
Mining Platoon Patterns from Traffic Videos
Yijun Bei

Zhejiang University, China

beiyj@zju.edu.cn

Teng Ma

Zhejiang University, China

mt0228@zju.edu.cn

Dongxiang Zhang
∗

The State Key Laboratory of

Blockchain and Data Security,

Zhejiang University

zhangdongxiang@zju.edu.cn

Sai Wu

Hangzhou High-Tech Zone (Binjiang)

Institute of Blockchain and Data

Security

wusai@zju.edu.cn

Kian-Lee Tan

National University of Singapore

tankl@comp.nus.edu.sg

Gang Chen

Zhejiang University, China

cg@zju.edu.cn

ABSTRACT
Discovering co-movement patterns from urban-scale video data

sources has emerged as an attractive topic. This task aims to iden-

tify groups of objects that travel together along a common route,

which offers effective support for government agencies in enhanc-

ing smart city management. However, the previous work has made

a strong assumption on the accuracy of recovered trajectories from

videos and their co-movement pattern definition requires the group

of objects to appear across consecutive cameras along the common

route. In practice, this often leads to missing patterns if a vehi-

cle is not correctly identified from a certain camera due to object

occlusion or vehicle mis-matching.

To address this challenge, we propose a relaxed definition of

co-movement patterns from video data, which removes the con-

secutiveness requirement in the common route and accommodates

a certain number of missing captured cameras for objects within

the group. Moreover, a novel enumeration framework called Max-

Growth is developed to efficiently retrieve the relaxed patterns. Un-

like previous filter-and-refine frameworks comprising both candi-

date enumeration and subsequent candidate verification procedures,

MaxGrowth incurs no verification cost for the candidate patterns.

It treats the co-movement pattern as an equivalent sequence of

clusters, enumerating candidates with increasing sequence length

while avoiding the generation of any false positives. Additionally,

we also propose two effective pruning rules to efficiently filter the

non-maximal patterns. Extensive experiments are conducted to val-

idate the efficiency of MaxGrowth and the quality of its generated

co-movement patterns. Our MaxGrowth runs up to two orders of

magnitude faster than the baseline algorithm. It also demonstrates

high accuracy in real video dataset when the trajectory recovery

algorithm is not perfect.

PVLDB Reference Format:
Yijun Bei, Teng Ma, Dongxiang Zhang, Sai Wu, Kian-Lee Tan, and Gang

Chen. Mining Platoon Patterns from Traffic Videos. PVLDB, 18(6): 1839 -

1851, 2025.

doi:10.14778/3725688.3725710

∗
Corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Mateng0228/VPlatoon.

1 INTRODUCTION
Co-movement pattern mining from large-scale GPS trajectories has

been extensively studied over the past two decades [2, 9, 13, 16].

Recently, this mining task was applied to video data to aid gov-

ernment agencies in smart city management, including detecting

traffic congestion at various granularities [18] and monitoring sus-

picious groups for security [28]. The underlying motivation is that

trajectory data are primarily collected and owned by commercial

hail-riding or map-service companies, but not directly accessible

to government agencies. In contrast, government-installed surveil-

lance cameras have covered the entire urban area, prompting the

re-examination of co-movement pattern mining from videos.

In the scenario of video mining, the trajectory of each individual

object is extracted using cross-camera trajectory recovery algo-

rithms [11, 22, 30] and represented as a sequence of camera IDs and

time intervals. As an example, Figure 1 depicts the golden (ground-

truth) trajectories and recovered trajectories of three objects 𝑜1,

𝑜2, and 𝑜3. Since the GPS trajectory-based pattern definition is un-

suitable for video data, the co-movement pattern is redefined as

a group of objects traveling together along a common route in

the road network [31]. Specifically, this definition involves three

parameters:𝑚, 𝑘 , and 𝜖 . That is, each valid group must contain at

least𝑚 objects; these objects must traverse at least 𝑘 consecutive

cameras which constitute the common route; and the objects must

be captured by each common camera within a time interval of 𝜖 .

We call this pattern VConvoy, as it can be regarded as a migration

of the GPS trajectory-based pattern Convoy [12]. In Figure 1, three

objects travel together across cameras 𝐵, 𝐶 and 𝐷 . If𝑚 = 3, 𝑘 = 2

and 𝜖 = 4, a valid VConvoy pattern ⟨{𝑜1, 𝑜2, 𝑜3}, 𝐵 → 𝐶 → 𝐷⟩ can
be mined from the golden trajectories.

However, the trajectory recovery algorithms in practice are not

perfect, and the available recovered trajectories often exhibit differ-

ences from the golden trajectories. On the other hand, VConvoy

assumes no accuracy loss in the mining trajectories and requires

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 6 ISSN 2150-8097.

doi:10.14778/3725688.3725710

1839

https://doi.org/10.14778/3725688.3725710
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/Mateng0228/VPlatoon
https://doi.org/10.14778/3725688.3725710
https://www.acm.org/publications/policies/artifact-review-and-badging-current

A

B
C

D
E

Camera B Camera C Camera D

o1

o3

o2
o1 o2

o2

o3
o1

Object Golden Trajectories Recovered Trajectories

o1 (A, [2,6])→(B, [12,17])→(C, [21,26])→(D, [34,39]) (A, [1,6])→(B, [11,16])→(C, [21,25])→(D, [33,40])

o2 (A, [3,8])→(B, [14,18])→(C, [22,26])→(D, [38,43]) (A, [3,8])→(B, [13,18])→(C, [22,26])→(D, [37,44])

o3 (E, [6,11])→(B, [15,21])→(C, [22,27])→(D, [35,41]) (E, [7,11])→(B, [15,20])→(C, [22,27])→(D, [34,41])

Golden Patterns
(m = 3, k = 2, ε = 4)

< {o1, o2, o3}, B → C → D >

VConvoy
(m = 3, k = 2, ε = 4)

∅

VPlatoon
(m = 3, k = 2, ε = 4, d = 1)

< {o1, o2, o3}, B → D >

o1

Camera A
o2

Camera E
o3

o1o2o3

Figure 1: An illustrative example for relaxed co-movement
pattern mining from real video data.

that the objects in a valid pattern appear across a consecutive se-

quence of cameras to constitute the common route. As a result,

this rigid setting incurs the risk of pattern missing. For instance, in

Figure 1, vehicle 𝑜3 is occluded by truck 𝑜2 in camera𝐶 , resulting in

a recovered trajectory of 𝐸 → 𝐵 → 𝐷 that omits camera 𝐶 . Hence,

when applying VConvoy pattern mining to the recovered trajecto-

ries, the pattern ⟨{𝑜1, 𝑜2, 𝑜3}, 𝐵 → 𝐶 → 𝐷⟩, which is identifiable

from the golden trajectories, will be absent. Additionally, object

occlusion is not the sole issue; object ID switching poses a signifi-

cant challenge for existing object tracking algorithms [6, 20, 24]. If

moving objects are incorrectly identified and assigned wrong IDs,

VConvoy mining will also fail under such circumstances.

To effectively support co-movement mining from imperfectly

recovered trajectories, we propose a new definition of a relaxed pat-

tern in this paper. Inspired by the platoon pattern [15], we remove

the requirement for consecutive camera sequences and introduce a

parameter 𝑑 , which allows for a certain number of missing cameras

in the common route of objects within the group. We call this new

pattern VPlatoon. In other words, VPlatoon involves four parame-

ters:𝑚, 𝑘 , 𝜖 , and 𝑑 . It still requires a valid group of at least𝑚 objects

to exhibit temporal proximity 𝜖 along a common route of length

at least 𝑘 , but the objects in the group now can briefly leave the

common route with a maximum camera gap of 𝑑 . For example, the

common route among the recovered trajectories of {𝑜1, 𝑜2, 𝑜3} in
Figure 1 is 𝐵 → 𝐷 , bypassing a missing camera 𝐶 . With 𝑑 = 1, the

pattern ⟨{𝑜1, 𝑜2, 𝑜3}, 𝐵 → 𝐷⟩ becomes a valid VPlatoon according

to our relaxed pattern definition.

After eliminating the constraint of a consecutive sequence of

cameras, the search space is expanded and the problem becomes

more complex than the original VConvoy mining problem, which

has been proved to be NP-Hard in [31]. We present a baseline

algorithm that extends the TCS-tree algorithm [31]. This baseline

builds on the basic filter-and-refine framework of the TCS-tree with

two key improvements. First, in the filter stage, we substitute the

original frequent substring miner in TCS-tree with the sequential

pattern miner [25, 29] and further improve filter effectiveness based

on the idea of camera partitioning. Second, in the refinement stage,

we incorporate multiple buffers to efficiently accommodate the gap

tolerance parameter 𝑑 .

According to our empirical analysis, the baseline suffers from

high candidate verification cost because the candidate search space

is huge and a valid candidate requires multiple constraints to be

satisfied simultaneously. In this paper, we propose a novel candi-

date enumeration framework called MaxGrowth. It eliminates the

necessity of the expensive verification procedure without generat-

ing any false positives. Thus, compared with the baseline, it incurs

no verification cost and the total mining time can be remarkably

reduced. The core idea is to treat a VPlatoon pattern as an equiva-

lent sequence of clusters, where each cluster comprises a specific

camera and a group of proximate objects. Patterns are then con-

structed by incrementally expanding the cluster sequences. In such

a manner, the pattern mining task is decomposed into a series of

feasible cluster selection problems, and MaxGrowth can effectively

utilize pattern constraints during enumeration while avoiding the

need to handle numerous intermediate false-positive candidates.

Moreover, to efficiently remove valid but non-maximal candidate

patterns, we introduce two pruning rules: the root pruning rule and

the dependency pruning rule. The former prunes non-contributing

search space at the root node of the search tree, while the latter

allows for more refined pruning in subsequent search nodes during

candidate enumeration.

To sum up, the key contributions of this paper are as follows.

• We present a new type of video-based co-movement pattern

mining problem, whose goal is to be more tolerant with

flawed video tracking and trajectory recovery algorithms.

• Wepresent a novel candidate enumeration framework called

MaxGrowth that eliminates the necessity of candidate valid-

ness verification cost.

• Two effective pruning rules are proposed to remove non-

maximal candidate patterns, which can reduce the cost of

dominance verification by over 90%.

• Extensive experiments are conducted on real-world datasets,

validating the effectiveness of the proposed pattern while

demonstrating the efficiency and scalability of our pattern

mining techniques.

The rest of the paper is organized as follows. We review related

literature in Section 2. The basic concepts and problem statement

are presented in Section 3. Section 4 presents the baseline algorithm.

we propose our enumeration framework MaxGrowth in Section 5

and the two pruning rules for maximal patternmining are presented

in Section 6. Experimental evaluation is conducted in Section 7. We

conclude the paper in Section 8.

2 RELATEDWORK
Co-movement pattern mining intends to find a group of objects

moving within spatial proximity over a specified time interval.

Previous studies can be divided into two categories according to

data sources: GPS trajectory-based and video-based.

In the realm of GPS trajectory-based co-movement patterns,

the flock [2, 10] and convoy [12] patterns both require that candi-

date groups appear across consecutive timestamps. The primary

1840

distinction between them lies in their definition of spatial proxim-

ity. The flock pattern requires objects within the same cluster to

be within a disk with a diameter smaller than a specified param-

eter, whereas the convoy pattern employs density-based spatial

clustering [8]. The performance bottleneck in mining these two

types of co-movement patterns is the clustering overhead applied

at each timestamp. Besides general acceleration methods in spa-

tiotemporal management [5, 7, 26], several specialized techniques

for co-movement mining have been developed to mitigate this issue,

such as trajectory simplification [13], spatial partitioning [4, 17],

and the divide-and-conquer scheme [18].

In the definitions of group [27], swarm [16], and platoon [15]

patterns, the temporal duration constraint is relaxed. Their mining

algorithms follow similar solving schemes, where the main idea

is to grow an object set from an empty set. Meanwhile, various

pruning techniques were designed to ensure mining efficiency. The

group pattern mining primarily utilizes its proposed VG-graph

structure. While the platoon pattern miner applies multiple fine-

grained pruning rules based on the prefix table. On the other hand,

the swarm patternmining algorithmmainly introduces two pruning

rules called backward and forward pruning to trim the search space

for mining closed swarm patterns. These optimization techniques

are based on the analysis of time dimension, but in our scenario,

the time information is restricted to independent time intervals,

which hinders their adaptation to our problem.

Video-based co-movement pattern mining was first examined by

Zhang et al. [31]. The problem was proven to be NP-hard. To solve

it efficiently, an index called temporal-cluster suffix tree (TCS-tree)

and a sequence-ahead pruning framework based on TCS-tree were

proposed. To reduce verification cost on the candidate paths, the

authors introduced a sliding-window based co-movement pattern

enumeration strategy and a hashing-based dominance eliminator.

Our work extends the definition to address the issue of missing

patterns incurred by object occlusion or vehicle mis-matching.

3 PROBLEM DEFINITION
Given a corpus of input video data captured by surveillance cameras

in scenes such as urban areas or highways. We denote all objects

appearing in the input video as O = {𝑜1, 𝑜2, 𝑜3 . . . }. Following
previous definition of co-movement pattern mining [31], we assume

that the travel paths of these objects can be extracted via trajectory

recovery algorithms [11, 22] as a pre-processing step.

Definition 1. Travel Path
The travel path 𝑃𝑖 of an object 𝑜𝑖 ∈ O is defined as a sequence of

surveillance cameras with associated time intervals:

𝑃𝑖 = (𝑐1, [𝑠1, 𝑒1]) → (𝑐2, [𝑠2, 𝑒2]) → . . .→ (𝑐𝑛, [𝑠𝑛, 𝑒𝑛])
where (𝑐 𝑗 , [𝑠 𝑗 , 𝑒 𝑗]) indicates that 𝑜𝑖 is captured by camera 𝑐 𝑗 during

time interval [𝑠 𝑗 , 𝑒 𝑗] with 𝑠 𝑗 < 𝑒 𝑗 and 𝑠 𝑗 < 𝑠 𝑗+1.

We call 𝑠 𝑗 and 𝑒 𝑗 the entrance and exit timestamp of 𝑜𝑖 at camera

𝑐 𝑗 , respectively, and the time interval of 𝑃𝑖 is [𝑠𝑖 , 𝑒𝑛]. Moreover,

when there is no need to mentioned the temporal dimension, we

abbreviate 𝑃𝑖 as 𝑐1 → 𝑐2 → . . . → 𝑐𝑛 and let 𝑐𝑖
𝑗
denote the 𝑗-th

camera (𝑐 𝑗) that object 𝑜𝑖 passes through.

Example 1. Figure 2 illustrates the travel paths of four example
objects, where the road network is represented by thick solid lines and

the extracted travel paths are represented by dashed lines. The travel
path 𝑃1 of object 𝑜1 is (𝐴, [1, 6]) → (𝐵, [15, 25]) → (𝐷, [35, 39]),
and the time interval of 𝑃1 is [1, 39].

o2

o1

o2

o3

o4

C

D

E

B

A

o1: [15,25]

o2: [18,24]

o3: [16,26]

o4: [32,35]

o1: [1,6]

o2: [1,6]

o3: [1,5]

o4: [3,16]

o3: [29,31]

o4: [38,42]

o1: [35,39]

o2: [34,36]

o3: [38,42]

o4: [44,48]

o2: [39, 47]

o3: [45, 50]

o4: [50, 56]

o1

o3
o4

o1: A → B → D o2: A → B → D → E

o3: A → B → C → D → E o4: A → B → C → D → E

Figure 2: Travel paths for four objects {𝑜1, 𝑜2, 𝑜3, 𝑜4}.

To represent the subpath relationships between imperfectly

recovered trajectories and suppoert our relaxed definition of co-

movement pattern, we define the notion of 𝑑-subpath.

Definition 2. d-subpath
The travel path 𝑃𝑖 is a 𝑑-subpath of 𝑃 𝑗 , if the time interval of

𝑃𝑖 is contained in 𝑃 𝑗 and there exists an injection function 𝑓 :

{1, 2, . . . , |𝑃𝑖 |} → {1, 2, . . . , |𝑃 𝑗 |} satisfying:
• ∀1 ≤ 𝑡 < |𝑃𝑖 |, 𝑓 (𝑡 + 1) − 𝑓 (𝑡) ≤ 𝑑 + 1.
• ∀1 ≤ 𝑡 ≤ |𝑃𝑖 |, 𝑐𝑖𝑡 = 𝑐

𝑗

𝑓 (𝑡) .

The gap tolerance parameter 𝑑 is used to controls the number

of missing cameras between adjacent cameras when mapping 𝑃𝑖
to 𝑃 𝑗 . Specifically, given that the time interval of 𝑃𝑖 is contained

within 𝑃 𝑗 , 𝑃𝑖 exactly matches a consecutive substring of 𝑃 𝑗 when d

= 0. In contrast, 𝑃𝑖 can be any subsequence of 𝑃 𝑗 when d =∞.

Example 2. In Figure 2, when 𝑑 = 1, 𝑃1 is a 𝑑-subpath of 𝑃3. First,
the time interval of 𝑃1 ([1, 39]) is contained in the time interval of 𝑃3
([1, 50]). Additionally, given the mapping 𝑓 : {1, 2, 3} → {1, 2, 4}, we
find the corresponding consistent cameras in 𝑃3 for each camera in
𝑃1 according to 𝑓 : 𝑐1

1
= 𝑐3

1
, 𝑐1

2
= 𝑐3

2
, and 𝑐1

3
= 𝑐3

4
. Furthermore, for the

mapped cameras in 𝑃3, the distances between adjacent cameras are
no more than 2, i.e., 𝑐3

4
− 𝑐3

2
≤ 2 and 𝑐3

2
− 𝑐3

1
≤ 2.

We continue to define the notion of 𝜖-close to indicate the prox-

imity between objects. Here, 𝜖-close implies the temporal closeness

of objects passing through the same camera.

Definition 3. 𝜖-close at camera c
A group of objects𝑂 ⊆ O is 𝜖-close at camera 𝑐 , if ∀ objects 𝑜𝑖 , 𝑜 𝑗 ∈
𝑂 , the gap between their entrance timestamps at 𝑐 (i.e., |𝑠𝑖 − 𝑠 𝑗 |)
does not exceed 𝜖 .

If an object 𝑜 belongs to a group of 𝜖-close objects 𝑂 , we also

call that 𝑜 is 𝜖-close to any other objects in 𝑂 .

Example 3. As shown in Figure 2, When 𝜖 = 6, we can say that the
object set {𝑜1, 𝑜2, 𝑜3} is 𝜖-close at camera 𝐵, as the time gap between
the entrance timestamps of any object pair is less than 𝜖 . Specifically,

1841

|𝑠1 − 𝑠2 | = 3 ≤ 6, |𝑠1 − 𝑠3 | = 1 ≤ 6, and |𝑠2 − 𝑠3 | = 2 ≤ 6.
In contrast, the object set {𝑜1, 𝑜2, 𝑜3, 𝑜4} is not 𝜖-close at camera 𝐵
because |𝑠1 − 𝑠4 | = 17 > 6.

Now, we formalize the definition of the relaxed co-movement

pattern from videos (VPlatoon), which represents a group of objects

traveling together satisfying 𝜖-close along a common 𝑑-subpath.

Definition 4. The Relaxed Co-movement Pattern
For parameters𝑚, 𝑘 , 𝑑 and 𝜖 , the relaxed co-movement pattern is

defined as 𝑅 = ⟨𝑂, 𝑃⟩, where 𝑂 and 𝑃 represent a set of objects

and a common path respectively. Meanwhile, it must satisfy the

following conditions:

(1) 𝑂 is 𝜖-close at each camera of 𝑃 .

(2) For each object 𝑜𝑖 ∈ 𝑂 , 𝑃 is a 𝑑-subpath of 𝑃𝑖 .

(3) |𝑂 | ≥ 𝑚.

(4) |𝑃 | ≥ 𝑘 .

Example 4. In Figure 2, given𝑚 = 2, 𝑘 = 3, 𝑑 = 1, and 𝜖 = 6,
⟨{𝑜1, 𝑜2, 𝑜3}, 𝐴 → 𝐵 → 𝐷⟩ is a relaxed co-movement pattern. The
object set {𝑜1, 𝑜2, 𝑜3} contains more than 2 objects and is 𝜖-close at
cameras 𝐴, 𝐵 and 𝐷 . Meanwhile, the common route 𝐴→ 𝐵 → 𝐷 has
a length of at least 3 and is a 𝑑-subpath of 𝑃1, 𝑃2, and 𝑃3.

Those relaxed co-movement patterns with a large number of ob-

jects or a long common route could possess a combinatorial number

of redundant "sub-patterns" that do not convey more information

than their parent pattern. For the sake of conciseness, we define

the concept of maximal pattern.

Definition 5. Maximal Relaxed Co-movement Pattern
A relaxed co-movement pattern 𝑅𝑖 = ⟨𝑂𝑖 , 𝑃𝑖 ⟩ is maximal if there

exists no other pattern 𝑅 𝑗 = ⟨𝑂 𝑗 , 𝑃 𝑗 ⟩ such that 𝑂𝑖 ⊆ 𝑂 𝑗 and 𝑃𝑖 is a

𝑑-subpath of 𝑃 𝑗 .

Our goal is to discover all the maximal relaxed co-movement

patterns under parameters𝑚, 𝑘 , 𝑑 and 𝜖 .

Example 5. In Figure 2, for 𝑚 = 2, 𝑘 = 3, 𝑑 = 1, and 𝜖 = 6,
𝑅 = ⟨{𝑜1, 𝑜2, 𝑜3}, 𝐴 → 𝐵 → 𝐷⟩ is a maximal pattern, whereas
𝑅𝑖 = ⟨{𝑜2, 𝑜3}, 𝐴→ 𝐷⟩ is not a maximal pattern. This is because the
object set {𝑜2, 𝑜3} in 𝑅𝑖 is a subset of {𝑜1, 𝑜2, 𝑜3}, and the common
path 𝐴→ 𝐷 in 𝑅𝑖 is a 𝑑-subpath of 𝐴→ 𝐵 → 𝐷 . In contrast, there
is no other pattern for 𝑅 that satisfies above similar conditions.

Table 1 provides a summary of the frequently used notations.

Table 1: Notation Table.

O All moving objects contained in V
𝑃𝑖 The travel path of an object 𝑜𝑖 ∈ O
𝑅 The relaxed co-movement pattern from video data

𝑚 The minimum number of objects in 𝑅

𝑘 The minimum length of the common route in 𝑅

𝑑 The gap tolerance in 𝑅

𝜖 The threshold of closeness in 𝑅

𝑅.𝑂/𝑃 The object set / common route of 𝑅

𝐶𝐿𝑖 = (𝑂𝑖 , 𝑐𝑖) A certain cluster with object set 𝑂 derived from camera 𝑐

𝑝𝑖
𝑗

The position of camera 𝐶𝐿𝑖 .𝑐 in object 𝑜 𝑗 ’s travel path 𝑃 𝑗

𝑆 A cluster sequence

𝜆(𝑆) The core objects of 𝑆

𝑅(𝑆) The candidate co-movement pattern corresponding to 𝑆

4 BASELINE ALGORITHM
In this section, we propose a baseline algorithm that extends TCS-

tree [31] for VPlatoon pattern mining. It adopts the filter-and-refine

framework similar to TCS-tree and we call this baseline FRB algo-

rithm. We begin with a brief introduction to TCS-tree, then provide

the detailed presentation of the FRB.

The TCS-tree algorithm is a state-of-the-art VConvoy mining

algorithm that follows the filter-and-refine framework. Its filter

stage relies on an efficient index, the temporal-cluster suffix tree,

which performs two-level temporal clustering within each camera

and constructs a suffix tree from the resulting clusters. By adopting

frequent substring mining based on this index, TCS-tree identifies

common subsequences as candidates through low granularity fil-

tering. Each subsequence is a consecutive camera sequence with

a length of at least 𝑘 and support from at least 𝑚 proximate ob-

jects. In the subsequent refinement stage, TCS-tree uses a modified

CMC algorithm [13, 14] to precisely verify the temporal proximity

(parameter 𝜖) of objects along the common subsequence for each

candidate and obtain the final results.

In order to extend TCS-tree as a tailored algorithm for VPlatoon

pattern mining, we introduce two key improvements. First, in the

filter stage, we replace the original frequent substring miner with

the sequential pattern miner [25, 29] for candidate enumeration

and partition each camera based on temporal proximity to improve

enumeration effectiveness. Second, in the refinement stage, we

incorporate multiple buffers into the original candidate verification

algorithm to accommodate the gap tolerance parameter 𝑑 .

We now present the filter stage in detail. In this stage, FRB focuses

on the route information within the input travel paths and identifies

frequent camera subsequences that represent common routes as

candidates. Specifically, each candidate subsequence must contain

at least 𝑘 cameras and appear in the travel paths of at least𝑚 objects.

Moreover, since the definition of VPlatoon removes the consecutive

constraint on the common route, candidate subsequences can be

traversed both consecutively and non-consecutively. Therefore, the

basic scheme of FRB in the filter stage is to first remove the time

intervals from each moving object’s travel path and represent the

path as a sequence of cameras in ascending order of their entrance

times. Then, the sequential pattern mining algorithm [25, 29] with

the minimum length of 𝑘 and support of 𝑚 is applied to these

camera sequences for candidate enumeration.

Furthermore, since the sequential pattern mining algorithm can-

not be accelerated by the TCS-tree index, we adapt the core idea of

this index to partition the cameras and generate a more nuanced

sequence representation. Performing sequential pattern mining on

these nuanced sequences instead of the camera sequences, FRB

could filter out more false positives in the filter stage.

Specifically, we partition each camera based on the temporal

proximity of the objects passing through it. The partitions of a

camera 𝑐 is defined as T𝑐 = {𝑇 1

𝑐 ,𝑇
2

𝑐 , ...,𝑇
𝑛
𝑐 }, where:

• For 1 ≤ 𝑖 ≤ 𝑛, 𝑇 𝑖𝑐 is a set of objects passing through 𝑐 .

• ⋃𝑛
𝑖=1𝑇

𝑖
𝑐 constitutes all the objects passing through 𝑐 .

• ∀𝑜𝑢 ∈ 𝑇 𝑖𝑐 , if there exists 𝑜𝑣 that 𝑜𝑢 is 𝜖-close to 𝑜𝑣 , then 𝑜𝑣
is also in 𝑇 𝑖𝑐 ; otherwise, 𝑜𝑢 is the only element in 𝑇 𝑖𝑐 .

It’s not difficult to see that an object belongs to exactly one parti-

tion when passing through a given camera. We can transform each

1842

object’s camera sequence into a partition sequence corresponding to

the cameras it passes through. Two objects might have a common

camera subsequence, but their partition sequences can be com-

pletely different if they are not 𝜖-close. Therefore, this fine-grained

representation offers stronger candidate filtering capabilities.

Example 6. In Figure 2, let 𝜖 = 6. Since all objects at camera 𝐴
are 𝜖-close, T𝐴 = {{𝑜1, 𝑜2, 𝑜3, 𝑜4}}. For camera 𝐵, we have 𝑜1, 𝑜2, 𝑜3
are 𝜖-close but 𝑜4 is not 𝜖-close to them, so T𝐵 = {{𝑜1, 𝑜2, 𝑜3}, {𝑜4}}.
Similarly, T𝐶 = {{𝑜3}, {𝑜4}}. If we only consider cameras 𝐴, 𝐵 and
𝐶 , objects 𝑜3 and 𝑜4 share the same sequence of camera 𝐴→ 𝐵 → 𝐶 .
However, their partition sequences are 𝑇 1

𝐴
→ 𝑇 1

𝐵
→ 𝑇 1

𝐶
and 𝑇 1

𝐴
→

𝑇 2

𝐵
→ 𝑇 2

𝐶
, respectively. Mining on these two partitions prevents the

generation of false positive (𝐴→ 𝐵 → 𝐶, {𝑜3, 𝑜4}).

The following lemma is presented to demonstrate the complete-

ness of FRB in the filter stage.

Lemma 1. Each valid VPlatoon pattern is contained in at least one
candidate from the filter stage.

Proof. See our extended technical report [1]. □

We proceed to describe the refinement stage, where FRB refines

each candidate (𝑆𝑒𝑞,𝑂) to ensure the temporal proximity (𝜖) and
gap tolerance (𝑑) of objects in 𝑂 as they travel along the common

camera subsequence 𝑆𝑒𝑞. The approach is similar to the candidate

verification algorithm in TCS-tree, with additional buffer structures

introduced to improve efficiency in adapting to the VPlatoon defini-

tion. Specifically, the algorithm first computes all groups of objects

in 𝑂 that are 𝜖-close for each camera of 𝑆𝑒𝑞. It then searches for

valid patterns along 𝑆𝑒𝑞 while maintaining a global buffer at each

camera to store partial patterns that successfully reach it. During

the search at each camera, the groups of 𝜖-close objects are inter-

sected with the partial patterns stored in the buffers of the previous

𝑑 + 1 cameras in 𝑆𝑒𝑞, thereby generating new VPlatoon patterns.

Algorithm 1 demonstrates the FRB algorithm. During the filter

stage (lines 1-4), we first retrieve the camera sequences of all ob-

jects by removing the time intervals from their travel paths (line 1).

Then, we compute all the partition sequences based on our afore-

mentioned description of partitions (lines 2-3). In the final step of

the filter stage, sequential pattern mining is performed on S𝑇 for

candidate enumeration (line 4). During the subsequent refinement

stage (lines 5-19), we first initialize R as the final result set and 𝐵𝑢𝑓

as the global buffer set (line 5). Then, the algorithm iterates over

the cameras in 𝑆𝑒𝑞 of each candidate (lines 6-7). At each processed

camera 𝑐𝑖 , all groups of 𝜖-close objects in𝑂 are computed according

to Definition 3 and intersected with previous partial patterns to

generate new partial patterns 𝑅𝑛𝑒𝑤 (lines 8-11). At this point, it’s

important to note that we still need to further verify whether each

object in 𝑅𝑛𝑒𝑤 .𝑂 has traversed more than 𝑑 cameras that are not in

𝑆𝑒𝑞 between the current camera 𝑐𝑖 and the last reached camera 𝑐 𝑗 .

This is done using the distance function 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑜, 𝑐𝑖 , 𝑐 𝑗) (lines 12-
13). Afterward, we can then update 𝐵𝑢𝑓 and R (lines 14-17). Finally,

the algorithm derives the final results by removing all non-maximal

patterns from R. This step is similar to the one used in TCS-tree.

Algorithm 1: The FRB Algorithm

1 S𝑐 ← retrieve the camera sequences of all objects;

2 T← compute partitions of each camera;

3 S𝑇 ← convert S𝑐 into partition sequences based on T;
4 R𝑐 ← sequential pattern mining on S𝑇 with𝑚 and 𝑘 ;

5 R← ∅; 𝐵𝑢𝑓 ← ∅;
6 foreach candidate (𝑆𝑒𝑞,𝑂) ∈ R𝑐 do
7 foreach camera 𝑐𝑖 in Seq do
8 O𝜖 ← compute groups of 𝜖-close objects in 𝑂 at 𝑐𝑖 ;

9 for camera 𝑐 𝑗 ∈ {𝑐𝑖−1−𝑑 , . . . , 𝑐𝑖−1} do
10 for (𝑂𝜖 , 𝑅𝑏) ∈ O𝜖 × 𝐵𝑢𝑓𝑐 𝑗 do
11 𝑅𝑛𝑒𝑤 = ⟨𝑅𝑏 .𝑂 ∩𝑂𝜖 , 𝑅𝑏 .𝑃 ∪ 𝑐𝑖 ⟩;
12 for each object 𝑜 ∈ 𝑅𝑛𝑒𝑤 .𝑂 do
13 if distance(𝑜 , 𝑐𝑖 , 𝑐 𝑗) > 𝑑 then discard 𝑜 ;

14 if |𝑅𝑛𝑒𝑤 .𝑂 | < 𝑚 then continue;
15 𝐵𝑢𝑓𝑐𝑖 ← 𝐵𝑢𝑓𝑐𝑖 ∪ {𝑅𝑛𝑒𝑤 };
16 if |𝑅𝑛𝑒𝑤 .𝑃 | ≥ 𝑘 then R← R ∪ {𝑅𝑛𝑒𝑤};
17 foreach 𝑂𝜖 ∈ O𝜖 do 𝐵𝑢𝑓𝑐𝑖 ← 𝐵𝑢𝑓𝑐𝑖 ∪ {⟨𝑂𝜖 , [𝑐𝑖]⟩};
18 R← remove non-maximal patterns from R;
19 return R;

5 CANDIDATE ENUMERATION FRAMEWORK
The drawback of FRB algorithm is that its filter-and-refine frame-

work incurs substantial computation overhead for candidate verifi-

cation. As will be empirically examined in Section 7, the candidate

verification becomes the performance bottleneck in FRB algorithm.

To address the challenge, we present MaxGrowth algorithm, which

eliminates the requirement for candidate verification. In this sec-

tion, we first present its candidate enumeration scheme to find valid

candidate patterns, and in the next section, we present the pruning

rules to efficiently eliminate patterns that are non-maximal.

The core idea of MaxGrowth is to treat the co-movement pattern

as a sequence of fundamental units (clusters) and iteratively grow

such a sequence for pattern generation. This scheme contrasts with

the traditional filter-and-refinement framework, which treats the

co-movement pattern as an overall combination of objects with

their common route and performs refinement for pattern genera-

tion. In other words, MaxGrowth decomposes the co-movement

pattern mining problem into a series of feasible cluster selection

problems during candidate enumeration. The expensive verification

procedure is avoided without generating false positives. We next

introduce the cluster representation of the co-movement pattern in

Subsection 5.1 and then elaborate on the candidate enumeration

scheme of MaxGrowth in Subsection 5.2.

5.1 Cluster Representation
As the fundamental unit in MaxGrowth, a cluster is essentially an

aggregation of a set of objects and a traversed camera.

Definition 6. Cluster
A cluster is defined as 𝐶𝐿 = (𝑂, 𝑐), if |𝑂 | ≥ 𝑚 and 𝑂 is 𝜖-close at 𝑐 .

We use𝐶𝐿.𝑂 and𝐶𝐿.𝑐 to denote the object set and the traversed

camera of a given cluster 𝐶𝐿, respectively. Besides, it is sometimes

1843

necessary to determine the specific position of an object as it tra-

verses the camera of a given cluster in order to analyze the posi-

tional relationships between clusters. Therefore, we use the notation

𝒑 𝒊
𝒋 to represent the position of object 𝑜 𝑗 in its travel path 𝑃 𝑗 when

passing through the camera in cluster 𝐶𝐿𝑖 .

Example 7. In the example of Figure 2, if we set𝑚 = 2 and 𝜖 = 6,
then the object set {𝑜1, 𝑜2, 𝑜3} contains more than 2 objects and is
𝜖-close at camera 𝐵. Thus, ({𝑜1, 𝑜2, 𝑜3}, 𝐵) can be a cluster, which
is shown as 𝐶𝐿2 in Figure 3. Meanwhile, since 𝑜1’s travel path is
𝑃1 = (𝐴, [1, 6]) → (𝐵, [15, 25]) → (𝐷, [35, 39]), and 𝑜1 belongs to
𝐶𝐿2 .𝑂 at the second position of 𝑃1, we have 𝑝2

1
= 2.

Intuitively, a cluster describes the co-movement scene under a

single camera. To further characterize the co-movement pattern

along the common route, we need to link the clusters in a reasonable

manner. To this end, we now present several essential definitions

related to the cluster sequence.

Definition 7. Core Object
We denote object 𝑜𝑐 as a core object of the cluster sequence 𝑆 if:

• 𝑜𝑐 ∈
⋂ |𝑆 |

𝑖=1
𝐶𝐿𝑖 .𝑂 .

• For 1 < 𝑖 ≤ |𝑆 |, 0 < 𝑝𝑖𝑐 − 𝑝𝑖−1𝑐 ≤ 𝑑 + 1.

Here, |𝑆 | represents the number of clusters (length) in the cluster

sequence 𝑆 = [𝐶𝐿1, . . . ,𝐶𝐿 |𝑆 |]. We further use the notation 𝝀(𝑺) to
denote all the core objects in 𝑆 . Actually, 𝜆(𝑆) indicates the group
of objects that is 𝜖-close along a common 𝑑-subpath constructed

from the cameras in 𝑆 .

Example 8. Given parameters𝑚 = 2 and 𝑑 = 1 in Figure 3, we
take the cluster sequence 𝑆 = [𝐶𝐿1,𝐶𝐿2,𝐶𝐿3] as an example. We have
𝐶𝐿1 .𝑂 ∩ 𝐶𝐿2 .𝑂 ∩ 𝐶𝐿3 .𝑂 = {𝑜1, 𝑜2, 𝑜3}. Meanwhile, the conditions
0 < 𝑝3

1
−𝑝2

1
< 2 and 0 < 𝑝2

1
−𝑝1

1
< 2 hold. Therefore, we can conclude

that 𝑜1 is a core object of 𝑆 . Similarly, 𝜆(𝑆) = {𝑜1, 𝑜2, 𝑜3}.

Definition 8. Feasible Cluster
We call cluster 𝐶𝐿𝑖 a feasible cluster for the cluster sequence 𝑆 =

[𝐶𝐿1, . . . ,𝐶𝐿𝑛] if there exist at least𝑚 objects 𝑜𝑐 ∈ 𝐶𝐿𝑖 .𝑂 such that

𝑜𝑐 ∈ 𝜆(𝑆) and 0 < 𝑝𝑖𝑐 − 𝑝𝑛𝑐 ≤ 𝑑 + 1.

Besides, we also define the cluster sequence 𝑆 = [𝐶𝐿1, ...,𝐶𝐿𝑛] as
a feasible sequence if the last cluster 𝐶𝐿𝑛 in 𝑆 is a feasible cluster

for the prefix subsequence [𝐶𝐿1, ...,𝐶𝐿𝑛−1].

Example 9. We use Figure 3 for illustration with parameters𝑚 = 2

and 𝑑 = 1. The cluster 𝐶𝐿3 is a feasible cluster for [𝐶𝐿1,𝐶𝐿2]. This is
because𝐶𝐿3 .𝑂∩𝜆(𝑆) = {𝑜1, 𝑜2, 𝑜3}. Furthermore, we have 𝑝3

1
−𝑝2

1
= 1,

𝑝3
2
− 𝑝2

2
= 1, and 𝑝3

3
− 𝑝2

3
= 2. Thus, there exist three objects (greater

than𝑚) that satisfy the conditions specified in Definition 8. As a result,
we conclude that [𝐶𝐿1,𝐶𝐿2,𝐶𝐿3] is a feasible sequence. In contrast,
𝐶𝐿4 is not a feasible cluster for [𝐶𝐿1,𝐶𝐿2] because𝐶𝐿1 .𝑂 ∩𝐶𝐿2 .𝑂 ∩
𝐶𝐿4 .𝑂 are {𝑜3} which consists of only one object.

The following lemma demonstrates the equivalence between the

feasible sequence and the candidate co-movement pattern.

Lemma 2. For a feasible sequence 𝑆 = [𝐶𝐿1, . . . ,𝐶𝐿𝑛], the cor-
responding ⟨𝜆(𝑆),𝐶𝐿1 .𝑐 → . . . → 𝐶𝐿𝑛 .𝑐⟩ must be a candidate co-
movement pattern of length 𝑛 that satisfies𝑚, 𝜖 , and 𝑑 .

O: {o1, o2, o3, o4}

camera: A

CL1

A

O: {o1, o2, o3}

camera: B

CL2

B

O: {o1, o2, o3}

camera: D

CL3

O: {o3, o4}

camera: D

CL4

D

O: {o2, o3}

camera: E

CL5

O: {o3, o4}

camera: E

CL6

E

C
∅

𝒑𝒊
𝟏: {1, 1, 1, 1}

𝒑𝒊
𝟐: {2, 2, 2}

𝒑𝒊
𝟑: {3, 3, 4} 𝒑𝒊

𝟒: {4, 4}

𝒑𝒊
𝟓: {4, 5} 𝒑𝒊

𝟔: {5, 5}

Figure 3: Example clusters with parameters𝑚 = 2 and 𝜖 = 6.

Proof. Wefirst consider the parameter𝑚. Since 𝑆 is a feasible se-

quence,𝐶𝐿𝑛 must be a feasible cluster for 𝑆𝑛−1 = [𝐶𝐿1, . . . ,𝐶𝐿𝑛−1].
In other words, there are at least 𝑚 objects 𝑜𝑐 in 𝐶𝐿𝑛 ∩ 𝜆(𝑆𝑛−1)
such that 0 < 𝑝𝑛𝑐 − 𝑝𝑛−1𝑐 ≤ 𝑑 + 1. As 𝜆(𝑆𝑛−1) contains all the core
objects of 𝑆𝑛−1, we further have 𝐶𝐿𝑛 ∩ 𝜆(𝑆𝑛−1) =

⋂𝑛
𝑖=1𝐶𝐿𝑖 .𝑂 and

0 < 𝑝𝑖𝑐 −𝑝𝑖−1𝑐 ≤ 𝑑 +1(1 < 𝑖 ≤ 𝑛). This implies that all the aforemen-

tioned at least𝑚 objects are core objects of 𝑆 . As for the parameter

𝜖 , the core objects of 𝜆(𝑆) remain within the same cluster, which

ensures that they are 𝜖-close at each camera. Finally, we analyze the

parameter 𝑑 . For each core object 𝑜𝑐 ∈ 𝜆(𝑆), we can define an injec-

tion function 𝑓 : {1, 2, . . . , 𝑛} → {𝑝1𝑐 , 𝑝2𝑐 , . . . , 𝑝𝑛𝑐 } from the common

route 𝐶𝐿1 .𝑐 → . . . → 𝐶𝐿𝑛 .𝑐 to 𝑜𝑐 ’s travel path 𝑃𝑐 , such that the

common route is a 𝑑-subpath of 𝑃𝑐 . The proof is complete. □

We will henceforth use the notation 𝑹(𝑺) to denote the corre-

sponding candidate co-movement pattern ⟨𝜆(𝑆),𝐶𝐿1 .𝑐 → . . . →
𝐶𝐿𝑛 .𝑐⟩ for a feasible sequence 𝑆 = [𝐶𝐿1, . . . ,𝐶𝐿𝑛]. For example, in

Figure 3 with parameters𝑚 = 2 and 𝑑 = 1, For the feasible sequence

𝑆 = [𝐶𝐿1,𝐶𝐿2,𝐶𝐿3], 𝑅(𝑆) is ⟨{𝑜1, 𝑜2, 𝑜3}, 𝐴→ 𝐵 → 𝐷⟩.

5.2 The Candidate Enumeration Scheme
Based on the aforementioned cluster representation, the candidate

enumeration scheme of MaxGrowth enumerates feasible sequences

in a depth-first search manner for candidate generation. Specifically,

it starts with an empty sequence and selects feasible clusters for

the current cluster sequence to grow a longer feasible sequence at

each search step. Meanwhile, candidate co-movement patterns are

retrieved from the enumerated feasible sequences.

Algorithm 2 presents the complete pseudocode of MaxGrowth.

We first initializeR as the final result set (line 1). Next, the candidate

enumeration scheme of MaxGrowth is executed. Specifically, all

the clusters are computed from the input travel paths according

to Definition 6 for enumeration preparation (line 2). Each cluster

is then used as the first element of the current cluster sequence 𝑆

to initiate the Growth routine for subsequent steps in candidate

enumeration (lines 3-5). Finally, we obtain the final result set R
after removing non-maximal patterns (lines 6-7). This step uses a

technique similar to that in [31]. We now continue to provide a

detailed description of the Growth routine (lines 8-23), which is the

core component of MaxGrowth’s candidate enumeration scheme.

1844

Algorithm 2: MaxGrowth

1 R← ∅;
2 CL← compute all clusters using parameters𝑚 and 𝜖 ;

3 foreach cluster 𝐶𝐿 ∈ CL do
4 𝑆 ← [𝐶𝐿];
5 Growth(𝑆,R);
6 R← remove non-maximal patterns in R;
7 return R;

8 Routine Growth(𝑆 = [𝐶𝐿1, . . . ,𝐶𝐿𝑛],R):
9 FCL← ∅; DT← empty dictionary;

10 foreach core object 𝑜𝑐 ∈ 𝜆(𝑆) do
11 CL𝑐 ← {𝐶𝐿𝑖 | 𝑜𝑐 ∈ 𝐶𝐿𝑖 .𝑂 ∧ 0 < 𝑝𝑖𝑐 − 𝑝𝑛𝑐 ≤ 𝑑 + 1};
12 foreach candidate cluster 𝐶𝐿𝑖 ∈ CL𝑐 do
13 if 𝐶𝐿𝑖 ∉ DT then DT[𝐶𝐿𝑖] ← ∅;
14 DT[𝐶𝐿𝑖] ← DT[𝐶𝐿𝑖] ∪ {𝑜𝑐 };
15 foreach candidate cluster 𝐶𝐿𝑖 ∈ DT do
16 if |DT[𝐶𝐿𝑖] | ≥ 𝑚 then FCL← FCL ∪ {𝐶𝐿𝑖 };
17 foreach feasible cluster 𝐹𝐶𝐿 ∈ FCL do
18 Append 𝐹𝐶𝐿 to 𝑆 ;

19 Growth(𝑆,R);
20 Discard 𝐹𝐶𝐿 from 𝑆 ;

21 if |𝑆 | ≥ 𝑘 then R← R ∪ 𝑅(𝑆) ;

In this routine, the feasible clusters for the current cluster sequence

𝑆 are first computed in lines 9-16. Specifically, we iterate over each

core object 𝑜𝑐 of 𝑆 , identifying candidate clusters that contain 𝑜𝑐
and satisfy the gap tolerance condition 0 < 𝑝𝑖𝑐 − 𝑝𝑛𝑐 ≤ 𝑑 + 1 (lines
10-11). 𝑜𝑐 must be one of the objects that satisfy the conditions

specified in Definition 8 within these candidate clusters. Therefore,

each pair of candidate cluster and 𝑜𝑐 is recorded in the auxiliary

dictionary DT (lines 12-14). If a candidate cluster contains at least

𝑚 core objects recorded in DT, it is considered a feasible cluster

and added to FCL (lines 15-16). After obtaining all feasible clusters,

each of them is selected and appended to 𝑆 to continue the sequence

growth routine (lines 17-20). As the final step of the Growth routine,

we check if the length of the current cluster sequence is at least

𝑘 . If so, the corresponding candidate co-movement pattern 𝑅(𝑆) is
directly added to the result set R as a valid pattern.

From the above description, we can see that MaxGrowth de-

rives valid co-movement patterns directly from the execution of

the candidate enumeration scheme, thus eliminating the need for

the subsequent expensive verification procedure. Moreover, dur-

ing candidate enumeration, MaxGrowth searches only within the

feasible clusters relevant to the current cluster sequence. This well-

restricted search space typically shrinks as the sequence grows,

further ensuring the efficiency of pattern growth.

We now justify the correctness and completeness of MaxGrowth

in detail. First, the following lemma demonstrates its correctness.

Lemma 3. MaxGrowth always generates valid co-movement pat-
terns satisfying parameters𝑚, 𝑘 , 𝑑 and 𝜖 from candidate enumeration.

Proof. Since MaxGrowth only uses feasible clusters to grow the

cluster sequence, each enumerated sequence 𝑆 must be a feasible

sequence. According to Lemma 2, 𝑆 corresponds to a candidate

Identified by the root pruning rule

Pruned by the root pruning rule

Pruned by the dependency pruning rule

Infeasible Clusters

camera: A
𝝀: {o1, o2, o3, o4}

𝒑𝒊
𝟏: {1, 1, 1, 1}

CL1

camera: AB
𝝀: {o1, o2, o3}

𝒑𝒊
𝟐: {2, 2, 2}

CL1 CL2

CL1CL3

camera: ABD
𝝀: {o1, o2, o3}

𝒑𝒊
𝟑: {3, 3, 4}

CL1CL2 CL3

camera: ABDE
𝝀: {o2, o3}

𝒑𝒊
𝟓: {4, 5}

CL1CL2CL3 CL5

[CL1]: CL2->CL3

CL1CL4
…

CL1CL2CL4
…

CL1CL2CL3CL4
…

…

camera: B
𝝀: {o1, o2, o3}

𝒑𝒊
𝟐: {2, 2, 2}

CL2

camera: D
𝝀: {o1, o2, o3}

𝒑𝒊
𝟑: {3, 3, 4}

CL3

camera: D
𝝀: {o3, o4}

𝒑𝒊
𝟒: {4, 4}

CL4

camera: DE
𝝀: {o3, o4}

𝒑𝒊
𝟔: {5, 5}

CL4 CL6

…

…

…

① ② ③ ④

⑤ ⑥

Figure 4: The search tree of MaxGrowth with parameters
𝑚 = 2, 𝑘 = 2, 𝑑 = 1, and 𝜖 = 6.

co-movement pattern 𝑅(𝑆) that satisfies the parameters𝑚, 𝑑 , and 𝜖 .

Meanwhile, as the length of the common route in 𝑅(𝑆) is the same

as that of 𝑆 , and MaxGrowth generates candidate patterns only for

corresponding sequences with a length of at least 𝑘 , 𝑅(𝑆) must also

satisfy the parameter 𝑘 . □

The following lemma implies the completeness of MaxGrowth.

Lemma 4. A valid relaxed co-movement pattern corresponds to at
least one cluster sequence enumerated by MaxGrowth.

Proof. Let 𝑅 = ⟨𝑂, 𝑃⟩ be a relaxed co-movement pattern. Since

𝑂 satisfies 𝜖-close at each camera of 𝑃 , there exists at least one

cluster sequence 𝑆 = [𝐶𝐿1,𝐶𝐿2, . . . ,𝐶𝐿𝑛] such that 𝑛 = |𝑃 | and
for 1 ≤ 𝑖 ≤ 𝑛, 𝑂 ⊆ 𝐶𝐿𝑖 .𝑂 and 𝐶𝐿𝑖 .𝑐 is the 𝑖-th camera of 𝑃 . Since

MaxGrowth will enumerate all feasible sequences, we now only

need to prove that 𝑆 is a feasible sequence. First, we know 𝑂 ⊆⋂𝑛
𝑖=1𝐶𝐿𝑖 .𝑂 contains at least𝑚 objects. Meanwhile, since 𝑃 is the

𝑑-subpath of the travel path for each object in 𝑂 , then ∀𝑜 𝑗 ∈ 𝑂 ,
0 < 𝑝𝑖

𝑗
− 𝑝𝑖−1

𝑗
≤ 𝑑 + 1 holds for 1 < 𝑖 ≤ 𝑛. This further implies that

𝐶𝐿𝑛 is a feasible cluster for the prefix subsequence [𝐶𝐿1, . . .𝐶𝐿𝑛−1]
of 𝑆 . This completes the proof. □

We can now derive the following theorem which guarantees the

correctness and completeness of MaxGrowth.

Theorem 1. The MaxGrowth framework can generate both valid
and complete relaxed co-movement patterns.

Proof. The proof follows directly from Lemmas 3 and 4. □

6 MAXIMAL PATTERN MINING
Building upon the candidate enumeration scheme of MaxGrowth,

we introduce two efficient pruning rules that eliminate the genera-

tion of most maximal patterns during candidate enumeration.

6.1 The Root Pruning Rule
The candidate enumeration scheme of MaxGrowth can be repre-

sented as a search tree, where each node corresponds to a selected

feasible cluster and each branch represents a different direction of

1845

sequence growth. Typically, there are a large number of clusters,

resulting in an overwhelming number of subtrees at the root of the

whole search tree. However, a significant number of these root sub-

trees cannot produce any maximal pattern. As shown in Figure 4,

only the search subtrees starting from clusters 𝐶𝐿1 and 𝐶𝐿4 can

generate the maximal patterns ⟨{𝑜2, 𝑜3} : 𝐴→ 𝐵 → 𝐷 → 𝐸⟩ and
⟨{𝑜3, 𝑜4} : 𝐷 → 𝐸⟩, respectively.

To effectively prune those non-contributing subtrees formaximal

pattern mining at the root of the search tree, we present the root

pruning rule. The lemma below illustrates the core idea of it.

Lemma 5. For a cluster 𝐶𝐿𝑖 , if there is a feasible sequence 𝑆 that
𝐶𝐿𝑖 is a feasible cluster for 𝑆 and𝐶𝐿𝑖 .𝑂 ⊆ 𝜆(𝑆), then cluster sequences
starting with 𝐶𝐿𝑖 cannot correspond to maximal patterns.

Proof. Given a feasible sequence 𝑆𝑛 = [𝐶𝐿1, . . . ,𝐶𝐿𝑛] with
𝐶𝐿1 = 𝐶𝐿𝑖 , it is straightforward to prove by showing that 𝑅(𝑆𝑛) is
not a maximal pattern. See [1] for details. □

In Figure 4, since the cluster 𝐶𝐿2 is a feasible cluster for 𝑆 =

[𝐶𝐿1] and 𝐶𝐿2 .𝑂 ⊆ (𝐶𝐿1 .𝑂 = 𝜆(𝑆)), then any feasible sequence

starting with 𝐶𝐿2 cannot correspond to a maximal pattern. As

an example, the candidate pattern ⟨{𝑜1, 𝑜2, 𝑜3}, 𝐵 → 𝐷⟩ of the
sequence [𝐶𝐿2,𝐶𝐿3] is not maximal because there exists another

maximal pattern ⟨{𝑜1, 𝑜2, 𝑜3}, 𝐴→ 𝐵 → 𝐷⟩.
Based on Lemma 5, we state the following root pruning rule.

Rule 1. (The Root Pruning Rule)During the growth of a feasible
sequence 𝑆 , if a feasible cluster𝐶𝐿𝑖 satisfies𝐶𝐿𝑖 .𝑂 ⊆ 𝜆(𝑆), then the

search subtree at the root starting with 𝐶𝐿𝑖 can be pruned.

It’s worth noting that the effectiveness of the root pruning rule

is influenced by the search order of clusters in MaxGrowth. For

example, in Figure 4, if we search for cluster 𝐶𝐿2 before 𝐶𝐿1, the

substree starting with 𝐶𝐿2 cannot be pruned by Rule 1. Because

this subtree can only be identified as prunable by Rule 1 during

the growth of cluster sequences starting with 𝐶𝐿1. However, it has

already been searched by that time. To mitigate this issue, we define

the binary relation "precedence" on all the clusters and utilize it to

specify the search order of clusters in MaxGrowth.

Definition 9. Precedence Relation
The precedence relation between two clusters 𝐶𝐿𝑢 and 𝐶𝐿𝑣 holds,

denoted as 𝐶𝐿𝑢 ≤𝑝 𝐶𝐿𝑣 , if there is a series of clusters 𝐶𝐿1, . . . ,𝐶𝐿𝑛
such that:

• 𝐶𝐿1 = 𝐶𝐿𝑢 and 𝐶𝐿𝑛 = 𝐶𝐿𝑣 .

• For 1 ≤ 𝑖 < 𝑛, 𝐶𝐿𝑖 and 𝐶𝐿𝑖+1 share at least one common

object 𝑜 𝑗 with 𝑝
𝑖
𝑗
≤ 𝑝𝑖+1

𝑗
.

Example 10. In the clusters shown in Figure 3, we have 𝐶𝐿1 ≤𝑝
𝐶𝐿3. This is because there exists a cluster series 𝐶𝐿1,𝐶𝐿2,𝐶𝐿3. Mean-
while, for 𝐶𝐿1 and 𝐶𝐿2, we can find a common object 𝑜1 with 𝑜1 ∈
𝐶𝐿1 .𝑂 ∧ 𝑜1 ∈ 𝐶𝐿2 .𝑂 ∧ 𝑝1

1
< 𝑝2

1
. For 𝐶𝐿2 and 𝐶𝐿3, we can also a

common object 𝑜1 with 𝑜1 ∈ 𝐶𝐿2 .𝑂 ∧ 𝑜1 ∈ 𝐶𝐿3 .𝑂 ∧ 𝑝2
1
< 𝑝3

1
.

The precedence relation indicates the non-strict order in which

objects move between clusters. In Definition 9, two adjacent clusters

𝐶𝐿𝑖 and 𝐶𝐿𝑖+1 share a common object 𝑜 𝑗 with 𝑝
𝑖
𝑗
≤ 𝑝𝑖+1

𝑗
ensuring

that at least one object will pass through camera 𝐶𝐿𝑖 .𝑐 before cam-

era 𝐶𝐿𝑖+1 .𝑐 . And the existence of cluster series from 𝐶𝐿𝑢 to 𝐶𝐿𝑣
allows this movement order to be transitive from 𝐶𝐿𝑢 to 𝐶𝐿𝑣 .

Based on this relation, we determine the search order of clusters

in MaxGrowth as follows: For clusters𝐶𝐿𝑢 and𝐶𝐿𝑣 , if𝐶𝐿𝑢 ≤𝑝 𝐶𝐿𝑣
and 𝐶𝐿𝑣 ≰𝑝 𝐶𝐿𝑢 , then MaxGrowth will search 𝐶𝐿𝑢 before 𝐶𝐿𝑣 .

Note that for two clusters𝐶𝐿𝑢 and𝐶𝐿𝑣 where both𝐶𝐿𝑢 ≤𝑝 𝐶𝐿𝑣
and 𝐶𝐿𝑣 ≤𝑝 𝐶𝐿𝑢 are satisfied, we do not explicitly specify the

search order between them. In practice, although symmetric pairs

of precedence relations exist, their number is very small with the

proportion less than ten percent. This is due to the inherent char-

acteristics of clusters: Since objects within the same cluster exhibit

temporal proximity, satisfying both 𝐶𝐿𝑢 ≤𝑝 𝐶𝐿𝑣 and 𝐶𝐿𝑣 ≤𝑝 𝐶𝐿𝑢
indicates that these two clusters simultaneously contain two sets

of objects moving in opposite directions, which is rare and does

not consistently occur across multiple clusters.

For clusters in Figure 3, since 𝐶𝐿1 ≤𝑝 𝐶𝐿2 and 𝐶𝐿1 ≰𝑝 𝐶𝐿2,

MaxGrowth will search 𝐶𝐿1 before 𝐶𝐿2. In contrast, MaxGrowth

will search𝐶𝐿3 and𝐶𝐿4 in arbitrary order. Thus, the overall search

order is 𝐶𝐿1 → 𝐶𝐿2 → {𝐶𝐿3,𝐶𝐿4} → {𝐶𝐿5,𝐶𝐿6}. With this order,

Rule 1 successfully identifies all target clusters including 𝐶𝐿2, 𝐶𝐿3,

𝐶𝐿5, and 𝐶𝐿6, and prunes their search subtrees at the root node.

Since symmetric pairs are rare in precedence relation, this allows

us to determine the search order for most of clusters. The lemma

below theoretically guarantees the effectiveness of this search order.

Lemma 6. If the precedence relation can specify the search order
for all clusters, then the root pruning rule can prune the maximum
number of search subtrees.

Proof. See our extended technical report [1]. □

6.2 The Dependency Pruning Rule
Although the root pruning rule can prune subtrees at the root of

the search tree, it cannot prune subtrees at higher levels during can-

didate enumeration. In fact, most maximal patterns are generated

from the search subtrees of non-root nodes. Specifically, in the basic

candidate scheme of MaxGrowth, we need to append each feasible

cluster to the end of the current cluster sequence for further growth.

However, searching through all feasible clusters for a cluster se-

quence as described above is unnecessary and time-consuming,

as many subsequent search subtrees of feasible clusters will not

produce any maximal patterns.

To facilitate more refined optimization of the search space for

non-maximal patterns, we introduce the dependency pruning rule.

The main idea of this rule is to determine non-essential search fea-

sible clusters by analyzing whether a specific relationship between

feasible clusters is satisfied. We call this specific relationship as the
dependency relationship and describe it in detail below.

For a cluster sequence 𝑆 and its feasible cluster 𝐶𝐿𝑖 , let the se-

quence 𝑆𝑖 = 𝑆 | | [𝐶𝐿𝑖] represents the concatenation of two se-

quences 𝑆 and [𝐶𝐿𝑖]. Then, the dependency relationship between

two feasible clusters is defined as follow:

A feasible cluster 𝐶𝐿𝑖 depends on 𝐶𝐿𝑗 for a same feasible se-

quence 𝑆 , if object 𝑜𝑐 ∈ 𝜆(𝑆𝑖) → (𝑜𝑐 ∈ 𝜆(𝑆 𝑗) ∧ 𝑝 𝑗𝑐 < 𝑝𝑖𝑐).
Intuitively, if a feasible cluster 𝐶𝐿𝑖 depends on another feasible

cluster 𝐶𝐿𝑗 , it actually means that any object in 𝜆(𝑆𝑖) must pass

through camera𝐶𝐿𝑗 .𝑐 before reaching camera𝐶𝐿𝑖 .𝑐 . In other words,

𝑆𝑖 not only lacks information about the common route of objects

1846

passing through camera 𝐶𝐿𝑗 .𝑐 , but its core objects can also be

obtained through the further growth of 𝑆 𝑗 .

Example 11. Given𝑚 = 2, 𝑑 = 1, and 𝜖 = 6 in Figure 3, there are
two feasible clusters𝐶𝐿2 and𝐶𝐿3 for the feasible sequence 𝑆 = [𝐶𝐿1].
For these two clusters, we can also derive that 𝑆2 = [𝐶𝐿1,𝐶𝐿2], 𝑆3 =
[𝐶𝐿1,𝐶𝐿3] and 𝜆(𝑆2) = 𝜆(𝑆3) = {𝑜1, 𝑜2}. Since object 𝑜1 satisfies
𝑜1 ∈ 𝜆(𝑆2) as well as 𝑜1 ∈ 𝜆(𝑆2) ∧ 𝑝2

1
< 𝑝3

1
; and object 𝑜2 satisfies

𝑜2 ∈ 𝜆(𝑆3) as well as 𝑜2 ∈ 𝜆(𝑆3) ∧ 𝑝2
2
< 𝑝3

2
, we can conclude that

𝐶𝐿3 depends on 𝐶𝐿2.

The following lemma demonstrates how to prune non-essential

subsequent search subtrees for feasible clusters based on the afore-

mentioned dependency relationship.

Lemma 7. If cluster 𝐶𝐿𝑖 depends on 𝐶𝐿 𝑗 for a feasible sequence 𝑆 ,
then the subsequent sequence growth after appending 𝐶𝐿𝑖 to 𝑆 will
not produce any maximal patterns.

Proof. Assuming 𝑆 = [𝐶𝐿1,𝐶𝐿2, ...,𝐶𝐿𝑛], let 𝑆𝑖 denote the clus-
ter sequence 𝑆 | | [𝐶𝐿𝑖] and 𝑆 𝑗𝑖 denote 𝑆 | | [𝐶𝐿 𝑗 ,𝐶𝐿𝑖], where | |
still represents the concatenation of two cluster sequences. We

prove that the search tree rooted at 𝑆𝑖 and 𝑆 𝑗𝑖 are identical. Since

the last cluster of 𝑆𝑖 and 𝑆 𝑗𝑖 are both 𝐶𝐿𝑖 , this is equivalent to

proving their core objects are the same. Based on the dependency

relationship, each 𝑜𝑐 ∈ 𝜆(𝑆𝑖) satisfies the following conditions: (1)

𝑝𝑖𝑐 − 𝑝𝑛𝑐 ≤ 𝑑 + 1, (2) 𝑝𝑖𝑐 − 𝑝
𝑗
𝑐 > 0, (3) 𝑝

𝑗
𝑐 − 𝑝𝑛𝑐 > 0. From (3) and (1)

- (2), we can obtain 0 < 𝑝
𝑗
𝑐 − 𝑝𝑛𝑐 < 𝑑 + 1. Thus, 𝜆(𝑆𝑖) ⊆ 𝜆(𝑆 𝑗) and

𝜆(𝑆𝑖) ⊆ (𝐶𝐿𝑖 .𝑂 ∩𝜆(𝑆 𝑗)). Meanwhile, from (2) and (1) - (3), we have

0 < 𝑝𝑖𝑐 − 𝑝
𝑗
𝑐 < 𝑑 + 1. Therefore, 𝑆 𝑗𝑖 is a feasible sequence with core

objects that contain at least 𝜆(𝑆𝑖). As a result, 𝑆𝑖 and 𝑆 𝑗𝑖 have the
same core objects. □

Based on Lemma 7, we state the dependency pruning rule.

Rule 2. (The Dependency Pruning Rule) During the growth

of a feasible sequence 𝑆 = [𝐶𝐿1,𝐶𝐿2, ...,𝐶𝐿𝑛], if a feasible cluster
𝐶𝐿𝑖 depends on at least one other feasible cluster, then the search

substree for 𝐶𝐿𝑖 after 𝑆 can be pruned.

As shown in Figure 4, we know from the previous example that

for candidate sequence 𝑆 = [𝐶𝐿1], the feasible cluster 𝐶𝐿3 depends
on 𝐶𝐿2. Therefore, we do not need to append 𝐶𝐿3 to 𝑆 for further

sequence growth.

The dependency pruning rule prunes on non-root search nodes

during sequence growth (candidate enumeration) by detecting de-

pendency relationships between feasible clusters. Specifically, if

a feasible cluster 𝐶𝐿𝑖 can be pruned, it means that searching 𝐶𝐿𝑖
directly will lead to the same subsequent search subtree as first

searching the clusters that 𝐶𝐿𝑖 depends on and then searching 𝐶𝐿𝑖 .

Therefore, there is no need to continue searching 𝐶𝐿𝑖 after 𝑆 .

7 EXPERIMENTAL EVALUATION
In this section, we evaluate the effectiveness of the relaxed co-

movement pattern and the scalability of MaxGrowth algorithm.

7.1 Experimental Setup
Datasets. Following previous work [31], we use real GPS trajecto-

ries and road network, including DIDI Chengdu [23] and Singapore

Taxi [9], to generate approximate trajectories recovered from videos.

The idea is to deploy a specified number of cameras on the road

network. Then, the entrance time and exit time from a camera

according to the travel speed estimation and the attributes of the

camera can be roughly estimated from the GPS trajectories.

• Singapore: This is a large-scale cross-camera trajectory

dataset which contains travel routes of 2,756 taxis in the

road network of Singapore over one month.

• Chengdu: This dataset contains cross-camera trajectories

of 12,000 ride-hailing vehicles in Chengdu, China.

Besides these two semi-synthetic datasets from GPS trajectories,

we also construct a real dataset from video data:

• CityFlow [21]: This video dataset contains 215 minutes of

videos collected from 46 cameras spanning 16 intersections

in a mid-sized U.S. city. We adopt the multi-camera multi-

target tracking algorithm [30] to recover travel paths of

objects in the CityFlow videos. The recovered trajectory

dataset includes cross-camera trajectories of 337 unique

objects over a duration of approximately 5 minutes.

Since CityFlow is a small-scale dataset, we employ Singapore

and Chengdu for scalability analysis. CityFlow serves to measure

the effectiveness of relaxed co-movement pattern mining.

Table 2: Statistics of datasets.

Attributes Singapore Chengdu CityFlow
objects 2,756 12,000 337

cameras 37,370 9,476 19

data points 2,458,742 1,841,071 2,563

Avg. trajectory length

(# cameras per vehicle)
892 153 8

Time span per vehicle 6,246s 6,801s 59s

Comparison Setup. In the scalability analysis, we compare Max-

Growth with the baseline algorithm FRB, which is an extension of

previous video-based co-movement pattern miner and presented in

Section 4. For the effectiveness analysis, we compare our proposed

relaxed co-movement pattern (referred to as VPlatoon) with pre-

vious co-movement pattern from [31] (referred to as VConvoy) in

terms of their effectiveness for pattern discovery.

Parameter Setup.We examine the scalability performance w.r.t.

the parameters in Table 3, including four query-related parameters

(𝑚, 𝑘 , 𝑑 and 𝜖) and two database-related parameters object number

and path length. The default parameters are highlighted in bold.

All the experiments are conducted on a server with 3.20GHz

i9-12900K CPU, 256GB of memory and 2TB hard drive.

7.2 Scalability Analysis
Varying m. We first analyze the performance of the relaxed co-

movement pattern mining algorithms w.r.t. group size𝑚. As shown

in Figure 5, when𝑚 is small, MaxGrowth demonstrates remarkably

faster performance than the baseline algorithm FRB. Specifically,

the runtime of MaxGrowth is reduced by two orders of magnitude

when𝑚 = 3 in Chengdu dataset. The high efficiency of MaxGrowth

stems from its ability to avoid the time-consuming verification

of false positives and effectively discard non-maximal candidate

patterns through pruning rules. As𝑚 increases, the performance

gap narrows, with FRB showing similar efficiency to MaxGrowth.

1847

Table 3: Evaluation parameter settings.

Group size𝑚
Singapore 3, 4, 5, 6, 7, 8
Chengdu

Common cameras 𝑘
Singapore

2, 3, 4, 5, 6, 7, 8
Chengdu

Gap tolerance 𝑑
Singapore

0, 1, 2, 3, 4
Chengdu

Proximity 𝜖
Singapore

40, 50, 60, 70, 80, 90, 100
Chengdu

Object number

Singapore 1.5k, 1.7k, 1.9k, 2.1k, 2.3k, 2.5k, 2.7k
Chengdu 0.5k, 2.5k, 4.5k, 6.5k, 8.5k, 10.5k, 12k

Average path length

Singapore 200, 300, 400, 500, 600, 700, 800
Chengdu 90, 100, 110, 120, 130, 140, 150

3 4 5 6 7 8
m

10

100

To
ta

l E
la

ps
ed

 T
im

e
(s

)

FRB MaxGrowth

(a) Singapore

3 4 5 6 7 8
m

1

10

100

To
ta

l E
la

ps
ed

 T
im

e
(s

)

FRB MaxGrowth

(b) Chengdu

Figure 5: Varying𝑚.

This is mainly due to the significant reduction in the number of

total valid candidate patterns.

Varying 𝜖 . We examine the performance with increasing 𝜖 in Fig-

ure 6. MaxGrowth consistently outperforms FRB mainly because

FRB requires heavy computation overhead to verify the constraint

of temporal proximity. In contrast, the candidate enumeration

scheme in MaxGrowth eliminates the verification cost. When 𝜖

is large, the search space grows dramatically. The widened perfor-

mance gap between MaxGrowth and its competitor again validates

the effectiveness of its enumeration and pruning schemes.

40 50 60 70 80 90 100
ε

10

100

1000

To
ta

l E
la

ps
ed

 T
im

e
(s

)

FRB MaxGrowth

(a) Singapore

40 50 60 70 80 90 100
ε

1

10

100

1000

To
ta

l E
la

ps
ed

 T
im

e
(s

)

FRB MaxGrowth

(b) Chengdu

Figure 6: Varying 𝜖.

Varying k. As depicted in Figure 7, the MaxGrowth algorithm is

not sensitive to the variation of 𝑘 . This is because its candidate pat-

terns are progressively enumerated with increasing route length.

In other words, regardless of 𝑘 , all candidate patterns that meet

the group size and temporal proximity constraints are enumerated

before undergoing the maximal pattern mining. The slight decline

observed in the MaxGrowth algorithm is attributed to the reduction

in the number of valid candidate patterns as 𝑘 increases, leading to

a lower computational cost for identifying maximal patterns. In con-

trast, FRB employs sequence mining to filter candidates with route

lengths shorter than 𝑘 , allowing more candidates to be excluded as

𝑘 grows, thus reducing the overall mining overhead.

2 3 4 5 6 7 8
k

10

100

To
ta

l E
la

ps
ed

 T
im

e
(s

)

FRB MaxGrowth

(a) Singapore

2 3 4 5 6 7 8
k

1

10

100

To
ta

l E
la

ps
ed

 T
im

e
(s

)

FRB MaxGrowth

(b) Chengdu

Figure 7: Varying k.

Varying d. Recall that we introduce an additional parameter 𝑑

in this work to allow missing cameras for relaxed co-movement

pattern mining. When 𝑑 = 0, the problem is reduced to traditional

co-movement patternmining. FRB demonstrates comparable perfor-

mance with MaxGrowth because FRB is customized for the setting

with consecutive camera sequences. When the condition is relaxed,

its running time increases remarkably, paying large amount of com-

putation overhead for candidate verification. MaxGrowth achieves

the best performance and its running time remains stable with in-

creasing 𝑑 . When 𝑑 = 4, the time cost of MaxGrowth is two orders

of magnitude lower than FRB.

0 1 2 3 4
d

10

100

To
ta

l E
la

ps
ed

 T
im

e
(s

)

FRB MaxGrowth

(a) Singapore

0 1 2 3 4
d

1

10

100

1000
To

ta
l E

la
ps

ed
 T

im
e

(s
)

FRB MaxGrowth

(b) Chengdu

Figure 8: Varying d.

Varying Object Number. We continue to analyze the performance

with respect to database-related parameters. The results for increas-

ing dataset cardinality are presented in Figure 9. The outcomes

share similar patterns with previous experiments — the running

time increases with higher number of objects and the performance

gap is widened with larger-scale dataset. In Chengdu, the running

time of FRB is two orders of magnitude higher than MaxGrowth.

Varying Path Length. In Figure 10, we examine the performance

with increasing travel path length for the moving vehicles. We

construct subsets of Singapore and Chengdu with increasing path

length. MaxGrowth is also scalable to this parameter and outper-

forms FRB with a large margin.

1848

1500 1700 1900 2100 2300 2500 2700
Number of Objects

10

100

To
ta

l E
la

ps
ed

 T
im

e
(s

)

FRB MaxGrowth

(a) Singapore

500 2500 4500 6500 8500 1050012000
Number of Objects

1

102

104

To
ta

l E
la

ps
ed

 T
im

e
(s

)

FRB MaxGrowth

(b) Chengdu

Figure 9: Varying object number.

200 300 400 500 600 700 800
Average Path Length

1

10

100

To
ta

l E
la

ps
ed

 T
im

e
(s

)

FRB MaxGrowth

(a) Singapore

90 100 110 120 130 140 150
Average Path Length

1

10

100

To
ta

l E
la

ps
ed

 T
im

e
(s

)

FRB MaxGrowth

(b) Chengdu

Figure 10: Varying path length.

7.3 In-Depth Analysis of MaxGrowth
Running Time Breakdown Analysis. To further validate the

effectiveness of the proposed techniques in MaxGrowth, we first

perform a breakdown analysis on the running time of each com-

ponent, including candidate generation, validness verification and

dominance verification. Table 4 reports the time cost of each com-

ponent in FRB and MaxGrowth. The cost of validness verification

is the main performance bottleneck for FRB in both Singapore and

Chengdu datasets. MaxGrowth can eliminate the requirement for

candidate verification and thus save considerable amount of verifi-

cation cost. Meanwhile, the candidate generation and dominance

verification costs of FRB are also higher than those of MaxGrowth.

This is because FRB cannot effectively avoid the search and gener-

ation of dominated non-maximal candidate patterns, leading to a

larger search space during candidate generation and increased cost

for dominance verification. In contrast, MaxGrowth significantly

reduces these overheads through two pruning rules for maximal

pattern mining.

Table 4: Running time breakdown analysis.

Datasets Methods
Runtime of the breakdown stage (s)
Candidate

Generation

Validness

Verification

Dominance

Verification

Singapore

FRB 20.2 43.8 12.1

MaxGrowth 8.5 - 3.0

Chengdu

FRB 92.3 444.5 96.6

MaxGrowth 5.3 - 2.3

Ablation Study.We conduct ablation experiments to further inves-

tigate the impact of pruning rules on MaxGrowth. We design three

additional variants of MaxGrowth. Among these variants, MG-Root

employs only the root pruning rule, MG-Dep uses only the de-

pendency pruning rule, and MG-NoPrune does not utilize either

pruning rule. As shown in Table 5, both the root pruning rule and

the dependency pruning rule effectively prune redundant search

subtrees, resulting in the clear performance improvement. More-

over, because the two rules prune at different levels of the search

tree, MaxGrowth can further enhance efficiency. In the Chengdu

dataset that contains numerous redundant patterns, while the root

pruning rule achieves a 50% performance improvement through

greatly pruning the search tree at the root node, many non-maximal

patterns still emerge in subsequent search subtrees, which limits

overall performance. In this scenario, the dependency pruning rule

provides a decisive enhancement by enabling fine-grained pruning

during pattern growth.

Table 5: Effect of candidate pruning.

Datasets The number of non-maximal patterns
MG-NoPrune MG-Root MG-Dep MaxGrowth

Singapore 2,097,851 1,402,269 59,329 31,067

Chengdu 15,961,467 8,568,710 5,424 2,075

7.4 Effectiveness Analysis
In this part, we perform quality analysis on the relaxed co-movement

patterns discovered according to our problem definition. The ex-

periment is conducted on the real video dataset CityFlow, which

was designed for the task of multi-camera multi-object tracking.

We use its annotated trajectories as groundtruth and derive golden

co-movement patterns. 𝐹1-score is used as the performance metric.

A discovered co-movement pattern is considered a positive match

with some golden pattern by default if the intersection over union

(𝐼𝑜𝑈) of their objects and time span are both greater than 80%.

Table 6: Comparison of pattern discovery effectiveness.

Pattern Type F1-score Precision Recall
VConvoy 0.719 0.861 0.617

VConvoy-TMerge 0.742 0.874 0.644

VPlatoon 0.840 0.826 0.855

To evaluate the effectiveness of VPlatoon and VConvoy, we

perform these two algorithms on the trajectories recovered from

CityFlow. Additionally, we construct a competitive baseline that

applies the idea of TMerge [3] as a post-processing step to improve

the accuracy of the recovered trajectories. Certain trajectory seg-

ments split by the missing observations can be merged according

to spatial and temporal clues. The new baseline performs VConvoy

against the refined dataset and we call it VConvoy-TMerge. As to

the pattern parameters, we set 𝑚 = 2, 𝑘 = 3, 𝜖 = 60, and 𝑑 = 3.

Since the input dataset is small-scale, it takes 0.03 seconds to run

the TCS-tree algorithm for VConvoy pattern mining and 0.05 sec-

onds to run MaxGrowth for VPlatoon pattern mining. However,

VConvoy-TMerge incurs a considerable cost of 5.4 hours to obtain

the refined dataset with parameters 𝜏 = 800,000 and 𝐾 = 0.001.

The 𝐹1-score of discovered patterns are reported in Table 6. VPla-

toon achieves significantly higher 𝐹1-score, because VConvoy has

missed many valid patterns and its recall is remarkably lower than

1849

VPlatoon. In terms of precision, though the pattern is relaxed, the

precision of VPlatoon is still comparable to VConvoy, implying that

the number of false positive patterns introduced by pattern relax-

ation is limited. Moreover, there is a slight performance improve-

ment for VConvoy-TMerge, yet its 𝐹1-score still lags behind VPla-

toon by nearly 10%. This implies that current trajectory accuracy

improvement techniques alone may be insufficient for VConvoy to

discover most of the missing patterns. In contrast, our proposed

VPlatoon demonstrates greater effectiveness at a lower cost.

To better understand the relationship between our introduced

parameter 𝑑 and the patterns discovered by VPlatoon, we present

in Figure 11 the comparison of VPlatoon-mined patterns with the

ground truth across different values of 𝑑 . As 𝑑 increases, the preci-

sion gradually decreases while the recall increases, with the optimal

𝐹1-score achieved at 𝑑 = 3. This is because parameter 𝑑 controls the

degree of relaxation by adjusting the distance between cameras in

the common route. Thus, a larger 𝑑 enables the discovery of more

patterns but also introduces potential irrelevant results which may

reduce the precision.

1 2 3 4
d

0.80

0.82

0.84

0.86

0.88

M
et

ric
 V

al
ue

0.84

0.83
0.83

0.81

0.83

0.85
0.855

0.863

F1-score
Precision
Recall

Figure 11: Pattern quality with varying 𝑑 .

In the next examination, we examine the sensitivity to the ac-

curacy of offline trajectory recovery algorithms. Specically, we

inject noise into the recovered trajectories to control the degree

of IDF1 [19], which is a popular metric for the accuracy of multi-

object tracking. In terms of noise injection operators, we randomly

perform trajectory shift, node deletion and ID switches to construct

degraded trajectories. Specifically, the trajectory shift operator off-

sets time frame and bounding box values in a segment of the tracked

trajectory, the node deletion operator removes a specific tracked

segment, and the ID switch operator replaces the moving object of

a segment of the tracked trajectory with another random object.

Figure 12 presents the comparison of the VPlatoon and VConvoy-

mined patterns with the ground truth at different accuracies of input

trajectories. We observe that VPlatoon achieves a clear advantage

in 𝐹1-score for both low and high accuracy trajectories. Our relaxed

definition of co-movement pattern can identify more high-quality

patterns while introducing negligible irrelevant results.

7.5 Case Study
Finally, we present a case study in Figure 13 to further demon-

strate the effectiveness of VPlatoon. It visualizes representative

co-movement patterns from the CityFlow dataset with parameters

𝑚 = 2, 𝑘 = 3, 𝜖 = 12s, and 𝑑 = 2. More examples are also available in

0.5 0.6 0.7 0.8 0.9
IDF1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F 1
-s

co
re

0.48

0.57

0.73

0.81

0.89

0.56

0.67

0.84
0.89

0.94Previous Co-movement Pattern
Our Relaxed Co-movement Pattern

Figure 12: Pattern quality with varying trajectory accuracies.

our technical report [1]. In Figure 13, 𝑜398 experiences ID switches

at both cameras 𝑐19 and 𝑐21 due to the differing viewpoints, causing

VConvoy to detect two separate patterns. In contrast, VPlatoon

correctly identifies that these two vehicles maintain close motion

along the entire route between cameras 𝑐16 and 𝑐25, confirming its

discovery effectiveness under flawed video tracking and trajectory

recovery algorithms.

Real trajectories VPlatoon

c16

c17

c19
c21

c22

c24

c18

c20

c23

c25

o398

o398

o352

o398

o352

o352

o398

o352

o352

VConvoy

The group of objects The common route Time Span

𝐨𝟑𝟓𝟐, 𝐨𝟑𝟗𝟖 𝐜𝟏𝟔 → 𝐜𝟏𝟕 → ⋯ → 𝐜𝟐𝟓 𝟏𝟎𝟎. 𝟔𝐬, 𝟏𝟖𝟑. 𝟏𝐬

Figure 13: The visualization of a VPlatoon pattern from
videos with vehicle mis-matching.

8 CONCLUSION
In this paper, we propose a relaxed definition of co-movement pat-

tern from surveillance videos, which uncovers more comprehensive

interesting patterns in inaccurately recovered trajectories. We de-

vise a baseline based on previous video-based co-movement pattern

mining. A novel enumeration framework called MaxGrowth is also

proposed. It efficiently identifies all maximal relaxed co-movement

patterns through eliminating the requirement for candidate ver-

ification and utilizing the further developed two pruning rules.

Extensive experiments confirm the efficiency of MaxGrowth and

the effectiveness of our proposed pattern definition.

In the future, it would be interesting to leverage probabilis-

tic models to develop more general and robust definitions of co-

movement patterns. In addition, distributed optimization for co-

movement patternmining from video data could also be a promising

research direction.

ACKNOWLEDGMENTS
The work is supported by the National Key Research and Develop-

ment Project of China (2022YFF0902000), the Fundamental Research

Funds for the Central Universities (226-2024-00145, 226-2024-00216),

and the Key Research Program of Zhejiang Province (2023C01037).

1850

REFERENCES
[1] Yijun Bei, Teng Ma, Dongxiang Zhang, Sai Wu, Kian-Lee Tan, and Gang Chen.

2024. Mining Platoon Patterns from Traffic Videos. arXiv:2412.20177 [cs.CV]

https://arxiv.org/abs/2412.20177

[2] Marc Benkert, Joachim Gudmundsson, Florian Hübner, and Thomas Wolle. 2008.

Reporting flock patterns. Computational Geometry 41, 3 (2008), 111–125. https:

//doi.org/10.1016/j.comgeo.2007.10.003

[3] Daren Chao, Yueting Chen, Nick Koudas, and Xiaohui Yu. 2023. Track merging

for effective video query processing. In 2023 IEEE 39th International Conference
on Data Engineering (ICDE). IEEE, 164–176.

[4] Lu Chen, Yunjun Gao, Ziquan Fang, Xiaoye Miao, Christian S Jensen, and Chen-

juan Guo. 2019. Real-time distributed co-movement pattern detection on stream-

ing trajectories. Proceedings of the VLDB Endowment 12, 10 (2019), 1208–1220.
[5] Lu Chen, Yunjun Gao, Xinhan Li, Christian S Jensen, and Gang Chen. 2017. Effi-

cient Metric Indexing for Similarity Search and Similarity Joins. IEEE Transactions
on Knowledge and Data Engineering 29, 3 (2017), 556–571.

[6] Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cremers,

Ian Reid, Stefan Roth, Konrad Schindler, and Laura Leal-Taixé. 2020. Mot20:

A benchmark for multi object tracking in crowded scenes. arXiv preprint
arXiv:2003.09003 (2020).

[7] Xin Ding, Lu Chen, Yunjun Gao, Christian S Jensen, and Hujun Bao. 2018. Ul-

TraMan: A unified platform for big trajectory data management and analytics.

Proceedings of the VLDB Endowment 11, 7 (2018), 787–799.
[8] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-

based algorithm for discovering clusters in large spatial databases with noise. In

kdd, Vol. 96. 226–231.
[9] Qi Fan, Dongxiang Zhang, Huayu Wu, and Kian-Lee Tan. 2016. A general and

parallel platform for mining co-movement patterns over large-scale trajectories.

Proceedings of the VLDB Endowment 10, 4 (2016), 313–324.
[10] Joachim Gudmundsson andMarc Van Kreveld. 2006. Computing longest duration

flocks in trajectory data. In Proceedings of the 14th annual ACM international
symposium on Advances in geographic information systems. 35–42.

[11] Yuhang He, Jie Han, Wentao Yu, Xiaopeng Hong, Xing Wei, and Yihong Gong.

2020. City-scale multi-camera vehicle tracking by semantic attribute parsing

and cross-camera tracklet matching. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops. 576–577.

[12] Hoyoung Jeung, Heng Tao Shen, and Xiaofang Zhou. 2008. Convoy queries in

spatio-temporal databases. In 2008 IEEE 24th International Conference on Data
Engineering. IEEE, 1457–1459.

[13] Hoyoung Jeung,Man Lung Yiu, Xiaofang Zhou, Christian S. Jensen, andHeng Tao

Shen. 2008. Discovery of convoys in trajectory databases. Proc. VLDB Endow. 1,
1 (aug 2008), 1068–1080. https://doi.org/10.14778/1453856.1453971

[14] Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. 2005. On discovering

moving clusters in spatio-temporal data. In Advances in Spatial and Temporal
Databases: 9th International Symposium, SSTD 2005, Angra dos Reis, Brazil, August
22-24, 2005. Proceedings 9. Springer, 364–381.

[15] Yuxuan Li, James Bailey, and Lars Kulik. 2015. Efficientmining of platoon patterns

in trajectory databases. Data & Knowledge Engineering 100 (2015), 167–187.

[16] Zhenhui Li, Bolin Ding, Jiawei Han, and Roland Kays. 2010. Swarm: Mining

relaxed temporal moving object clusters. Proceedings of the VLDB Endowment 3,
1-2 (2010), 723–734.

[17] Yiyang Liu, Hua Dai, Bohan Li, Jiawei Li, Geng Yang, and JunWang. 2021. ECMA:

an efficient convoy mining algorithm for moving objects. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management.
1089–1098.

[18] Faisal Moeen Orakzai, Toon Calders, and Torben Bach Pedersen. 2019. k/2-hop:

fast mining of convoy patterns with effective pruning. Proceedings of the VLDB
Endowment 12, 9 (2019), 948–960.

[19] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and Carlo Tomasi.

2016. Performance measures and a data set for multi-target, multi-camera

tracking. In European conference on computer vision. Springer, 17–35.
[20] Peize Sun, Jinkun Cao, Yi Jiang, Zehuan Yuan, Song Bai, Kris Kitani, and Ping

Luo. 2022. Dancetrack: Multi-object tracking in uniform appearance and diverse

motion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 20993–21002.

[21] Zheng Tang, Milind Naphade, Ming-Yu Liu, Xiaodong Yang, Stan Birchfield,

Shuo Wang, Ratnesh Kumar, David Anastasiu, and Jenq-Neng Hwang. 2019.

Cityflow: A city-scale benchmark for multi-target multi-camera vehicle tracking

and re-identification. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 8797–8806.

[22] Panrong Tong, Mingqian Li, Mo Li, Jianqiang Huang, and Xiansheng Hua. 2021.

Large-scale vehicle trajectory reconstruction with camera sensing network. In

Proceedings of the 27th Annual International Conference on Mobile Computing and
Networking. 188–200.

[23] Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Lei Chen, Jieping Ye, and Ke Xu. 2018.

A unified approach to route planning for shared mobility. Proceedings of the
VLDB Endowment 11, 11 (2018), 1633.

[24] Gaoang Wang, Yizhou Wang, Renshu Gu, Weijie Hu, and Jenq-Neng Hwang.

2022. Split and connect: A universal tracklet booster for multi-object tracking.

IEEE Transactions on Multimedia 25 (2022), 1256–1268.
[25] Jianyong Wang and Jiawei Han. 2004. BIDE: Efficient mining of frequent closed

sequences. In Proceedings. 20th international conference on data engineering. IEEE,
79–90.

[26] Sheng Wang, Zhifeng Bao, J Shane Culpepper, Timos Sellis, and Xiaolin Qin.

2019. Fast large-scale trajectory clustering. Proceedings of the VLDB Endowment
13, 1 (2019), 29–42.

[27] Yida Wang, Ee-Peng Lim, and San-Yih Hwang. 2006. Efficient mining of group

patterns from user movement data. Data & Knowledge Engineering 57, 3 (2006),

240–282.

[28] Munkh-Erdene Yadamjav, Zhifeng Bao, Baihua Zheng, Farhana M Choudhury,

and Hanan Samet. 2020. Querying recurrent convoys over trajectory data. ACM
Transactions on Intelligent Systems and Technology (TIST) 11, 5 (2020), 1–24.

[29] Xifeng Yan, Jiawei Han, and Ramin Afshar. 2003. Clospan: Mining: Closed

sequential patterns in large datasets. In Proceedings of the 2003 SIAM international
conference on data mining. SIAM, 166–177.

[30] Xipeng Yang, Jin Ye, Jincheng Lu, Chenting Gong, Minyue Jiang, Xiangru Lin,

Wei Zhang, Xiao Tan, Yingying Li, Xiaoqing Ye, et al. 2022. Box-grained reranking

matching for multi-camera multi-target tracking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 3096–3106.

[31] Dongxiang Zhang, Teng Ma, Junnan Hu, Yijun Bei, Kian-Lee Tan, and Gang

Chen. 2023. Co-Movement Pattern Mining from Videos. Proc. VLDB Endow. 17,
3 (nov 2023), 604–616. https://doi.org/10.14778/3632093.3632119

1851

https://arxiv.org/abs/2412.20177
https://arxiv.org/abs/2412.20177
https://doi.org/10.1016/j.comgeo.2007.10.003
https://doi.org/10.1016/j.comgeo.2007.10.003
https://doi.org/10.14778/1453856.1453971
https://doi.org/10.14778/3632093.3632119

	Abstract
	1 Introduction
	2 RELATED WORK
	3 Problem Definition
	4 Baseline Algorithm
	5 Candidate Enumeration Framework
	5.1 Cluster Representation
	5.2 The Candidate Enumeration Scheme

	6 Maximal Pattern Mining
	6.1 The Root Pruning Rule
	6.2 The Dependency Pruning Rule

	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Scalability Analysis
	7.3 In-Depth Analysis of MaxGrowth
	7.4 Effectiveness Analysis
	7.5 Case Study

	8 Conclusion
	Acknowledgments
	References

