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ABSTRACT
Incremental query processing is widely used in data warehouses
and streaming systems. While many optimization techniques are
developed to generate incremental query plans, the scheduling
support for incremental processing remains preliminary. Typically,
execution is triggeredwith fixed frequencies specified by the user. In
this paper, we propose a novel scheduling problem for incremental
query execution under a deadline, assuming the resource has a
fluctuating and unforeseen price. We propose two naive solutions
as well as a prophet scheduler that foresees the future. We present
an end-to-end system Agamotto that models future probabilities
offlinewith aMarkovDecision Process (MDP) andmakes cost-based
and dynamic scheduling decisions online. We show how Agamotto
can be extended to handle a workflow of dependent queries, so
that they can all incrementally execute in an asynchronous fashion.
Experiments show that Agamotto consistently outperforms the
naive solutions, and the achieved cost is on average 10x closer to
the theoretical lower bound provided by the prophet scheduler.
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1 INTRODUCTION
Incremental query processing is widely used in data processing,
including streaming systems [8, 10] and view maintenance [15, 16]
in databases. When input data gradually becomes available over
time, either as a continuous stream or as intermittent batches, incre-
mental processing can be triggered multiple times, each processing
the new delta of the input. While there are works on incremental
optimizers [12, 30] that produce incremental plans for user queries,
the scheduling support for incremental processing remains prelimi-
nary. Executions are typically triggered with fixed frequencies, or
whenever certain amount of new input data arrives [2, 8, 22, 26].
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Furthermore, the trigger conditions are usually user-specified. Here
are two scenarios that entail a more sophisticated scheduler.

Routine Analytics in a Public Spot Market. A spot market in
a public cloud (e.g., Amazon [5] or Alibaba Cloud [3]) is a market
where the machine price fluctuates over time. The cloud provider
decides and announces the machine price as time goes. Users ac-
quire the machines and pay-as-you-go at the market price.

Suppose we need to run two dependent daily reporting queries
𝑄1 and 𝑄2 in Figure 1 to analyze business data generated over the
day. If they are run as traditional batch jobs when input data be-
comes fully ready, the monetary cost can be high if the market price
of machines spikes at that time. Instead, incremental processing
can be used to progressively compute the queries as data becomes
available during the day. We can save monetary cost by scheduling
the incremental runs whenever the market price is low. Also as
Figure 1 shows, dependent queries 𝑄1 and 𝑄2 can be scheduled to
run incrementally in an asynchronous fashion.

Cluster 
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Q1
Q2

Data Fully Arrives

0:00

Input Data Arrivals

Traditional Batch 
Execution

6:00 12:00 18:00 0:00

End of day

Time of Day

Incremental Query 
Execution Q2

Q1

Figure 1: Traditional batch vs. incremental query execution
under uncertain resource price (cluster utilization).

Progressive Execution in Alibaba CloudDataWarehouse [29].
In enterprise data warehouses where compute resources are usually
not explicitly priced, cluster capacities are typically managed via
user groups and queues. Each user group (e.g., a department) is pre-
booked with certain amount of capacities according to their budgets.
Queries are queued when there is no more available resource for
the group, resulting in longer wait time and higher latency.

If one is to run the same reporting queries as batch jobs when
data becomes fully ready at midnight, there is a chance of missing
the deadline when there are lots of similar queries submitted at that
time. In this case, incremental processing is beneficial because it
reduces the amount of computation at peak hours. If we interpret
the resource usage percentage of the user group as the “price”, the
scheduler can then schedule the incremental runs during the day
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whenever the utilization is low, also minimizing the possibility of
impacting other jobs running then. In general, this scheduler will
alleviate the overall resource skew in the cluster.

In this paper, we propose a novel scheduling problem for incre-
mental query execution in a cluster where resource has a fluctuating
and unforeseen price. Given a deadline𝐷 and a workflow of queries
whose input data arrival amount and time are also unknown, the
goal is to select 𝑘 (𝑘 ≥ 1) time points 𝑡1 . . . 𝑡𝑘 ∈ (0, 𝐷] and the
set of queries to incrementally run at each time point, so that the
estimated total weighted cost

𝑘
𝑖=1 𝑝𝑖𝑐𝑖 is minimized. Here 𝑝𝑖 is the

resource price at the 𝑡𝑖 , and 𝑐𝑖 is the estimated execution cost at 𝑡𝑖 .
This problem is challenging, mainly due to price uncertainty.

Naive solutions such as setting a price threshold and scheduling
a run whenever the price falls below the threshold can hardly be
good enough: 1) in one day if the price mostly stays below the
threshold, we end up with a lot of incremental runs at not-so-low
prices, incurring heavy incremental processing overhead at the
same time, or 2) in another day the price stays above the threshold,
we end up not running at all and leaving all work at the deadline,
and the price then can be even higher. If one wants to do better by
dynamically making decisions on the fly, then the problem becomes:
should we 1) “run,” i.e., exploiting the current decent price, or 2)
“wait,” i.e., betting on a lower price later before the deadline.

Another challenge lies in query characteristics and there is a need
for a cost-based scheduler. Some queries are naturally more suitable
for incremental execution than others. The scheduler can hardly
make wise decisions without understanding the cost characteristics
of the dependent queries in the workflow.

At the core of our proposed solution Agamotto1, the schedul-
ing problem is formulated as a Markov Decision Process (MDP)
that probabilistically describes different future possibilities with
discretized states and transitions. It jointly considers price evolve-
ment probabilities and the cost dynamics of the incremental query
execution, and thus is able to reason about questions like: how
likely is the price going to drop further and can we afford to wait?
Is this worth it to run the query incrementally and incur overhead?
To what extent can the early output of upstream queries benefit the
early execution of downstream queries? With all these aspects con-
sidered, the MDP model produces the best cost-based scheduling
decisions that minimize the expectation of the total weighted cost.

In this paper we make the following contributions:
• Wepropose a novel scheduling problem for deadline-oriented

incremental query execution under uncertain resource price
in Section 2. Two naive solutions are given in Section 3.

• In a simplified problem where the exact future is known,
we propose the Prophet scheduler in Section 4 that provides
the optimal scheduling. It also provides a theoretical cost
lower bound for the full problem with unknown future.

• We present Agamotto in Section 5, an end-to-end schedul-
ing solution that dynamically makes cost-based scheduling
decisions without knowing the future. Agamotto consists
of an offline optimization module featuring a Markov Deci-
sion Process that models different future possibilities and
produces the optimal scheduling policy, and an online agent
that dynamically makes scheduling decisions at run time.

1The eye of Agamotto enpowers Dr. Strange to see through infinite alternative futures.

• Agamotto and its MDP model can be extended to handle a
workflow of multiple queries (Section 6).
• We systematically evaluate Agamotto in Section 7, by com-

paring it with the two naive approaches and the Prophet.

1.1 Related Work
Scheduling problems focusing on latencies [1, 13, 23] are well stud-
ied. While in our problem, we try to minimize the compute cost of
incremental query execution. The results are only required at the
deadline, without the need to deliver latest results with low latency.

There are limited studies on the scheduling of incremental query
processing. Incremental executions are typically scheduled with
fixed frequencies, or are triggered by input data arrival or the ending
of the execution of an upstream query [2, 8, 22, 26]. Furthermore,
the trigger conditions usually have to be specified by the user.

In Spark streaming, [11, 19, 20] try to adjust the size of the micro-
batch and the execution frequency, while not violating the latency
or SLA requirement. [14] tries to save resources by scheduling
certain jobs of the workflow less frequently, as long as the predicted
changes of the output are bounded. [21] introduces a more relaxed
form of incremental processing allowing temporal asynchrony, and
tries to find the schedule that minimizes cost given data freshness
and consistency requirements.

Our work is different from all these works on scheduling in-
cremental execution because it solves a new scheduling problem
where resource has an unknown price. Nevertheless, [11, 14, 21, 22]
are similar to us in that they all consider asynchronous execution
of upstream and downstream queries in a workflow.

[26] studies how to choose intermediate states for incremental
query execution under a memory constraint and minimize the re-
fresh latency upon new input data. [24, 27] study the incrementabil-
ity of each query path inside a query, and how to pick the best exe-
cution frequency of each path to minimize the total execution cost
given a final-run-cost constraint. [28] considers multiple queries
with different frequency requirements, and picks the best shar-
ing plan with refresh frequencies for different parts of the plan.
In all these works, incremental runs are scheduled with fixed fre-
quencies or when a certain number of tuples arrive. [25] develops
scheduling algorithm for incremental maintenance of Datalog pro-
grams, and focuses on the schedule order of the affected nodes in
the computational DAG of the Datalog program when inputs have
changed. Cümülön-D [18] tries to minimize the monetary cost of
running statistical workloads using Amazon EC2 spot instances [5].
Its scheduler problem is similar to this paper, but the workload
and problem setting are quite different. Matrix workload is a fixed
amount of malleable work which can be finished early, while the
input data in our setting will not be fully ready until the deadline.

In Grosbeak [29] we envisioned the scenario where incremental
execution is used to reduce peak traffic in the data warehouses. This
paper is the full research version that solves the scheduling problem
which is the key and the most challenging module in Grosbeak.

2 PROBLEM FORMULATION
We start with background settings on incremental query processing
in a data lake, then describe the concept of an incremental plan
template, and define the scheduling problem studied in this paper.
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Background. Image that we are doing incremental query process-
ing in a data lake. Live sales data is ingested into Apache Hudi [6]
over time, which manages different time versions of tables and
allows us to access certain version of a table at any given time (time
travel), and the changes (aka. delta) of a table between any two
time points. Apache Spark [7] is used to incrementally process a
two-query workflow shown in Figure 2, where𝑄1 filters input table
𝑆𝑎𝑙𝑒𝑠 and writes to table 𝐼𝑡𝑒𝑚𝑠 , and 𝑄2 aggregates over 𝐼𝑡𝑒𝑚𝑠 and
reports the average amount per group.

Upstream Q1:
Items = Select * from 
Sales where itemId < 10

Downstream Q2:
Select cid, AVG(amount) 
from Items group by cid 9:00 14:00 18:00 24:00

Time

Deadline

Resource Price

Sales 0 - t1 t1 - t2

Items 0 - t1 t1 - t2

Filter Filter

Temp. 0 - t1 0 - t2

Initial Plan 
of Q1

Delta Plan
of Q1

Agg_cid
(sum,count)

Agg_cid
(sum,count)

Q2’s Result 0 - t2

Initial Plan 
of Q2

Delta Plan 
of Q2

Final Plan 
of Q2 

Sales 0 - 9 14 - 24

Items 0 - 9 14 - 24

Filter Filter

Temp. 0 - 9 0 - 24

Agg_cid
(sum,count)

Q2’s Result 0 - 24

Filter

0 - 14

9 - 14

9 - 14

Agg_cid
(sum,count)

Agg_cid
(sum,count)

sum/count sum/count

Figure 2: The Incremental plan template (left) vs. a full exe-
cution plan (right) of an example two-query workflow.

𝑄1 can be incrementally computed as is. While to process the
aggregation in 𝑄2 over partial input, we need to compute the sum
and count instead of the average, and save the partial aggregation
result as a temporary table 𝑇𝑒𝑚𝑝 . When data becomes fully ready,
the final average amount can be computed by dividing the sum by
the count over table 𝑇𝑒𝑚𝑝 .

As the left of Figure 2 shows, the incremental plan involves two
time points 𝑡1 and 𝑡2. The initial plans of both queries run at 𝑡1,
they consume the entire input tables available then and produce the
result tables so far. While in the delta plan at 𝑡2,𝑄1 reads from 𝑆𝑎𝑙𝑒𝑠

only the new input rows arrived between 𝑡1 and 𝑡2, computes the
filter and appends the results to table 𝐼𝑡𝑒𝑚𝑠 .𝑄2 reads the new rows
in 𝐼𝑡𝑒𝑚𝑠 , combines them with the previous partial result in 𝑇𝑒𝑚𝑝 ,
and update the new sum and count per group back into 𝑇𝑒𝑚𝑝 .
Lastly, 𝑄2 has a final plan to compute and report the average.

Incremental Plan Template. In general, the incremental plan
template of each query 𝑄𝑖 in the workflow has three parts:

The initial plan 𝑃 𝐼
𝑖
(𝑡1) : 𝐷𝑡1 → 𝑆𝑡1

The delta plan 𝑃𝐷
𝑖
(𝑡1, 𝑡2) : Δ𝐷𝑡1,𝑡2 , 𝑆𝑡1 → 𝑆𝑡2

The final plan 𝑃𝐹
𝑖
(𝑡2) : 𝑆𝑡2 → 𝑅𝑡2

The initial plan consumes all input data 𝐷𝑡1 at 𝑡1 and produces a
partial state result 𝑆𝑡1 ; the delta plan consumes the delta from 𝑡1 to
𝑡2, and updates the partial result; the final plan at 𝑡2 converts the
partial result into the query result. In the above example,𝑄1 has an
empty final plan while 𝑄2 has all three parts. Note that we call it a
template because it will be repeatedly instantiated by the scheduler
at run time, replacing 𝑡1 and 𝑡2 with real execution times.

A full and valid incremental execution of each query starts with
exactly one run of the initial plan followed by zero to multiple runs
of the delta plan. Whenever the query result is required, the final
plan can be appended to the end of the initial or delta plan.

Figure 2 illustrates how the incremental plan template (on the
left) can be assembled into a full incremental execution (on the
right) throughout a day. The initial runs of𝑄1 and𝑄2 are scheduled
at 9:00. Then 𝑄1 and 𝑄2’s delta runs are scheduled to run at 14:00
and 18:00 respectively. At 24:00, both plans with the final plan added
are scheduled for both queries to produce the final results.

In this paper, we assume the incremental plan template is given.
It can be manually written (e.g. with Spark API), or generated by an
incremental query optimizer. This optimizer can be rule-based as
commonly used in streaming systems [8, 10] and incremental view
maintenance in traditional DBMS [15, 16]. It can also be cost-based
such as Tempura [30] and Enzyme [12], which choose a best plan
with the lowest cost among various incremental algorithms.

Scheduling Problem Definition. Now we formally define the
scheduling problem studied in this paper. We want to incrementally
execute a workflow of 𝑁 dependent queries 𝑄1, · · · , 𝑄𝑁 , whose
input data gradually arrives between time zero and a given deadline
𝐷 (e.g. 24 hours). We assume compute resources have a fluctuating
and unforeseen price, and the input data arrival time and statistics
are also unknown in advance.

The scheduler’s goal is to pick𝑛𝑖 (𝑛𝑖 ≥ 1) execution time 𝑡𝑖1 · · · 𝑡
𝑖
𝑛𝑖
∈

(0, 𝐷] for each query 𝑄𝑖 so that the estimated total weighted cost

C𝑤 =

𝑁∑︁
𝑖=1


𝑐𝑜𝑠𝑡 (𝑃 𝐼𝑖 (𝑡

𝑖
1)) × 𝑝 (𝑡

𝑖
1) +

𝑛𝑖∑︁
𝑠=2

𝑐𝑜𝑠𝑡 (𝑃𝐷𝑖 (𝑡
𝑖
𝑠−1, 𝑡

𝑖
𝑠 )) × 𝑝 (𝑡𝑖𝑠 )

+𝑐𝑜𝑠𝑡 (𝑃𝐹𝑖 (𝑡
𝑖
𝑛𝑖
)) × 𝑝 (𝑡𝑖𝑛𝑖 )


is minimized. Here 𝑝 (𝑡) is the resource price at time 𝑡 .

Workflow 
of Queries

Incremental 
Query 

Optimizer Incremental 
Plan Template

Incremental 
Query 

Scheduler

Static info: deadline, model configurations
Real time info: resource prices, input data arrivals

Full Incremental  
Execution Plan

Execution 
Engine

Figure 3: The scheduling problem setup.

Figure 3 shows the system setup for the scheduler. After the in-
cremental plan template for each query is generated, the scheduler
takes in static information like the deadline and real-time infor-
mation such as resource price and input data arrival so far, makes
scheduling decisions (which queries to run at the moment) and
submit the executions into the underlying engine.

3 BASIC APPROACHES AND LIMITATIONS
Intuitively, there are two important aspects when minimizing C𝑤 :

(1) It is preferable to schedule the incremental runs at the times
when the price is low, but the imminent problem is that we
do not know the exact future prices.

(2) Incremental execution incurs computation overhead. Fre-
quent incremental runs lead to wasted computation. As a
result, we prefer to process sufficient amount of new input
data at each run, and reduce the total number of runs.

In this section, we provide two naive solutions and discuss their
limitations. Assuming the input data comes in continuously and
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steadily, Figure 4 demonstrates these two approaches using the
two-query workflow. We will introduce the Prophet in Section 4.

A fixed-time scheduler runs at pre-determined frequencies, re-
gardless of price evolvement and data arrival status. For instance in
Figure 4, it runs𝑄1 six times and𝑄2 three times. When both queries
need to run, e.g., at 8:00, 𝑄1 and 𝑄2 are executed sequentially. As
we can see, this approach can hardly achieve a low cost because it
runs at random prices and can also incur significant incremental
overhead because of the large number of runs.

A fixed-threshold scheduler is a greedy approach that schedules
a new run whenever the price falls below a threshold 𝜃 and the
amount of new input accumulated goes above a threshold 𝛿 . Figure 4
shows its decisions if both queries use the same threshold values.
It scheduled both queries three times when resource price stays
below 𝜃 between 2 to 11 o’clock. Note that at the deadline, it has
to schedule a final run for both queries to deliver the final result,
even though the price is above the threshold.

Deadline
Time

Resource Price

Fixed-time
12:00 24:004:00 8:00 16:00 18:00

𝜃

Fixed-threshold (𝜃)

The Prophet

𝑄 𝑄𝑄 𝑄 𝑄𝑄𝑄 𝑄𝑄

𝑄𝑄

𝑄𝑄𝑄𝑄𝑄

𝑄𝑄 𝑄𝑄 𝑄𝑄

Figure 4: Example scheduling decisions made by three sched-
uling approaches for the two-query workflow under a spe-
cific price trace. For each query, the first run would use the
initial plan and all the rest runs use the delta plan

The fixed-threshold approach may perform better than the fixed-
time scheduler, but it is hard to determine the best threshold for
each workflow. Also there are missed opportunities, mainly due
to the large variances in price trends. The price usually tends to
be higher/lower in different clusters and at different times. Even
within the same cluster at the same time of the day, the price can
be high on one day and low on another day. In general, if the fixed
price threshold is set to be too high, we end up with a lot of runs
(thus a high incremental overhead) at not-so-low prices. On the
other hand, if the threshold is set to be too low, we end up not
running any job at all, leaving more work at the deadline when
the price can be high. Figure 4 gives an example where it hits both
problems (e.g., the threshold is too high from 0:00 to 13:00 and too
low from 13:00 to 24:00) even on the same day.

4 THE PROPHET SCHEDULER IN A
REPETITIVE ENVIRONMENT

Before tackling the full problem in Section 2, we start by considering
a simplified problem where future prices and input data arrivals are
exactly known beforehand. This setting applies in scenarios where
the price is pre-determined by fixed rules, or where both the price
and the workload are highly repetitive with minimum variances.
We also assume there is only one query in the workflow. Later we
will show how the insights learned in this setting can help us solve
the harder problem with an unknown future.

It turns out that we can statically find the optimal scheduling plan
that minimizes the total weighted cost using dynamic programming.
We call it the Prophet scheduler. Continuing the example in Figure 4,
it typically chooses to run at local minimums of the price trace and
has a low number of runs overall. During low-price windows, e.g.,
around 6-11 o’clock, it always schedules the run at the end of the
time windows in order to consume more input data at the same low
price. Any other scheduler that cannot foresee the future obviously
cannot do as well as the Prophet, thus the Prophet’s performance
provides a lower bound of the cost for the problem.

Next we present the solution of the Prophet in two steps.

(Deadline)

Time

Resource 
Price

Input data arrivals: 𝐷 𝐷 𝐷 𝐷

A
B C

D

𝑡 𝑡 𝑡

𝑡𝑡𝑡’s corresponding 
intervals in Algorithm 1

Figure 5: The Prophet’s perspective, with known future prices
and data arrivals (𝐷1 to 𝐷4).

4.1 Step One: Finding the Time Candidates
Given the future price trace and data arrival time points, we can
determine the set of candidate time points that the optimal sched-
uling would possibly choose from, without looking at the specific
query and data characteristics. For example, in Figure 5 if the price
trace evolves as 𝐴→ 𝐵 → 𝐶 , it makes sense to possibly run at 𝑡1,
𝑡2, and 𝑡3 due to the following reasons:

(1) If there is unprocessed data at 𝑡 , then it is best to process
the data at the time with the minimum price between 𝑡 and
the deadline, e.g., 𝐷1 at 𝑡1, 𝐷2, 𝐷3 at 𝑡2, and 𝐷4 at 𝑡3.

(2) Another execution would be of interest only if there is
unprocessed data. If we choose to process 𝐷1 at 𝑡1, then it
does not make sense to run again between 𝑡1 and 𝐷2.

Algorithm 1 Deriving the set of execution-time candidates.
Input: Deadline 𝐷 , price trace 𝑝𝑟𝑖𝑐𝑒 (𝑡 ), 𝑡 ∈ (0, 𝐷 ], and the set of time
points with new input data arrivals.
1: S ← ∅ // the set of execution-time candidates.
2: 𝑥 ← 0
3: while 𝑥 ≠ 𝐷 do
4: 𝑥 ← first time point in (𝑥, 𝐷 ] with a new data arrival
5: 𝑦 = argmin𝑡 ∈ [𝑥,𝐷 ] 𝑝𝑟𝑖𝑐𝑒 (𝑡 ) (Pick the largest 𝑡 if there are multiple

𝑡 ’s with the same minimal price(𝑡 )).
6: Add 𝑦 into S. // candidate 𝑦’s corresponding interval is [𝑥, 𝑦 ]
7: 𝑥 ← 𝑦

8: end while
9: return S

Based on this observation, we develop Algorithm 1 for finding
the execution time candidates. Starting from time zero, it greedily
collects the minimum price point from the last candidate (adjusted
to the time with new input data, line 4) to the deadline as the next
candidate, until it reaches the deadline. Note that we assume the
actual execution is relatively fast with respect to the time scope of
the deadline, so that it will finish before the next scheduled run.
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Theorem 4.1. We can achieve the minimum total cost by limiting
executions at the time points given by Algorithm 1.

Proof. For any optimal scheduling plan P that achieves mini-
mum total cost C𝑤 , we complete the proof by constructing another
plan P that only schedules at the candidate time points in S.𝑘𝑒𝑦𝑠
from Algorithm 1 and that has cost no larger than that of P.

Starting from P, we construct P by doing the following for each
execution time 𝑡 in P that is not in S.𝑘𝑒𝑦𝑠 . Consider the 𝑘 disjoint
intervals [𝑥𝑖 , 𝑦𝑖 ] in S.𝑣𝑎𝑙𝑢𝑒𝑠:

(1) If 𝑡 lies within one of the intervals [𝑥𝑖 , 𝑦𝑖 ]. Since 𝑝𝑟𝑖𝑐𝑒 (𝑦𝑖 )
is the price minimum in [𝑥𝑖 , 𝐷] (line 5 in Algorithm 1), we
have 𝑝𝑟𝑖𝑐𝑒 (𝑦𝑖 ) ≤ 𝑝𝑟𝑖𝑐𝑒 (𝑡), then scheduling this execution
at time 𝑦𝑖 instead of 𝑡 is no worse than P.

(2) If 𝑡 lies between intervals [𝑥𝑖−1, 𝑦𝑖−1] and [𝑥𝑖 , 𝑦𝑖 ]. Simi-
larly since 𝑦𝑖−1 < 𝑡 ≤ 𝐷 , we have 𝑝𝑟𝑖𝑐𝑒 (𝑦𝑖−1) < 𝑝𝑟𝑖𝑐𝑒 (𝑡).
Since there is no data arrival during (𝑦𝑖−1, 𝑥𝑖 ) (line 4 in
Algorithm 1), Scheduling this execution earlier at time 𝑦𝑖−1
instead of 𝑡 generates a better plan with lower cost.

□

Note that some of these candidate time points may not appear in
the optimal schedule. This is because a lower number of runs incurs
less incremental processing overhead. For instance, in Figure 5,
although 𝑡1 has a lower price than 𝑡2, for certain query it might be
better to process 𝐷1, 𝐷2, and 𝐷3 altogether at 𝑡2 instead of 𝑡1.

4.2 Step Two: Finding the Optimal Plan
Given the execution time candidates (e.g., 𝑡1, 𝑡2, and 𝑡3 in Figure 5),
we can collect cost information of the query and statically compute
the optimal scheduling plan.

This problem can also be solved using dynamic programming.
Notice that a query’s subsequent incremental runs share identical
plans, instantiated from the plan template (see Section 2), thus
information about the last incremental run suffices to capture the
query’s execution status and its implications for later runs, e.g., the
total amount of input already processed and the amount of output
already produced so far. Knowing all prices and input data statistics
at all time points, we can use the time of the last run to uniquely
identify the incremental processing state of the query.

If run now, 
immediate cost 
𝑝𝑐, =
0.3×5𝑒

Problem from 
12:00 to 24:00

Two sub-problems 
from 15:00 to 24:00

Now Time of 
Last Run 

12:00 8:00

Now Time of 
Last Run 

15:00 8:00

No immediate cost 
if not run now…

8:00

Now Time of 
Last Run 

15:00 12:00

12:00
(Now)

24:00
Deadline

…

12:00 24:00
Deadline

15:00
(Now)

…

8:00 24:00
Deadline

15:00
(Now)

Best cost 
C(12,8) Best cost 

C(15,8)

Best cost 
C(15,12)

Figure 6: Dynamic programming state transitions for solving
the optimal scheduling plan.

For instance, assume in Figure 6 that 24:00 is the deadline, and
8:00, 12:00, and 15:00 are the execution time candidates derived by
Algorithm 1. Consider the problem that we are at 12:00 and the last

run is at 8:00. We want to find the optimal scheduling between 12:00
and 24:00 that minimizes the total cost of the rest of the executions.
There are two choices we can make at 12:00, i.e., to run the query or
to wait. If we run the query, an immediate cost is incurred weighted
by the price at 12:00, and then have the sub-problem at 15:00 with
the last run at 12:00. If we choose not to run the query, then we
have the sub-problem at 15:00 with the last run at 8:00. Note that
both sub-problems are of smaller sizes.

Formally, given the candidates time points 𝑡1 . . . 𝑡𝑘 , let 𝐶 (𝑖, 𝑗)
denote the minimal cost of finishing the rest of the execution from
𝑡𝑖 , when the time of the last run is 𝑡 𝑗 ( 𝑗 < 𝑖 , 𝑗 = 0 means no earlier
execution). We have the following DP transition function:

𝐶 (𝑖, 𝑗) =

𝑚𝑖𝑛


𝐶 (𝑖 + 1, 𝑗), 𝑝𝑖𝑐𝑖 𝑗 +𝐶 (𝑖 + 1, 𝑖)


if 1 ≤ 𝑖 < 𝑘 ;

𝑝𝑖𝑐𝑖 𝑗 if 𝑖 = 𝑘.

In the function, 𝑐𝑖 𝑗 is the estimated cost of the incremental run at
𝑡𝑖 given the last run is at 𝑡 𝑗 . At time 𝑡𝑖 , we choose the better option
from (i) not running the query and transitioning to 𝐶 (𝑖 + 1, 𝑗), and
(ii) running the query and incurring a cost of 𝑝𝑖𝑐𝑖 𝑗 and transitioning
to𝐶 (𝑖+1, 𝑖). Whereas at 𝑡𝑘 , we must schedule the last run to process
the last piece of data and produce the final result.

From the last time point backwards, this DP process can be solved
in 𝑂 (𝑘2) time, where 𝑘 is the number of the candidate time points.

5 AGAMOTTO: AN MDP-BASED SCHEDULER
Now we return to the full problem where future prices and data
arrivals are unknown beforehand.We introduce Agamotto, anMDP-
based dynamic cost-based scheduler. We discuss its rationale in
Section 5.1 and an overview in Section 5.2. Starting with single-
query workflows, we describe the MDP model in Section 5.3, and
derive the optimal policy offline in Section 5.4. In Section 5.5 we
discuss how the online agent turns the policy into dynamic sched-
uling decisions at run time. Later in Section 6, we discuss how to
extend the model to handle multi-query workflows.

5.1 Rationale of the MDP Approach
Note that without knowing the future, it is simply impossible to
achieve the same performance as the Prophet. In Figure 5’s example,
if the price trace evolves along points 𝐴→ 𝐵 → 𝐶 , the Prophet’s
plan is to execute at 𝑡1, 𝑡2, and 𝑡3. However, if the price evolves
along𝐴→ 𝐵 → 𝐷 instead (the dotted line), then the Prophet’s plan
becomes to run everything in one shot at 𝑡3. For the two traces that
divert at 𝑡2, their optimal schedulings differ at an earlier time 𝑡1.
Without knowing the future, at 𝑡1 we cannot know which future it
will be at 𝑡2. Whatever scheduling decision we make at 𝑡1, we will
achieve a worse performance than the Prophet in the other case.

Nevertherless, it is not hopeless. The main idea behind Agamotto
is that although we do not know which future it will be, we can
model different future outcomes with probabilities, and try to mini-
mize the expectation of the total future cost. Following this idea,
the DP process in Section 4.2 naturally upgrades into a Markov
Decision Process (MDP) that models future possibilities with a set
of discretized states and the transitions in between.

As later shown in Section 7.3, Agamotto can be interpreted as
an improvement from the fixed-threshold scheduler (Section 3) to-
wards the Prophet (Section 4), where the MDP model pre-calculates
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the best threshold price to use at all possible future time and execu-
tion progress, and the plan is dynamically applied at run time.

5.2 Overview of Agamotto
Figure 7 gives an overview of Agamotto, which consists of an offline
MDP optimization module, and an online scheduling agent that
dynamically makes scheduling decisions at run time.

5:00 12:00

Run now at 16:00?

Workflow 
of Queries

Incremental 
Query 

Optimizer Incremental 
Plan Template

Model setup (deadline, 
discretization parameters, 

prior distributions)

Schedule a new 
Incremental run

Execution 
Engine

MDP 
Solver

Optimal 
Scheduling 

Policy

Scheduling 
Agent

Plan 
Estimator The Agamotto Scheduler

Offline Online

Resource 
Price

Time

Deadline

0:00 8:00 16:00

Monitor price evolvement, 
input arrivals, and 
execution progress

1

2

3

4 5 6

Figure 7: An overview of the Agamotto Scheduler.

Besides the plan template ( 1○) generated by the incremental
query optimizer, the offline model also takes in additional config-
urations ( 2○), including the deadline 𝐷 as well as model setups
such as discretization parameters and prior distributions (later in
Section 5.3). Next, an MDP model is built to describe the space
of all possible futures possibilities with a set of discretized states
and the transitions in between. It makes a series of calls to a plan
estimator ( 3○) to obtain estimated cost and output cardinality of the
incremental plans instantiated from the template under different
input data sizes, and incorporate the information into the MDP
network. The plan estimator can be the cost/cardinality estimation
component of any typical cost-based query optimizer (e.g., Apache
Calcite [9]). We omit the details due to space limitation.

The model is then solved offline, where each state chooses a
best action so that the expected remaining cost of the state is
minimized. The produced result ( 4○) is the optimal scheduling
policy, a mapping from states to their best actions.

At run time, an online scheduling agent is created for each in-
stance of the workflow, e.g., one workflow instance per day. It
remains active from the time of the first input data arrival to the
deadline, during which it constantly monitors the price evolvement,
input data arrival status, as well as the execution progress of the
workflow instance. It also consults the optimal policy ( 5○), and
makes dynamic scheduling decisions on the fly. Whenever the de-
cision is to run certain queries, it instantiates a new plan from the
plan template, either the initial plan or the delta plan, and schedules
the new incremental run ( 6○) for the selected queries.

Reuse of the Optimal Policy. The lifecycles of the offline and
online modules of Agamotto are different. For workflows that need
to be repeatedly executed (e.g., daily routine queries), the offline
MDP solver only needs to be trained once, and the produced opti-
mal scheduling policy can be reused by all future online scheduling
agents created for the workflow instances. Only if there is new infor-
mation or changes on the prior distributions of the price evolvement

and/or data arrival patterns, a new scheduling policy needs to be
re-trained from the offline MDP model.

5.3 MDP Modeling
Now we formally describe the MDP model. Firstly, the time be-
fore the deadline was discretized into 𝑇 time steps 𝜏1, . . . , 𝜏𝑇 , and
the range of possible prices into 𝑃 values 𝛿1, · · · , 𝛿𝑃 . Input data
characteristics to be modeled, e.g. estimated row count, also need
to be discretized. Let data version vector −→𝐷 represent the data
characteristics of the query’s input tables at a certain time.

Secondly, we define prior distributions of the price evolvement
(P𝑝 ) and input data arrival (P𝑑 ). Both are inputs to the MDP model.
Specifically, P𝑝 (𝛿 𝑗 |𝑡, 𝛿𝑖 ) denotes the conditional probability that the
price at 𝜏𝑡+1 is 𝛿 𝑗 given that the price at 𝜏𝑡 is 𝛿𝑖 , and P𝑑 (

−−→
Δ𝐷 |𝑡) de-

notes the probability of receiving a new delta of size −−→Δ𝐷 (difference
from −−−−→𝐷𝜏𝑡−1 to

−−→
𝐷𝜏𝑡 ) in the input tables from 𝜏𝑡−1 to 𝜏𝑡 .

As mentioned in Section 5.1, the information of the last incre-
mental run alone suffices to capture and identify the status of the
incremental processing. Specifically, we include

−→
𝐷𝐿 the data version

vector at the time of the last run in the MDP state, describing the
total amount of input data available at the last run.

Now we can define the state in the MDP as a quadruple

𝑆 = {𝑡,−→𝐷, 𝛿𝑖 ,
−→
𝐷𝐿},

which includes the time step 𝑡 (e.g. time point 𝜏𝑡 ), the resource price
(𝛿𝑖 ), the input data version available then (−→𝐷 ), and the input data
version at the last run (

−→
𝐷𝐿). If there is no previous run at all, e.g.,

at the beginning of the process, we have
−→
𝐷𝐿 = 0.

At state 𝑆 , we can choose an action𝐴 ∈ {0, 1} indicatingwhether
to schedule an incremental run at the moment, receive an reward
𝑐𝑡 (𝑆,𝐴) which is the estimated cost of the incremental execution,
and then with probability P(𝑆 ′ |𝑆,𝐴) transition to a new state 𝑆 ′
from a set of states at time step 𝑡 + 1. Formally, at state 𝑆 ,
• If we do nothing and wait (𝐴 = 0), then the immediate cost

𝑐𝑡 (𝑆, 0) = 0. We will transition to a next state 𝑆 ′ = {𝑡 + 1,−→𝐷 +
−−→
Δ𝐷, 𝛿 𝑗 ,

−→
𝑫𝑳} with a probability P(𝑆 ′ |𝑆, 0) = P𝑑 (

−−→
Δ𝐷 |𝑡 + 1) ×

P𝑝 (𝛿 𝑗 |𝑡, 𝛿𝑖 ). Here
−−→
Δ𝐷 and 𝛿 𝑗 are random variables.

• If we run (𝐴 = 1), we incur an estimated cost 𝑐𝑡 (𝑆, 1) under the
current price 𝛿𝑖 , and transition to 𝑆 ′ = {𝑡 + 1,−→𝐷 + −−→Δ𝐷, 𝛿 𝑗 ,

−→
𝑫 }

with a probability P(𝑆 ′ |𝑆, 1) = P𝑑 (
−−→
Δ𝐷 |𝑡 + 1) × P𝑝 (𝛿 𝑗 |𝑡, 𝛿𝑖 ).

Figure 8 gives an example of the state transitions in the MDP
model, where in state {𝑡,−→𝐷, 𝛿𝑖 ,

−→
𝐷𝐿} = {8, 7𝑒8, 0.3, 2𝑒8}, 7𝑒8 is the

estimated row count of the query’s single input table at 8 am. De-
pending on the action taken at 8 am, we incur certain immediate
cost, and probabilistically transition to a set of states at 9 am. Note
that the estimated cost of the incremental run (5𝑒10) needs to be
multiplied by the current price 0.3 when accounted for C𝑤 .

As mentioned in Section 4.2, since delta plans instantiated from
the template are identical, the incremental processing satisfies the
Markov property, that the information (i.e., time and amount of
input data) of the last run suffices to capture the processing status
and there is no need to look back further in the execution history.
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Action = run now
Immediate cost = 0.3×5𝑒

State at 8am

Time Input 
Data Price Input Data 

at Last Run 

8am 7𝑒 0.3 2𝑒

Time Input Data Price Input Data 
at Last Run 

9am 7𝑒 +∆𝐷 𝛿 7𝑒

with prob. ℙ ∆𝐷 9𝑎𝑚 × ℙ(𝛿|8𝑎𝑚, 0.3)

Time Input Data Price Input Data 
at Last Run 

9am 7𝑒 +∆𝐷 𝛿 2𝑒

with prob. ℙ ∆𝐷 9𝑎𝑚 × ℙ(𝛿|8𝑎𝑚, 0.3)

Immediate cost = 0
Action = not run

Probabilistically transition to 
a set of states at 9am

Action and 
immediate cost

Figure 8: An illustration of the MDP state transitions.

5.4 Finding the Optimal MDP Policy Offline
Both the prior distributions of price (P𝑝 ) and input data arrival
(P𝑑 ) can be trained using historical data, or manually constructed
without prior knowledge. See more discussions in Section 5.6 and
experiments on prior sensitivity in Section 7.

Actions at all states are summarized into an MDP policy L :
𝑆 → 𝐴, which maps any given state 𝑆 to an action𝐴. Let𝐶 (𝑆,L|𝐴)
denote the additional cost to finish the remaining process if we
take action 𝐴 at state 𝑆 and then follow policy L afterwards. Let
C(𝑆,L|𝐴) denote the expectation of this random variable. We have:

C(𝑆,L|𝐴) = 𝛿𝑖 × 𝑐𝑡 (𝑆,𝐴) +
∑︁
𝑆 ′

P(𝑆 ′ |𝑆,𝐴) × C(𝑆 ′,L|L(𝑆 ′)).

Agamotto looks for the optimal scheduling policy L that
takes the action that minimizes the state’s expected remaining cost:

L(𝑆) = argmin
𝐴

C(𝑆,L|𝐴) .

Note that for the states at the last time step, we should always take
the action of run, which concludes the incremental execution.

This is anMDPmodel with finite number of states and time steps,
which can be statically solved via DP, similar as in Section 4.2.
Starting from the last time step, we work backwards in time. For
each state we compute the remaining expected cost for all actions
and choose the best one that minimizes the cost expectation.

Let 𝑉 denote the maximum number of discretized values of −−→Δ𝐷
during each time step in P𝑑 . Then with𝑇 time steps, −→𝐷 and

−→
𝐷𝐿 can

take 𝑂 (𝑇𝑉 ) distinct values. If there are 𝑃 discretized price values,
then the size of the state space is 𝑂 (𝑃𝑇 3𝑉 2). For each state, we
compute the summation of complexity 𝑂 (𝑃𝑉 ) in C(𝑆,L|𝐴) twice,
for 𝐴 = 1 and 0 respectively. As a result, the overall complexity of
solving the MDP is 𝑂 (𝑃2𝑇 3𝑉 3).

The bottleneck of solving the MDP lies in calls to the plan esti-
mator to collect the immediate cost 𝑐𝑡 (𝑆, 1) for every state 𝑆 . For
the given initial plan or delta plan in the plan template, the cost
only changes with −→𝐷 and

−→
𝐷𝐿 , so they can be pre-collected with

𝑂 (𝑇 2𝑉 2) calls to the plan estimator.

5.5 Agamotto’s Online Scheduling Agent
Interpolating the optimal policy. The optimal policy is not
enough in practice, because it only encodes the suggested actions
at discretized states (i.e., time, price, amount of input data), while
the real world is continuous and events can happen at any time.

15:00 15:15 15:30 15:45 16:00 16:15 16:30 16:45 17:00
0

0.2
0.4
0.6

Real price during the day Price threshold in optimal policy
Interpolated price thresholds

Hour of the Day

Pr
ic

e

Figure 9: An example trace of price evolvement during a day.

Figure 9 gives an example price trace where the price drops to 0.1
from 15:30 to 15:45. However the policy has no direct information
on whether we should run at that time, because the MDP model
only considered 15:00 and 16:00 during training. The same problem
also applies in the dimensions of the price and input data vectors.

Although the MDP model solves the problem in a sampled future
space, we can interpret its resulting policy as a rough sketch of the
high-level trend of how decisions should be made in the continuous
actual space. We resort to interpolation to turn the discretized pol-
icy into a continuous one. For instance in Figure 9, the interpolated
line shows we should run at 15:30 and 16:35 respectively.

Algorithm 2 Execution Logic of the Online Scheduling Agent.
1: while current time < deadline D do
2: Block and wait for a qualifying event (e.g., a price change, new data

arrival, execution failure, sufficient time since the last event)
3: Collect latest status (i.e., current time, price, −→𝐷 and

−→
𝐷𝐿 ) and ask the

interpolated optimal policy whether to run now.
4: If positive, instantiate a plan from the template and schedules a run.
5: end while
6: Schedule the last final run, if there is unprocessed input (i.e. −→𝐷 ≠

−→
𝐷𝐿)

Applying the Policy at Runtime. Agamotto’s online scheduling
agent (recall in Figure 7) is built to run Algorithm 2, where it con-
stantly observes the real time situations, consults the interpolated
policy and dynamically makes decisions at run time. Specifically, it
keeps waiting for qualifying events, which can be a price change,
sufficient amount of input data accumulated, execution failure of an
incremental run, or simply that certain amount of time has passed
since the last qualifying event. Whenever such an event happens,
the agent attempts a new decision cycle for the query, where it
collects the latest status (time, price, −→𝐷 and

−→
𝐷𝐿), asks the interpo-

lated MDP optimal policy whether to run now. If the answer is yes,
it instantiates a new plan from the initial or delta plan template
(Section 2), and schedules a new incremental execution.

5.6 Discussions
Cost-based Approach. Despite the challenges of imprecise or
unknown data statistics, cost-based query optimizers have achieved
great success thanks to decades of research on cardinality estima-
tion and cost models. Recently [30] shows that the cost-based Cas-
cades framework can be extended to generate high quality and com-
plex incremental plans. Agamotto follows the cost-based approach
and solves the scheduling problem for incremental processing.

Repetitive Scenarios. In large-scale data-processing platforms,
many routine jobs have repetitive patterns. The cluster-wise daily
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resource usage pattern is usually even more obvious. Priors built
using historical data in these scenarios often have a high quality.

Low Sensitivity and Robustness. In cases when historical data is
not available, one can manually construct a prior from experience,
or simply use a neutral prior of a uniform distribution. Later in
experiments we will show that thanks to the MDP model’s adaptive
nature and Agamotto’s design to constantly observe, adjust, and
adapt on the fly, it is not as sensitive to the quality of the prior
and cost model as one would imagine. Its performance remains
competitive across high quality priors trained from historical data,
neutral priors and misleading priors. How to further construct a
better prior and/or cost model is not the focus of this paper.

Runtime Flexibility. Lastly, Agamotto is flexible and dynamic
at runtime. The MDP model training, with updated priors and/or
new queries, can be done offline in parallel any time. The resulting
policy can be updated into the online agent any time during the
execution process. We will showcase this flexibility in Section 7.5.

Cluster-wise Impact on Price. We assume that Agamotto’s sched-
ule decisions will not impact the resource price. As future work, we
will relax the assumption by considering the casewhere a significant
number of workflows are concurrently scheduled by Agamotto.

6 AGAMOTTO: MULTI-QUERYWORKFLOWS
In this section, we show how Agamotto can be extended to handle
a workflow of multiple dependent queries, for instance, the one in
Figure 10 with two base tables and four queries.When opportunities
appear, both upstream and downstream queries can be scheduled to
run asynchronously, as shown in Figure 1. As a result, the scheduler
needs to jointly consider all query characteristics and the workflow
structure in order to make wise decisions.

We describe the MDP model extension in Section 6.1 and show
how to reduce the model complexity in Section 6.2. In Section 6.3
we discuss the online agent’s nuances for multi-query workflows.

6.1 MDP Model Extension

Table S

Table R 2

2

3

5

Figure 10: A workflow of four queries and two input tables.
Each query has a complexity score (Section 6.2) in red.

Although the incremental dynamics of each query can be indi-
vidually analyzed by the plan estimator, the offline MDP model
needs to be extended to describe the overall behavior of the entire
workflow, in order to minimize the workflow’s total cost.

Recall in Section 5.3 that the data version vector
−→
𝐷𝐿 in the MDP

state represents the data characteristics of all the input tables at
the time of the last run. It needs to be extended to fully capture the
progress status of all queries, rather than one query.

In Figure 10, other than 𝑅 and 𝑆 , the data versions of output
tables of𝑄1,𝑄2, and𝑄3 (denoted by𝑂1,𝑂2, and𝑂3) should also be

included in
−→
𝐷𝐿 because they are also input to certain queries and

thus are necessary to represent the last run’s status of those queries.
Note that table 𝑆 is consumed by both𝑄1 and𝑄3, and their last run
could have consumed two different data versions of table 𝑆 . As a
result, 𝑆 needs to appear twice in

−→
𝐷𝐿 for the status of 𝑄1 and 𝑄3,

respectively. The same reasoning applies to table 𝑂1 (output of 𝑄1)
because the table is consumed by both 𝑄2 and 𝑄3. Consequently,
the extended

−→
𝐷𝐿 for this example workflow becomes:

−→
𝐷𝐿 = [

−→
𝐷𝐿
1 ,
−→
𝐷𝐿
2 ,
−→
𝐷𝐿
3 ,
−→
𝐷𝐿
4 ] = [ 𝑅, 𝑆

𝑄1

, 𝑂1
𝑄2

, 𝑂1, 𝑆
𝑄3

,𝑂2,𝑂3
𝑄4

],

Formal Extension. Suppose there are 𝑁 queries 𝑄1, . . . , 𝑄𝑁 in
the workflow. Let −→𝐷𝑖 and

−→
𝐷𝐿
𝑖
denote the data version vector of 𝑄𝑖 ’s

input tables at the moment and at the last run, respectively. The
overall state in the MDP becomes:

{𝑡,−→𝐷1, . . . ,
−−→
𝐷𝑁 , 𝛿𝑖 ,

−→
𝐷𝐿
1 , . . . ,

−−→
𝐷𝐿
𝑁 }.

At each state, the action becomes −→𝐴 = [𝑎1, . . . , 𝑎𝑁 ], 𝑎𝑖 ∈ {0, 1},
representing whether to schedule an incremental run for each query
at 𝜏𝑡 . The action will incur immediate execution costs estimated by
the plan estimator. Next we transition to a set of states at 𝜏𝑡+1:

{𝑡 + 1,−→𝑋1, . . . ,
−−→
𝑋𝑁 , 𝛿 𝑗 ,

−→
𝑌1, . . . ,

−→
𝑌𝑁 },

where −→𝑌𝑖 =
−→
𝐷𝐿
𝑖
if 𝑎𝑖 = 0, or −→𝑌𝑖 =

−→
𝐷𝑖 otherwise (𝑖 = 1 . . . 𝑁 ). The

−→
𝑋𝑖 ’s are the new input version vectors for the queries at the next
time step. The −→𝑋𝑖 entries have two cases:

• The ones corresponding to the base input tables (e.g., 𝑆 and
𝑅) are random variables drawn from the input data’s prior
distributions (see Section 5.3).

• The ones corresponding to upstream output tables (e.g.,
𝑂1) are updated depending on whether the upstream query
is scheduled to run at 𝜏𝑡 . There are deterministic values,
estimated by the plan estimator.

Other parts of the offline MDP model in Sections 5.3 and 5.4, includ-
ing prior distributions and solving the MDP to derive the optimal
scheduling policy, remain the same.

6.2 Reducing Model Complexity by
Compressing Data Versions

For each query in the workflow, the plan estimator produces the
estimated cost and output-data statistics given different input data
configurations, without worrying about other queries in the work-
flow. As a result, this process remains local to each query and can
be done for each query independently. However, the number of
data versions in −→𝐷𝑖 and

−→
𝐷𝐿
𝑖
, and thus the number of states in the

MDP network, can grow with the complexity of the workflow.
In Figure 10, if both 𝑆 and 𝑅 have three data versions,𝑄1’s output

will have nine different versions. 𝑄2 will have 9 versions and 𝑄3
will have 27 versions. 𝑄4’s output will have 27 × 9 = 243 versions.
In general, whenever a query takes multiple inputs, the number of
data versions grows and the MDP state space increases.
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For this purpose, we define a complexity score for each query,
measuring the number of repeating base tables in this query’s −→𝐷𝑖 .
For example, 𝑄1 in Figure 10 takes two tables as its input, thus has
a complexity score of two. 𝑄3 gets the two from 𝑄1 and one from
table 𝑆 directly, thus has a score of three. The complexity score
of a workflow is defined as the maximum score of the query in
the workflow, e.g., 5 for the example workflow. Agamotto employs
a data version compressing technique over each table’s version
evolvement graph to reduce MDP model complexity.

Table :

Table :

Table  before compression Table  after compression

 

Figure 11: The version evolvement graph of 𝑅, 𝑆 and 𝑄1’s
output table 𝑂1 in Figure 10 before and after data version
compression. 𝑅10 means 𝑅’s data version with row count 10.

Version evolvement graph of a table is a graph where each node
represents a data version and a directed edge means a possible table
version evolvement over time. Take query 𝑄1 and its input tables 𝑆
and 𝑅 in Figure 10 as an example. Figure 11 shows their evolvement
graphs. Assume 𝑆 has three data versions (𝑆2, 𝑆4, and 𝑆6) and 𝑅

has two versions (𝑅10 and 𝑅20). Here 10 and 20 denote discretized
estimated row counts of table 𝑅. In table 𝑆 ’s evolvement graph, 𝑆2
has outgoing edges to 𝑆4 and 𝑆6, which means if table 𝑆 is at version
𝑆2 now, then it can evolve into version 𝑆4 or 𝑆6 later. Since the
version evolvement relationship is transitive and forms a partial
order, for clarify of presentation we only draw the immediate edges
such as 𝑆2→ 𝑆4, 𝑆4→ 𝑆6, and omit long ones such as 𝑆2→ 𝑆6.

If we collect for 𝑄1 all version pairs from both inputs, we arrive
at the evolvement graph of the output table 𝑂1 with 6 versions as
shown in Figure 11. Long edges like 𝑆2𝑅10→ 𝑆6𝑅20 are omitted.

Data version compressing. We can reduce the number of data
versions of a table bymerging nearby nodes in its evolvement graph.
This sacrifices model quality so that the model is manageable.

We define version similarities by comparing their costs. For
instances, if the query is to join both input tables, then producing
𝑆2𝑅20 and 𝑆4𝑅10 might take about the same amount of work, and
their costs in the MDP network and implications for future states
can be similar. Merging these two versions into one compromises
least information in the MDP network.

Figure 11 shows the resulting simplified graph if 𝑆2𝑅20 and
𝑆4𝑅10 are merged. Note that in general, if cycles are formed after a
merge, then all nodes in the cycle need to be further merged into a
single node as well to maintain the partial order property. We need
to keep merging until no more cycles are found in the graph.

We define a global threshold 𝑁𝐷𝑉 . For each query in the work-
flow with more than one input tables, we keep merging its data
versions with the highest similarity until the number of data ver-
sions in its version evolvement graph drops below 𝑁𝐷𝑉 . In this
way, every intermediate table in the workflow will have at most
𝑁𝐷𝑉 data versions exposed to its downstream queries.

6.3 Online Agent for Multi-Query Workflows
When the MDP model in Section 6.1 suggests to run dependent
upstream and downstream queries at the same time step, it assumes
that both queries are charged at the same current price. However
in practice, downstream queries might not have any new data to
process until the upstream finishes the new run. As a result, the
price may have changed when the downstream query starts.

For the online agent, one option (denoted by Agamotto-Strict)
is to strictly follow the suggestions from the optimal scheduling
policy, and run dependent queries one at a time in a row, regardless
of the possible price change later during the execution. Another
option (denoted by Agamotto-Flex) is that when the upstream
query finishes, we re-evaluate the overall status, consult the policy
again, and see if it is still worthwhile to run the downstream and/or
any other query under the possibly changed price then.

Recall in the single-query case in Section 5.5, a new decision cy-
cle is triggered whenever a qualifying event happens, which can be
a price change, arrival of sufficient amount of new data, execution
failure of an incremental run scheduled earlier, or simply that cer-
tain amount of time has passed since the last decision cycle. Now in
Agamotto-Flex, an execution-finished event of any upstream query
is also considered a qualifying event, signaling that new input data
becomes available for downstream queries. In general, whenever a
decision cycle suggests to run a set of queries 𝑆 , we concurrently
schedule those queries in 𝑆 that do not have an immediate upstream
query in 𝑆 . The rest of the queries in 𝑆 can simply be ignored, be-
cause the execution-finished events of the scheduled queries later
will trigger new decision cycles that will potentially run them.

7 EXPERIMENTS
We report our experimental evaluation of the proposed solutions.

7.1 Setting
Using Tempura [30] as the incremental query optimizer and plan
estimator, Alibaba’s Cloud MaxCompute Platform [4] as the execu-
tion platform, we systematically evaluate Agamotto against the
two naive solutions in Section 3, the fixed-time scheduler (Fixed-*)
and fixed-threshold scheduler (Thres-*), as well as the Prophet
scheduler (Section 4) that foresees the future and serves as a theoret-
ical lower bound for all other schedulers. For example, Fixed-6 runs
at six equally spaced time points before the deadline, and Thres-0.3
runs whenever resource price drops below 0.3 and sufficient new
input data has accumulated. We also include the traditional Batch
(can be seen as Thres-0.0) that processes everything at the deadline.

Complexity Score 2 3 4 5 6 7 10
Number of workflows 4 4 5 1 3 2 1

Table 1: Statistics on the Alibaba multi-query workflows.

For multi-query workflows, when the decision is to run, both
Fix-* and Thres-* run dependent queries sequentially, similar to
Agamotto-Strict (Section 6.3). We improve Thres-0.3 to Thres2.0-
0.3, that if the price when upstream execution finishes goes above
0.3, the downstream execution is delayed to the next time the price
drops below 0.3. The Prophet can also be extended to handle multi-
query workflows (details omitted due to space limit), but also suffers
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from the data version explosion problem (Section 6.2). We apply
the same data-compressing technique into Prophet-Compress,
which provides an approximation to the true lower bound.

Three workloads are used: the TPC-H, TPC-DS benchmark, and
selected multi-query routine workflows in Alibaba cloud shown in
Table 1. For metrics, we focus on the estimated total weighted cost
C𝑤 as in our problem definition in Section 2.

Model Setup. Both the training and test price traces come from
real historical cluster utilization data from Alibaba cloud, where
the price is high at midnight with a high probability. The default
prior distribution on price is trained using the stochastic model
from [17]. To evaluate Agamotto’s sensitivity to prior quality, we
use a neutral prior with no prior knowledge on price, assuming a
uniform price distribution at each time step. We use Agamotto and
Agamotto-N to denote the Agamotto using the default and neutral
prior, respectively. Two priors are used for input data arrivals: 1)
D𝑐𝑜𝑛𝑡 (default), a continuous steam of data arriving at a fixed rate,
and 2) D𝑏𝑢𝑙𝑘 , occasional bulk arrivals of input data, where it is
possible to receive no new data at each time step.

By default, we used 10 discretized values for price and 24 time
points for a 24-hour deadline. Evaluation is challenging because in
each 24-hour window we can only run the workflow in the cluster
once and collect one data point. It is hard to collect sufficient data
to arrive at a statistically meaningful conclusion on the scheduler’s
overall performance, and we can easily miss the long tail. So we
resort to simulation instead, where the test traces for a 24-hour win-
dow are “played” against the scheduler, and the simulated execution
costs for each trace can be collected.

The model-solving times reported are measured on a laptop with
2.5GHz Intel Core i7 and 16GB DDR3 memory. The data compres-
sion for multi-query workflows is on by default.

7.2 Scheduling Behavior Under a Sample Trace
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Figure 12: Scheduling results under a sample price trace.

Figure 12 shows the scheduling decision of these schedulers
under a specific test price trace over a 24-hour window for query
Q39 in TPC-DS. Note the cost plotted is not multiplied by the price,
reflecting the amount of work done for each execution. The total
weighted cost C𝑤 is reported in the legend.

Running the traditional batch mode at the deadline yields a high
cost of C𝑤 = 5.36𝐸13 because of the high price of 1.0 at 24:00.
Fixed-6 runs at fixed time points and has an even higher total cost
of 5.40𝐸13. This is because the six random prices can be high and
at the same time considerable incremental overhead is incurred
because of the number of runs. Note that the cost of processing the

same amount of new data increases in each run. This is because even
with the same new delta size (Δ𝑆 , Δ𝑅), the cost of an incremental
join (e.g., Δ𝑆 ⊲⊳ 𝑅) grows with the total table size (e.g., 𝑅) so far.

For Thres-*, the threshold value is hard to set because the price
can be low in one day and high in another. In this example, Thres-0.3
hits both problems where the threshold 0.3 is a bit high before 13:00
(it runs five times at no-so-low prices) and too low for the second
half of the day (it fails to exploit the opportunity around 22:00).
Still, it manages to bring down the cost to 4.83𝐸13.

Agamotto achieves a much better cost of 3.89𝐸13 because it
abstemiously runs in the first half when the price is low, and knows
to run at the decent price when the price becomes high later.
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Figure 13: a) Scheduling policy produced by the offline MDP
model, showing whether to schedule a new incremental run
(black is run) at each state with𝐷𝐿 = 0. (b) The corresponding
expected remaining cost of each state calculated by the MDP.
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Figure 14: Scheduling policy similar to Figure 13, showing
the dimension of input data arrivals instead.

7.3 Optimal MDP Scheduling Policy of Agamotto
To better understand Agamotto’s behavior, let us zoom into its
optimal scheduling policy of the MDP model. Recall that the MDP
state for single query is a quadruple {𝑡,−→𝐷, 𝛿𝑖 ,

−→
𝐷𝐿}, and the optimal

policy tells us the best action (whether to run) to take at every state.

Impact of Price. Figure 13 visualizes a slice of the state space with
−→
𝐷𝐿 = 0 for Q39 in TPC-DS. Under different combinations of the
current time 𝑡 and price 𝛿𝑖 , it plots the action on the left (black
means run) and the expected remaining cost of the state (C(𝑆,L|𝐴)
in Section 5.4) on the right. Assuming data of the non-dimensional
tables comes in at a steady rate, −→𝐷 grows in proportion with time 𝑡 .

As we can see, Agamotto prefers to run on low prices, and the
threshold price to run keeps increasing as we get closer to the
deadline. Thanks to the cost-based reasoning between exploiting
the current price against the possibility of getting a lower price
later, the suggested behavior aligns perfectly with the intuition that
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Figure 15: Estimated weighted total cost of TPC-H (upper) and TPC-DS (lower) queries
under various schedulers, normalized by the Prophet. Ratio of one is the lower bound.
Queries with red (green) background are ones (not) suitable for incremental execution.

10 30 50 70 90 110 130

4

8

12

16

20

3.4e+13

3.5e+13

3.6e+13

3.7e+13

3.8e+13

3.9e+13

4e+13

# of Time Points

#
of

 P
ri
ce

 P
oi

nt
s

Cost

10 30 50 70 90 110 130

4

8

12

16

20

0.1

1

10

100

1000   

# of Time Points

#
of

 P
ri
ce

 P
oi

nt
s

Training time (s)

Figure 16: Impact ofMDPmodel dis-
cretization parameters (number of
time/price points).

q3 q15 q16 q21 q32 q38 q39 q42 q43 q68
0.8

0.9

1

1.1

1.2 Prophet Thres-0.3 Agamotto Agamotto-N Agamotto-B Agamotto-S

W
ei

gh
te

dC
os

t 
 (

R
at

io
)

Figure 17: Cost of the left part of TPC-DS queries under differ-
ent prior distributions on resource price. Agamotto-S switches
scheduling policy from the bad to default prior at mid-day.

one should be more inclined to wait for a possibly low price earlier
and get more aggressive when approaching the deadline.

As to the remaining cost on the right, since in most earlier states
the decision is simply to wait, the expected costs of those states
stay the same regardless of the price then. Whenever we hit and
run at a low price, the remaining cost decreases. If we are unlucky
that the price stays high towards the end without much progress,
the calculated expected cost starts rising. This is where Agamotto
gets into the panic mode and starts to run at higher prices.

In general, this scheduling behavior can be interpreted as an
improvement of the naive fixed-threshold scheduler towards the
Prophet, where the pre-calculated threshold value is dynamically
applied on the fly based on the real time information then (e.g.,
progress, price, input data, and up-to-date belief on the future trend).

Impact of Input Data. Using the data prior D𝑏𝑢𝑙𝑘 instead, Fig-
ure 14 shows a different slice of the state space by fixing 𝛿𝑖 = 0.4
and
−→
𝐷𝐿 = 0. The 𝑦-axis becomes the current data size −→𝐷 . Assuming

only zero to certain maximum amount of data can arrive at each
step, the states above the stair shape (in grey) are impossible to
reach. With a price of 0.4, Agamotto chooses to not run before 16:00.
At 16:00, Agamotto’s decision also depends on the amount of input
data at hand. It is worth running only when the amount is large
enough, due to the impact of the incremental execution overhead.

7.4 Cost Performance on Single Query
Now we systematically compare Agamotto with other approaches
by simulating them with real world test traces from Alibaba cloud.

Figure 15 shows the sum of C𝑤 across all traces normalized by
that of the Prophet, for selected TPC-H and TPC-DS queries. Some
queries are naturally more suitable for incremental execution than
others. We split the queries into two groups: ones suitable (red
background) and not suitable (green) for incremental progressing,
according to whether the Prophet decides to only run once at the
deadline for all test traces.With a ratio of one being the lower bound
provided by the Prophet, Agamotto achieves very close to one ratio
across the board, without knowing the future, and consistently
outperforms all Fixed-* and Thres-* by 16% and 18% on an average
C𝑤 ratio for TPC-H and TPC-DS, respectively.

In general, Agamotto’s outstanding performance has two main
reasons: 1) the ability to evaluate and adapt to the situations dynam-
ically, thanks to the MDP model illustrated earlier; 2) incorporation
of the cost characteristics of queries into the model. For instance,
for queries not suitable for the incremental processing (green back-
ground), the overhead is so high that even with the high price at
the deadline, it is still not worthwhile to process the data early.

Since the cost characteristics of the queries are reflected in the
MDP model, Agamotto knows that it is not beneficial to run these
queries early even at a very low price, so that it wisely makes the
same decision as the Prophet and Batch: simply wait and run once
at the deadline. On the contrary, both Fix-* and Thres-* blindly run
the queries incrementally and result in higher costs.

Sensitivity to Prior Quality.
We also added Agamotto-N using the neutral prior that does not

encode any real price trend. Although not as good as Agamotto,
it remains the best among others and close to the Prophet. This is
due to the dynamic nature of Agamotto: even if all decisions are a
bit off due to imprecise prior information, it always re-evaluates
the situation and adjusts when making the next decision, so that it
partially compensates for the earlier mistake.

7.5 Sensitivity, Robustness, and Flexibility
Now we take one step further by asking what if the usage pattern
in a repetitive cluster all of a sudden becomes very different in one
day due to various reasons, say on Black Friday or Singles’ day?
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Figure 18: Estimated total cost of Alibabamulti-query workflows, under various sched-
ulers, normalized by the Prophet-Compress, an approximation to the true lower bound.
Queries with red (green) background are ones (not) suitable for incremental execution.

4 16 32 64 256 10242048
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1
1.5
2
2.5
3
3.5
4
4.5
5 Score:2

Score:3
Score:4
Score:5
Score:6
Score:7
Score:10

W
ei

gh
te

dC
os

t(
ra

ti
o)

M
dp

S
ol

ve
Ti

m
e 

(R
at

io
)

Figure 19: Effect of data version
compression on cost (solid line) and
model solving time (dotted line).

We handpick another cluster with a rather different daily pattern
from the ones used for the default prior and test traces, and trained
Agamotto-B with this prior. We call it “bad” because it is worse than
the neutral prior, it provides a stronger (concentrated probabilities)
but wrong trend, and misleads the MDP model even more.

In this unfortunate case, we can actually do much better than
Agamotto-B because of its runtime flexibility and online nature.
When realizing that today’s pattern is going to be very different
from the prior used, one can decide to switch to a new policy trained
from a new prior during the execution. To illustrate this behavior,
we add Agamotto-S that switches from Agamotto-B to Agamotto
(trained with the default prior) at the 12h midpoint of the day.

Figure 17 shows the results for the left (red) portion of the queries
in TPC-DS. As we can see, Agamotto-B downgrades more than
Agamotto-N, but still beats Thres-0.3, the best baseline scheduler,
while Agamotto-S performs much closer to Agamotto, demonstrat-
ing great robustness and flexibility of the Agamotto solution.

7.6 The Effect of Discretization Parameters
Coming back to Q39 in TPC-DS, Figure 16 shows the impact of
MDP discretization parameters (number of time/price points) on
performance as well as the model training time. 𝑇 24𝑃10 stands for
the default setting with 24 time steps and 10 price values.

As we can see, more discretized points lead to lower cost. This is
because a more fine-grained model better captures the dynamics of
the future space and produces a higher-quality scheduling policy.
As the upper right corner of the first figure shows, since the prior in-
formation does not contain more fine-grained information, further
increasing the model complexity has diminishing benefit on cost
performance. On the other hand, the increasing model complexity
leads to a longer running time spent solving the MDP.

7.7 Performance on Multi-query Workflows
Now we turn to selected multi-query workflows (Table 1) from
Alibabacloud. Figure 18 shows the C𝑤 of various approaches across
all test traces normalized by that of the Prophet-Compress.

Similar to the single-query case, Agamotto still achieves the
best performance consistently. Note that Prophet-Compress here is
Prophet with data version compression on, so it is an approximation
of the actual lower bound of each specific test trace. For workflows
in the green background, Prophet-Compress decides to not run early
for any query in the workflow, and Agamotto is smart enough to
make the same scheduling decisions. For other workflows suitable
for incremental processing (red background), Agamotto chooses to

run the upstream and downstream queries asynchronously accord-
ing to the price evolvement and outperforms other schedulers.

7.8 Effect of Data Version Compression
Next, we evaluate the effectiveness of data version compression for
the multi-query workflows. Data version compression makes the
model tractable by reducing its complexity.

Figure 19 shows the MDP model’s solving time and the achieved
total cost C𝑤 for multiple workflowswith various complexity scores
(see Section 6.2). We normalized the cost and time of each query by
that achieved with the highest compression setting of 𝑁𝐷𝑉 = 4.

As we can see, whenwe tighten the compression rate by reducing
𝑁𝐷𝑉 , the effect of compression kicks in at different threshold values.
There are two reasons: 1) for the majority of low-fan-in queries
(with a low number of input tables), the number of output data
versions is low and compression will not take effect when 𝑁𝐷𝑉 is
high; 2) there are typically one or two queries in each workflow that
contribute the most and dominate the overall cost. Compression
effect on other queries is thus negligible in the total cost.

Overall, compression via combining similar data versions only
mildly reduces the model quality and harm the performance, but at
the same time drastically reduces the model complexity and enables
Agamotto to handle complex real-world workflows efficiently.

8 CONCLUSIONS
In this paper, we propose a novel scheduling problem for incre-
mental query execution under a given deadline, assuming cluster
resource has a fluctuating and unforeseen price. Given the incremen-
tal plan template produced by a given incremental query optimizer,
the goal of the scheduler is to decide when and which query to
run, so that the overall total cost weighted by the resource price
is minimized. We first propose two naive solutions, and a Prophet
scheduler that statically solves the simplified problem where the
future is fully known. Next, using a Markov Decision Process to
model future probabilities, we present Agamotto, an end-to-end
scheduling solution that dynamically makes cost-based decisions
without knowing the future. We show that Agamotto can be further
extended to handle a workflow of dependent queries, so that they
can all incrementally execute in an asynchronously fashion. Ex-
periments show that Agamotto consistently outperforms the naive
solutions, and the achieved cost is on average 10x closer to the
theoretical lower bound provided by the Prophet scheduler.
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