
GQL and SQL/PGQ: Theoretical Models and Expressive Power
Amélie Gheerbrant

Université Paris Cité, CNRS, IRIF
Paris, France
amelie@irif.fr

Leonid Libkin
RelationalAI & University of Edinburgh

Paris & Edinburgh, UK & France
l@libk.in

Liat Peterfreund
School of CS, Hebrew University

Jerusalem, Israel
liat.peterfreund@mail.huji.ac.il

Alexandra Rogova
Université Paris Cité, CNRS, IRIF

Paris, France
rogova@irif.fr

ABSTRACT
SQL/PGQ and GQL are very recent international standards for
querying property graphs: SQL/PGQ specifies how to query rela-
tional representations of property graphs in SQL, while GQL is a
standalone language for graph databases. The rapid industrial de-
velopment of these standards left the academic community trailing
in its wake. While digests of the languages have appeared, we do
not yet have concise foundational models like relational algebra
and calculus for relational databases that enable the formal study
of languages, including their expressiveness and limitations. At the
same time, work on the next versions of the standards has already
begun, to address the perceived limitations of their first versions.

Motivated by this, we initiate a formal study of SQL/PGQ and
GQL, concentrating on their concise formal model and expressive-
ness. For the former, we define simple core languages – Core PGQ
and Core GQL – that capture the essence of the new standards, are
amenable to theoretical analysis, and clarify the difference between
PGQ’s bottom up evaluation versus GQL’s linear, or pipelined ap-
proach. Equipped with these models, we both confirm the necessity
to extend the language to fill in the expressiveness gaps and identify
the source of these deficiencies. We complement our theoretical
analysis with an experimental study, demonstrating that existing
workarounds in full GQL and PGQ are impractical, further under-
scoring the necessity to correct deficiencies in language design.

KEYWORDS
Graph databases, GQL, SQL/PGQ, Cypher, pattern matching, ex-
pressive power, language design

PVLDB Reference Format:
Amelie Gheerbrant, Leonid Libkin, Liat Peterfreund, and Alexandra
Rogova. GQL and SQL/PGQ: Theoretical Models and Expressive Power.
PVLDB, 18(6): 1798 - 1810, 2025.
doi:10.14778/3725688.3725707

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://gitlab.com/alexandra-rogova/neo4j_increasing_value_test.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 6 ISSN 2150-8097.
doi:10.14778/3725688.3725707

1 INTRODUCTION
In the past two years, ISO published two new international stan-
dards. SQL/PGQ, released in 2023, as Part 16 of the SQL standard,
provides a mechanism for representing and querying property
graphs in relational databases using SQL. GQL, released in 2024, is a
standalone graph query language that does not rely on a relational
representation of graphs. SQL/PGQ and GQL are developed in the
same ISO committee that has been maintaining and enhancing the
SQL standard for decades. These developments reflect the interest
of relational vendors in implementing graph extensions and the
emergence of a new native graph database industry.

There is however a notable difference between this standard-
ization effort and that of SQL as it happened in the 1980s. Before
SQL was designed, strong theoretical and practical foundations of
relational databases had been developed. Equivalence of relational
algebra and calculus (first-order logic) had been known; these pro-
vided very clean abstractions of relational languages that served
as the basis of relational database theory. This has had a profound
impact on both the theory and the practice of database systems.
For example, a question of central importance in the early days of
relational databases was expressiveness of query languages, with
Fagin, Aho, Ullman, Gaifman, and Vardi independently showing
that relational calculus cannot define the transitive closure of a
relation [4, 18, 23]. This led to subsequent development of Datalog
and culminated in the inclusion of linear recursive queries by the
SQL standard in 1999 [17].

When it comes to graphs, the adoption of languages by industry
runs well ahead of the development of their foundational under-
pinnings. For many years, work on graph queries concentrated on
regular path queries (RPQs) [14] and their multiple extensions (e.g.,
[5, 7, 8, 12, 13]). These however assume a much simplified model
in which neither nodes nor edges have properties, unlike property
graphs preferred in industry. A step in that direction is the model
of data graphs in which nodes but not edges carry data [30]. To
this day, these models are the basis of work on query language
expressiveness [10, 32]. But we will see soon that from the point of
view of GQL and SQL/PGQ, a full property graph model makes a
huge difference. Existing theoretical languages such as GXPath [30],
regular queries [34], STRUQL [19], while having a direct influence
on the design of GQL [35], are not a good reflection of it.

At the same time, extensive discussions in the standards commit-
tees are already under way to identify new features of SQL/PGQ and
GQL, based on their perceived, rather than proved, shortcomings
[31, 43]. These considerations motivate our main contributions:

1798

https://orcid.org/0000-0002-8936-9829
https://orcid.org/0000-0002-6698-2735
https://orcid.org/0000-0002-4788-0944
https://orcid.org/0000-0003-3824-445X
https://doi.org/10.14778/3725688.3725707
https://gitlab.com/alexandra-rogova/neo4j_increasing_value_test
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3725688.3725707
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(1) We provide concise formal models of SQL/PGQ and GQL;
(2) We confirm the intuition that certain queries of interest

to customers of graph databases cannot be expressed by
SQL/PGQ and GQL patterns;

(3) We compare GQL with recursive SQL and show that the
latter is more powerful; and

(4) We show experimentally that methods currently allowed
in SQL/PGQ and GQL to overcome these limitations are
impractical, even for small-sized graphs.

We now elaborate more on these goals.

Formal models of GQL and SQL/PGQ. The workhorse of graph
query languages is pattern matching. In Cypher, PGQ, GQL and
others, pattern matching turns a graph into a table; the remaining
operations of the language manipulate that table. In fact in GQL and
SQL/PGQ pattern matching is identical; it is only how its results are
processed that is different. In SQL/PGQ, a graph is a view defined on
a relational database. The result of patternmatching is simply a table
in the FROM clause of a SQL query that may use other relations in
the database. GQL, on the other hand, is oblivious to how a graph is
stored, and the table resulting from patternmatching is manipulated
by a sequence of operators that modify it, in an imperative style
that is referred to as “linear composition”.

To produce a formal model of these languages, we use the rela-
tionship between SQL and relational calculus/algebra as the guiding
principle. SQL has a multitude of features: bag semantics, nulls,
arithmetic operations, aggregate functions, outerjoins, complex
datatypes such as arrays. Some of these break the theoretical model
of First Normal Form (1NF) relations which are sets of tuples of
atomic values. Relational algebra and calculus get rid of the extra
baggage that SQL is forced to add to be usable in practice, and yet
provide a simple core over sets of tuples of atomic values.

Although some mathematical abstractions of GQL and SQL/PGQ
exist [20, 21], they are not yet at the same level as RA or relational
calculus, in terms of their simplicity and utility in formally proving
results. For example, their formalizations of pattern matching come
with a complex typing system and the use of conditional and group
variables that create nulls and set-valued attributes. To achieve
our goal of creating a simple and usable abstraction, we need to:
simplify the model of pattern matching, to avoid outputting non-
1NF relations, and to formalize the linear composition of Cypher
and GQL. This allows us to define two languages – Core PGQ and
Core GQL – as RA or linear composition of relational operators on
top of pattern matching outputs.

Limitations of pattern matching. Many pattern matching tasks
require iterating patterns, notably whenwe do not know a priori the
length of a path we are searching for (a basic example is reachability
in graphs). The way pattern matching is designed in Cypher, GQL,
and SQL/PGQ, makes it easy to compare two consecutive iterations
of a pattern based on property values of their nodes, but at the same
time it is very hard to compare property values in edges.

To illustrate this, assumewe have a chain of transfers between ac-
counts: accounts are nodes, with property values such as “balance”,
and transfers are edges, with property values such as “amount”
and “timestamp”, between accounts. It is very easy to write a query
looking for a chain of transfers such that the balance increases in

accounts along the chain. It appears to be very hard or impossi-
ble to write a query looking for a chain of transfers such that the
timestamp increases along the path.

Demand for these queries occurs often in practice, which forced
several companies participating in GQL design in ISO to start think-
ing of language extensions that will permit such queries [31, 43].
However, before making non-trivial language enhancements, it
would be good to actually know that newly added features cannot
be achieved with what is already in the language.

We show that this is indeed the case. Equipped with our formal-
ization of the pattern language, we prove that it cannot express a
large class of queries that analyze how property values of edges
change along matched paths; of these the increasing value in edges
query is the simplest. This follows in fact from a more general
property that is akin to a pumping lemma for paths that can be
selected by GQL and PGQ patterns.

GQL vs Recursive SQL vs Datalog. When the ubiquitous CRPQs
was introduced in [13], it was shown that a Datalog-like language
based on CRPQs has the power of transitive closure logic [29] and
captures the complexity class NLogSpace of problems solved by
nondeterministic Turing machines whose work tape used loga-
rithmic number of bits in terms of the size of the input (this class
is contained in polynomial time). Since then, NLogSpace is the
yardstick complexity class we compare graph languages to, and
Datalog – that subsumes the transitive closure logic – is a typical
language used to understand the power of graph querying. Datalog
is also the basis of SQL’s recursive common table expressions (CTE)
introduced by the WITH RECURSIVE clause. In fact, in SQL only
linear Datalog rules are allowed: in them, the recursively defined
predicate can be used at most once.

Motivated by this, we compare the power of GQL with recursive
SQL and linear Datalog. We show that there are queries that are
expressible in the latter, have very low data complexity, and yet are
not expressible in GQL. We explain how this points out deficiencies
of GQL design that will hopefully be addressed in the future.

Experimental evaluation: can graph DBMSs overcome these limita-
tions? Real-life systems go beyond basic calculi; SQL with recursion
and aggregates is in fact Turing-complete and thus can express all
computable queries. Similarly, GQL, PGQ, Cypher and others have
many tools at their disposal to let users write very powerful queries.
In fact queries such as increasing value in edges are expressible in
real-life Cypher and PGQ, though in a very convoluted way. Since
the complement of the query is easily expressible, one can look for
all the paths and then subtract the complement. Intuitively, such a
way should not work in practice as the number of paths in a graph
grows exponentially.

This is precisely what we confirm using three different imple-
mentation of graph database queries: Neo4j and Memgraph for
Cypher, and DuckDB for SQL/PGQ. Native graph systems can han-
dle just a few dozen nodes before 100% timeout rate is observed;
DuckDB does marginally better as it computes fewer paths to start
with. It is important to note that this is not a critique of the systems
tested, as the indirect method of computing the query inherently
requires an exponential number of paths. Instead, this confirms that
no workaround can bypass the inherent expressibility limitations.

1799

Since inexpressibility results are commonly used to identify de-
ficiencies in language design, and serve as a motivation to increase
language expressiveness, we shall at the end of the paper discuss
what these results tell us in terms of new features of GQL and
SQL/PGQ that will be required.

Related work. While industry is dominated by property graphs
(Neo4j [22], Oracle [40], Amazon [9], TigerGraph [16], etc), much of
academic literature still works with the model of labeled graphs and
query languages based on RPQs, with some exceptions [2, 30, 36].
However, the rare models focused on property graphs appeared
before the new standards became available, and their analyses of
expressiveness and language features do not apply to GQL and
SQL/PGQ. The first commercial language for property graphs was
Cypher, and it was fully formalized in [22]. As GQL and SQL/PGQ
were being developed, a few academic papers appeared. For exam-
ple, [15] gave an overview of their patternmatching facilities, which
was then further analyzed in [20], and [39] provided a description
of an early implementation of SQL/PGQ.

In [21], a digest of GQL suitable for the research community
was presented. While a huge improvement compared to the actual
standard from the point of view of clarity, the presentation of [21]
replaced 500 pages of the text of the Standard (notoriously hard
to read) by a one-page long definition of the syntax, followed by
a four-pages long definition of the semantics. It achieved a two
orders of magnitude reduction in the size of the definition of the
language, but 5 pages is still way too long for “Definition 1”. The
language of [20] is closer to our goal, but it is not well-suited to
the level reasoning we require here as it still contains still too
much of the GQL and PGQ baggage, for example non-1NF relations,
and a complex type system for singleton, conditional, and group
variables that we avoid here entirely and replace by the very familiar
definition of free variables.

Another element missing from the literature is a proper investi-
gation of linear composition. Initially introduced in Cypher, it was
then adopted in a purely relational language PRQL [33] (positioned
as “pipelined” alternative to SQL), embraced by GQL, and influ-
enced the designed of the piped SQL syntax [37]; however formal
analyses of this way of building complex queries are lacking.

2 GQL AND SQL/PGQ BY EXAMPLES
We illustrate GQL and SQL/PGQ capabilities using the graph from
Figure 1 and the following money-laundering query: Find a pair
of friends in the same city who transfer money to each other via a
common friend who lives elsewhere. Notice that we assume that
friendship is a symmetric relation.

In GQL, it will be expressed as query:

MATCH (x)−[:Friends]−>(y)−[:Friends]−>(z)

−[:Friends]−>(x), (x)−[:Owns]−>(acc_x),

(y)−[:Owns]−>(acc_y), (z)−[:Owns]−>(acc_z),

(acc_x)−[t1:Transfer]−>(acc_z)

−[t2:Transfer]−>(acc_y)

FILTER (y.city = x.city) AND (x.city<>z.city)

AND (t2.amount < t1.amount)

RETURN x.name AS name1, y.name AS name2

In SQL/PGQ, a graph is a view of a tabular schema. The graph
from Figure 1 can be represented by the following set of tables:

• Person(p_id,name,city) for people,
• Acc(a_id,type) for accounts,
• Friend(p_id1,p_id2,since) for friendships,
• Owns(a_id,p_id) for ownership and
• Transfer(t_id,a_from,a_to,amount) for transfers.

The property graph view is then defined by a CREATE statement,
part of which is shown below:

CREATE PROPERTY GRAPH Interpol1625 (

VERTEX TABLES
Acc KEY (a_id) LABEL Account PROPERTIES (type)

....

EDGE TABLES
Transfer KEY (t_id)

SOURCE KEY (a_from) REFERENCES Acc

DESTINATION KEY (a_to) REFERENCES Acc

LABEL Transfer PROPERTIES (amount)

....)

This view defines nodes (vertices) and edges of the graph, speci-
fies endpoints of edges, and defines their labels and properties. We
can then query it, using pattern matching to create a subquery:

SELECT T.name_x AS name1, T.name_y AS name2

FROM Interpol1625 GRAPH_TABLE (

MATCH (x)−[:Friends]−>(y)−[:Friends]−>(z)

−[:Friends]−>(x), (x)−[:Owns]−>(acc_x),

(y)−[:Owns]−>(acc_y), (z)−[:Owns]−>(acc_z),

(acc_x)−[t1:Transfer]−>(acc_z)

−[t2:Transfer]−>(acc_y)

COLUMNS x.city AS city_x, y.city AS city_y,

z.city AS city_z,

x.name AS name_x, y.name AS name_y,

t1.amount AS amnt1, t2.amount AS amnt2

) AS T

WHERE T.city_x=T.city_y

AND T.city_x <> T.city_z

AND T.amount1 > T.amount2

Note that in GQL, a sequence of operators can continue after
the RETURN clause. For example, if we want to find large transfers
between the two potential offenders we could simply continue the
first GQL query with extra clauses:

MATCH (u WHERE u.name=name1)

−[t:Transfer]−>

(v WHERE v.name=v2)

FILTER t.amount > 100000

RETURN t.amount AS big_amount

This is what is referred to as linear composition: we can sim-
ply add clauses to the already existing query which apply new
operations to the result of already processed clauses.

In SQL/PGQ, such an operation is also possible, though perhaps
a bit more cumbersome as we would need to put the above PGQ
query as a subquery in FROM and create another subquery for the
second match, then join them on name1 and name2.

1800

Owns

o2

name: Porthos
city: Versailles

Person

p2

Account

a2

type: savings
balance: 3000

Owns

o3

name: Aramis
city: Paris

Person

p3

Account

a3

type: checking
balance: 500

Owns

o1

name: Athos
city: Paris

Person

p1

Account

a1

type: savings
balance: 1000

Friends

since:01/01/1605
f1

Friends

since:02/02/1605
f2

Friends

since:03/03/1605
f3

Transfer

t1

amount: 20000
timestamp: 00001

Transfer

t2

amount: 15000
timestamp: 00002

Figure 1: A labeled property graph

3 PATTERN MATCHING: TURNING
PROPERTY GRAPHS INTO RELATIONS

We define property graphs and pattern matching, the key compo-
nent of GQL and SQL/PGQ, that extracts relations from graphs.

3.1 Property Graphs
We use the standard definition (cf. [20]), and only consider directed
edges. Assume pairwise disjoint countable sets L of labels, K of
keys, Const of constants, N of node ids, and E of edge ids.

Definition 3.1 (Property Graph). A property graph is a tuple
𝐺 = ⟨𝑁, 𝐸, lab, src, tgt, prop⟩ where

• 𝑁 ⊂ N is a finite set of node ids used in 𝐺 ;
• 𝐸 ⊂ E is a finite set of directed edge ids used in 𝐺 ;
• lab : 𝑁 ∪ 𝐸 → 2L is a labeling function that associates

with every node or edge id a (possibly empty) finite set of
labels from L;

• src, tgt : 𝐸 → 𝑁 define source and target of an edge;
• prop : (𝑁 ∪ 𝐸) × K → Const is a partial function that

associates a property value with a node/edge id and a key.

A path in 𝐺 is an alternating sequence 𝑢0𝑒1𝑢1𝑒2 · · · 𝑒𝑛𝑢𝑛 , for
𝑛 ≥ 0, of nodes and edges that starts and ends with a node and so
that each edge 𝑒𝑖 connects the nodes 𝑢𝑖−1 and 𝑢𝑖 for 𝑖 ≤ 𝑛. More
precisely, for each 𝑖 ≤ 𝑛, either src(𝑒𝑖) = 𝑢𝑖−1 and tgt(𝑒𝑖) = 𝑢𝑖
(a forward edge), or src(𝑒𝑖) = 𝑢𝑖 and tgt(𝑒𝑖) = 𝑢𝑖−1 (a backward
edge). Note that 𝑛 = 0 is possible, in which case the path con-
sists of a single node 𝑢0. We shall explicitly spell out paths as
path(𝑢0, 𝑒1, 𝑢1, · · · , 𝑒𝑛, 𝑢𝑛).

Two paths 𝑝 = path(𝑢0, 𝑒0, . . . , 𝑢𝑘) and 𝑝′ = path(𝑢′0, 𝑒
′
0, . . . , 𝑢

′
𝑗
)

concatenate, written as 𝑝 ⊙ 𝑝′, if 𝑢𝑘 = 𝑢′0, in which case their
concatenation 𝑝 ·𝑝′ is defined as path(𝑢0, 𝑒0, . . . , 𝑢𝑘 , 𝑒′0, . . . , 𝑢

′
𝑗
). Note

that a single-node path is a unit of concatenation: 𝑝 · path(𝑢) is
defined iff 𝑢 = 𝑢𝑘 and is equal to 𝑝 .

3.2 Pattern Matching
Pattern matching is the key component of graph query languages.
As already mentioned, an early abstraction of GQL and PGQ pat-
terns was given in [20], but it retained too much of the baggage
of the actual language (non-1NF outputs, nulls, a complex type
system) for language analysis. Thus, here we refine the definitions
from [20] to capture the core concepts of pattern matching, simi-
larly to relational algebra for relational databases. To this end, we
fix an infinite set Vars of variables and define Core GQL and Core
PGQ pattern matching as follows:

𝜓 := (𝑥) | 𝑥→ | 𝑥← | 𝜓1𝜓2 | 𝜓𝑛..𝑚 | 𝜓 ⟨𝜃⟩ | 𝜓1 +𝜓2
where

• 𝑥 ∈ Vars and 0 ≤ 𝑛 ≤ 𝑚 ≤ ∞;
• variables 𝑥 in node and edge patterns (𝑥), 𝑥→, and

𝑥← are
optional,

• 𝜓 ⟨𝜃⟩ is a conditional pattern, and conditions are given by
𝜃, 𝜃 ′ := 𝑥 .𝑘 = 𝑥 ′ .𝑘′ | 𝑥 .𝑘 < 𝑥 ′ .𝑘′ | ℓ (𝑥) | 𝜃∨𝜃 ′ | 𝜃∧𝜃 ′ | ¬𝜃
where 𝑥, 𝑥 ′ ∈ Vars and 𝑘, 𝑘′ ∈ K ;
• 𝜓1 + 𝜓2 is only defined when their sets of free variables

FV (𝜓1) and FV (𝜓2) are equal.
The sets of free variables are defined as follows:

• FV
(
(𝑥)

)
= FV

(
𝑥→
)
= FV

(
𝑥←
)
:= {𝑥};

• FV (𝜓1 +𝜓2) := FV (𝜓1)
• FV (𝜓1𝜓2) := FV (𝜓1) ∪ FV (𝜓2)
• FV (𝜓𝑛..𝑚) := ∅
• FV (𝜓 ⟨𝜃⟩) := FV (𝜓)

A pattern produces an output that consists of graph elements
and their properties. Such an output Ω is a (possibly empty) tuple
whose elements are either variables 𝑥 or properties 𝑥 .𝑘 . A pattern
with output, or, pattern, for simplicity, is an expression 𝜓Ω such
that every variable present in Ω is in FV (𝜓).

1801

Correspondence with Cypher and GQL. For the reader familiar
with Cypher and/or GQL, we explain how our fomalization com-
pares with these languages’ patterns.

• (𝑥) is a node pattern that binds the variable 𝑥 to a node;
• 𝑥→ and

𝑥← are forward edge and backward edge patterns,
that also bind 𝑥 to the matched edge;

• 𝜓1𝜓2 is the concatenation of patterns,
• 𝜓𝑛..𝑚 is the repetition of𝜓 between 𝑛 and𝑚 times (with a

possibility of𝑚 = ∞)
• 𝜓 ⟨𝜃⟩ corresponds to WHERE in patterns, conditions involve

(in)equalities between property values, checking for labels,
and their Boolean combinations;

• 𝜓1 +𝜓2 is the union of patterns;
• 𝜓Ω corresponds to the output forming clauses RETURN of

Cypher and GQL and COLUMNS of SQL/PGQ, with Ω listing
the attributes of returned relations.

Semantics. To define the semantics, we use set Values which is
the union of Const∪N∪ E. That is, its elements are node and edge
ids, or values of properties, i.e., precisely the elements that can
appear as outputs of patterns.

The semantics of a path pattern𝜓 , with respect to a graph𝐺 , is a
set of pairs (𝑝, 𝜇) where 𝑝 is a path and 𝜇 is a mapping FV (𝜓) →
Values. Recall that we write 𝜇∅ for the unique empty mapping with
dom(𝜇) = ∅.

For the semantics of path patterns with output 𝜓Ω we define
𝜇Ω : Ω → Values as the projection of 𝜇 on Ω:

𝜇Ω (𝜔) :=
{
𝜇 (𝑥) if 𝜔 = 𝑥 ∈ Vars
prop(𝜇 (𝑥), 𝑘) if 𝜔 = 𝑥 .𝑘 .

Full definitions are presented in Figure 2. For node and edge patterns
with no variables, the mapping part of the semantics changes to
𝜇∅ . The satisfaction of a condition 𝜃 by a mapping 𝜇, written 𝜇 |= 𝜃 ,
is defined as follows: 𝜇 |= 𝑥 .𝑘 = 𝑥 ′ .𝑘′ if both prop(𝜇 (𝑥), 𝑘) and
prop(𝜇 (𝑥 ′), 𝑘′) are both defined and are equal (and likewise for
<), and 𝜇 |= ℓ (𝑥) if ℓ ∈ lab(𝜇 (𝑥)). It is then extended to Boolean
connectives ∧,∨,¬ in the standard way.

Pattern languages vs GQL and PGQ patterns. Compared to GQL
and PGQ patterns as described in [15, 20, 21], we make some sim-
plifications. First and foremost, they are to ensure that outputs of
pattern matching are 1NF relations. Similarly to formal models of
SQL by means of relational algebra and calculus over sets of tuples,
we do not include bags, nulls, and relations whose entries are not
atomic values. The differences manifest themselves in four ways.

First, we use set semantics rather than bag semantics. GQL and
PGQ pattern can return tables with duplicate patterns; we follow
their semantics up to multiplicity.

Second, in disjunctions 𝜓1 + 𝜓2 we require that free variables
of𝜓1 and𝜓2 be the same. In GQL this is not the case, but then for
a variable 𝑥 ∈ FV (𝜓1) − FV (𝜓2), a match for 𝜓2 would generate
a null in the 𝑥 attribute. Following the 1NF philosophy, we omit
features that can generate nulls.

Third, repeated patterns𝜓𝑛..𝑚 have no free variables. In GQL and
PGQ, free variables of𝜓 become group variables in𝜓𝑛..𝑚 , leading
to both a complex type system [20] and crucially non-flat outputs.
Specifically such variables are evaluated to lists. For example, in

the pattern () 𝑥−→
0..∞
(), the variable 𝑥 would be mapped to the list

of edge ids traversed by the path. These lists would be typically
represented as values of an ARRAY type in implementations (cf. [39])
thus again violating 1NF.

Fourth, we do not impose any conditions on paths that can be
matched. In GQL and PGQ they can be simple paths (no repeated
nodes), or trails (no repeated edges), or shortest paths. In GQL,
PGQ, and Cypher, paths themselves may be returned, and such
restrictions therefore are necessary to ensure finiteness of output.
Since we can only return graph nodes or edges, or their properties,
we never have the problem of infinite outputs, and thus we chose
not to overcomplicate the definition of core languages by deviating
from flat tables as outputs.

In what might look like a simplification w.r.t. GQL and PGQ, we
do not have explicit joins of patterns, i.e.,𝜓1,𝜓2 with the semantics
J𝜓1,𝜓2K𝐺 =

{(
(𝑝1, 𝑝2), 𝜇1 ⊲⊳ 𝜇2

)
| (𝑝𝑖 , 𝜇𝑖) ∈ J𝜓𝑖K𝐺 , 𝑖 = 1, 2

}
. This

is because such joins are definable with RA operations. This simpli-
fication is in the same spirit as not including the natural join in the
definition of RA, since it can already be expressed with product,
selection, and projection.

4 SQL/PGQ: THEORETICAL ABSTRACTIONS
Having defined patterns shared by SQL/PGQ and GQL, we can
proceed to provide a theoretical abstraction of SQL/PGQ. Recall
that in PGQ, the MATCH statement is embedded in FROM. In fact
results of matches over a graph are simply treated as relations, or
subqueries, over which the usual SQL can be asked. Taking again the
view that our goal is to provide the core abstraction of the language,
on top of which others can be built, we look at the essential core of
relational languages, namely relational algebra. With this in mind,
we define (for now informally):

Core PGQ = Relational Algebra over pattern matching outputs.

To make this definition formal, we define some very standard
concepts. We assume an infinite countable set S of relation symbols,
such that each 𝑆 ∈ S is associated with a sequence attr(𝑆) :=
𝐴1, . . . , 𝐴𝑛 of attributes for some 𝑛 > 0; here attributes 𝐴𝑖 come
from a countably infinite set A of attributes. By arity(𝑆) we mean
𝑛, and to be explicit about names of attributes write 𝑆 (𝐴1, . . . , 𝐴𝑛).

Fix an infinite domain U of values. A relation over 𝑆 (𝐴1, . . . , 𝐴𝑛)
is a set of tuples 𝜇 : {𝐴1, . . . , 𝐴𝑛} → U. The domain of 𝜇 is denoted
dom(𝜇), and we often represent tuples as sets of pairs (𝐴, 𝜇 (𝐴))
for 𝐴 ∈ dom(𝜇). A relational database D is a partial function that
maps symbols 𝑆 ∈ S to relationsD(𝑆) over 𝑆 (ifD is clear from the
context we refer toD(𝑆) simply as 𝑆 , by a slight abuse of notation.)
We say that D is over its domain dom(D).

Let 𝜇 be a tuple and 𝐴𝐴𝐴 ⊆ dom(𝜇). We use 𝜇 ↾ 𝐴𝐴𝐴 to denote the
restriction of 𝜇 to 𝐴𝐴𝐴, that is, the mapping 𝜇′ with dom(𝜇′) = 𝐴𝐴𝐴

and 𝜇′ (𝐴) := 𝜇 (𝐴) for every attribute 𝐴 ∈ 𝐴𝐴𝐴. Two tuples 𝜇1, 𝜇2
are compatible, denoted by 𝜇1 ∼ 𝜇2, if 𝜇1 (𝐴) = 𝜇2 (𝐴) for every
𝐴 ∈ dom(𝜇1) ∩ dom(𝜇2). For such compatible tuples define 𝜇1 ⊲⊳

𝜇2 as the mapping 𝜇 with dom(𝜇) := dom(𝜇1) ∪ dom(𝜇2), and
𝜇 (𝐴) := 𝜇1 (𝐴) if 𝐴 ∈ dom(𝜇1) and 𝜇 (𝐴) := 𝜇2 (𝐴) otherwise.

If 𝐴 ∈ dom(𝜇) then the renaming 𝜌𝐴→𝐵 (𝜇) of 𝐴 to 𝐵 is the
mapping 𝜇′ with dom(𝜇′) = (dom(𝜇) \ {𝐴}) ∪ {𝐵} where 𝜇′ (𝐵) :=
𝜇 (𝐴) and 𝜇′ (𝐴′) = 𝜇 (𝐴′) for every other 𝐴′ ∈ dom(𝜇′).

1802

J(𝑥)K𝐺 := {(path(𝑛), {𝑥 ↦→ 𝑛}) | 𝑛 ∈ N}r
𝑥→

z

𝐺
:= {(path(𝑛1, 𝑒, 𝑛2), {𝑥 ↦→ 𝑒}) | 𝑒 ∈ E, src(𝑒) = 𝑛1, tgt(𝑒) = 𝑛2}r

𝑥←
z

𝐺
:= {(path(𝑛2, 𝑒, 𝑛1), {𝑥 ↦→ 𝑒}) | 𝑒 ∈ E, src(𝑒) = 𝑛1, tgt(𝑒) = 𝑛2}

J𝜓1 +𝜓2K𝐺 := J𝜓1K𝐺 ∪ J𝜓2K𝐺
J𝜓1𝜓2K𝐺 :=

{
(𝑝1 · 𝑝2, 𝜇1 ⊲⊳ 𝜇2)

�� (𝑝1, 𝜇1) ∈ J𝜓1K𝐺 , (𝑝2, 𝜇2) ∈ J𝜓2K𝐺 , 𝜇1 ∼ 𝜇2, 𝑝1 ⊙ 𝑝2
}

J𝜓 ⟨𝜃⟩K𝐺 :=
{
(𝑝, 𝜇) ∈ J𝜋K𝐺 | 𝜇 |= 𝜃

}
J𝜓𝑛..𝑚K𝐺 :=

𝑚⋃
𝑖=𝑛

J𝜓K𝑖𝐺 where

J𝜓K0𝐺 :=
{
(path(𝑛), 𝜇∅)

�� 𝑛 ∈ N}
J𝜓K𝑛𝐺 :=

{
(𝑝1 · · · 𝑝𝑛, 𝜇∅) | ∃𝜇1, . . . , 𝜇𝑛 : (𝑝𝑖 , 𝜇𝑖) ∈ J𝜓K𝐺 and 𝑝𝑖 ⊙ 𝑝𝑖+1 for all 𝑖 < 𝑛

}
, 𝑛 > 0

J𝜓ΩK𝐺 :=
{
𝜇Ω | ∃𝑝 : (𝑝, 𝜇) ∈ J𝜓K𝐺

}
Figure 2: Semantics of patterns and patterns with output

Relational Algebra (RA). We use a standard presentation of RA.
Given a schema S which is a finite subset of S, the expressions Q
of RA(S) and selection conditions 𝜃 are defined as

Q,Q′ := 𝑅 | 𝜋𝐴𝐴𝐴 (Q) | 𝜎𝜃 (Q) | Q ⊲⊳ Q′ | Q ∪ Q′ | Q − Q′
𝜃 := 𝐴 = 𝐴′ | ¬𝜃 | 𝜃 ∨ 𝜃 | 𝜃 ∧ 𝜃

where 𝑅 ranges over relations in S. The sets of attributes of expres-
sions attr(Q) are defined by extending attr(𝑅), namely attr(𝜋𝐴𝐴𝐴 (Q))
is𝐴𝐴𝐴, while both of attr(𝜎𝜃 (Q)) and attr(Q ◦ Q′) are attr(𝑄), for ◦
being union and difference; attr(Q ⊲⊳ Q′) = attr(Q) ∪ attr(Q′) and
attr(𝜌𝐴→𝐴′ (Q)) = (attr(Q) \ {𝐴}) ∪ {𝐴′}.

The expressions of RA must satisfy the usual well-definedness
rules: 𝜋𝐴𝐴𝐴 (Q) is well-defined if 𝐴𝐴𝐴 ⊆ attr(Q); set operations are
defined if attr(Q) = attr(Q′), and for renaming from 𝐴 to 𝐴′ we
must have 𝐴 ∈ attr(Q) and 𝐴′ ∉ attr(Q).

The result of evaluation of a queryQ on a databaseD is a relation
JQKD over attr(Q) defined as:

J𝑅KD := D(𝑅)
J𝜋𝐴𝐴𝐴 (Q)KD := {𝜇 ↾𝐴𝐴𝐴 | 𝜇 ∈ Q}
J𝜎𝜃 (Q)KD := {𝜇 | 𝜇 ∈ Q and 𝜇 |= 𝜃 }

J𝜌𝐴→𝐴′ (Q)KD := {𝜌𝐴→𝐴′ (𝜇) | 𝜇 ∈ Q}
JQ ⊲⊳ Q′KD := {𝜇 ⊲⊳ 𝜇′ | 𝜇 ∈ Q, 𝜇′ ∈ Q′}
JQ ◦ Q′KD := JQKD ◦ JQ′KD for ◦ ∈ {∪, \}

with 𝜇 |= 𝜃 having the standard semantics 𝜇 |= 𝐴 = 𝐴′ iff 𝐴,𝐴′ ∈
dom(𝜇) and 𝜇 (𝐴) = 𝜇 (𝐴′), extended to Boolean connectives∧,∨,¬.

Core PGQ. Assume that for each variable 𝑥 ∈ Vars and each
key 𝑘 ∈ K , both 𝑥 and 𝑥 .𝑘 belong to the set of attributes A. For
each pattern𝜓 and each output specification Ω, we have a relation
symbol 𝑅𝜓,Ω whose set of attributes are the elements of Ω. Let Pat
contain all such relation symbols.

Definition 4.1 (Core PGQ). Core PGQ is defined as RA(Pat), i.e.,
the set of relational algebra expressions over the schema Pat.

To define the semantics of Core PGQ queries, assume without
loss of generality that Values ⊆ U. This ensures that results of
pattern matching are relations of the schema Pat, because for every

path pattern with output 𝜓Ω and a property graph 𝐺 , the table
J𝜓ΩK𝐺 is an instance of relation 𝑅𝜓,Ω from Pat. Then the semantics
of Core PGQ is simply the extension of the semantics of RA defined
above where for base relations we have

q
𝑅𝜓,Ω

y
𝐺

:= J𝜓ΩK𝐺 .

5 GQL: THEORETICAL ABSTRACTIONS
We next provide a formal model of GQL. Recall that it shares pat-
terns with PGQ. What is different is the way GQL processes results
of pattern matching: not in a bottom-up way with RA operators like
PGQ, but rather in sequential, or pipelined way where the output
of each operation in a sequence serves as the input for the next
operation. Using terminology adopted by Cypher [22], GQL calls
this linear composition. Unlike RA, it lacks proper formalization,
and thus next we provide a formal description of a different flavor
of RA, obtained by linear composition.

5.1 LCRA: Linear Composition RA
This language captures the sequential (linear) application of rela-
tional operators as seen in Cypher, GQL, and also PRQL. Its expres-
sions over a schema S, denoted by LCRA(S), are defined as:

Linear Clause: L, L′ := 𝑆 | 𝜋𝐴𝐴𝐴 | 𝜎𝜃 | 𝜌𝐴→𝐴′ | L L′ | {Q}
Query: Q,Q′ := L | Q ∩ Q′ | Q ∪ Q′ | Q \ Q′

where 𝑆 ranges over S, while𝐴𝐴𝐴 ⊆ A, and𝐴,𝐴′ ∈ A, and 𝜃 is defined
as for RA. Unlike for RA, the output schema of LCRA clauses and
queries can be determined only dynamically.

The semantics J KD of LCRA clauses L and queriesQ is amapping
from relations into relations (known as driving tables for Cypher
and GQL). It is defined as follows:

J𝑆KD (R) := R ⊲⊳ D(𝑆)
J𝜋𝐴𝐴𝐴KD (R) := {𝜇 ↾𝐴𝐴𝐴∩attr(R) | 𝜇 ∈ R}
J𝜎𝜃 KD (R) := {𝜇 | 𝜇 ∈ R, 𝜇 |= 𝜃 }

J𝜌𝐴→𝐴′KD (R) := {𝜌𝐴→𝐴′ (𝜇) | 𝜇 ∈ R, 𝐴′ ∉ dom(𝜇)}
JLL′KD (R) := JL′KD (JLKD (R))
J{Q}KD (R) := R ⊲⊳ JQKD (R)

JQ ◦ Q′KD (R) := JQKD (R) ◦ JQ′KD (R), for ◦ ∈ {∪,∩,−}

1803

A clause or a query of LCRA always looks at a unique input relation
R. If a clause is a name of a relation 𝑆 or an entire query {Q}, then it
is joined with R. Projection, selection, and renaming clauses behave
in the usual way, and apply to the input relation R. The meaning of
set operations – union, intersection, difference – is also standard,
and two clauses LL′ are simply executed in sequence, with the
result of L on R becoming the input to L′.

This semantics determines (dynamically) the set of attributes of
outputs of clauses and queries; for completeness we present it here:

attr(J𝑆KD (R)) := attr(𝑆) ∪ attr(𝑅)
attr(J𝜋AKD (R)) := A ∩ attr(R)
attr(J𝜎𝜃 KD (R)) := attr(R)

attr(J𝜌𝐴→𝐴′KD (R)) := attr(R) \ {𝐴′} ∪ {𝐴}
attr(J{Q}KD (R)) := attr(JQKD (R)) ∪ attr(R)

attr(JQ ◦ Q′KD (R)) := attr(JQKD (R))

For producing the output of a query Q on a database D we need a
starting value of the driving table R, and this is taken to be 𝐼∅ , the
relation containing only one empty tuple 𝜇∅ where dom(𝜇∅) := ∅,
cf. [21, 22]. Then query output on a database is defined as JQKD (𝐼∅).

5.2 Core GQL
Just as we defined Core PGQ as RA over output of patterns, we now
define Core GQL as LCRA over the same.

Definition 5.1 (Core GQL). The language Core GLQ is defined as
the set of linear composition relational algebra expressions over
the schema Pat, i.e., LCRA(Pat).

As with Core PGQ, we define the semantics of Core GQL byq
𝑅𝜓,Ω

y
𝐺
:= J𝜓ΩK𝐺 and then use the semantic of LCRA above.

We now present an example to explain how GQL’s linear com-
position works. We use a simplified query based on the money
laundering query from the introduction. It looks for someone who
has two friends in a city different from theirs, and outputs the
person’s name and account (Porthos and a2 in our example):

MATCH (x)−[:Friends]−>(y)−[:Friends]−>(z),

(y)−[:Owns]−>(acc_y)

FILTER (y.city) <> (x.city)

AND (x.city=z.city)

RETURN y.name AS name, acc_y AS account

The equivalent Core GQL formula is
𝑅𝜓1,Ω1 𝑅𝜓2,Ω2 𝜎𝑦.city≠𝑥.city∧𝑥.city=𝑧.city 𝜋𝑦.name,acc_𝑦

𝜌𝑦.name→name 𝜌𝑎𝑐𝑐_𝑦→account

where

𝜓1 :=
(
(𝑥) 𝑒1→ (𝑦) (𝑦) 𝑒2→ (𝑧)

)
⟨Friends(𝑒1) ∧ Friends(𝑒2)⟩

𝜓2 :=
(
(𝑦) 𝑒3→ (acc_𝑦)

)
⟨Owns(𝑒3)⟩

Ω1 := (𝑥, 𝑦, 𝑧, 𝑥 .city, 𝑦.city, 𝑧.city)
Ω2 := (𝑦, acc_𝑦) .

5.3 Equivalence of Core PGQ and Core GQL
We say that two queries Q1,Q2 (possibly from different languages)
are equivalent if JQ1KD = JQ2KD for every database D. A query

language 𝐿1 is subsumed by 𝐿2 if for each query Q1 in 𝐿1 there is
an equivalent query Q2 in 𝐿2. If there is also a query Q2 ∈ 𝐿2 for
which there is no equivalent query Q1 ∈ 𝐿1 then 𝐿1 is said to be
strictly less expressive than 𝐿2. Finally 𝐿1 and 𝐿2 are equivalent if
𝐿1 is subsumed by 𝐿2 and 𝐿2 is subsumed by 𝐿1.

Theorem 5.1. Languages RA(S) and LCRA(S) are equivalent, for
every schema S

Thus, LCRA proposed as the relational processing engine of
graph languages like Cypher and GQL is the good old RA in a slight
disguise. As an immediate consequence of Theorem 5.1 we have:

Corollary 5.2. The languages Core PGQ and Core GQL have the
same expressive power.

Notice that the definition of linear clauses and queries of LCRA
are mutually recursive as we can feed any query Q back into clauses
via {Q} (this corresponds to the CALL feature of Cypher and GQL).
If this option is removed, and linear clauses are not dependent on
queries, we get a simplified language sLCRA (simple LCRA). Specif-
ically, in this language linear clauses are given by the grammar
L := 𝑆 | 𝜋𝐴 | 𝜎𝜃 | 𝜌𝐴→𝐴′ | LL. To see why the {Q} clause was
necessary in the definition of LCRA, we show

Proposition 5.3. sLCRA is strictly less expressive than LCRA.

5.4 The origins of linear composition
Linear composition features prominently in graph languages
(Cypher, GQL) and also some relational languages (PRQL); at the
same time it had not been formalized nor studied as its non-linear
relational algebra analog (until now). Thus we use this short sec-
tion to briefly explain the origins of linear composition. Linear
composition was introduced in the design of Cypher [22] as a way
to bypass the lack of a compositional language for graphs. Specifi-
cally, pattern matching transforms graphs into relational tables, and
other Cypher operations modify these tables. If we have two such
read-only queries 𝐺 → T1 and 𝐺 → T2 from graphs to relational
tables, it is not clear how to compose them. To achieve composition,
Cypher read-only queries are of the form Q : 𝐺 × T→ T′ (and its
read/write queries are of the form Q : 𝐺 × T→ 𝐺 ′ × T′). In other
words, they turn a graph and a table into a table. Thus, the composi-
tion of two queries Q1,Q2 : 𝐺 × T→ T′ is their linear composition
Q1 Q2 which on a graph 𝐺 and table T returns Q2

(
𝐺,Q1 (𝐺,T)

)
.

Independently, the same approach was adopted by a relational
language PRQL [33], where P stands for “pipelined” but the design
philosophy is identical. For example one could write

FROM R FILTER A=1 JOIN:INNER S FILTER B=2 SELECT C, D

with each clause applied to the output of the previous clause. The
above query is the same as relational algebra query

𝜋𝐶,𝐷

(
𝜎𝐵=2

(
𝜎𝐴=1 (𝑅) Z 𝑆

))
Though PRQL design is relations-to-relations, the motivation

for pipelined or linear composition comes from creating a database
analog of dplyr [41], a data manipulation library in R, that can
be translated to SQL. While dplyr’s operations are very much
relational in spirit, it is integrated into a procedural language, and

1804

hence the imperative style of programming was inherited by PRQL
and also adopted by the piped syntax of SQL [37].

To recap, we defined simple theoretical abstractions Core PGQ
of SQL/PGQ and Core GQL of GQL, that share the same pattern
matching language turning graphs into relations; then on top of
pattern matching outputs we use RA for PGQ and LCRA for GQL.
It should be kept in mind that these abstractions capture the essense
of SQL/PGQ and GQL in the same way as RA and first-order logic
capture the essence of SQL: they define a theoretical core that is
amenable to a formal study, but real languages, be it 500 pages of
the GQL standard or over 4000 pages of the SQL standard, have
many more features.

6 LIMITATIONS OF PATTERNS: A
THEORETICAL INVESTIGATION

A common pattern of query language development is this: first,
a small core language is designed; its focus is on declarativeness
and optimizability. As a consequence the expressiveness of such
a language is limited. These limitations are typically observed in
practice by programmers’ inability to write certain queries and
often later proven formally, for a theoretical language that defines
the key features of the practical one. Using these inputs as motiva-
tions, extra features are added to the real-life language if practical
applications warrant this and user demands.

A classical example of this development cycle is SQL and recur-
sion. In this case, we had a “canonical” query whose inexpressibility
it was important to show in order to justify additions to the lan-
guage. The query was transitive closure of relation (or, equivalently,
testing for graph connectivity [4, 18, 23]). Thus, before embarking
on the study of the expressiveness of GQL and SQL/PGQ, we ask
for an analog of such “canonical” queries for them that users want
to express but appear to be unable to.

Fortunately, we have such queries, thanks to the discussions
already happening in the ISO committee that maintains both SQL
and GQL standards [31, 43]. In fact much of recent effort tries
to repair what appears to be a hole in the expressiveness of the
language. Specifically, it seems to be impossible to express queries
that impose conditions on how values of edges properties change
along the paths, even if the same conditions can be expressed for
properties of nodes. To give a simple example of such a condition,
consider the following:

• we can check, by a very simple pattern, if there is a path of
transfers between two accounts where balance in interme-
diary accounts (values held in nodes) increases, but

• it appears that we cannot check if there is a path of transfers
between two accounts where timestamp (values held in
edges) increases.

This perceived deficiency has already led to early proposals to
significantly enhance pattern matching capabilities of the language
[31, 43], in a way whose complexity implications appear significant
but are not fully understood.

Before such a dramatic expansion of the language gets a stamp of
approval, it would be nice to knowwhether it is actually needed. The
goal of this section is to provide both theoretical and experimental
evidence that we do need extra language features to express queries
such as “increasing values in edges”.

6.1 What can be expressed
A pattern𝜓 can be viewed as a query

(
(𝑥𝑠) 𝜓 (𝑥𝑡)

)
𝑥𝑠 ,𝑥𝑡

that returns
endpoints (source and target) of the paths matched by𝜓 as values
of attributes 𝑥𝑠 and 𝑥𝑡 . Earlier queries are defined formally as:

• 𝑄N
↑ returns endpoints of a path along which the value of

property 𝑘 of nodes increases. It returns pairs (𝑢0, 𝑢𝑛) of
nodes such that there is path path(𝑢0, 𝑒1, 𝑢1, . . . , 𝑒𝑛, 𝑢𝑛) so
that 𝑢0 .𝑘 < 𝑢1 .𝑘 < · · · < 𝑢𝑛 .𝑘 .

• 𝑄E
↑ returns endpoints of a path along which the value of

property 𝑘 of edges increases. It returns pairs (𝑢0, 𝑢𝑛) of
nodes such that there is path path(𝑢0, 𝑒1, 𝑢1, . . . , 𝑒𝑛, 𝑢𝑛) so
that 𝑒1 .𝑘 < 𝑒2 .𝑘 < · · · < 𝑒𝑛 .𝑘 .

It is a simple observation that𝑄N
↑ is expressible by the Core PGQ

and GQL pattern with output

(𝑥𝑠)
((
(𝑥) → (𝑦)⟨𝑥 .𝑘 < 𝑦.𝑘⟩

)0..∞)
(𝑥𝑡) .

In fact this can be generalized to order motifs which are defined as
strings over the alphabet {↑, ↓}. Given such a string𝑤 , the query
𝑄N
𝑤 matches paths which can be decomposed according to𝑤 so that

in each segment corresponding to ↑ values of property 𝑘 increase
and in each segment corresponding to ↓ these values decrease.
For example, 𝑄N

↑↓↑ matches arbitrary length paths where values
of property 𝑘 of nodes first increases, then decreases, and then
increases again. With the same approach as the above query, we
can see that 𝑄N

𝑤 is expressible for every order motif𝑤 .
What happens when we move from nodes to edges? The same

approach will not work for 𝑄E
↑ : if we (erroneously) try to express it

by (
() 𝑥→ ()

𝑦
→ ()⟨𝑥 .𝑘 < 𝑦.𝑘⟩

)0..∞
it fails: on the input () 3→ () 4→ () 1→ () 2→ () (where the numbers
on the edges are values of property𝑘) it returns the start and the end
node of the path, even though values in edges do not increase. This
is due to the semantics of path concatenation: two paths concatenate
if the last node of the first path equals the first node of the second,
and therefore conditions on edges in two concatenated or repeated
paths are completely “local” to those paths.

In some cases, where graphs are of special shape, we can obtain
the desired patterns by resorting to tricks that a normal query
language user would be rather unlikely to find. Specifically, consider
property graphs whose underlying graph structures are just paths.
That is, we look at annotated paths 𝑃𝑛 , which are of the form

𝑣0 . . . 𝑣𝑛
𝑒0 𝑒𝑛−1

where 𝑣0, . . . , 𝑣𝑛 are distinct nodes, 𝑒0, . . . , 𝑒𝑛−1 are distinct edges
(for 𝑛 > 0), and each edge 𝑒𝑖 has the property 𝑒𝑖 .𝑘 defined. Then
define the pattern𝜓E

< as

(𝑥𝑠)
((
(𝑢) 𝑥→ (𝑧)

𝑦
→ (𝑣) 𝑤← (𝑧)

)
⟨𝑥 .𝑘 < 𝑦.𝑘⟩

)1..∞
→ (𝑥𝑡)

+ (𝑥𝑠) → (𝑥𝑡)
A pattern with output 𝜓Ω expresses a query 𝑄 if J𝜓ΩK𝐺 = 𝑄 (𝐺)
for every graph 𝐺 .

Proposition 6.1. The pattern
(
𝜓E
<

)
(𝑥𝑠 ,𝑥𝑡) expresses 𝑄

E
↑ on anno-

tated paths.

1805

In the first disjunct, the forward edge
𝑦
→ serves as a look-ahead

that enables checking whether the condition holds, and the back-
ward edge

𝑤← enables us to continue constructing the path in the
next iteration from the correct position (𝑧). The fact that the query
operates on 𝑃𝑛 ensures that the last edge to 𝑥𝑡 does not violate the
condition of the query as it was already traversed in the iterated
subpattern. The second disjunct takes care of paths of length 1.

6.2 What cannot be expressed with patterns
To achieve expressibility of 𝑄E

↑ in Proposition 6.1 we made two
strong assumptions: not only is the input of a very special shape
(a directed path with forward edges), but also the pattern uses
backwards edges; the latter would be natural for an oriented path
(in which edges can go in either direction [26]), but looks rather
unnatural in this setting. Thus, we ask ourselves whether 𝑄E

↑ can
be expressed in a natural way. In fact we can pose a more general
question about queries𝑄E

𝑤 for arbitrary order motifs; in Section 6.1
we saw that on nodes, all order motifs can be expressed.

To formalize what we mean by “natural”, define one-way path
patterns by a restriction of the grammar:

𝜓 := (𝑥) | 𝑥→ | 𝜓1 +𝜓2 | 𝜓𝑛..𝑚 | 𝜓⟨𝜃 ⟩ | 𝜓1𝜓2
where we require that FV (𝜓1) ∩FV (𝜓2) = ∅ in𝜓1𝜓2 (and variables
𝑥 , as before, are optional). The omission of backward edges

𝑥←
in one-way patterns is quite intuitive. The restriction on variable
sharing in concatenated patterns is because backward edges can be
simulated by simply repeating variables, as done above in𝜓E

< .
If there is a natural way, easily found by programmers, of writing

the 𝑄E
↑ query in PGQ and GQL, one would expect it to be done

without backward edges. Yet, this is not the case. In fact, no order
motif on edges can be captured by GQL and PGQ patterns.

Theorem 6.2. There is no order motif𝑤 such that𝑄E
𝑤 is expressible

by a one-way path pattern query.

The inexpressibility of 𝑄E
↑ is then an immediate corollary for

𝑤 =↑. This result is a direct consequence of a general pumping
argument applied to annotated paths accepted by one-way patterns.

Theorem 6.3. For every one-way path pattern𝜓 , if for every𝑛 ∈ N
there exists an annotated path 𝑝 of length 𝑛 accepted by𝜓 then there
exists 𝑛0 ∈ N such that for every annotated path 𝑝 accepted by𝜓 with
|𝑝 | > 𝑛0, the path 𝑝 can be decomposed as 𝑝 = 𝑝1𝑝2𝑝3, |𝑝2 | > 1 and
for every 𝑛 ∈ N, the annotated path 𝑝1𝑝𝑛+12 𝑝3 is also accepted by𝜓 .

Note that in the newly constructed path with repetitions, we
assign new ids to the different occurrences of the elements in 𝑝2,
while keeping the data (annotations) unchanged. The idea behind
the proof is as follows: Since, by definition, there are infinitely
many annotated paths that conform to𝜓 , it must exhibit unbounded
repetition. However, because the semantics disregard variables that
occur within unbounded repetitions, the transfer of information
between iterations is limited. This restriction allows us to repeat
parts of the annotated path while preserving the same semantics
and, consequently, still conforming to𝜓 .

We can derive a further corollary of this theorem that reinforces
the intuition that GQL and PGQ patterns are incapable of capturing
data values along a path “as a whole.”

A canonical example of such a condition is checking whether
all values of a specific property of nodes or edges along a path are
distinct. Formally, we define:

• 𝑄N
≠ returns pairs (𝑢0, 𝑢𝑛) of nodes such that there is path

path(𝑢0, 𝑒1, 𝑢1, . . . , 𝑒𝑛, 𝑢𝑛) so that 𝑢𝑖 .𝑘 ≠ 𝑢 𝑗 .𝑘 for all 0 ≤
𝑖 < 𝑗 ≤ 𝑛.

and𝑄E
≠ is defined likewise but for edges in place of nodes. One-way

path patterns do not have enough power to express such queries.

Corollary 6.4. No one-way path pattern expresses 𝑄N
≠ nor 𝑄E

≠.

6.3 What cannot be expressed in full GQL
Having examined the expressiveness of patterns, we now look at

the entire query languages Core GQL and Core PGQ and compare
them with recursive SQL and linear Datalog. Recursive SQL is a
good comparison target as the most natural relational language
into which graph queries involving pattern with arbitrary length
paths are translated [38, 42]. The theoretical basis for recursive
SQL common table expressions is linear Datalog, i.e., the fragment
of Datalog in which definitions can refer to recursively defined
predicates at most once. This is precisely the restriction of recursive
SQL: a recursively defined table can appear at most once in FROM.

Of course recursive SQL can be enormously powerful: as already
mentioned, combining recursion and arithmetic/aggregates one can
simulate Turing machines [1]. Thus, to make the comparison fair,
we look at positive recursive SQL: this is the fragment of recursive
SQL where subqueries can only define equi-joins. In other words,
they only use conjunctions of equalities in WHERE. Such a language
just adds recursion on top of unions of conjunctive queries, and
ensures termination and tractable data complexity [6]. We show
that even these simple fragments of SQL and Datalog can express
queries that Core GQL and PGQ cannot define.

Theorem 6.5. There are queries that are expressible in positive
recursive SQL, and in linear Datalog, and yet are not expressible in
Core GQL nor Core PGQ.

At the end of the section, we explain why this is quite surprising
in view of what we know about Core GQL and PGQ: complexity-
theoretic considerations strongly suggest these should define all
queries from linear Datalog, and yet this is not the case due to subtle
deficiencies in the language design, which we outline in Section 8.

To talk about expressing property graph queries in relational
languages, we must represent graphs as relations. There are many
possibilities, and it does not matter (for showing Theorem 6.5)
which one we choose, as these different representations are inter-
definable by means of unions of select-project-join queries. Since
graphs in the separating example have labels and do not have
property values, we use an encoding consisting of unary relations
𝑁ℓ storing ℓ-labeled nodes, and binary relations 𝐸ℓ storing pairs of
nodes (𝑛1, 𝑛2) with an ℓ-labeled edge between them.

To sketch the idea of the separating query, we define data-
less paths as graphs 𝐺𝑛 , 𝑛 > 0, with nodes 𝑣0, . . . , 𝑣𝑛 , edges
(𝑣0, 𝑣1), (𝑣1, 𝑣2), . . . , (𝑣𝑛−1, 𝑣𝑛), where 𝑣0 has label min_elt and 𝑣𝑛
has label max_elt. The separating query asks: is 𝑛 a power of 2?

The inexpressibility proof of this is based on showing that GQL
queries can only define Presburger properties of lengths of dataless
paths, by translating Core GQL queries on such paths into formulae

1806

of Presburger Arithmetic (i.e., the first-order theory of ⟨N, +, <⟩).
Therefore the only definable properties of lengths are semilinear
sets [24]. Semi-linear subsets of N are known to be ultimately peri-
odic: that is, for such a set 𝑆 ⊆ N, there exists a threshold 𝑡 and a
period 𝑝 such that 𝑛 ∈ 𝑆 if and only if 𝑛 + 𝑝 ∈ 𝑆 , as long as 𝑛 > 𝑡 .
Clearly the set {2𝑘 | 𝑘 ∈ N} is not such.

The query can be expressed in positive recursive SQL:

WITH RECURSIVE ADD(A, B, C) AS
((SELECT P.A, MIN_ELT.A AS B, P.A AS C

FROM P, MIN_ELT)

UNION
(SELECT MIN_ELT.A, P.A AS B, P.A AS C

FROM P, MIN_ELT)

UNION
(SELECT ADD.A, P1.B, P2.B AS C

FROM ADD, P P1, P P2

WHERE ADD.B=P1.A AND ADD.C=P2.A)),

POW2(A, B) AS
((SELECT P2.A, P2.B

FROM MIN_ELT M, P P1, P P2

WHERE M.A=P1.A AND P1.B=P2.A)

UNION
(SELECT P.B AS A, ADD.C AS B

FROM POW2, ADD, P

WHERE POW2.A=P.A AND ADD.A=POW2.B

AND ADD.B=POW2.B))

(SELECT 'YES' FROM POW2, MAX_ELT

WHERE POW2.B=MAX_ELT.A)

The path is given by a binary relation P containing pairs (𝑣𝑖 , 𝑣𝑖+1)
while minimal/maximal elements 𝑣0 and 𝑣𝑛 are given by unary
relations MIN_ELT and MAX_ELT. The first common table expression
defines a ternary relation ADDwith tuples (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘) such that 𝑖+ 𝑗 =
𝑘 . If 𝑣𝑖 is in MIN_ELT, then (𝑣𝑖 , 𝑣 𝑗 , 𝑣 𝑗) and (𝑣 𝑗 , 𝑣𝑖 , 𝑣 𝑗) are in ADD for
all 𝑗 (the basis of recursion), and if (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘) is in ADD then so is
(𝑣𝑖+1, 𝑣 𝑗 , 𝑣𝑘+1) (the recursive step). After that POW2 builds a relation
with tuples (𝑣𝑖 , 𝑣 𝑗) for 𝑗 = 2𝑖 . Indeed, if (𝑣𝑖 , 𝑣 𝑗) is in POW2, then so
is (𝑣𝑖+1, 𝑣𝑘) for 𝑘 = 2 · 𝑗 , which is tested by (𝑣 𝑗 , 𝑣 𝑗 , 𝑣𝑘) ∈ ADD. The
length of the path is a power of 2 if the second projection of POW2
contains MAX_ELT.

Note that ADD is defined by a linear Datalog program and POW2 is
defined by a linear Datalog program that uses ADD as EDB. Hence,
the entire query is defined by a piece-wise linear program (where
already defined predicates can be used as if they were EDBs). It is
known that such programs can be expressed in linear Datalog [3].

Complexity-theoretic considerations. We now explain why the
inexpressibility result is quite unexpected. Note that all graph pat-
tern languages can express the reachability query. It is complete
for the complexity class NLogSpace via first-order reductions [28]:
an extension of first-order logic with the reachability predicate
capturtes precisely all NLogSpace queries. Since GQL and PGQ can
emulate relational algebra (and thus first-order logic) over pattern
matching results, it appears that they should be able to express all
NLogSpace queries. In fact graph query languages expressing all
NLogSpace queries have been known for a long time, starting with
GraphLog [13], which introduced the ubiquitous notion of CRPQs.

However, Theorem 6.5 not only refutes the complexity-based
intuition, but in fact the separating query has an even lower
DLogSpace complexity. Indeed, one can traverse the dataless path
graph while maintaining the counter that needs a logarithmic num-
ber of bits. This limitation highlights a deficiency of the language
design: despite having access to reachability and full power of first-
order logic on top of it, Core GQL and PGQ fall short of a declarative
language that is first-order logic with the reachability predicate.
The reason for this deficiency, that should ideally be addressed in
future revisions of the standards, is discussed below in Section 8.

7 LIMITATIONS OF PATTERNS: AN
EXPERIMENTAL INVESTIGATION

We have shown that many queries tracing changes in property
values of edges cannot be expressed in Core GQL and PGQ, among
them the simple query 𝑄E

↑ that generated significant interest in the
GQL standardization committee of ISO [31, 43]. Of course real-life
languages have more expressiveness than their theoretical coun-
terparts, and thus real-life GQL, SQL/PGQ, and also Cypher can
express this query. However, they do so in a rather convoluted way.
We now show experimentally that this way of expressing simple
graph queries has no realistic chance to work, as it generates enor-
mous (exponential size) intermediate results, and the query would
not terminate even on tiny graphs.

The idea of expressing 𝑄E
↑ is that its complement is easily defin-

able in Core GQL. In GQL, PGQ, and Cypher, paths can be named
and output. This is an advanced feature that we omitted in our core
language: since paths are represented as lists, it results in non-flat
outputs. The complement of 𝑄E

↑ is expressed by the pattern𝜓¬:

(v1)−>*(−[x]−> −[y]−> WHERE x.k>=y.k)−>*(v2)

testing for a pair of consecutive edges that break the increasing
motif; it can also be expressed by CoreGQL as

𝜓¬ := (𝑣1) →0..∞ (
() 𝑥→ ()

𝑦
→ ()

)
⟨𝑥 .𝑘 ≥ 𝑦.𝑘⟩ →0..∞ (𝑣2) .

Thus, the query below
MATCH p = (v1) −>* (v2) RETURN v1, v2, p

EXCEPT
MATCH p=𝜑¬ RETURN v1, v2, p

finds all nodes 𝑣1, 𝑣2 and path 𝑝 between them satisfying 𝑄E
↑ . The

mere fact of expressing something does not yet mean it will work –
for example, despite SQL having the capability to simulate Turing
machines, we do not expect it to perform well with complex graph
algorithms. Likewise here, the first subquery enumerates paths
between two different nodes, and even the number of simple paths
between two nodes in a graph can grow as fast as 𝑂 (𝑛!/𝑛2).

We now show experimentally that queries of this kind have no
chance to work even on very small graphs. A small obstacle is that
there is not yet any available implementation of GQL, and Cypher,
the closest language, chose not to have EXCEPT. However, there is
a way around it in Cypher by using list functions that can detect
the violation of the “value in edges increases” condition:

MATCH p=()−[*2..]−>()

WITH p, reduce(acc=relationships(p)[0].val,

v in relationships(p) |

1807

median execution time in ms percentage of timeouts in ms

of nodes

0 ms

50,000 ms

100,000 ms

150,000 ms

200,000 ms

250,000 ms

300,000 ms

∞ ms

0%

25%

50%

75%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Median execution time of Q<
E for p=0.1

(a) 𝑝 = 0.1

median execution time in ms percentage of timeouts in ms

of nodes

0 ms

50,000 ms

100,000 ms

150,000 ms

200,000 ms

250,000 ms

300,000 ms

∞ ms

0%

25%

50%

75%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Median execution time of Q<
E for p=0.2

(b) 𝑝 = 0.2

median execution time in ms percentage of timeouts in ms

of nodes

0 ms

50,000 ms

100,000 ms

150,000 ms

200,000 ms

250,000 ms

300,000 ms

∞ ms

0%

25%

50%

75%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Median execution time of Q<
E for p=0.3

(c) 𝑝 = 0.3
median execution time in ms percentage of timeouts in ms

of nodes

0 ms

50,000 ms

100,000 ms

150,000 ms

200,000 ms

250,000 ms

300,000 ms

0%

25%

50%

75%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Median execution time of Q<
E for p=0.4

∞ ms

(d) 𝑝 = 0.4

median execution time in ms percentage of timeouts in ms

of nodes

0 ms

50,000 ms

100,000 ms

150,000 ms

200,000 ms

250,000 ms

300,000 ms

0%

25%

50%

75%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Median execution time of Q<
E for p=0.5

∞ ms

(e) 𝑝 = 0.5

Figure 3: Timeouts and median running time of Neo4j for 𝑄E
↑

CASE WHEN acc=−1 THEN −1

WHEN v.val>=acc THEN v.val

ELSE −1 END) AS inc

WHERE NOT inc = −1

RETURN p

We then tested its median running time in Neo4j1, as well as
the percentage of queries that time out (the timeout is set at 300
seconds). When more than 50% of queries time out, the median is
shown as ∞ms. Otherwise the running time is computed as the
median over 10 different graphs, with 1 run per graph (and an
additional run 0 to generate the appropriate indices).

The graphs on which we tested the query are the random graphs
𝐺 (𝑛, 𝑝) [11] on 𝑛 nodes where an edge exists between two nodes
with probability 𝑝 . We considered values 𝑝 between 0.1 and 0.5, with
the step 0.1. As for data values in edges, they are also randomly
generated, between 0 and 100. The reason we used this simple
model of synthetic property graphs is that it very convincingly
demonstrates that the above implementation of 𝑄E

↑ has no chance
to work in practice. Even with the smallest probability of 0.1, with a
mere 24 nodes timeout was observed in more than 50% of all cases,
and with just 30 nodes in all cases. As the probability 𝑝 increases
(meaning that there are more edges in the graph, and thus the
number of paths increases), the cutoff for everything-times-out
dropped to fewer than 10 nodes!

We add two notes here. Queries 𝑄N
≠ and 𝑄E

≠ can be similarly
expressed, with the bottleneck query matching all paths being
identical to the above, hence resulting in a very similar behavior.
But behavior is not observed with𝑄N

↑ as it can be expressed directly
with Cypher and GQL pattern matching, without having to find an
exponential number of paths.

Other systems. Even though it appears that bypassing expressiv-
ity bounds by generating exponentially many queries should not

1The testing program is written in Go and communicates with Neo4j (v5.18.1) via the
Neo4j Go driver. All tests were executed on a machine with the following configuration:
16 Intel i7-10700 @ 2.90GHz CPUs, 16GB RAM, Ubuntu 22.04.3 LTS

have a chance to work (as our Neo4j tests confirm), we wanted to
completely exclude the possibility that this behavior could be due to
one specific implementation. Thus, to confirm the above results, we
ran the same tests on two other systems: Memgraph, a graph-only
database that uses Cypher as its query language, and DuckDB, a
relational database that implements SQL/PGQ as an extension [39].

The results confirm that the problem is the way the query is
written rather than a particular implementation. In fact, the limits
of Neo4j and Memgraph are almost identical as shown in Fig. 4
which reports numbers of nodes at which 50% and 100% of runs
timeout. However, it must be noted that for the configurations that
do not timeout, the performance of Memgraph appears to be much
more efficient than that of Neo4j, with almost all test cases taking
less than 1 ms. This might be explained by the fact that the timing
procedures are different for the two systems as Memgraph does not
make query execution time available to the driver.

The performance of DuckDB was tested using the SQL/PGQ
query below; it first finds the shortest paths in the graph using the
PGQ pattern matching syntax (the inner query), then checks, in
SQL, that the edge weights appear in sorted order (the outer query).
WITH q1 AS (SELECT *, unnest(path_edges) AS e_id

FROM GRAPH_TABLE (testgraph

MATCH
p = ANY SHORTEST (n1:N)−[e:E]−>{2,}(n2:N)

COLUMNS (edges(p) AS path_edges)),

LATERAL (SELECT edges.weight,

edges.row_id FROM edges))

SELECT path_edges, array_agg(weight) AS weights

FROM q1 WHERE e_id=row_id

GROUP BY path_edges

HAVING ARRAY_AGG(weight) =

ARRAY_SORT(ARRAY_AGG(weight));

While the results for DuckDB appear to be better than for native
graph systems (it can handle 164 nodes with the lowest proba-
bility 𝑝 = 0.1 before running out of memory), there is a simple
explanation for it: the difference in path semantics. The only path

1808

https://memgraph.com
https://duckdb.org

Neo4j Memgraph DuckDB
p=0.1 p=0.3 p=0.5 p=0.1 p=0.3 p=0.5 p=0.1 p=0.3 p=0.5

nodes at 50% timeout 24 12 7 26 12 8 N/A N/A N/A
nodes at 100% timeout / OOM 30 13 8 28 13 9 164 131 128

Figure 4: Performance comparison of Neo4j, Memgraph, and DuckDB

semantics available for repeated patterns in DuckDB is shortest path,
whereas the only one available in Neo4j and Memgraph is trail,
which matches paths that do not go through the same edge twice. In
most graphs there are significantly more trails than shortest paths
between any given nodes, hence the number of candidate paths
to be checked is much higher for Neo4j and Memgraph than for
DuckDB. Even with this, however, the way of bypassing expressiv-
ity bounds by generating a large number of paths can only handle
very small graphs, not even reaching 200 nodes.

8 WHATWE LEARNED ABOUT LANGUAGE
DESIGN PROBLEMS

A common way of enhancing the capabilities of query languages is
this: (1) an initial design is produced; (2) user-demanded queries
that are not expressible in this initial design are identified; (3) their
inexpressibility is formally confirmed; (4) language deficiencies
that led to (3) are identified; (5) these language deficiencies are
fixed. Note that (5) is often an iterative process that involves a
deep analysis of possible language design enhancements. Returning
again to the example of recursive queries in SQL, note that while
it was quite clear that programmers cannot write queries such as
transitive closure, it took a significant effort to confirm this formally,
and subsequently hundreds of papers analyzed the expressiveness
and complexity of datalog and fixed-point extensions of relational
calculus, until the linear datalog approach was chosen as the right
one to add to the SQL standard.

Where does this workflow put us with respect to the newly
developed graph standards, SQL/PGQ and GQL? Prior to this paper
we were at stage (2); the results of this paper complete step (3)
and put us at the beginning of stage (4). Thus, in this last section
we outline further developments as we envision them now: what
language deficiencies cause limited expressiveness, and how they
could be addressed.

Themain limitation of current graph query languages is that they
lack compositionality. They are essentially graphs-to-relations lan-
guages, as opposed to graph-to-graph languages (though some ad
hoc functionalities exist for viewing relational outputs into graphs,
such as the Neo4j browser or its data science library facilities [27]
that can extract graphs from relations for analytics tasks; also the
study of graph views is in its infancy [25]). The lack of composition-
ality also manifests itself in the information flow in graph query
languages. It happens in one direction, from graphs to relations:
patterns turn graphs into relations, but there are no natural ways
of going in the other direction, and use results of relational opera-
tions of either RA or LCRA to create new graphs. Of course real-life
languages with their extended functionalities provide such ways
(e.g., via libraries as mentioned above, or by writing data and using
it to create new graph views in PGQ) – but the main point is that
these lie outside the realm of a declarative query language.

With the understanding of causes of limitations, the focus needs
to be shifted to ways to remedy those, i.e., step (5) above. If the story
of SQL is any indication, this will require a considerable research
effort. Still, we can outline what we think are possible approaches
to fixing the non-compositionality issues.

Pattern matching restricted to matched paths. While graph-to-
graph languages are the ultimate long-term goal, in the short
term some of non-compositionality can be fixed by letting pat-
tern matching operate on previously matched patterns. We explain
this idea by the query𝑄E

↑ . To find such paths from ℓ1-labeled nodes
to ℓ2-labeled nodes, we can first match paths from ℓ1-nodes to
ℓ2-nodes and then exclude those where the “increasing value in
edges” condition is violated. Specifically, we start with the pattern
𝜓 := (𝑥) →1..∞ (𝑦)⟨ℓ1 (𝑥) ∧ ℓ2 (𝑦)⟩ and then create a new pattern

𝜓 | ¬∃(𝑢→ () 𝑣→ ⟨𝑢.𝑘 ≥ 𝑣 .𝑘⟩) (1)

The pipe operator | means that the pattern
𝑢→ () 𝑣→ ⟨𝑢.𝑘 ≥ 𝑣 .𝑘⟩ is

evaluated on the result of the match of pattern𝜓 , and the condition
¬∃ says that there are no matches for it. This will ensure that in
the match for𝜓 there are no consecutive edges for which the value
of their property does not increase.

Constructing graph elements from tables. In current graph lan-
guages the flow of information is in the direction from graph to
constructed relations. What if we could reverse it as well and con-
struct new graph elements from relations? As an example of this,
suppose we could construct new nodes with label old_edge whose
ids are edge ids in a graph𝐺 , and a new edge with a lable new_edge
which connects two such nodes coming from edges 𝑒1 and 𝑒2 of 𝐺
if the target of 𝑒1 is the source of 𝑒2. Then

(𝑥)
(
(𝑢) 𝑒→ (𝑣)⟨𝑢.𝑘 < 𝑣 .𝑘 ∧ new_edge(𝑒)⟩

)
(𝑦)

(i.e.,𝑄N
↑ on the constructed graph) expresses𝑄E

↑ on𝐺 . This powerful
idea was already present in an early theoretical language of [13] but
never properly explored in the context of practical graph languages.

We conclude with a remark that language design is a delicate
process in which the right balance must be struck between expres-
sivity and complexity. It is not as simple as “add these features”;
much new research is required as they come with complexity con-
sequences. To give one example, in (1) replace

𝑢→ () 𝑣→ ⟨𝑢.𝑘 ≥ 𝑣 .𝑘⟩
with (𝑢) →1..∞ (𝑣)⟨𝑢.𝑘 = 𝑣 .𝑘⟩. This results in query 𝑄N

≠ known to
be NP-hard in data complexity [30]. Thus, such extensions are very
sensitive to small syntactic changes. This however should simply
be viewed as an invitation to start a research investigation into
extensions of GQL and PGQ that allow desirable queries without
unmanageable computational overhead. Once again, the past his-
tory of SQL tells us that such research could be very productive
and have a great influence on the language.

1809

ACKNOWLEDGMENTS
This research was supported by ANR Project VeriGraph, ANR-
21-CE48-0015 (Leonid Libkin), a grant from RelationalAI to IRIF,
Poland’s National Science Centre grant 2018/30/E/ST6/00042
(Alexandra Rogova) and Israel Science Foundation 2355/24 (Liat
Peterfreund).

REFERENCES
[1] S. Abiteboul and V. Vianu. Computing with first-order logic. J. Comput. Syst.

Sci., 50(2):309–335, 1995.
[2] S. Abriola, P. Barceló, D. Figueira, and S. Figueira. Bisimulations on data graphs.

J. Artif. Intell. Res., 61:171–213, 2018.
[3] F. N. Afrati, M. Gergatsoulis, and F. Toni. Linearisability on datalog programs.

Theor. Comput. Sci., 308(1-3):199–226, 2003.
[4] A. V. Aho and J. D. Ullman. The universality of data retrieval languages. In A. V.

Aho, S. N. Zilles, and B. K. Rosen, editors, Conference Record of the Sixth Annual
ACM Symposium on Principles of Programming Languages, San Antonio, Texas,
USA, January 1979, pages 110–120. ACM Press, 1979.

[5] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, and D. Vrgoc. Foun-
dations of modern query languages for graph databases. ACM Comput. Surv.,
50(5):68:1–68:40, 2017.

[6] M. Arenas, P. Barceló, L. Libkin, W. Martens, and A. Pieris. Database Theory.
Open source at https://github.com/pdm-book/community, 2022.

[7] P. Barceló. Querying graph databases. In Principles of Database Systems (PODS),
pages 175–188, 2013.

[8] P. Barceló, L. Libkin, A. W. Lin, and P. T. Wood. Expressive languages for path
queries over graph-structured data. ACM Trans. Database Syst., 37(4):31:1–31:46,
2012.

[9] B. R. Bebee, D. Choi, A. Gupta, A. Gutmans, A. Khandelwal, Y. Kiran, S. Mallidi,
B. McGaughy, M. Personick, K. Rajan, S. Rondelli, A. Ryazanov, M. Schmidt,
K. Sengupta, B. B. Thompson, D. Vaidya, and S. Wang. Amazon Neptune: Graph
data management in the cloud. In M. van Erp, M. Atre, V. López, K. Srinivas,
and C. Fortuna, editors, Proceedings of the ISWC 2018 Posters & Demonstrations,
Industry and Blue Sky Ideas Tracks co-located with 17th International Semantic
Web Conference (ISWC 2018), Monterey, USA, October 8th - to - 12th, 2018, volume
2180 of CEUR Workshop Proceedings. CEUR-WS.org, 2018.

[10] M. Benedikt, A. W. Lin, and D. Yen. Revisiting the expressiveness landscape of
data graph queries. CoRR, abs/2406.17871, 2024.

[11] B. Bollobás. Random Graphs, volume 73 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2011.

[12] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Containment of
conjunctive regular path queries with inverse. In KR 2000, Principles of Knowledge
Representation and Reasoning Proceedings of the Seventh International Conference,
Breckenridge, Colorado, USA, April 11-15, 2000, pages 176–185, 2000.

[13] M. P. Consens and A. O. Mendelzon. GraphLog: a visual formalism for real life
recursion. In Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS), pages 404–416. ACM Press, 1990.

[14] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query language support-
ing recursion. In U. Dayal and I. L. Traiger, editors, Proceedings of the Association
for Computing Machinery Special Interest Group on Management of Data 1987
Annual Conference, San Francisco, CA, USA, May 27-29, 1987, pages 323–330. ACM
Press, 1987.

[15] A. Deutsch, N. Francis, A. Green, K. Hare, B. Li, L. Libkin, T. Lindaaker,
V. Marsault, W. Martens, J. Michels, F. Murlak, S. Plantikow, P. Selmer, H. Voigt,
O. van Rest, D. Vrgoč, M. Wu, and F. Zemke. Graph pattern matching in GQL
and SQL/PGQ. In SIGMOD, pages 1–12. ACM, 2022.

[16] A. Deutsch, Y. Xu, M. Wu, and V. E. Lee. Aggregation support for modern graph
analytics in tigergraph. In Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, pages 377–392. ACM, 2020.

[17] A. Eisenberg and J. Melton. SQL: 1999, formerly known as SQL 3. SIGMOD Rec.,
28(1):131–138, 1999.

[18] R. Fagin. Monadic generalized spectra. Math. Log. Q., 21(1):89–96, 1975.

[19] M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. A query language for a
web-site management system. SIGMOD Rec., 26(3):4–11, 1997.

[20] N. Francis, A. Gheerbrant, P. Guagliardo, L. Libkin, V. Marsault, W. Martens,
F. Murlak, L. Peterfreund, A. Rogova, and D. Vrgoc. GPC: A pattern calculus for
property graphs. In F. Geerts, H. Q. Ngo, and S. Sintos, editors, Proceedings of the
42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2023, Seattle, WA, USA, June 18-23, 2023, pages 241–250. ACM, 2023.

[21] N. Francis, A. Gheerbrant, P. Guagliardo, L. Libkin, V. Marsault, W. Martens,
F. Murlak, L. Peterfreund, A. Rogova, and D. Vrgoc. A researcher’s digest of
GQL. In F. Geerts and B. Vandevoort, editors, 26th International Conference on
Database Theory, ICDT 2023, March 28-31, 2023, Ioannina, Greece, volume 255 of
LIPIcs, pages 1:1–1:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[22] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plan-
tikow, M. Rydberg, P. Selmer, and A. Taylor. Cypher: An evolving query language
for property graphs. In Proceedings of the 2018 International Conference on Man-
agement of Data, page 1433–1445, New York, NY, USA, 2018. Association for
Computing Machinery.

[23] H. Gaifman and M. Y. Vardi. A simple proof that connectivity of finite graphs is
not first-order definable. Bull. EATCS, 26:43–44, 1985.

[24] S. Ginsburg and E. H. Spanier. Bounded Algol-like languages. Transactions of
the American Mathematical Society, 113:333–368, 1964.

[25] S. Han and Z. G. Ives. Implementation strategies for views over property graphs.
Proc. ACM Manag. Data, 2(3):146, 2024.

[26] P. Hell and J. Nešetřil. Graphs and homomorphisms. Oxford University Press,
2004.

[27] A. E. Hodler and M. Needham. Graph data science using neo4j. In D. A. Bader,
editor, Massive Graph Analytics, pages 433–457. Chapman and Hall/CRC, 2022.

[28] N. Immerman. Descriptive complexity. Springer, 1999.
[29] L. Libkin. Elements of Finite Model Theory. Springer, 2004.
[30] L. Libkin, W. Martens, and D. Vrgoč. Querying graphs with data. Journal of the

ACM, 63(2):14:1–14:53, 2016.
[31] T. Lindaaker. Predicates on sequences of edges. Technical report, ISO/IEC JTC1/

SC32 WG3:W26-027, 2023.
[32] W. Martens, M. Niewerth, and T. Popp. A trichotomy for regular trail queries.

Log. Methods Comput. Sci., 19(4), 2023.
[33] PRQL. Pipelined Relational Query Language, 2024. https://prql-lang.org.
[34] J. L. Reutter, M. Romero, and M. Y. Vardi. Regular queries on graph databases.

Theory Comput. Syst., 61(1):31–83, 2017.
[35] P. Selmer. Existing languages working group: GQL influence graph, 2019.

https://www.gqlstandards.org/existing-languages.
[36] C. Sharma, R. Sinha, and K. Johnson. Practical and comprehensive formalisms

for modelling contemporary graph query languages. Inf. Syst., 102:101816, 2021.
[37] J. Shute, S. Bales, M. Brown, J. Browne, B. Dolphin, R. Kudtarkar, A. Litvinov,

J. Ma, J. D. Morcos, M. Shen, D. Wilhite, X. Wu, and L. Yu. SQL has problems. we
can fix them: Pipe syntax in SQL. Proc. VLDB Endow., 17(12):4051–4063, 2024.

[38] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, and G. T. Xie. Sqlgraph:
An efficient relational-based property graph store. In T. K. Sellis, S. B. Davidson,
and Z. G. Ives, editors, Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4,
2015, pages 1887–1901. ACM, 2015.

[39] D. ten Wolde, G. Szárnyas, and P. A. Boncz. Duckpgq: Bringing SQL/PGQ to
duckdb. Proc. VLDB Endow., 16(12):4034–4037, 2023.

[40] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi. PGQL: a property graph
query language. In Proceedings of the Fourth International Workshop on Graph
Data Management Experiences and Systems, pages 1–6, 2016.

[41] H. Wickham, R. François, L. Henry, K. Müller, and D. Vaughan. dplyr:
A Grammar of Data Manipulation, 2023. R package version 1.1.4,
https://github.com/tidyverse/dplyr.

[42] N. Yakovets, P. Godfrey, and J. Gryz. Evaluation of SPARQL property paths via
recursive SQL. In L. Bravo andM. Lenzerini, editors, Proceedings of the 7th Alberto
Mendelzon International Workshop on Foundations of Data Management, Puebla/-
Cholula, Mexico, May 21-23, 2013, volume 1087 of CEUR Workshop Proceedings.
CEUR-WS.org, 2013.

[43] F. Zemke. For each segment discussion. Technical report, ISO/IEC JTC1/ SC32
WG3:BGI-022, 2024.

1810

https://github.com/pdm-book/community

	Abstract
	1 Introduction
	2 GQL and SQL/PGQ by examples
	3 Pattern Matching: Turning Property Graphs into Relations
	3.1 Property Graphs
	3.2 Pattern Matching

	4 SQL/PGQ: Theoretical Abstractions
	5 GQL: Theoretical Abstractions
	5.1 LCRA: Linear Composition RA
	5.2 Core GQL
	5.3 Equivalence of Core PGQ and Core GQL
	5.4 The origins of linear composition

	6 Limitations of Patterns: a theoretical investigation
	6.1 What can be expressed
	6.2 What cannot be expressed with patterns
	6.3 What cannot be expressed in full GQL

	7 Limitations of Patterns: an experimental investigation
	8 What we learned about language design problems
	References

