the transaction’s start time as a reference. We execute transactions
within the same connection according to their start times. For trans-
actions that overlap in time in different connections, we prioritize
the one whose first query has an earlier start time.

A naive inter-slice replay policy involves replaying slices sequen-
tially. For example, when handling consecutive slices [�� , ��+1], the
system initiates ��+1 only upon completion of �� . However, this
policy may result in low QPS during replay operations, as some
queries may have extended execution durations on the compressed
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Figure 7: Toy example of slice replay.

workload. Additionally, slice execution periods often demonstrate
temporal overlap, even when using the dynamic slicing strategy,
further impacting performance.

To address this issue, we introduce a metric called the SQL Fin-
ish Rate, denoted as ���	 (�, �), which is formally defined as

���	 (�, �) = |{� ∈ � |EndTime(�) < �}|
|� | ,

where |� | is the total number of queries in � . The metric represents
the proportion of queries in � that have completed execution in
workload� by time � .

We now present our inter-slice replay policy, involving replay-
ing slices [�� , ��+1] on� . During the replay of the �� , ��+1 is ini-
tiated at time � , when ���

	
(�� , �) ≥ ��� . The parameter ��� =

���	 (�� , ��+1) is calculated from� , where �� = � (�� , ��+1). By im-
plementing ��� , we ensure the precise timing of query execution
for those queries that begin before the completion of queries in the
previous slice, enabling accurate replication of concurrent opera-
tions.

To illustrate our replay strategy concretely, we provide a toy
example of compressed workload� in Figure 7. Transactions in
�1 start first. Within �1, �1 and �2 run concurrently, where �1
begins by executing 
 1

1 , followed by 
 2
1 starting in �2. �2 runs its

transactions similarly and starts at � when ���
	

(�1, �) ≥ ��1 .

8 DISCUSSION AND FUTUREWORK
Discussion. To the best of our knowledge, this is the first context-
aware approach to compress OLTP workloads for knob tuning,
though it is not the only pathway to accelerate this process. For
instance, researchers [18, 25, 28] have improved knob tuning effi-
ciency by reducing iterations through knob selection and parameter
range optimization. SCompression can be seamlessly integrated with
these approaches to further improve efficiency.
Future Work. While SCompression demonstrates significant effec-
tiveness in compressing OLTP workloads for knob tuning, there
remain opportunities for enhancement and further development.

Distance Function. We compared Euclidean and Cosine distance
functions for calculating slice distances and found that Euclidean
distance performs slightly better. While this approach, leveraging
Euclidean distance, is highly effective for knob tuning (as demon-
strated in Section 9), its performance diminishes in other tasks,
such as index tuning, particularly at higher compression rates (see
Section 9.5). Developing task-specific distance functions remains a
critical challenge for future work.

Low-Frequency Queries. A notable consideration in sampling is
the careful handling of underrepresented low-frequency samples.

While we can implement sophisticated strategies to retain valu-
able low-frequency samples, the inherent trade-offs necessitate a
balanced approach tailored to specific use cases. This presents an op-
portunity for continued research and refinement. Nevertheless, our
experimental results in Section 9 demonstrate robust performance
metrics, confirming the viability of our approach.

Surrogate model. An alternative to accelerate knob tuning is de-
veloping a surrogate model that maps configurations to system
performance, enabling model-based optimization and minimizing
direct system testing. However, training a surrogate model requires
a large number of samples [3, 5, 49], inevitably involving multiple
executions of the workload. As a result, workload execution is un-
avoidable, making workload compression essential for reducing
knob tuning time. Developing a comprehensive, explainable surro-
gate model with workload compression remains an open challenge.

9 EXPERIMENTS
We present SCompression’s capability to compress OLTP workloads
for knob tuning. SCompression generates a compressed workload
that mirrors the performance changes of its source under identical
configurations, significantly reducing knob-tuning time.

9.1 Experiment Setup
Hardware.We conducted experiments on a cloud-based MySQL
database (v5.7) and index recommendation on PostgreSQL (v14.14),
both configured with 8 CPU cores and 32 GB of RAM.
Workloads.We use four types of workloads, as detailed in Table 2:
YCSB-A, TPC-C, Synthesis (by Sysbench), and a real-world OLTP
workload referred to as Production. Synthesis is generated by Sys-
bench, alternating concurrency levels between 16 and 64 threads
every 30 seconds, repeating this pattern until the test ends. The
production workload, collected from a cloud database, contains
approximately 8,500 distinct query templates. Performance metrics,
including QPS and CPU usage, are presented in Figure 5. Since the
query log does not specify connection establishment or release time,
real-time concurrency is approximated by counting the number of
unique ThreadIds per second.
Competitive Methods.We compare SCompression with state-of-
the-art workload compression methods, including Query Config-
uration Sensitivity Analysis (QCSA) and Index-based Workload
Summarization (ISUM). QCSA is a tool used in LOCAT [42] that
compresses OLAP workloads by selecting queries that show the
biggest difference in performance. According to [42], we evaluate
30 configurations to calculate the performance variance. ISUM [34]
identifies queries with both high-performance improvement po-
tential and significant influence on others based on their costs,
selectivity, and similarity in indexable columns.

Table 2: Workload Information

Name Queries Concurrency Table Size Length (mins)

YCSB-A 6.9 M 32 179 MB 5
TPC-C 14.4 M 16 3 GB 5
Synthesis 2.3 M 16 - 64 5 GB 5
Production 8.2 M 140* - 464* 2.1 TB 10.8
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Knob Tuning Setting. For the knobs to be tuned, we select 30
knobs in MySQL 5.7 according to senior DBAs’ advice. We evaluate
different compression techniques with three state-of-the-art tuning
methods and observe similar performance trends. Due to space
constraints, we only show results with the Bayesian Optimization
(BO)-based method in most of our evaluations since it’s usually
slightly better [18]. Evaluations of SCompression with other tun-
ing methods are provided in Section 9.5. For tuning, we conduct
150 iterations and identify the configuration yielding the highest
throughput as the optimal one. Bayesian Optimization (BO) [13]
excels at optimizing objective functions that are costly to evaluate
and tolerate stochastic noise. It builds a surrogate model of the ob-
jective function and uses an acquisition function to guide sampling,
enabling effective knob tuning through targeted optimization.
Compression Rate. For knob tuning, workload execution duration
serves as the critical performance metric. We utilize time-based
measurements rather than query count to establish the compression
rate. As discussed in Section 2.2, given𝑊 and𝑊 , the compression
rate is defined as 𝐶𝑅(𝑊 ) = 𝐸 (𝑊 )/𝐸 (𝑊 ), where 𝐸 (𝑊 ) and 𝐸 (𝑊 )
represent the execution times of the source and compressed work-
loads, respectively. In this paper, we set compression rates at 5, 10,
20, 50, and 80.
Target Metric. When comparing performance across different
configurations on the same workload, we use QPS as the primary
performance metric, as shown in Section 9.2. To compare the perfor-
mance trends of the source and compressed workloads, we employ
min-max normalized QPS as the key metric, where the calculation
of normalized QPS is described in Section 9.3.

9.2 Efficiency Evaluation
End-to-end performance comparison.Weevaluate QPS of source
workloads (e.g., YCSB-A, TPC-C, Synthesis, and Production) by de-
ploying optimal configurations learned from compressed workloads
with 5 different compression rates (i.e., 5, 10, 20, 50, and 80). Ta-
ble 3 shows the tuning time (150 iterations) and the optimal QPS
achieved using OtterTune on source workloads. Figure 8 shows the
QPS of the source workload by deploying optimal configurations
from different compression rates, where a higher QPS indicates
better performance.

In Figure 8, the red dotted line represents the QPS of the opti-
mal configuration tuned on the source workload and serves as a
baseline, with corresponding details shown in Table 3. QCSA and
ISUM struggle to achieve high QPS with compressed workloads
compared to the baseline. As the compression rate increases, the
QPS further declines, especially for Synthesis and Production work-
loads. Notably, QCSA performs slightly better than ISUM, as ISUM
compresses the workload based on the indexable columns, which is
specifically designed for index recommendation rather than knob
tuning. In contrast, SCompression is notably better, maintaining rel-
atively high QPS results. While their performance slightly degrades
as the compression rate increases, it remains significantly higher
than that of QCSA and ISUM and stays close to the baseline.
End-to-end speedup comparison.We measure the end-to-end
speedup across different compression rates and use it as a key
indicator to appraise the tuning efficiency. A higher speedup reflects
a shorter tuning time.

Table 3: Comparison across workloads with 150 iterations.

Workload YCSB-A TPC-C Synthesis Production
Tuning Time (h) 13.9 14.3 14.1 25.2
Optimal QPS 37450 51716 59078 16799

Table 4: Overheads. “P” for “Prepare” and “C” for “Compress”.

Workload YCSB-A TPC-C Synthesis Production

SCompression
P 0 0 0 0
C 25 s 230 s 50 s 190 s

QCSA P 150 mins 154 mins 157 mins 326 mins
C 5s 8s 4s 6s

ISUM P 0 0 0 0
C 18 mins 52 mins 4 mins 23 mins

The results about tuning time and speedup on different work-
loads are shown in Table 3 and Figure 9, respectively. The results
in Figure 9 show that increasing the compression rate reduces
workload execution time, with the speedup rate growing as the
compression rate increases. QCSA and ISUM methods achieve simi-
lar speedups to slice-based methods at compression rates below 20,
around 13x. However, at a compression rate of 50, their speedups
drop significantly, with QCSA reaching only 20x and ISUM just
15x, compared to SCompression methods at 45x. This observation
can be attributed to query-based methodologies which, despite
producing compressed workloads with reduced query counts, fail
to adequately address query concurrency and demonstrate a ten-
dency to extract extended query sequences within connections. In
contrast, slice-based methods like SCompression show a consistent
proportional increase in speedup as the compression rate rises,
though the speedup gains become minimal when the compression
rate surpasses 50.
Overhead of workload compression. Table 4 represents the
average time cost of SCompression, QCSA, and ISUM at different
compression rates. Unlike QCSA, SCompression and ISUM do not
need 30 workload executions for query variance calculation. We
designate this additional execution phase as Prepare, while the im-
plementation of compression methods is designated as Compress.

Given that both SCompression and QCSA perform comprehensive
workload analysis independent of compression rate, we focus on
measuring the average overhead, as processing time maintains
consistency across varying compression rates. For ISUM, where
overhead decreases as the compression rate increases, we also use
the average overhead as the metric for simplicity.

As shown in Table 4, QCSA demonstrates notably higher over-
head compared to SCompression and ISUM, attributable primarily to
extended Prepare time requirements. However, upon examination
of knob tuning duration presented in Table 3, all methods main-
tain reasonable compression overhead levels, with SCompression
exhibiting enhanced operational efficiency.

These results show that SCompression can generate compressed
workloads from the source workload while ensuring that the op-
timal configurations produced on these workloads yield similar
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(a) QPS on YCSB-A (b) QPS on TPC-C (c) QPS on Synthesis (d) QPS on Production

Figure 8: QPS on source workloads using optimal configurations generated on compressed workloads.

(a) YCSB-A (b) TPC—C (c) Synthesis (d) Production

Figure 9: Speedup for 150 iterations.

performance on the source workload. Given the speedup and over-
head achieved by SCompression, we conclude that it significantly
cuts workload execution time, making knob tuning more efficient
and cost-effective.

9.3 Performance Comparison with the Same
Configurations

An effective compression method should ensure that the source and
compressed workloads achieve similar performance when using
the same configurations. In other words, workloads with similar
characteristics should exhibit consistent trends across different
knob settings. In this section, we analyze performance similarity by
selecting 15 configurations and measuring QPS for both the source
and compressed workloads on TPC-C and Productionworkloads. To
examine performance trends across different knobs, we normalize
the QPS values of a workload compressed by a specific method and
rate to the range [0, 1] using min-max normalization, defined as:
����������� = �−min(� )

max(� )−min(� ) .
As a baseline, Figure 10a and Figure 10e display the normalized

QPS results collected from source workloads (i.e., TPC-C, Produc-
tion) across 15 configurations. As shown in Figure 10b, 10c, and
10d, query-based methods like ISUM and QCSA get reasonable
normalized QPS on TPC-C, closely resembling the baselines at
lower compression rates (i.e., below 10). However, as the compres-
sion rate increases, these methods struggle to maintain similarity
with the source workload. In contrast, the slice-based method, like
SCompression, demonstrates impressive similarity even at higher
compression rates (i.e., 50). Yet, their effectiveness diminishes when
the compression rate becomes too high, such as at 80. TPC-C is a sta-
ble workload, with its QPS remaining nearly constant throughout
execution. This results in minimal variation across different slices,
allowing both query-based and slice-based methods to perform well
when the compression rate is low.

As shown in Figure 10f, 10g, and 10h, on the Productionworkload,
the similarity exhibits varying trends across different compression

methods. We attribute it to the fact that Production is more complex
than TPC-C. As shown in Figure 5, its QPS is uneven and varies
during the whole period.

Our analysis reveals three key findings. First, ISUM demonstrates
poor similarity performance even at a minimal compression rate
of 5, and its performance deteriorates further at higher rates. We
attribute it to the fact that ISUM only looks at indexable columns
and ignores query concurrency, making it miss important high-
contention queries. Second, while QCSA works well at the com-
pression rate of 5, its similarity accuracy drops significantly at
higher rates. Queries with high contention are more susceptible to
configuration changes, giving QCSA a greater potential to maintain
concurrency compared to ISUM. Third, SCompression maintains
consistent QPS similarity across various compression rates, even
outperforming others at higher compression rates (i.e., 50).

These results demonstrate that both query-based methods and
SCompressionmaintain performance similarity between compressed
and source workloads at low compression rates for simple work-
loads like TPC-C. However, SCompression performs significantly
better at higher compression rates (e.g., above 20) and consistently
outperforms query-based methods in preserving similarity. Query-
based methods are less effective on real-world workloads, where
compressed workloads exhibit different QPS trends under the same
configurations. While QCSA performs well at low compression
rates by selecting configuration-sensitive queries, it struggles as
the compression rate increases. In contrast, SCompression excels by
effectively preserving workload characteristics, capturing represen-
tative slices across various compression rates, even up to 50.

9.4 Ablation Study
To compare the effectiveness of designs in SCompression, we con-
duct an ablation study on the following components: Analyzer
(None denotes skipping analysis; GGS denotes segmentation using
GGS), Slicer (Fixed denotes fixed-length slicing, e.g., 30ms; Static
denotes use a static threshold from the whole workload; Dynamic
denotes dynamic slicing), and Compressor (Random denotes ran-
dom sampling; Cluster denotes cluster-based sampling). All results
are shown in Table 5 and Table 6, where the numbers (e.g., 10, 50,
and 80) below QPS and Tuning Time are compression rates.

For TPC-C, as shown in Table 5, all strategies perform simi-
larly when the compression rate is low (e.g., 10). However, as the
compression rate increases (e.g., 50), the dynamic slicing and cluster-
based sampling strategies exhibit a clear advantage in maintaining
higher performance. The static slicing strategy generally performs
slightly better than the fixed slicing strategy, while the benefits
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(a) TPC-C (b) C-T-SCompression (c) C-T-ISUM (d) C-T-QCSA

(e) Production (f) C-P-SCompression (g) C-P-ISUM (h) C-P-QCSA

Figure 10: Normalized QPS on workloads (i.e., TPC-C, Production, and their compressed versions) across varying compression
rates and configurations. “C-T” represents “compressed TPC-C”. “C-P” represents “compressed Production”.

of dynamic slicing become more pronounced at higher compres-
sion rates (e.g., 80). This highlights the effectiveness of dynamic
slicing in preserving performance under significant compression.
We attribute it to TPC-C being a stable workload with nearly con-
stant QPS. This stability results in a minimal variation in monitor
metrics over time, making it challenging for GGS to effectively
segment the workload. However, an aggressive compression rate
will compromise this stability by disrupting concurrency integrity
in fixed and static slicing and losing representative slices in random
sampling. The advantages of dynamic slicing and cluster-based
sampling become pronounced, demonstrating their effectiveness in
extreme situations.

The results on the Production workload confirm the above con-
clusion, as Production is more complex and unstable than TPC-C.
The results in Table 6 highlight key differences in performance.
Even at a low compression rate (i.e., 10), the random sampling
strategy underperforms compared to the cluster-based sampling
strategy. Although dynamic slicing improves performance, combin-
ing it with the random sampling strategy yields worse results than
using fixed-length slicing with the cluster-based sampling strategy.
These results demonstrate that the cluster-based sampling strategy
is crucial for performance, particularly when handling complex
workloads.

Our analysis demonstrates that implementing any combination
of the discussed technologies (e.g., GGS in Segment, Dynamic Slic-
ing, and Cluster-based Sampling) enhances system performance
relative to baseline approaches of fixed or static slicing and the
random sampling strategy. The optimal performance is achieved
through the integrated application of all three techniques. The
analysis further reveals that as compression rates increase, the
cluster-based sampling strategy maintains significantly better per-
formance compared to the random sampling strategy, primarily due
to its superior ability to preserve workload characteristics. The data
show that cluster-based sampling outperforms dynamic slicing, un-
derscoring its key role in preserving workload representativeness
and enhancing system efficiency.

Table 5: Ablation Study on TPC-C.

Module QPS (×104) Tuning Time (h)

Analyzer Slicer Compressor 10 50 80 10 50 80

None Fixed Random 5.08 5.01 4.87 1.6 0.6 0.6
None Fixed Cluster 5.10 5.07 4.91 1.5 0.4 0.4
None Static Random 5.08 5.02 4.87 1.6 0.7 0.6
None Static Cluster 5.09 5.08 4.95 1.5 0.5 0.4
GGS Dynamic Random 5.09 5.07 5.00 1.9 0.6 0.6
GGS Dynamic Cluster 5.10 5.09 5.02 1.5 0.4 0.3

Table 6: Ablation Study on Production.

Module QPS (×104) Tuning Time (h)

Analyzer Slicer Compressor 10 50 80 10 50 80

None Fixed Random 1.56 1.48 1.36 3.8 1.0 0.8
None Fixed Cluster 1.63 1.58 1.50 3.6 0.8 0.7
None Static Random 1.56 1.50 1.45 4.2 0.9 0.8
None Static Cluster 1.64 1.60 1.53 3.9 0.7 0.6
GGS Dynamic Random 1.58 1.52 1.48 4.1 0.9 0.7
GGS Dynamic Cluster 1.66 1.63 1.59 3.7 0.7 0.5

9.5 Performance of SCompression with
Different Tuners and Effects for Index
Recommendation

Different tuners. To evaluate SCompression’s effectiveness with
different tuners, we test it using three popular tuners: OtterTune
(BO-based), CDBTune (RL-based), and LlamaTune (BO-based). We
measured the QPS of the source workload by deploying optimal
configurations tuned on the compressed workloads (e.g., TPC-C and
Production) over 150 iterations. The results are shown in Table 7.
The results indicate similar optimal throughput across the evalu-
ated tuners, highlighting the broad applicability of SCompression.
Notably, LlamaTune identifies the optimal configuration first.
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Table 7: Performance of SCompression with different tuners.
“T” denotes TPC-C. “P” denotes Production.

Tuner OtterTune CDBTune LlamaTune

cr 5 20 50 5 20 50 5 20 50

T QPS (×104) 5.17 5.10 5.09 5.16 5.08 5.06 5.16 5.09 5.08

P QPS (×104) 1.66 1.65 1.63 1.67 1.65 1.64 1.67 1.66 1.64

(a) TPC-C (b) Synthesis

Figure 11: Improvement of index recommendation.

Index recommendation. We evaluate SCompression, ISUM, and
QCSA on PostgreSQL for index recommendation, benchmarking
their performance improvement on TPC-C and Synthesis work-
loads. For evaluation, we use the Database Engine Tuning Advisor
(DTA) [1, 8, 20]. It is an advanced version of the AutoAdmin index
selection tool forMicrosoft SQL Server, identifying index candidates
for individual queries and determining the optimal configuration
for the entire workload using a greedy enumeration approach.

Since index advisors process workloads as sequentially executed
queries [20], we adopt the query-based compression rate [11, 34],
defined as |	 |

|	 |
, where |� | and |� | represent the quantities of

queries in the source and compressed workload, respectively. The
improvement (%) is calculated as the reduction in the source work-
load execution time when using recommended indexes based on
the tuning of the compressed workload, relative to the source work-
load execution time. As shown in Figure 11, at lower query-based
compression rates (e.g., below 10), all methodologies demonstrate
satisfactory performance due to the increased retention of essential
queries. Nevertheless, when compression rates exceed 100, both
SCompression and QCSA exhibit diminished effectiveness. The per-
formance degradation is due to their focus on knob-tuning over
index selection, reducing their effectiveness in this context.

10 RELATEDWORK
Existing studies on SQL-level workload compression primarily fo-
cus on reducing query count, particularly for OLAP workloads,
which aim to accelerate workload analysis processes [7, 34].

Query-based Workload Compression. Workload compres-
sion for queries was first explored by Chaudhuri [7, 9], who em-
ployed KMED, All-Pairs, and Random Sampling to identify repre-
sentative queries for tasks like index recommendation. Later stud-
ies [17] introduced NLP techniques to learn vector representations
of SQL queries, treating them as textual data to support gener-
alized workload analytics. Ettu [21, 22] is a system designed to
analyze SQL query logs, assisting database administrators (DBAs)
in identifying patterns and detecting security issues. It converts

SQL queries into abstract syntax trees (ASTs) and leverages the
Weisfeiler-Lehman (WL) graph algorithm to extract critical features.
To cluster SQL queries based on structural similarity, [21–23] rely
on query structure, avoiding the need for database data or schema.
They enhance clustering quality through a regularization process
that standardizes SQL queries by canonicalizing names, applying
equivalence rules, and transforming query structures (e.g., syntax
desugaring and nested query flattening). GSUM [11] formalizes
workload representativity and coverage, improving feature (e.g.,
column) coverage and aligning compressed workloads with the
original distribution with an efficient greedy algorithm. ISUM [34]
selects queries that significantly impact performance, particularly
those involving indexable columns. LOCAT [42] introduces Query
Configuration Sensitivity Analysis (QCSA) to eliminate queries
insensitive to configuration parameter changes.

DBMS Configuration Tuning. DBMS configuration tuning
is an active research area [2, 19, 49, 50], with approaches gener-
ally falling into rule-based and model-based categories. Rule-based
methods, such as IBM’s DB2 self-tuning memory manager and
DB2 Performance Wizard [24, 35, 38], automate initial parameter
settings, while tools like BestConfig [51] optimize configurations
under resource constraints, and COMFORT [41] applies control
theory to single-knob tuning, though it struggles with interdepen-
dent knobs. SARD [10] ranks knobs by performance impact using
Plackett-Burman design. Model-based methods use machine learn-
ing to recommend configurations, with examples like Tran et al. [39]
employing regression models for buffer tuning and iBTune [36]
utilizing deep neural networks to optimize buffer pool size. Other
tools [12, 26, 40, 45, 48] adopt Bayesian Optimization or Reinforce-
ment Learning for automated tuning. Recent advances [6, 14, 25, 49]
reduce tuning costs by integrating black-box and white-box models,
parallel strategies, and large language models to provide efficient
configuration recommendations.

11 CONCLUSION
In this paper, we propose SCompression, a slice-based OLTP work-
load compression method for knob tuning. We treat the workload
as a sequence of slices that contain transactions, slicing the work-
load to maintain high concurrency conflicts. SCompression uses a
dynamic slicing strategy, a cluster-based technique, and a replay
strategy to generate and execute compressed workloads, resulting
in similar performance between the compressed and source work-
loads on the same configurations. Extensive experiments demon-
strate that SCompression is a generic auxiliary approach. Deploying
SCompression offers a cost-effective solution for knob tuning.
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