
Migration-Free Elastic Storage of Time Series in Apache IoTDB

Rongzhao Chen
Tsinghua University

crz22@mails.tsinghua.edu.cn

Xiangpeng Hu
Tsinghua University

hxp23@mails.tsinghua.edu.cn

Xiangdong Huang
Tsinghua University

huangxdong@tsinghua.edu.cn

Chen Wang
Tsinghua University

wang_chen@tsinghua.edu.cn

Shaoxu Song∗

Tsinghua University
sxsong@tsinghua.edu.cn

Jianmin Wang
Tsinghua University

jimwang@tsinghua.edu.cn

ABSTRACT

In distributed time series databases (TSDBs), time series data are

typically partitioned by both series and time. These partitions are

then allocated to shards, whose replicas determine the storage loca-

tion, with the leader managing the write load. In Internet of Things

(IoT) scenarios, clusters expand as the number of sensors continues

to grow. A common approach to re-balancing storage is migrating

existing partitions, yet it incurs additional overhead. Fortunately,

Time to Live (TTL) is often implemented in time series databases to

automatically unload expired data. As a result, dynamically expand-

ing shards rather than migrating existing partitions can also restore

storage balance. In addition, the cluster’s fault tolerance depends

on replica placement schemes, and an expanding cluster compli-

cates this issue. Finally, the intensive write load in IoT scenarios

requires balanced leader selection, which becomes difficult due to

fault-tolerant placement schemes. To address these IoT challenges,

this paper presents the migration-free data partitioning and allo-

cation strategies, a storage-balanced replica placement algorithm

with proven fault tolerance, and a write-balanced leader selection

algorithm. Our proposals have been deployed in Apache IoTDB

since version 1.3. Extensive evaluation of the system demonstrates

its superiority in availability and performance.

PVLDB Reference Format:

Rongzhao Chen, Xiangpeng Hu, Xiangdong Huang, Chen Wang, Shaoxu

Song, and Jianmin Wang. Migration-Free Elastic Storage of Time Series in

Apache IoTDB. PVLDB, 18(6): 1784 - 1797, 2025.

doi:10.14778/3725688.3725706

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/apache/iotdb/.

1 INTRODUCTION

Apache IoTDB [44] is an open-source time series database [29, 33,

42] designed to manage numerous IoT sensors. Given the rapid

growth of sensors, the distributed IoTDB is built with scalability. In

this paper, we describe how our solutions enhance this elasticity.

∗Shaoxu Song (https://sxsong.github.io/) is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 6 ISSN 2150-8097.
doi:10.14778/3725688.3725706

1.1 Terminology

We use Figure 1 to illustrate how time series data are typically

stored in a TSDB cluster. Each sensor is mapped to a series, with

the time series data partitioned by both series and time. The reason

is that (i) customers often deploy over ten million sensors, and (ii)

time series data are associated with timestamps. Combining a series

partition with a time partition creates a data partition.

To reduce management costs, many distributed systems group

data partitions into shards [10, 11, 18] as the unit of replication. A

shard is a logical set of data partitions. For example, in Figure 1, the

shard 𝑟6 consists of data partitions 𝑑4,3 and 𝑑4,4. The replicas of a

shard are its physical copies. In this case, the replicas of shard 𝑟6 are

placed at nodes 𝑛7 and 𝑛8. After cluster expansion, the replica place-

ment algorithm determines which nodes host the physical replicas

of the dynamically expanded logical shards. When new shards are

placed or nodes fail, the leader selection algorithm chooses a leader

to manage write loads.

1.2 Background

1.2.1 Time to Live. TTL effectively disposes of the massive time

series data generated in IoT scenarios. For example, in one of our

user’s production environments, even with the deployment of the

MQTT protocol [28] and a compression algorithm tailored for IoT

scenarios [46], the stored data still accumulates to tens of terabytes

daily. TTL is common in TSDBs because queries and analytics in IoT

contexts typically focus on recent data, leading to the archiving of

low-value historical data. As illustrated in Figure 1, data partitions

within time partition 𝑡1 expire and are automatically unloaded at

the end of time partition 𝑡4.

1.2.2 Gradual Cluster Expansion. As the number of sensors grows

significantly, the cluster needs to be expanded accordingly. For

instance, a new energy power company may increase the number

of sensors in its production environment by 20% over the course of

a year. As shown in Figure 1, the growth in sensors leads to series

expansion, thus the load on each node increases, which eventually

requires cluster expansion by time partition 𝑡3.

1.2.3 Intensive Write Load. It is unsurprising that the hotspots

of time series data are the data partitions within the most recent

time partition, as numerous sensors continuously collect data. For

instance, a steel manufacturer has deployed over 3 million sensors,

with 70% of them sampling every second, resulting in an average of

2 million data points written per second. As illustrated in Figure 1,

the current time partition is 𝑡4, and the write loads are concentrated

on the data partitions within it.

1784

https://doi.org/10.14778/3725688.3725706
https://github.com/apache/iotdb/
https://sxsong.github.io/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3725688.3725706
https://www.acm.org/publications/policies/artifact-review-and-badging-current

① Time series data partitioning ③ Replica placement ④ Leader Selection

③ Storage-balanced & fault-tolerant replica placement

④ Write-balanced leader selection② Migration-free

partition allocation

② Partition allocation

Cluster expansion

Shard expansion

① Migration-free

data partitioning

Shard �1

�2,2�1,2

�1,4�1,3

�4,2�3,2

�3,4�3,3

�6,2�5,2

�5,4�5,3

�8,2�7,2

�7,4�7,3

�2,4�2,3 �4,4�4,3

�6,4�6,3 �8,4�8,3

�1,1 �2,1 �3,1 �4,1 �5,1 �6,1 �7,1 �8,1�1

�1,2 �2,2 �3,2 �4,2 �5,2 �6,2 �7,2 �8,2

�1,4 �2,4 �3,4 �4,4 �5,4 �6,4 �7,4 �8,4

�1,3 �2,3 �3,3 �4,3 �5,3 �6,3 �7,3 �8,3

�8�1 �2 �3 �4 �5 �6 �7

Series

partitions

�4

�3

�2

Cluster expansion

Series expansion

Intensive write load

Time

partitions

Expire

TTL

Shard �6

Follower

Shard �8

Leader

Node �8

Shard ��

Leader

Shard ��

Leader

Node 	�

Shard �8

Follower

Shard �5

Follower

Node �6

Shard �5

Leader

Shard �7

Follower

Node �5

Shard �4
Leader

Shard �2

Follower

Node �4

Shard �2

Leader

Shard �4
Follower

Node �3

Shard �3

Failed

Shard �1

Failed

Node �2

Shard �

Leader

Shard ��

Leader

Node 	

Partitions
�1,1

Shard �2

Shard �3 Shard �4

Shard �5 Shard �6

Shard �7 Shard �8

Series expansion

Time series

Figure 1: Migration-free elastic storage of ever evolving time series in the IoT scenarios. Dynamic shards match the variously

expending series and cluster.

1.3 Challenge

1.3.1 Migration-Free Data Partitioning and Allocation. Data migra-

tion is closely integrated with partitioning and allocation strategies.

OpenTSDB [32], built upon HBase [19], adjusts its range partition-

ing as the series expand. Since new series modify the load among

partitions, these partitions are either split or merged, then migrated

to other shards. Another instance is the Cassandra [23], which

employs a dynamic allocation strategy through the use of the con-

sistent hash algorithm [22]. When cluster has expanded and new

shards have been added, part of the previous mapping between

partitions and shards changes, triggering migration. Hence, the

relatively stable partitioning and allocation strategies are required

for a migration-free mechanism.

1.3.2 Storage-Balanced and Fault-Tolerant Replica Placement. The

shards’ replica placement schemes are fundamental to maintaining

storage balance and fault tolerance.While aWeighted-Round-Robin

(WRR) can achieve storage balance, it compromises single-node

fault tolerance. For instance, in the case of nodes 𝑛1−4 in Figure 1, if

node 𝑛2 fails, the load initially handled by 𝑛2 would be transferred

solely to 𝑛1, potentially overloading as experimented in Section

5.3.2. COPYSET [9] effectively models and addresses single-node

and multi-node fault tolerance, yet it requires a sufficient number

of nodes to maintain storage balance. Since gradually expanding a

cluster is more cost-effective, demanding a large number of nodes at

the initial deployment is impractical. Thus, a sophisticated replica

placement algorithm that produces better placement schemes is

required. For example, with nodes 𝑛5−8, each node would not only

hold an equal number of replicas but also share its load to multiple

other nodes in the event of failure.

1.3.3 Write-Balanced Leader Selection. The intensive write load

necessitates balanced leader distribution. Many consensus proto-

cols define rules for leader election [31, 43], and TimescaleDB [42]

implements this through Patroni [35]. However, a replica that initi-

ates a vote request early is more likely to become the leader. This

results in random distribution, and can be unbalanced when the

number of nodes is initially small. Conversely, deliberate selection

achieves a more balanced distribution, but fault-tolerant placement

schemes invalidate simple methods like greedy. For example, greed-

ily selecting leaders for shards 𝑟5−8 in Figure 1 might result in node

𝑛7 holds two leaders. This occurs because each step considers only a

subset of nodes, as detailed in Section 4. Thus, a selection algorithm

that consistently balances leader distribution is required.

1.4 Contribution

• We implement data partitioning and allocation strategies that

leverage TTL. To illustrate the performance of our strategies in

storage balance, we prove the linear decrease of the cluster’s disk

usage standard deviation (std) in Proposition 1.

• We formalize the placement problem and prove its NP-complete-

ness (Theorem 1). Our storage-balanced and fault-tolerant method

(Algorithm 1) provides adequate single-node fault tolerance with

a replication factor of 𝜌 = 2 (Proposition 2) and adapts to 𝜌 > 2

(Proposition 3). Additionally, we introduce a probabilistic model to

evaluate the cluster’s multi-node fault tolerance (Proposition 4).

• We design the write-balanced leader selection approach (Algo-

rithm 2) with guaranteed optimal solutions (Proposition 5).

• Our proposals have been implemented in Apache IoTDB since

version 1.3 [3], and deployed in the production environment.

• In comparison to our algorithms (Section 5), the state-of-the-

art solution exhibits a 248.4% higher disk usage std in expansion

scenario and a 70.0% higher std in disaster scenario. Additionally,

the alternative solutions’ write throughput std is 322.9% higher in

expansion scenario and 60.3% higher in disaster scenario.

Table 1 lists the frequently used notations in this paper.

1785

Table 1: Notations

Symbol Description

N The set of cluster nodes.

R The set of cluster shards.

H The set of shards’ leaders.

𝑠𝑖 The i-th series partition.

𝑡 𝑗 The j-th time partition.

𝑑𝑖, 𝑗 The partition consisting of 𝑠𝑖 and 𝑡 𝑗 .

𝑛 The number of nodes in the cluster.

𝑛𝑖 The i-th node in the cluster.

𝜎𝑖 The scatter width of 𝑛𝑖 .

𝜌 The replication factor, which represents the number

of replicas of each shard.

𝑟 The number of shards in the cluster.

𝑟 𝑗 The j-th shard in the cluster, a set composed of 𝜌

nodes where its replicas are located.

𝜔 The load factor, which represents the number of

replicas expected to be held by each node.

𝜔𝑖 The actual number of replicas held by 𝑛𝑖 .

𝑝𝑖 The node where the leader of 𝑟𝑖 located.

𝜂𝑖 The number of leaders in 𝑛𝑖 .

2 DATA PARTITIONING AND ALLOCATION

In Apache IoTDB, the relationship between łseriesž and łsensorsž

is 1-to-1. As illustrated in Figures 1 and 2, all the time series are

partitioned in two dimensions. (1) Each time series is assigned to

one series partition 𝑠𝑖 , by hashing the series name. (2) Each time

series is further partitioned by time range, as time partitions 𝑡 𝑗 .

Although we tend to access the series in timestamp sequence, the

partitions on time enable the parallel analysis of a time series, e.g.,

compute the average in each time partition and aggregate it for the

whole series. One may assign all the time series to just one series

partition, which also decreases parallelism.

2.1 Data Partitioning

Existing data partitioning strategies are often too mutable, thus we

propose a more stable series partitioning operator (Section 2.1.1) to

avoid migration. Additionally, we define a time partitioning opera-

tor (Section 2.1.2) given the intensive write load of IoT scenarios.

2.1.1 Series Partitioning Operator. As presented in Figures 1 and 2,

Apache IoTDB records the mapping between data partitions and

shards. It is frequently accessed in read and write workload, and

thus needs to be concise with a limited number of series partitions.

Meanwhile, limiting the number of series partitions also reduces

the cost of allocating data partitions to shards in Section 2.2.2.

Therefore, the number of series partitions 𝜙 is often configured

significantly smaller than the number of deployed sensors. The

series partitioning operator 𝑜𝑠 (𝑠𝑒𝑟𝑖𝑒𝑠) maps a series to a series

partition 𝑠𝑖 , where 0 ≤ 𝑖 < 𝜙 , and employs a string hash by default.

Note that each series is hashed to exactly one series partition. In

Figure 2, there are 8 series expansion, assigned to 8 series partitions,

respectively. As a result, series partitions have similar load, while

the mapping of series and series partitions remains stable.

Partitions
�1,1

① Time series

data partitioning

Shard expansion

Shard �1

�1,3 �1,4 �1,5

�1,2 �2,2

�1,1 �2,1

�3,3 �3,4 �3,5

�3,2 �4,2

�3,1 �4,1

Shard �2

�5,3 �5,4 �5,5

�5,2 �6,2

�5,1 �6,1

Shard �3

�7,3 �7,4 �7,5

�7,2 �8,2

�7,1 �8,1

Shard �4

�2,3 �2,4 �2,5

Shard �5

�4,3 �4,4 �4,5

Shard �6

�6,3 �6,4 �6,5

Shard �7

�8,3 �8,4 �8,5

Shard �8

�1,1 �2,1 �3,1 �4,1 �5,1 �6,1 �7,1 �8,1�1

�1,2 �2,2 �3,2 �4,2 �5,2 �6,2 �7,2 �8,2

�1,4 �2,4 �3,4 �4,4 �5,4 �6,4 �7,4 �8,4

�1,3 �2,3 �3,3 �4,3 �5,3 �6,3 �7,3 �8,3

�8�1 �2 �3 �4 �5 �6 �7

Series

partitions

�4

�3

�2

Cluster expansion

Series expansion

Intensive write load

Time partitions

Expire

TTL

�1,5 �2,5 �3,5 �4,5 �5,5 �6,5 �7,5 �8,5�5

Out-of-order write load

② Partition allocation

Series expansion

Time series

Figure 2: Example of data partitioning and allocation.

2.1.2 Time Partitioning Operator. In the current Apache IoTDB,

the system requires that time partitions are cut along the same

time for different sensors (series), as shown in Figures 1 and 2.

By (randomly) assigning each time series to a series partition by

hashing, each series partition tends to have a similar proportion

of time series with different reading intervals, i.e., balanced load.

Although tailoring each time partition for time series with different

reading intervals would help in further load balance, it incurs huge

extra cost in allocating and managing the mapping between data

partitions and shards. Network fluctuations may cause concurrent

writes across different time partitions. However, previous research

shows that about 7% of IoT data are out-of-order, with delays of

only a few seconds [21]. Since our time partitioning interval spans

days, out-of-order data result in brief concurrent writes across time

partitions, which minimally affect the overall balance.

2.2 Partition Allocation

Our partitioning strategy divides the time series data into horizon-

tally balanced and vertically distinct hot and cold partitions. Subse-

quently, when cluster expansion introduces new shards (Section

2.2.1), the partition allocation strategy (Section 2.2.2) is responsible

for evenly allocating all series partitions across all shards.

2.2.1 Shard Expansion. New shards’ replicas are placed after clus-

ter expansion. We assume that the load factor 𝜔 is a constant, and

Equation 1 gives the number of shards. The 𝜔 = 2 in Figure 1.

𝑟 =

⌊
𝑛𝜔

𝜌

⌋
(1)

1786

2.2.2 Allocation Strategy. We group data partitions to shards by

the partition allocation strategy. In short, as illustrated in Figure 2,

it typically inherits the previous allocation results, and reallocates

some data partitions to the newly expanded shards.

During the scaling out process, the replicas and leaders of certain

series partitions are relocated to rebalance the storage and the write

loads. This relocation is accomplished by sequentially executing

the allocation strategy (Section 2.2.2), replica placement (Algorithm

1), and leader selection (Algorithm 2). For example, in Figure 1, (i)

when nodes 𝑛5−8 are added to the cluster at time partition 𝑡3, the

allocation strategy creates logical shards 𝑟5−8 and evenly reallocates

all series partitions across the shards 𝑟1−8, resulting in the relocation

of some series partitions. For example, shard 𝑟2 initially manages

the replica and leader of series partition 𝑠4, which is relocated to

shard 𝑟6 during the scaling out process. (ii) The replicas of shards

𝑟5−8 are subsequently placed to nodes 𝑛5−8 using the placement

algorithm. (iii) Finally, the leaders for shards 𝑟5−8 are selected by

the leader selection algorithm.

This strategy trades short-term storage load imbalance to con-

serve cluster resources, with the duration of the storage imbalance

is determined by the TTL. For example, the cluster experiences

storage imbalance during time partitions 𝑡3−4 and regains storage

balance by the end of time partition 𝑡5 in Figure 2.

2.3 Load Balance Analysis

Note that unlike the computing-oriented stream processing systems

[4, 47, 49], time series databases (TSDBs) are storage-oriented. In

TSDBs, a node becomes łread-onlyž when its disk is full. Given that

larger time windows in TSDBs lead to greater data accumulation, it

is crucial to monitor the disk usage standard deviation (std) across

all nodes to ensure that no node becomes the bottleneck of storage.

Therefore, in this section, we provide a detailed analysis of how

this standard deviation, denoted as D(𝜈), evolves over time 𝜈 in

our mechanism that utilizes TTL.

Let a TSDB cluster be ideally load-balanced where data partitions

are evenly allocated to all shards, and the replicas of shards are

balanced placed across all nodes. Considering that in typical IoT

scenarios, sensors sample data at fixed intervals, we can assume

that the increment in disk usage per unit time for each node is

constant, denoted as C. With TTL in place, the disk usage of all

nodes will increase linearly to TTL × C. Subsequently, the std of

disk usage across all nodes is demonstrated in Proposition 1.

Proposition 1. Assume that the increment in disk usage per unit

time for each node is a constant C. Let 𝜇 represent the timestamp

when the cluster is expanded, having 𝛼 nodes before 𝜇 and 𝛼 +𝛽 nodes

after 𝜇. With TTL in place, the std of disk usage across all nodes is:

D(𝜈) =



0, 𝜈 < 𝜇 ∨ 𝜇 + TTL < 𝜈√︁
𝛼𝛽C

𝛼 + 𝛽
× (𝜇 + TTL − 𝜈), 𝜇 ≤ 𝜈 ≤ 𝜇 + TTL

(2)

Proof. Please see the proof in Section A.1 [1]. □

The replica placement in Section 3 specializes in storage balance,

ensuring that each node has enough disk space to store new data.

The leader selection in Section 4 focuses on processing balance,

optimizing write throughput utilizing CPU and memory resources.

3 REPLICA PLACEMENT

The simple Weighted-Round-Robin (WRR) algorithm lacks fault

tolerance as it results in fixed node pairings. While the COPYSET

[9] algorithm addresses this issue, it cannot ensure storage balance

without sufficient nodes. Let us first introduce some preliminaries

that model fault tolerance (Section 3.1). We then propose a more

appropriate problem definition (Section 3.2) and the corresponding

choreographed placement algorithm (Section 3.3) for IoT scenarios.

Finally, Section 3.4 provides comprehensive proofs regarding the

fault tolerance of our placement algorithm.

3.1 Preliminaries

An existing study [9] introduces scatter width and Copyset as key

measures of fault tolerance. We reference them as follows:

Definition 1 (scatterwidth). LetN denote nodes set,R denote

shards set, scatter width 𝜎𝑖 of node 𝑛𝑖 is given by Equation 3.

𝜎𝑖 =

���� ⋃
𝑛𝑖 ∈𝑟 𝑗

𝑟 𝑗

���� − 1 (3)

For the notations used to define the scatter width in Equation

3, 𝑛𝑖 represents the 𝑖-th node in the cluster, and 𝑟 𝑗 denotes the

placement scheme for the 𝑗-th shard, which refers to the set of

nodes holding the replicas of the 𝑗-th shard. Thus, in Equation 3,

∪𝑛𝑖 ∈𝑟 𝑗 𝑟 𝑗 refers to the union of the node sets 𝑟 𝑗 that contain node

𝑛𝑖 . In Figure 1, the scatter width 𝜎1 of node 𝑛1 is 1 since 𝑛1 ∈ 𝑟1, 𝑟3
and |𝑟1 ∪ 𝑟3 | − 1 = 1. Similarly, the scatter width 𝜎5 of node 𝑛5 is 2

since 𝑛5 ∈ 𝑟5, 𝑟7 and |𝑟5 ∪ 𝑟7 | − 1 = 2. The Copyset paper does not

consider the load-sharing property of scatter width in the event of

single-node failures, i.e., the scatter width of a node can represent

the number of other nodes that take on its write load during failure.

A Copyset is an independent replica placement scheme. In Figure

1, nodes 𝑛1−4 have two Copysets: {𝑛1, 𝑛2}, {𝑛3, 𝑛4}, while nodes

𝑛5−8 have four Copysets: {𝑛5, 𝑛6}, {𝑛5, 𝑛7}, {𝑛6, 𝑛8}, {𝑛7, 𝑛8}. Using

more Copysets increases the scatter width; however, this does not

imply that all possible Copysets should be used. In a cluster with 𝑛

nodes and a replication factor 𝜌 , exhausting all
(𝑛
𝜌

)
Copysets would

mean that any concurrent failure of 𝜌 nodes would render a shard

unavailable, reducing the cluster’s multi-node fault tolerance.

3.2 Replica Placement Problem

As the cluster expands, more replicas will be placed. In this process,

our goal is to maximize the scatter width sum of cluster nodes

to improve their load-sharing property, while ensuring that the

number of replicas held by each node does not exceed the load

factor 𝜔 , thereby maintaining storage balance. This problem is

modeled in Section 3.2.1, and its hardness is analyzed in Section

3.2.2.

3.2.1 Problem Definition. An undirected graph that excludes multi-

ple edges represents the relation between nodes and shards. Figure

3 illustrates a cluster with 8 nodes and a replication factor 𝜌 = 3.

Each node 𝑛𝑖 is represented by a vertex 𝑛𝑖 , and each shard 𝑟 𝑗 is

denoted by a group of edges (𝑛𝜄 , 𝑛𝜅) where 𝑛𝜄 , 𝑛𝜅 ∈ 𝑟 𝑗 ∧ 𝑛𝜄 ≠ 𝑛𝜅 .

The degree of vertex𝑛𝑖 is the scatter width 𝜎𝑖 of node𝑛𝑖 , as multiple

edges are excluded. If nodes 𝑛1−4 and shards 𝑟1−4 in Figure 1 are

converted similarly, only 2 edges remain: (𝑛1, 𝑛2) and (𝑛3, 𝑛4).

1787

Formally, we convert the shard set R into an adjacency matric

A = (𝑎𝑖 𝑗)𝑛×𝑛 and introduce the indicator function [], which is 1

iff. the condition inside holds true; otherwise is 0. Let 𝑥𝑖𝑘 ∈ {0, 1},

𝑥𝑖𝑘 = 1 iff. 𝑛𝑖 ∈ 𝑟𝑘 . Thus, 𝑎𝑖 𝑗 = [𝑖 ≠ 𝑗 ∧
∑𝑟
𝑘=1

𝑥𝑖𝑘 · 𝑥 𝑗𝑘 ≥ 1],

meaning that there exists at least one shard 𝑟𝑘 s.t. 𝑛𝑖 , 𝑛 𝑗 ∈ 𝑟𝑘 . Let

W = (𝜔𝑖)1×𝑛 , and assume that𝑚 shards need to be placed. We

define the replica placement problem 𝑅𝑃𝑃 (N ,A,W, 𝜔, 𝜌,𝑚) as

follows:

Problem 1 (replica placement problem). Given N ,A,W, 𝜔,

𝜌,𝑚, find replica placement schemes 𝑟 ′1, 𝑟
′
2, · · · , 𝑟

′
𝑚 that

maximize Σ =

𝑛∑︁
𝑖=1

𝜎𝑖 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1∧𝑗≠𝑖

[(𝑎𝑖 𝑗 +

𝑚∑︁
𝑘=1

𝑥 ′
𝑖𝑘
· 𝑥 ′

𝑗𝑘
) ≥ 1],

subject to 𝜔𝑖 +

𝑚∑︁
𝑗=1

𝑥 ′𝑖 𝑗 ≤ 𝜔 ;∀𝑛𝑖 ∈ N ,

where 𝑥 ′𝑖 𝑗 = 1 iff. 𝑛𝑖 ∈ 𝑟
′
𝑗 ;𝑥
′
𝑖 𝑗 ∈ {0, 1}.

In Problem 1,𝑚 is the number of shards that need to be placed.

In the constraint inequation 𝜔𝑖 +
∑𝑚

𝑗=1 𝑥
′
𝑖 𝑗 ≤ 𝜔, the + represents

the sum of the number of replicas already placed on node 𝑛𝑖 , i.e.,𝜔𝑖 ,

and the number of replicas to be placed on node 𝑛𝑖 , i.e.,
∑𝑚

𝑗=1 𝑥
′
𝑖 𝑗 .

Since this summation should be bounded by the load factor 𝜔 , we

further enforced the ≤ condition. Therefore,𝑚 does not need to be

sufficiently large, as long as the constraint is feasible.

3.2.2 Hardness Analysis. To analyze NP complexity, define the de-

cision problem as 𝑅𝑃𝐷𝑃 (N ,A,W, 𝜔, 𝜌,𝑚,Δ), which asks whether

there exist𝑚 schemes s.t., after placing them, the scatter width sum

Σ
′ satisfies Σ′ − Σ ≥ Δ. Unfortunately, this is NP-complete.

Theorem 1. 𝑅𝑃𝐷𝑃 (N ,A,W, 𝜔, 𝜌,𝑚,Δ) is NP-complete.

Proof. Please see the proof in Section A.2 [1]. □

3.3 Partite Graph Placement

The complexity arises from the unpredictability in the number of

nodes introduced by gradually expanding clusters, and different

users require varying replication factors to ensure diverse levels of

fault tolerance. Thus, we propose a valuation function in Section

3.3.1 and a coordinated heuristic search algorithm in Section 3.3.2.

3.3.1 Valuation Function. If a pair of vertices is already adjacent,

including them in the new placement scheme does not increase their

scatter width. In conjunction with the storage balance constraint,

we propose the valuation function as in Equation 4.

𝑓 (N ,A,W) =
©­«

∑︁
𝑛𝜄 ,𝑛𝜅 ∈N

𝑎𝜄𝜅 ,
∑︁
𝑛𝜄 ∈N

𝜔𝜄
ª®¬

(4)

The input is a node set N , an adjacency matrix A and a load

vectorW. The output is a tuple (𝜇, 𝜈) composed of two nonnegative

integers. Here, 𝜇 is twice the number of edges that are covered by

nodes in N , and 𝜈 is the number of replicas held by nodes in N .

Since each covered edge indicates that the corresponding scatter

width has contributed to this pair of nodes, we expect 𝜇 to be as

small as possible. To ensure that each node owns an equal number

of replicas, we also aim for 𝜈 to be as small as possible. Thus, we

define (𝜇1, 𝜈1) < (𝜇2, 𝜈2) iff. 𝜇1 < 𝜈2 ∨ (𝜇1 = 𝜇2 ∧ 𝜈1 < 𝜈2).

Node �6
�6

� 0 � 1

�2 �3

�6 �7

�5�8

�1�4

� �

� �

Shard �2

Shard �5

Node �2

Shard �1

Node �4

Shard �3

Shard �5

Node �6

Shard �2

Shard �4

Node �8

Shard �2

Shard �3

Node �7

Shard �3

Shard �4

Node �5

Shard �1

Shard �4

Node �3

Shard �1

Shard �5

Node �1

Shard �5

Figure 3: Example of Algorithm 1 for the new shard 𝑟5.

Algorithm 1: Partite Graph Placement (PGP)

Input: Node set N , adjacency matrix A, load vectorW,

load factor 𝜔 and replication factor 𝜌

Output: The next shard’s replica placement scheme 𝑟 ′

1 N← 𝑃𝑎𝑟𝑡𝑖𝑡𝑒𝐺𝑟𝑎𝑝ℎ(N);n𝛼 ,n𝛽 ,N𝛼 ← ∅;

2 foreach N𝑖 ∈ N do

3 n∗𝛼 ←
⌊ 𝜌
2

⌋
nodes 𝑛 𝑗 in N𝑖 with minimum 𝜔 𝑗 ;

4 𝑛𝜄 ← a node in N𝑖 s.t. 𝑓 (n
∗
𝛼 ∪ 𝑛𝜄 ,A,W) is minimum;

5 n∗𝛼 ← n∗𝛼 ∪ 𝑛𝜄 ;

6 if 𝑓 (n∗𝛼 ,A,W) < 𝑓 (n𝛼 ,A,W) then

7 n𝛼 ← n∗𝛼 ;

8 N𝛼 ← N𝑖 ;

9 foreach N𝑗 ∈ N \ {N𝛼 } do

10 𝑛𝜅 ← a node in N𝑗 s.t. 𝑓 (n𝛼 ∪ 𝑛𝜅 ,A,W) is minimum;

11 n𝛽 ← n𝛽 ∪ 𝑛𝜅 ;

12 𝑟 ′ ← n𝛼 ∪ n𝛽 ;

13 return 𝑟 ′;

3.3.2 Placement Algorithm. To pre-prune and achieve storage bal-

ance constraint, the line 1 of Algorithm 1 eliminates those 𝜔𝑖 = 𝜔

nodes, so that ∀𝑛𝑖 ∈ N , 𝜔 − 1 ≤ 𝜔𝑖 ≤ 𝜔 is ultimately satisfied after

placing 𝑟 =

⌊
𝑛𝜔
𝜌

⌋
shards. The graph is then divided to efficiently

enumerate potential schemes, and separately estimate the scatter

width increment. For instance, in Figure 3, 8 nodes are divided into

subsets of nodes N0,N1. Specifically, the 𝑖-th subsets of nodes can

be obtained byN𝑖 = {𝑛 𝑗 : 𝑛 𝑗 ∈ N ∧𝜔 𝑗 < 𝜔 ∧ 𝑗 mod
⌈ 𝜌
2

⌉
= 𝑖}, and

we limit 0 ≤ 𝑖 <
⌈ 𝜌
2

⌉
to construct

⌈ 𝜌
2

⌉
subsets of nodes.

Algorithm 1 searches for next placement scheme 𝑟 ′ in two steps.

In lines 2-8, for each subsets, it selects
⌊ 𝜌
2

⌋
nodes that hold the

fewest number of replicas into n∗𝛼 to balance storage load. Then,

it picks a 𝑛𝜄 that minimizes 𝑓 (n∗𝛼 ∪ 𝑛𝜄 ,A,W) and adds it to n∗𝛼 ,

1788

expecting that 𝑛𝜄 increases the scatter width by 1 for others in n∗𝛼 .

Among all these n∗𝛼 , the one with the lowest valuation function is

chosen as n𝛼 , which comprises
⌊ 𝜌
2

⌋
+1 nodes for the result. In lines

9-11, it enumerates other subsets except N𝛼 . From each subsets, it

selects a 𝑛𝜅 that minimizes 𝑓 (n𝛼 ∪ 𝑛𝜅 ,A,W), expecting that 𝑛𝜅
increases the scatter width by 1 for all nodes inside n𝛼 . Finally, it

obtains n𝛽 that includes
⌈ 𝜌
2

⌉
− 1 nodes, and returns 𝑟 ′ = n𝛼 ∪n𝛽 as

the scheme for next shard. Expectedly, each node in 𝑟 ′ increases by

at least
⌈ 𝜌
2

⌉
scatter width, since each node in n𝛼 gains 1 from 𝑛𝜄 and

gains
⌈ 𝜌
2

⌉
− 1 from n𝛽 , while each node in n𝛽 gains

⌊ 𝜌
2

⌋
+ 1 ≥

⌈ 𝜌
2

⌉
from n𝛼 . Algorithm 1 runs efficiently, since sorting costs𝑂 (𝑛 log𝑛)

and invoking the valuation function costs 𝑂 (𝜌2).

When searching the placement scheme for shard 𝑟5 in Figure

3, the algorithm first selects 𝑛2 in N0 because 𝜔2 is the smallest.

Then, it appends 𝑛6 into n𝛼 because 𝑓 ({𝑛2, 𝑛6},A,W) = (0, 2) is

the smallest tuple. Finally, it selects 𝑛1 from N1 and adds it to n𝛽
because 𝑓 ({𝑛2, 𝑛6}∪ {𝑛1},A,W) = (0, 3) is also the smallest tuple.

The placement scheme for shard 𝑟5 is thus 𝑟
′
= {𝑛2, 𝑛6, 𝑛1}.

3.4 Fault Tolerance Analysis

We show in Section 3.4.1 that Algorithm 1 can provide sufficient

scatter width, thus improve the fault tolerance when a single-node

fails. Nevertheless, Algorithm 1 uses different placement schemes

to fulfill this objective, which may compromise the fault tolerance

when multi-node fail as mentioned in Section 3.1. Thus, Section

3.4.2 analyzes multi-node fault tolerance of Algorithm 1.

3.4.1 Single-Node Fault Tolerance. To quantify the scatter width

provided by Algorithm 1, we define the lower bound of scatter

width ratio as �̆�𝑛 =

∑𝑛
𝑖=1 𝜎𝑖∑𝑛
𝑖=1 𝜎

∗
𝑖
≥ min𝑛𝑖 ∈𝑁

(
𝜎𝑖
𝜎∗𝑖

)
. The 𝜎∗𝑖 represents the

maximum possible scatter width of node 𝑛𝑖 . When the replication

factor 𝜌 = 2, Algorithm 1 ensures adequate scatter width, as shown

in Proposition 2. Furthermore, Proposition 3 shows that Algorithm

1 also provides enough scatter width for 𝜌 > 2 scenarios.

If all 𝑟 shards are optimally placed, the scatter width of any node

𝑛𝑖 reaches its maximum valueÐ𝜎∗𝑖 = (𝜌 − 1)𝜔 . Instead of painstak-

ingly finding optimal schemes, Algorithm 1 aims to construct more

łgoodž schemes that increase
⌈ 𝜌
2

⌉
scatter width for each involved

node to the greatest extent possible. Fortunately, the sufficient con-

dition for the existence of a good scheme is looser than that for an

optimal scheme, as given by Lemmas 2, 3 and 4. Assuming that any

node is within at least �̆� good schemes, the lower bound of �̆�𝑛 can

be calculated as �̆�𝑛 ≥
⌈
𝜌
2 ⌉�̆�

(𝜌−1)𝜔
. Lemma 1 provides �̆� ’s lower bound.

Lemma 1. Assuming that at least 𝑟 of all 𝑟 placement schemes

generated by Algorithm 1 are good, and for each node, assuming that

it is included in at least �̆� good placement schemes, then �̆� ≥ 𝑟 ×
⌊
𝜌
2 ⌋
𝑛 .

Proof. Please see the proof in Section A.3 [1]. □

Themore good schemes leads to the larger �̆� . While the degree of

a node indicates its current scatter width, the complement degreeÐ

the number of nodes not adjacent to the specified nodeÐimplies if

this node is capable of being involved in a good scheme.

𝑔(𝑛𝛾 ,N ,A) =
∑︁

𝑛𝜃 ∈N

(1 − 𝑎𝛾𝜃) (5)

Define the complement degree in Equation 5. The input is a node

𝑛𝛾 , a node set N and an adjacency matrix A. The output is the

number of nodes inN that are non-adjacent to 𝑛𝛾 . Lemmas 2, 3 are

respectively the sufficient conditions for the existence of n𝛼 ,n𝛽 .

Lemma 2. After the Algorithm 1 selects n∗𝛼 in line 3, there must

∃𝑛𝜄 ∈ N𝑖 s.t. 𝑔(𝑛𝜄 ,n
∗
𝛼 ,A) =

⌊ 𝜌
2

⌋
when |N𝑖 | >

⌊ 𝜌
2

⌋2
𝜔 −

⌊ 𝜌
2

⌋
.

Proof. Please see the proof in Section A.4 [1]. □

Lemma 3. After the Algorithm 1 selects n𝛼 , there must ∃𝑛𝜅 ∈ N𝑗

s.t. 𝑔(𝑛𝜅 ,n𝛼 ,A) =
⌊ 𝜌
2

⌋
+ 1 when |N𝑗 | >

(⌊ 𝜌
2

⌋
+ 1

)2
𝜔 .

Proof. Please see the proof in Section A.5 [1]. □

According to Lemmas 2, 3, the more nodes within each subset,

the higher the likelihood of a good scheme existing. As łfilledž

nodes that own 𝜔 replicas are removed to meet the storage balance

constraint, Lemma 4 shows the growth rate of filled nodes.

Lemma 4. After Algorithm 1 placed 𝑟 shards, the upper bound of

the number of filled nodes is �̂� ≤ 𝑟 ×
𝜌
𝜔 .

Proof. Please see the proof in Section A.6 [1]. □

In the case of 𝜌 = 2, after the graph division process of Algorithm

1, there is only a subset of nodes N0 = N . Thus, the Lemma 3 can

be ignored, and the corresponding proposition is:

Proposition 2. Let N denote node set, 𝜔 denote load factor. For

replication factor 𝜌 = 2, after Algorithm 1 places 𝑟 =

⌊
𝑛𝜔
𝜌

⌋
shards,

the limit of the lower bound of �̆�𝑛 is given by

lim
𝑛→∞

�̆�𝑛 ≥
1

2
. (6)

Proof. Please see the proof in Section A.7 [1]. □

When 𝜌 = 2, the limit of �̆�𝑛 fulfills single-node fault tolerance.

As the failed node’s load is carried by leaders, and Proposition 5

shows that the number of leaders held by each node when 𝜌 = 2 is
𝜔
2 ; although the possible max(𝜎∗𝑖) = 𝜔 , Algorithm 1 establishes a

lower bound of 𝜔
2 , adequate for sharing the failed node’s leaders.

Next, we present that Algorithm 1 also adapts to 𝜌 > 2 scenarios:

Proposition 3. Let N denote node set, 𝜔 denote load factor. For

replication factor 𝜌 > 2, after Algorithm 1 places 𝑟 =

⌊
𝑛𝜔
𝜌

⌋
shards,

the limit of the lower bound of �̆�𝑛 is given by

lim
𝑛→∞

�̆�𝑛 ≥
1

4 ×
⌈ 𝜌
2

⌉ . (7)

Proof. Please see the proof in Section A.8 [1]. □

Given that the conditions outlined in Propositions 2 and 3 require

deploying a sufficient number of nodes, we conducted a simulation

of Algorithm 1 under the limitation of 𝑛 ∈ [1, 100], 𝜌 ∈ [2, 5], and

𝜔 ∈ [1, 10]. As illustrated in Figure 4, Algorithm 1 regularly attains

at least 50% of the theoretically optimal solution, and the average

ratio surpasses 87%. Consequently, the minimum scatter width

guaranteed by Algorithm 1 provides adequate support for single-

node fault tolerance, and empirical evaluations will be conducted

in Section 5.3.2 to validate these findings.

1789

20 40 60 80 100

Number of nodes

2

4

6

8

10

R
ep

li
ca

s
p

er
 n

o
d

e

(a) ρ=2, Avg=0.92, Min=0.50

20 40 60 80 100

Number of nodes

2

4

6

8

10

R
ep

li
ca

s
p

er
 n

o
d

e
(b) ρ=3, Avg=0.87, Min=0.67

20 40 60 80 100

Number of nodes

2

4

6

8

10

R
ep

li
ca

s
p

er
 n

o
d

e

(c) ρ=4, Avg=0.88, Min=0.67

20 40 60 80 100

Number of nodes

2

4

6

8

10
R

ep
li

ca
s

p
er

 n
o

d
e

(d) ρ=5, Avg=0.88, Min=0.67

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: The lower bound of the scatter width ratio 𝜎𝑛 pro-

duced by Algorithm 1.

3.4.2 Multi-Node Fault Tolerance. To the best of our knowledge,

no probabilistic model measures the likelihood of shard unavail-

ability when multiple nodes fail simultaneously. If 𝜌 nodes fail and

match the placement of a shard, the shard becomes łunavailable.ž

Previous research shows that large-scale disasters, involving the

simultaneous failure of about 1% of cluster nodes, occur annually in

clusters of a certain scale [14, 20]. Thus, we assess this probability

and show the multi-node fault tolerance of Algorithm 1.

Proposition 4. LetN denote nodes set, 𝜌 denote replication factor,

𝑟 denote the number of employed disparate placement schemes. Let

𝑋 (𝑛,𝑚) denote the number of unavailable shards when 𝑚 nodes

among 𝑛 cluster nodes fail simultaneously. The probability that at

least one unavailable shard occurs is given by

lim
𝑛→∞

𝑃 (𝑋 (𝑛,𝑚) ≥ 1) = 1 − 𝑒
−(𝑚𝜌)×

𝑟

(𝑛𝜌) . (8)

Proof. Please see the proof in Section A.9 [1]. □

We use Proposition 4 to illustrate the multi-node fault tolerance

of Algorithm 1, with 𝜔 = 10, 𝜌 ∈ [2, 5], 𝑛 ∈ [1, 1000], and the

number of failed nodes ranging from [0, 10%], as shown in Figure

5. When 𝜌 = 2, the cluster can endure 1% of its nodes fail, and this

tolerance improves significantly as the 𝜌 increases. In Figures 5(b),

(c), and (d), the probability of unavailable shards is minimal, due

to the significantly lower number of employed placement schemes

compared to the total number of possible schemes.

3.4.3 Fault Tolerance and Storage Balance Comparison. Our PGP

algorithm demonstrates exceptional performance in single-node

fault tolerance (Section 3.4.1), as its lower bound of scatter width,

�̆�𝑛 , is rigorously proven by Propositions 2 and 3. In addition, the

upper bound on the number of pairwise distinct placement schemes,

¤𝑟 , generated by PGP is constrained by Equation 1. This ensures the

multi-node fault tolerance (Section 3.4.2) of PGP, as derived from

Proposition 4. With the storage balance constraint in place (Algo-

rithm 1), PGP guarantees that the upper bound on the difference

200 400 600 800 1000

Number of nodes

2%

4%

6%

8%

10%

F
ai

le
d
 n

o
d
es

 p
er

ce
n
ta

g
e

(a) ρ=2,ω=10

200 400 600 800 1000

Number of nodes

2%

4%

6%

8%

10%

F
ai

le
d
 n

o
d
es

 p
er

ce
n
ta

g
e

(b) ρ=3,ω=10

200 400 600 800 1000

Number of nodes

2%

4%

6%

8%

10%

F
ai

le
d
 n

o
d
es

 p
er

ce
n
ta

g
e

(c) ρ=4,ω=10

200 400 600 800 1000

Number of nodes

2%

4%

6%

8%

10%

F
ai

le
d
 n

o
d
es

 p
er

ce
n
ta

g
e

(d) ρ=5,ω=10

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: The probability distribution that the unavailable

shards occur 𝑃 (𝑋 (𝑛,𝑚) ≥ 1) produced by Algorithm 1.

Table 2: Overview of replica placement algorithms, with PGP

being the most fault-tolerant and storage-balanced.

Algorithm �̆�𝑛 ¤𝑟 Δ𝜔

PGP (ours) ≥ 1/
(
4 ×

⌈ 𝜌
2

⌉)
≤ 𝑛𝜔/𝜌 ≤ 1

WRR ≥ 1/𝜔 ≤ 𝑛/𝜌 ≤ 1

COPYSET [9] - ≤ 𝑛𝜔/𝜌 -

TIERED [8] - ≤ 𝑛𝜔/𝜌 -

GEMINI [45] ≥ 1/𝜔 ≤ 𝑛/𝜌 -

HYDRA [24] - ≤ 𝑛𝜔/𝜌 -

in the number of replicas held by each node, Δ𝜔 , is minimal even

within an ever-expanding cluster.

Table 2 compares different replica placement algorithms, where

𝑛 is the number of nodes, 𝑟 is the replication factor, and 𝜔 is the

load factor, as defined in Table 1. Given that 𝜌 ≪ 𝜔 , a very com-

mon scenario in real deployments, the �̆�𝑛 of PGP is significantly

larger than that of Weighted-Round-Robin (WRR) and GEMINI. In

contrast, the �̆�𝑛 of COPYSET, TIERED, and HYDRA is not derivable

due to their inherent randomness. Since we adopt the design of

𝜔 ≪ 𝑛 from COPYSET, the ¤𝑟 of PGP is already sufficiently small.

Lastly, our PGP algorithm is among the few that ensure storage

balance by guaranteeing Δ𝜔 ≤ 1.

4 LEADER SELECTION

The following selection process for shards 𝑟5−8 in Figure 1 shows

GREEDY’s myopia: (i) leader of 𝑟5 on 𝑛5, (ii) leader of 𝑟6 on 𝑛7, (iii)

leader of 𝑟7 on 𝑛7, (iv) leader of 𝑟8 on 𝑛8. At (iii), selecting the leader

of 𝑟7 on either 𝑛5 or 𝑛7 leads to an unbalanced distribution. To

address this, we formalize the leader selection problem (4.1), design

a selection algorithm (4.2), and prove its optimality (4.3).

1790

Shard �5

Shard �6

Shard �7

Shard �8

Node �5

Node �6

Node �7

Node �8

� �

Shard �5

Leader

Shard �7

Leader

Shard �6

Leader

Shard �8

Leader

���� = 4

	�
� = 4

Figure 6: Example of Algorithm 2 for leader selection.

4.1 Leader Selection Problem

To embody the selection process, for shards 𝑟5−8 and nodes 𝑛5−8 in

Figure 1, we use directed edges to connect each shard with nodes

that owns its replicas in Figure 6. Formally, let 𝜂𝑖 denote the number

of leaders held by 𝑛𝑖 , 𝑝 𝑗 is the leader of 𝑟 𝑗 . Let 𝑦𝑖 𝑗 ∈ {0, 1}, 𝑦𝑖 𝑗 = 1

iff. 𝑝 𝑗 = 𝑛𝑖 , meaning that the leader of 𝑟 𝑗 is the replica that resides

on node 𝑛𝑖 . The leader selection problem is as follows:

Problem 2 (leader selection problem). Given N ,R, select the

leader replicas setH = {𝑝1, 𝑝2, · · · , 𝑝𝑟 } that

minimize Σ =

𝑛∑︁
𝑖=1

𝜂2𝑖 =

𝑛∑︁
𝑖=1

(

𝑟∑︁
𝑗=1

𝑦𝑖 𝑗)
2,

subject to 𝑝𝑖 ∈ 𝑟𝑖 ;∀𝑟𝑖 ∈ R,

where 𝑦𝑖 𝑗 = 1 iff. 𝑝 𝑗 = 𝑛𝑖 ;𝑦𝑖 𝑗 ∈ {0, 1}.

4.2 Cost Flow Selection

Adding a source 𝑆 and a sink𝑇 in Figure 6 reduces Problem 2 to the

cost flow problem [15] that can be solved by combining Dinic [12]

and SPFA [27] algorithms. Next, we give the corresponding edge

modeling (Section 4.2.1) and selection algorithm (Section 4.2.2).

4.2.1 Edge Modeling. Employing the cost flow algorithm requires

to design the capacity and cost of each edge. In Figure 6, for edges

between the source and shard vertices, and between shard vertices

and node vertices, assigning a capacity of 1 and a cost of 0 is suffi-

cient, as each shard requires only 1 leader. For edges between node

vertices and the sink, we need a cost function whose minimum

value ensures balanced distribution. The definitions are:

• 𝑄 = {𝑞𝑆,𝑟𝑖 : 𝑟𝑖 ∈ R}: Connects source vertex 𝑆 with shard

vertices in 𝑅 to limit the number of leaders in each shard.

• 𝐵 = {𝑏𝑟𝑖 ,𝑛 𝑗 : 𝑟𝑖 ∈ R ∧ 𝑛 𝑗 ∈ 𝑟𝑖 }: Connects shard vertices with

node vertices to denote the leader selection of each shard.

• �̃� = {𝑙𝑛 𝑗 ,𝑇 ,𝑘 : 𝑛 𝑗 ∈ N ∧ 1 ≤ 𝑘 ≤ 𝜔}: Connects node vertices with

sink vertex𝑇 , indicating 𝜂 𝑗 in the final distribution, where the k-th

edge that connects 𝑛 𝑗 to 𝑇 has a cost of 𝛿 (𝑘) = 2𝑘 − 1.

4.2.2 Selection Algorithm. Algorithm 2 constructs the above edges

in lines 2-9, where the function𝑀𝑎𝑘𝑒𝐸𝑑𝑔𝑒 (𝑣𝑖 , 𝑣 𝑗 , 𝛿) creates an edge

that connects 𝑣𝑖 and 𝑣 𝑗 with a capacity of 1 and a cost of 𝛿 . Next, it

Algorithm 2: Cost Flow Selection (CFS)

Input: A node vertices set N and a shard vertices set R.

Output: The optimal shards’ leaders setH .

1 𝑉 ← {𝑆} ∪ N ∪ R ∪ {𝑇 }, 𝑄, 𝐵, �̃� ← ∅;

2 foreach 𝑟𝑖 ∈ R do

3 𝑞𝑆,𝑟𝑖 ← MakeEdge(𝑆, 𝑟𝑖 , 0), 𝑄 ← 𝑄 ∪ 𝑞𝑆,𝑟𝑖 ;

4 foreach 𝑟𝑖 ∈ R do

5 foreach 𝑛 𝑗 ∈ 𝑟𝑖 do

6 𝑏𝑟𝑖 ,𝑛 𝑗 ← MakeEdge(𝑟𝑖 , 𝑛 𝑗 , 0), 𝐵 ← 𝐵 ∪ 𝑏𝑟𝑖 ,𝑛 𝑗 ;

7 foreach 𝑛 𝑗 ∈ N do

8 for 𝑘 = 1→ 𝜔 do

9 𝑙𝑛 𝑗 ,𝑇 ,𝑘 ← MakeEdge(𝑛 𝑗 ,𝑇 , 2𝑘 − 1), �̃� ← �̃� ∪ 𝑙𝑛 𝑗 ,𝑇 ,𝑘 ;

10 𝐸 ← 𝑄 ∪ 𝐵 ∪ �̃�,𝐺 ← (𝑉 , 𝐸), 𝑓 𝑙𝑜𝑤 ← 𝐶𝑜𝑠𝑡𝐹𝑙𝑜𝑤 (𝐺);

11 foreach 𝑏𝑟𝑖 ,𝑛 𝑗 ∈ 𝐵 do

12 if 𝑓 𝑙𝑜𝑤 [𝑏𝑟𝑖 ,𝑛 𝑗] = 1 then

13 𝑝𝑖 ← 𝑛 𝑗 ,H ← H ∪ 𝑝𝑖 ;

14 returnH ;

uses the cost flow algorithm to obtain the min-cost max-flow of 𝐺

in line 10. Finally, it collects the leader distribution from 𝐵 in lines

11-15, where 𝑓 𝑙𝑜𝑤 [𝑒] is the actual flow of an edge 𝑒 ∈ 𝐵.

For instance, Figure 6 is the flow network of nodes 𝑛5−8 and

shards 𝑟5−8 in Figure 1. The max-flow is 4 since each shard is des-

ignated 1 leader. The min-cost should be 4, as any unbalanced

distribution that includes a node that possesses more than 1 leader

results in a higher cost. Therefore, by constructing a min-cost solu-

tion, Algorithm 2 generates the most balanced leader distribution.

4.3 Optimality Analysis

In this section, Lemma 5 guarantees that Algorithm 2 always gen-

erates valid solutions, and Proposition 5 demonstrates that these

solutions lead to the optimally balanced leader distribution.

Lemma 5. The leader distribution generated by Algorithm 2 guar-

antees that each shard will be designated exactly one leader.

Proof. Please see the proof in Section A.10 [1]. □

Because the cost of edges 𝑙𝑛 𝑗 ,𝑇 ,𝑘 ∈ �̃� is an additive convex func-

tion, any valid solution generated by Algorithm 2 tends to be a

balanced leader distribution, as demonstrated by Proposition 5.

Proposition 5. Let N denote the nodes set, R denote the shards

set placed by Algorithm 1. Algorithm 2 generates the optimal leader

distribution since ∀𝑛𝑖 , 𝑛 𝑗 ∈ N , |𝜂𝑖 − 𝜂 𝑗 | ≤ 1 ∧ ∀𝑟𝑘 ∈ R, 𝑝𝑘 ∈ 𝑟𝑘 .

Proof. Please see the proof in Section A.11 [1]. □

As demonstrated by Proposition 5, our CFS algorithm can gener-

ate the optimal balanced leader distribution based on the placement

schemes produced by the PGP algorithm, distinguishing CFS from

other algorithms. In this context, the GREEDY and RANDOM algo-

rithms remain trapped in suboptimal solutions, as discussed at the

beginning of Section 4, while dynamic balancing algorithms such

as LOGSTORE [5] and ESDB [48] do not offer this feature.

1791

M
igration-Free

M
igration-Based

0

3

6

M
em

o
ry

 c
o
n
su

m
p
ti

o
n
 (

G
B

)

(a) Memory
consumption

M
igration-Free

M
igration-Based

10
−4

10
−2

10
0

10
2

E
x
p
an

si
o
n
 t

im
e

(S
)

(b) Expansion
time

M
igration-Free

M
igration-Based

0

3

6

W
ri

te
 l

at
en

cy
 (

S
)

(c) Write latency

M
igration-Free

M
igration-Based

0

2M

4M

W
ri

te
 t

h
ro

u
g
h
p
u
t

(p
o
in

ts
/s

)

(d) Write
throughput

Migration-Free

Migration-Based

CPU time of CFS algorithm

CPU time of PGP algorithm

Figure 7: Comparison of write efficiency between migration-

free and migration-based mechanisms in the expansion sce-

nario. The runtime of our algorithms is negligible, and the

migration-free mechanism achieves better performance.

5 EVALUATION

Section 5.1 presents the experimental setup, and Section 5.2 com-

pares a migration-based mechanism. We evaluate the replica place-

ment algorithms in Section 5.3 and compare the leader selection

algorithms in Section 5.4. The evaluation codes are available at [2].

5.1 Experimental Setup

5.1.1 Hardware. All experiments are performed on an IoTDB clus-

ter consisting of 21 ECS virtual machines on Tencent Cloud, where

each machine has 4 CPU cores, 8GB of RAM, a 100 GB SSD, and a

1.5 Gbps ethernet. The cluster includes 1 primary node to deploy

the algorithms, 4 write clients, and 16 nodes for data storage.

5.1.2 Dataset. The Write-Ahead Logging (WAL) files provided by

AUTOAI are used as our dataset. The dataset includes sampling

records from approximately 20 million sensors, each mapped to

a unique series. Furthermore, since the WAL files preserve the

original sequence of data arrival, the write clients we implemented

more accurately reproduce the load of the production environment.

5.1.3 Evaluation Scenario. We design two evaluation scenarios

to correspond to the IoT challenges mentioned in Section 1: (i)

Expansion scenario: deploying an 8-node cluster initially and then

expanding it to 16 nodes. After the cluster expansion, we double

the write load and switch the time partition of write requests. (ii)

Disaster scenario: deploying a 16-node cluster, shutting down a

node after running for a while, and restarting it after a fixed time.

5.1.4 Key Metrics. Disk usage std to reflect the storage balance

and fault tolerance of our PGP (Algorithm 1). Write throughput std

to present the write load balance of our CFS (Algorithm 2).

5.2 Migration Evaluation

We monitor the memory and CPU usage after expansion. As shown

in Figure 7(a), the memory usage of the migration-based approach

is similar to our migration-free proposal. The expansion time, as

depicted in Figure 7(b), differs significantly. Due to the cumber-

some data migration, the expansion time of the migration-based

method is 200× slower than that of the migration-free mechanism.

Expansion Migration/Short-TTL/Long-TTL
0.0

0.7

1.4

D
is

k
 u

sa
g
e

st
d

Long-TTL (Migration-Free)

Short-TTL (Migration-Free)

Long-TTL (Migration-Based)

Figure 8: Comparison of disk usage std across different

lengths of TTL settings in the expansion scenario.

Additionally, the overhead of both our PGP placement and CFS

selection algorithms is negligible among the total expansion time,

less than 1/1000. Next, we compare the latency and throughput

to leverage the performance gains. Compared to the migration-

based mechanism, the migration-free mechanism achieves 21.6%

lower write latency and 27.5% higher write throughput. The results

demonstrate that the trade-off of our algorithms is worthwhile, and

clarify their practicality in time-sensitive applications.

Figure 8 presents a further analysis on how TTL affect storage

balance. In addition to the normal short-TTL (10-minute), we con-

sider another workload pattern of long-TTL (15-minute). As shown,

the unusual data inflow/outflow pattern leads to higher tempo-

rary imbalance after expansion, owing to cold data accumulation.

Consequently, the migration-free approach takes a longer time to

rebalance storage. In this case, the alternative mechanism of mi-

gration could be triggered. It eliminates imbalance quickly with

extra costs as analyzed in Figure 7. This adjustment enables best

practices for deploying our strategy in different IoT settings.

5.3 Replica Placement Evaluation

In this section, we compare our PGP with baseline replica place-

ment algorithms: (i) WRR: places replicas to each node in turn.

(ii) COPYSET [9]: generates random permutations and splits them

into multiple placement schemes. (iii) TIERED [8]: enumerates

every possible placement scheme and returns the one with the

fewest overlaps with employed schemes. We further compare PGP

with two advanced fault-tolerant replica placement algorithms: (i)

GEMINI [45], an advanced multi-node fault-tolerant (Section 3.4.2)

algorithm that divides nodes into groups and places replicas in

turn, and (ii) HYDRA [24], an advanced variant of the COPYSET

algorithm that randomly generates Copysets as placement schemes.

5.3.1 Expansion Scenario. As shown in Figure 9, fault-tolerant

algorithms, including COPYSET, TIERED, GEMINI, and HYDRA,

perform poorly after cluster expansion due to their insufficient

consideration of this context. Consequently, they fail to maintain

storage balance, as depicted in Figure 10. The detailed disk usage

distributions generated by different placement algorithms are illus-

trated in Figure 19 in the full technical report [1].

Figure 10 shows the changes in disk usage std over time, where

Weighted-Round-Robin (WRR) and our PGP achieve the best stor-

age balance by minimizing the std. On the contrary, fault-tolerant

algorithms, including COPYSET, TIERED, HYDRA and GEMINI,

1792

0 2 4

Replica number std

0.4

0.8

M
ax

 d
is

k
 u

sa
g

e
st

d
 (

%
)

(a) Before expansion

0 2 4

Replica number std

0.4

0.8

M
ax

 d
is

k
 u

sa
g

e
st

d
 (

%
)

(b) After expansion

PGP WRR COPYSET TIERED GEMINI HYDRA

Figure 9: Replica distribution in expansion scenario.

Expansion After TTL
0.0

0.3

0.6

0.9

1.2

D
is

k
 u

sa
g
e

st
d

PGP WRR COPYSET TIERED GEMINI HYDRA

Figure 10: Disk usage std in expansion scenario.

P
G

P

W
R

R

C
O

P
Y

S
E

T

T
IE

R
E

D

G
E

M
IN

I

H
Y

D
R

A

0

20

40

P
o
w

er
 c

o
n
su

m
p
ti

o
n
 (

W
h
)

(a) Energy efficiency

P
G

P

W
R

R

C
O

P
Y

S
E

T

T
IE

R
E

D

G
E

M
IN

I

H
Y

D
R

A

0

3

6

M
em

o
ry

 c
o
n
su

m
p
ti

o
n
 (

G
B

)

(b) Memory consumption

P
G

P

W
R

R

C
O

P
Y

S
E

T

T
IE

R
E

D

G
E

M
IN

I

H
Y

D
R

A

0

3

6

C
P

U
 l

o
ad

 (
%

)

(c) CPU load

PGP WRR COPYSET TIERED GEMINI HYDRA

Figure 11: Cluster energy efficiency and resource usage pro-

duced by different placement algorithms.

perform poorly after expansion due to their insufficient consider-

ation of this context. As a result, in Figure 10, the maximum std

after TTL eliminates expired data (represented by the pink range)

of our PGP is the lowest, while the std produced by the state-of-the-

art fault-tolerant algorithms is at least 248.4% higher. A detailed

comparison is provided in Table 3 of our full technical report [1].

With a high frequency, TTL is triggered to eliminate expired

data. As shown in Figure 10, the disk usage std generated by our

PGP algorithm decreases in a near-linear manner.

Given the same amount of data to write, Figure 11 monitors the

electricity and memory, CPU usage of IoTDB. Figure 11(a) shows

the electricity consumed for the same number of write requests by

different placement algorithms. As shown, the electricity overhead

of our PGP is at least 7.4% lower than that of the other alternatives.

Meanwhile, the average memory and CPU overhead across all 16

storage nodes for different placement algorithms remain similar, as

0 2 4

Replica number std

0.4

0.8

M
ax

 d
is

k
 u

sa
g

e
st

d
 (

%
)

(a) Replica distribution

2 4 6

Min scatter width

0.4

0.8

M
ax

 d
is

k
 u

sa
g

e
st

d
 (

%
)

(b) Scatter width distribution

PGP WRR COPYSET TIERED GEMINI HYDRA

Figure 12: Replica distribution in disaster scenario.

DisasterShutdown Restart
0.0

0.3

0.6

0.9

D
is

k
 u

sa
g
e

st
d

PGP WRR COPYSET TIERED GEMINI HYDRA

Figure 13: Disk usage std in disaster scenario.

shown in Figures 11(b) and 11(c). This is because the same amount

of workload is processed under the same hardware configurations,

and our PGP completes all write tasks more efficiently.

5.3.2 Disaster Scenario. As in Figure 12, WRR and GEMINI en-

sure an even replica distribution with minimal scatter width. The

COPYSET, TIERED, and HYDRA obtain higher scatter width by an

unbalanced replica distribution. In Figure 13, the disk usage std for

GEMINI closely resembles that of WRR, while COPYSET, TIERED,

and HYDRA exhibit similar results. The detailed variation trend of

disk usage during this evaluation is illustrated in Figure 20 in [1].

Figure 13 illustrates the changes in disk usage std during the

disaster scenario. Similar to WRR, the GEMINI for multi-node fault-

tolerant only (Section 6.2) causes the disk usage of another node

to proliferate when a node fails. Meanwhile, COPYSET and its

advanced variants, including TIERED and HYDRA, retain some

degree of tolerance. In Figure 13, the maximum std during disaster

(represented by the pink range) of our PGP is the lowest, while the

std produced by the state-of-the-art fault-tolerant algorithms is at

least 70.0% higher. We present this std in Table 3 [1].

5.4 Leader Selection Evaluation

In this section, we compare our CFS with baseline selection algo-

rithms: (i) GREEDY: selects as leader the replica on the node that

owns the fewest leaders. (ii) RANDOM: selects a random leader. To

better showcase the ability of our CFS algorithm in achieving write

load balance, we also compare with more recent and advanced base-

line algorithms, in addition to the GREEDY and RANDOM strategies.

Two recent dynamic leader selection algorithms are considered: (i)

LOGSTORE [5], which periodically invokes the max-flow algorithm

[17], and (ii) ESDB [48], which inserts replicas into a hash ring and

periodically selects leaders based on hashing time.

1793

0.00 0.75 1.50

Leader number std

40

80

W
ri

te
 t

h
ro

u
g

h
p

u
t

st
d

 (
K

 p
o

in
ts

/s
)

(a) Before expansion

0.00 0.75 1.50

Leader number std

80

160

W
ri

te
 t

h
ro

u
g

h
p

u
t

st
d

 (
K

 p
o

in
ts

/s
)

(b) After expansion

CFS GREEDY RANDOM LOGSTORE ESDB

Figure 14: Leader distribution in expansion scenario.

C
F

S
G

R
E

E
D

Y
R

A
N

D
O

M
L

O
G

S
T

O
R

E
E

S
D

B

10
−4

10
−2

10
0

E
x
p
an

si
o
n
 l

at
en

cy
 (

S
)

(a) Expansion latency

C
F

S
G

R
E

E
D

Y
E

S
D

B
R

A
N

D
O

M
L

O
G

S
T

O
R

E

0

2M

4M

W
ri

te
 t

h
ro

u
g
h
p
u
t

(p
o
in

ts
/s

)

(b) Before expansion

C
F

S
G

R
E

E
D

Y
E

S
D

B
R

A
N

D
O

M
L

O
G

S
T

O
R

E

0

2M

4M

W
ri

te
 t

h
ro

u
g
h
p
u
t

(p
o
in

ts
/s

)

(c) After expansion

0

60

120

W
ri

te
 t

h
ro

u
g
h
p
u
t

st
d
 (

K
 p

o
in

ts
/s

)

0

60

120

W
ri

te
 t

h
ro

u
g
h
p
u
t

st
d
 (

K
 p

o
in

ts
/s

)

CFS GREEDY RANDOM LOGSTORE ESDB STD

Figure 15: Cluster write throughput in expansion scenario.

C
F

S

G
R

E
E

D
Y

R
A

N
D

O
M

L
O

G
S

T
O

R
E

E
S

D
B

0

20

40

P
o
w

er
 c

o
n
su

m
p
ti

o
n
 (

W
h
)

(a) Energy efficiency

C
F

S

G
R

E
E

D
Y

R
A

N
D

O
M

L
O

G
S

T
O

R
E

E
S

D
B

0

3

6

M
em

o
ry

 c
o
n
su

m
p
ti

o
n
 (

G
B

)

(b) Memory consumption

C
F

S

G
R

E
E

D
Y

R
A

N
D

O
M

L
O

G
S

T
O

R
E

E
S

D
B

0

3

6

C
P

U
 l

o
ad

 (
%

)

(c) CPU load

CFS GREEDY RANDOM LOGSTORE ESDB

Figure 16: Cluster energy efficiency and resource usage pro-

duced by different selection algorithms.

5.4.1 Expansion Scenario. Figure 14 illustrates the leader distri-

bution. Both before and after expansion, the dynamic algorithms

LOGSTORE and ESDB fall behind CFS, resulting in a higher aver-

age write throughput std and, consequently, lower cluster write

throughput, as shown in Figures 15(b) and 15(c). In Figure 15(a),

although the expansion latency of our CFS is slightly higher, the

trade-off is justified by the improved write performance.

Figure 15 shows the write performance in the expansion scenario.

Benefiting from the most balanced leader distribution (Figure 14),

our CFS achieves the best write throughput both before and after

expansion. The LOGSTORE and ESDB do not perform as well, as

their primary objective is to prevent any node from overloading,

rather than generating a balanced leader distribution. The average

write throughput std after expansion produced by the alternatives is

1.2 1.3 1.4

Leader number std

30

60

W
ri

te
 t

h
ro

u
g

h
p

u
t

st
d

 (
K

 p
o

in
ts

/s
)

(a) During disaster

0.0 0.5 1.0

Leader number std

30

60

W
ri

te
 t

h
ro

u
g

h
p

u
t

st
d

 (
K

 p
o

in
ts

/s
)

(b) During recovery

CFS GREEDY RANDOM LOGSTORE ESDB

Figure 17: Leader distribution in disaster scenario.

C
F

S
G

R
E

E
D

Y
R

A
N

D
O

M
L

O
G

S
T

O
R

E
E

S
D

B

10
−4

10
−2

10
0

F
ai

lo
v
er

 l
at

en
cy

 (
S

)

(a) Failover latency

C
F

S
G

R
E

E
D

Y
E

S
D

B
L

O
G

S
T

O
R

E
R

A
N

D
O

M

0

2M

4M

W
ri

te
 t

h
ro

u
g
h
p
u
t

(p
o
in

ts
/s

)

(b) During disaster

C
F

S
G

R
E

E
D

Y
E

S
D

B
L

O
G

S
T

O
R

E
R

A
N

D
O

M

0

2M

4M

W
ri

te
 t

h
ro

u
g
h
p
u
t

(p
o
in

ts
/s

)

(c) During recovery

0

30

60

W
ri

te
 t

h
ro

u
g
h
p
u
t

st
d
 (

K
 p

o
in

ts
/s

)

0

30

60

W
ri

te
 t

h
ro

u
g
h
p
u
t

st
d
 (

K
 p

o
in

ts
/s

)

CFS GREEDY RANDOM LOGSTORE ESDB STD

Figure 18: CFS improves cluster write throughput without

compromising failover latency in the disaster scenario.

at least 322.9% higher than that of CFS, while the cluster throughput

of CFS is at least 6.9% greater. A detailed record of the average write

throughput std is provided in Table 4 [1].

As depicted in Figure 16(a), the electricity consumption of our

CFS is at least 6.5% lower than that of other baseline algorithms

under the same hardware and workload configurations in Figures

16(b) and (c). This improvement is due to our CFS completing all

write tasks more efficiently, delivering the best write throughput,

which is enabled by the most balanced leader distribution.

5.4.2 Disaster Scenario. As shown in Figure 17, the leader distribu-

tion of the dynamic balancing algorithms LOGSTORE and HYDRA

is worse than that of CFS. This leads to inferior throughput per-

formance during both the disaster and recovery phases, in Figures

18(b) and 18(c). Analogously, our CFS produces slightly higher

failover latency, as seen in Figure 18(a), but this is still justified by

the improved cluster write throughput performance.

Figure 18 shows the write performance in the disaster scenario.

Similar to Section 5.4.1, the most balanced leader distribution (Fig-

ure 17) achieves the highest write throughput for CFS during disas-

ter and recovery phases. The average write throughput std during

recovery produced by the alternatives is at least 60.3% higher than

that of CFS, while CFS’s cluster throughput is at least 18.4% greater.

Detailed average write throughput std are listed in Table 5 [1].

In Figure 18(a), although our CFS is relatively time-consuming, it

accounts for only 1/104 of the failover latency. Meanwhile, CFS

improves cluster write throughput by at least 5.1% during disaster

(Figure 18(b)) and at least 18.4% during recovery (Figure 18(c)).

1794

6 RELATED WORK

In this section, we first introduce existing data partitioning and

allocation architectures in Section 6.1. Subsequently, in Section 6.2,

we elaborate on research directions similar to our fault tolerance

modeling, as well as replica placement algorithms from related

communities. Finally, Section 6.3 demonstrates the potential of our

selection algorithm for serving different types of consensus proto-

cols and compares our approach with other dynamic alternatives.

6.1 Decentralized Partitioning and Allocation

The Distributed Hash Table (DHT) architecture, exemplified by

Chord[41], CAN [37], Pastry [38], and Tapestry [50], offers a bal-

anced, decentralized, and scalable approach to data partitioning and

allocation and has been deployed in many distributed systems, such

as ZHT [25] and DART [26]. However, we chose not to adopt the

DHT architecture primarily due to its reliance on a dynamic hash

map, which is difficult to leverage TTL. After cluster expansion,

the unexpired data will be migrated to new nodes.

6.2 Replica Placement

As introduced by the paper of COPYSET [9], employing fewer num-

ber of Copysets improves the cluster’s multi-node fault tolerance

but reduces the scatter width of each node, thereby compromising

single-node fault tolerance. Two directions in replica placement

research follow this trade-off: (i) The algorithm for multi-node fail-

ures only, such as GEMINI [45], which minimize the number of

employed Copysets; and (ii) COPYSET and its advanced variants,

including TIERED [8] and HYDRA [24], which aim to achieve ad-

equate scatter width with as few Copysets as possible. However,

these approaches do not account for storage balance in an ever-

expanding cluster, making them unsuitable for our scenario. The

symmetric counterpart of (ii), maximizing scatter width given a

fixed number of Copysets, is more appropriate for our work. Unfor-

tunately, it presents greater challenges, as we have proven in The-

orem 1. While the Balanced Incomplete Block Design (BIBD) [13]

can also model our replica placement challenge, it only constructs

optimal schemes under several restrictions [39]. Thus, research

leveraging BIBD [16] can only be applied to a limited set of fixed

cluster configurations, restricting the possible combinations of the

number of nodes 𝑛, replication factor 𝜌 , and load factor 𝜔 .

Unlike storage balance considered in our distributed database

scenarios, the distributed data stream processing systems need to

study the placement of inter-correlated operators. (i) The heuristics

methods proposed by Nardelli et al. [30] only serve workloads with

the replication factor 𝜌 = 1. However, in our context, a replica-

tion factor of 𝜌 ≥ 2 is always required to ensure fault tolerance.

(ii) The EDRP presented by Cardellini et al. [6] considers the data

transition costs between stream processing operators as part of its

optimization objective. We do not leverage this feature, since differ-

ent shards do not exchange data when handling write requests. (iii)

NEMO by Chatziliadis et al. [7] places replicas to reduce the latency

introduced by geo-distributed clusters. However, the current ver-

sion of Apache IoTDB does not yet optimize for the communication

latency between geo-distributed nodes. Nevertheless, NEMO’s prac-

tical geographical modeling approach offers a promising avenue

for further refinement of our system in future work.

6.3 Leader Selection

It is true that leader selection protocols [31, 40] tend to be indeter-

minate in who would eventually be elected, but can be configured

to łpreferž certain leaders without compromising integrity of the

protocol. For instance, Ratis [36], an open-source implementation

of Raft [31], supports relatively deterministic leader elections by

assigning different priorities to replicas. IoTDB employs Ratis for

strong consistency, i.e., the leader distribution in Ratis within our

system is deliberately directed by giving higher weight to the se-

lected replica. On the other hand, controlling the leader distribution

of eventually consistent protocols is comparatively easier, as some

of these protocols, such as CURP [34], do not define any leader

election principle. Thereby, in the eventual consistency implemen-

tation of Apache IoTDB, our CFS algorithm is also applied. In this

sense, the łdirectedž approach of our CFS algorithm can be applied

to both eventual and strong consistency.

Dynamic selection algorithms are commonly used to address

unbalanced load distribution, such as the LOGSTORE [5] and ESDB

[48] for the tenant workload. Since it is difficult to predict whether

a tenant and its corresponding replicas will become a hotspot, the

primary objective of these algorithms is to prevent the load on

each node from exceeding a predefined threshold. Fortunately, the

characteristic of hot data partitions shifting over time in our context,

as introduced in Section 1.2.3, makes a globally balanced leader

selection algorithm both feasible and practical.

7 CONCLUSION

This study is inspired by the TTL feature of time series data, the

need to gradually expand cluster nodes in response to the number

of growing sensors, and the intensive write load in IoT scenarios.

We propose data partitioning and allocation strategies that avoid

data migration by utilizing TTL. Our evaluation demonstrates that

these strategies automatically obtain eventual storage balance after

TTL expiration. To approximate the NP-complete replica placement

problem, we design the PGP placement algorithm through a sys-

tematic division of cluster nodes, and provide rigorous proofs to

its fault tolerance. The PGP algorithm achieves the most balanced

storage load distribution in our evaluations, which improves the

cluster’s availability, thus making it highly suitable for dynamically

expanding series and clusters in IoT scenarios. To handle intensive

write loads in IoT scenarios, we propose the CFS leader selection

algorithm, which consistently provides an optimally balanced so-

lution. Its benefits for cluster performance are presented in our

evaluations. Our proposal has become the replica placement and

leader selection solution of Apache IoTDB since version 1.3.

ACKNOWLEDGMENTS

This work is supported in part by the Chongqing Technology In-

novation and Application Development Project (CSTB2023TIAD-

STX0034), the National Natural Science Foundation of China (9226-

7203, 62021002, 62072265, 62232005), the National Key Research

and Development Plan (2021YFB3300500), and Beijing Key Labora-

tory of Industrial Big Data System and Application. Shaoxu Song

(https://sxsong.github.io/) is the corresponding author.

1795

https://sxsong.github.io/

REFERENCES
[1] 2025. Appendix. (2025, April). [Online]. Available: https://crzbulabula.github.io/

migration-free_appendix.pdf.
[2] 2025. Evaluation codes. (2025, April). [Online]. Available: https://github.com/

CRZbulabula/iotdb/tree/migration-free-elastic-storage.
[3] 2025. IoTDB implementations. (2025, April). [Online]. Available:

https://iotdb.apache.org/UserGuide/V1.3.x/
Technical-Insider/Cluster-data-partitioning.html.

[4] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Frey-
tag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker
Markl, Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax, Se-
bastian Schelter, Mareike Höger, Kostas Tzoumas, and Daniel Warneke. 2014.
The Stratosphere platform for big data analytics. VLDB J. 23, 6 (2014), 939ś964.
https://doi.org/10.1007/S00778-014-0357-Y

[5] Wei Cao, Xiaojie Feng, Boyuan Liang, Tianyu Zhang, Yusong Gao, Yunyang
Zhang, and Feifei Li. 2021. LogStore: A Cloud-Native and Multi-Tenant Log
Database. In SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos,
and Divesh Srivastava (Eds.). ACM, 2464ś2476. https://doi.org/10.1145/3448016.
3457565

[6] Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele Russo
Russo. 2018. Optimal operator deployment and replication for elastic distributed
data stream processing. Concurr. Comput. Pract. Exp. 30, 9 (2018). https://doi.
org/10.1002/CPE.4334

[7] Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Alphan Eracar, Steffen Zeuch,
and Volker Markl. 2024. Efficient Placement of Decomposable Aggregation
Functions for Stream Processing over Large Geo-Distributed Topologies. Proc.
VLDB Endow. 17, 6 (2024), 1501ś1514. https://www.vldb.org/pvldb/vol17/p1501-
chatziliadis.pdf

[8] Asaf Cidon, Robert Escriva, Sachin Katti, Mendel Rosenblum, and Emin Gün
Sirer. 2015. Tiered Replication: A Cost-effective Alternative to Full Cluster
Geo-replication. In 2015 USENIX Annual Technical Conference, USENIX ATC
’15, July 8-10, Santa Clara, CA, USA, Shan Lu and Erik Riedel (Eds.). USENIX
Association, 31ś43. https://www.usenix.org/conference/atc15/technical-session/
presentation/cidon

[9] Asaf Cidon, StephenM. Rumble, Ryan Stutsman, Sachin Katti, John K. Ousterhout,
and Mendel Rosenblum. 2013. Copysets: Reducing the Frequency of Data Loss in
Cloud Storage. In 2013 USENIX Annual Technical Conference, San Jose, CA, USA,
June 26-28, 2013, Andrew Birrell and Emin Gün Sirer (Eds.). USENIX Association,
37ś48. www.usenix.org/conference/atc13/technical-sessions/presentation/cidon

[10] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi
Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst. 31, 3 (2013), 8. https://doi.org/10.1145/
2491245

[11] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo Alvisi, and Robbert
van Renesse. 2020. Scalog: Seamless Reconfiguration and Total Order in a
Scalable Shared Log. In 17th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27,
2020, Ranjita Bhagwan and George Porter (Eds.). USENIX Association, 325ś338.
https://www.usenix.org/conference/nsdi20/presentation/ding

[12] Efim A Dinic. 1970. Algorithm for solution of a problem of maximum flow in
networks with power estimation. In Soviet Math. Doklady, Vol. 11. 1277ś1280.

[13] Ronald Aylmer Fisher et al. 1940. 174: An Examination of the Different Possible
Solutions of a Problem in IncompleteBlocks. (1940).

[14] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh
Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. 2010. Availability in
Globally Distributed Storage Systems. In 9th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver, BC,
Canada, Proceedings, Remzi H. Arpaci-Dusseau and Brad Chen (Eds.). USENIX
Association, 61ś74. http://www.usenix.org/events/osdi10/tech/full_papers/Ford.
pdf

[15] Lester Randolph Ford and Delbert R Fulkerson. 1957. A simple algorithm for
finding maximal network flows and an application to the Hitchcock problem.
Canadian journal of Mathematics 9 (1957), 210ś218.

[16] Z. Gao, S. Lin, and N. Yu. 2020. Deterministic Schemes of Copyset Replication. In
2020 International Conference on Computer Engineering and Application (ICCEA).
IEEE Computer Society, Los Alamitos, CA, USA, 622ś626. https://doi.org/10.
1109/ICCEA50009.2020.00136

[17] Andrew V. Goldberg and Robert Endre Tarjan. 1988. A new approach to the
maximum-flow problem. J. ACM 35, 4 (1988), 921ś940. https://doi.org/10.1145/
48014.61051

[18] Fusheng Han, Hao Liu, Bin Chen, Debin Jia, Jianfeng Zhou, Xuwang Teng,
Chuanhui Yang, Huafeng Xi, Wei Tian, Shuning Tao, Sen Wang, Quanqing Xu,
and Zhenkun Yang. 2024. PALF: Replicated Write-ahead Logging for Distributed

Databases. Proc. VLDB Endow. 17, 12 (2024), 3745ś3758. https://www.vldb.org/
pvldb/vol17/p3745-xu.pdf

[19] HBase. 2025. HBase. https://hbase.apache.org/ (2025, April). [Online]. Available:
https://hbase.apache.org/.

[20] Robert J. Chansler Jr. 2012. Data Availability and Durability with
the Hadoop Distributed File System. login Usenix Mag. 37, 1 (2012).
https://www.usenix.org/publications/login/february-2012/
data-availability-and-durability-hadoop-distributed-file-system.

[21] Yuyuan Kang, Xiangdong Huang, Shaoxu Song, Lingzhe Zhang, Jialin Qiao, Chen
Wang, Jianmin Wang, and Julian Feinauer. 2022. Separation or Not: On Handing
Out-of-Order Time-Series Data in Leveled LSM-Tree. In 38th IEEE International
Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12,
2022. IEEE, 3340ś3352. https://doi.org/10.1109/ICDE53745.2022.00315

[22] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina Panigrahy,
Matthew S. Levine, and Daniel Lewin. 1997. Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide
Web. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, El Paso, Texas, USA, May 4-6, 1997, Frank Thomson Leighton and
Peter W. Shor (Eds.). ACM, 654ś663. https://doi.org/10.1145/258533.258660

[23] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized
structured storage system. ACM SIGOPS Oper. Syst. Rev. 44, 2 (2010), 35ś40.
https://doi.org/10.1145/1773912.1773922

[24] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowdhury, Asaf Cidon, and Kang G.
Shin. 2022. Hydra : Resilient and Highly Available Remote Memory. In 20th
USENIX Conference on File and Storage Technologies, FAST 2022, Santa Clara, CA,
USA, February 22-24, 2022, Dean Hildebrand and Donald E. Porter (Eds.). USENIX
Association, 181ś198. https://www.usenix.org/conference/fast22/presentation/
lee

[25] Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhao, Ke Wang, Anu-
pam Rajendran, Zhao Zhang, and Ioan Raicu. 2013. ZHT: A Light-Weight Reli-
able Persistent Dynamic Scalable Zero-Hop Distributed Hash Table. In 27th
IEEE International Symposium on Parallel and Distributed Processing, IPDPS
2013, Cambridge, MA, USA, May 20-24, 2013. IEEE Computer Society, 775ś787.
https://doi.org/10.1109/IPDPS.2013.110

[26] Pinchao Liu, Dilma Da Silva, and Liting Hu. 2021. DART: A Scalable and Adap-
tive Edge Stream Processing Engine. In Proceedings of the 2021 USENIX Annual
Technical Conference, USENIX ATC 2021, July 14-16, 2021, Irina Calciu and Ge-
off Kuenning (Eds.). USENIX Association, 239ś252. https://www.usenix.org/
conference/atc21/presentation/liu

[27] Edward F Moore. 1959. The shortest path through a maze. In Proc. of the In-
ternational Symposium on the Theory of Switching. Harvard University Press,
285ś292.

[28] MQTT. 2025. MQTT. https://mqtt.org/ (2025, April). [Online]. Available:
https://mqtt.org/.

[29] Syeda Noor Zehra Naqvi, Sofia Yfantidou, and Esteban Zimányi. 2017. Time
series databases and influxdb. Studienarbeit, Université Libre de Bruxelles 12
(2017), 1ś44.

[30] Matteo Nardelli, Valeria Cardellini, Vincenzo Grassi, and Francesco Lo Presti.
2019. Efficient Operator Placement for Distributed Data Stream Processing
Applications. IEEE Trans. Parallel Distributed Syst. 30, 8 (2019), 1753ś1767. https:
//doi.org/10.1109/TPDS.2019.2896115

[31] Diego Ongaro and John K. Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In 2014 USENIX Annual Technical Conference, USENIX
ATC ’14, Philadelphia, PA, USA, June 19-20, 2014, Garth Gibson and Nickolai
Zeldovich (Eds.). USENIX Association, 305ś319. www.usenix.org/conference/
atc14/technical-sessions/presentation/ongaro

[32] OpenTSDB. 2025. Hbase in OpenTSDB. http://opentsdb.net/ (2025, April).
[Online]. Available: http://opentsdb.net/docs/build/html/user_guide/backends/
hbase.html.

[33] OpenTSDB. 2025. OpenTSDB. http://opentsdb.net/ (2025, April). [Online].
Available: http://opentsdb.net/.

[34] Seo Jin Park and John K. Ousterhout. 2019. Exploiting Commutativity For
Practical Fast Replication. In 16th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2019, Boston, MA, February 26-28, 2019, Jay R.
Lorch and Minlan Yu (Eds.). USENIX Association, 47ś64. https://www.usenix.
org/conference/nsdi19/presentation/park

[35] Patroni. 2025. Patroni. https://github.com/zalando/patroni (2025, April). [Online].
Available: https://github.com/zalando/patroni.

[36] Apache Ratis. 2025. Ratis. https://github.com/apache/ratis (2025, April). [Online].
Available: https://github.com/apache/ratis.

[37] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and Scott
Shenker. 2001. A scalable content-addressable network. In Proceedings of the
ACM SIGCOMM 2001 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, August 27-31, 2001, San Diego, CA, USA,
Rene L. Cruz and George Varghese (Eds.). ACM, 161ś172. https://doi.org/10.
1145/383059.383072

[38] Antony I. T. Rowstron and Peter Druschel. 2001. Pastry: Scalable, Decentral-
ized Object Location, and Routing for Large-Scale Peer-to-Peer Systems. In

1796

https://crzbulabula.github.io/migration-free_appendix.pdf
https://crzbulabula.github.io/migration-free_appendix.pdf
https://github.com/CRZbulabula/iotdb/tree/migration-free-elastic-storage
https://github.com/CRZbulabula/iotdb/tree/migration-free-elastic-storage
https://iotdb.apache.org/UserGuide/V1.3.x/Technical-Insider/Cluster-data-partitioning.html
https://iotdb.apache.org/UserGuide/V1.3.x/Technical-Insider/Cluster-data-partitioning.html
https://doi.org/10.1007/S00778-014-0357-Y
https://doi.org/10.1145/3448016.3457565
https://doi.org/10.1145/3448016.3457565
https://doi.org/10.1002/CPE.4334
https://doi.org/10.1002/CPE.4334
https://www.vldb.org/pvldb/vol17/p1501-chatziliadis.pdf
https://www.vldb.org/pvldb/vol17/p1501-chatziliadis.pdf
https://www.usenix.org/conference/atc15/technical-session/presentation/cidon
https://www.usenix.org/conference/atc15/technical-session/presentation/cidon
www.usenix.org/conference/atc13/technical-sessions/presentation/cidon
https://doi.org/10.1145/2491245
https://doi.org/10.1145/2491245
https://www.usenix.org/conference/nsdi20/presentation/ding
http://www.usenix.org/events/osdi10/tech/full_papers/Ford.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Ford.pdf
https://doi.org/10.1109/ICCEA50009.2020.00136
https://doi.org/10.1109/ICCEA50009.2020.00136
https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/48014.61051
https://www.vldb.org/pvldb/vol17/p3745-xu.pdf
https://www.vldb.org/pvldb/vol17/p3745-xu.pdf
https://hbase.apache.org/
https://hbase.apache.org/
https://www.usenix.org/publications/login/february-2012/data-availability-and-durability-hadoop-distributed-file-system
https://www.usenix.org/publications/login/february-2012/data-availability-and-durability-hadoop-distributed-file-system
https://doi.org/10.1109/ICDE53745.2022.00315
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/1773912.1773922
https://www.usenix.org/conference/fast22/presentation/lee
https://www.usenix.org/conference/fast22/presentation/lee
https://doi.org/10.1109/IPDPS.2013.110
https://www.usenix.org/conference/atc21/presentation/liu
https://www.usenix.org/conference/atc21/presentation/liu
https://mqtt.org/
https://mqtt.org/
https://doi.org/10.1109/TPDS.2019.2896115
https://doi.org/10.1109/TPDS.2019.2896115
www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
http://opentsdb.net/
http://opentsdb.net/docs/build/html/user_guide/backends/hbase.html
http://opentsdb.net/docs/build/html/user_guide/backends/hbase.html
http://opentsdb.net/
http://opentsdb.net/
https://www.usenix.org/conference/nsdi19/presentation/park
https://www.usenix.org/conference/nsdi19/presentation/park
https://github.com/zalando/patroni
https://github.com/zalando/patroni
https://github.com/apache/ratis
https://github.com/apache/ratis
https://doi.org/10.1145/383059.383072
https://doi.org/10.1145/383059.383072

Middleware 2001, IFIP/ACM International Conference on Distributed Systems Plat-
forms Heidelberg, Germany, November 12-16, 2001, Proceedings (Lecture Notes
in Computer Science), Rachid Guerraoui (Ed.), Vol. 2218. Springer, 329ś350.
https://doi.org/10.1007/3-540-45518-3_18

[39] Kenneth FN Scott. 1973. On the Construction of Bibd With 𝜆= 1. Canad. Math.
Bull. 16, 3 (1973), 329ś335.

[40] Buti Sello, Jianming Yong, and Xiaohui Tao. 2024. Erdos: A Novel Blockchain
Consensus Algorithm with Equitable Node Selection and Deterministic Block
Finalization. Data Sci. Eng. 9, 4 (2024), 361ś377. https://doi.org/10.1007/S41019-
024-00251-0

[41] Ion Stoica, Robert Tappan Morris, David Liben-Nowell, David R. Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. 2003. Chord: a scalable peer-
to-peer lookup protocol for internet applications. IEEE/ACM Trans. Netw. 11, 1
(2003), 17ś32. https://doi.org/10.1109/TNET.2002.808407

[42] TimescaleDB. 2025. TimescaleDB. https://www.timescale.com/ (2025, April).
[Online]. Available: https://www.timescale.com/.

[43] Robbert van Renesse and Fred B. Schneider. 2004. Chain Replication for Support-
ing High Throughput and Availability. In 6th Symposium on Operating System
Design and Implementation (OSDI 2004), San Francisco, California, USA, December
6-8, 2004, Eric A. Brewer and Peter Chen (Eds.). USENIX Association, 91ś104.
http://www.usenix.org/events/osdi04/tech/renesse.html

[44] Chen Wang, Jialin Qiao, Xiangdong Huang, Shaoxu Song, Haonan Hou, Tian
Jiang, Lei Rui, Jianmin Wang, and Jiaguang Sun. 2023. Apache IoTDB: A Time
Series Database for IoT Applications. Proc. ACM Manag. Data 1, 2 (2023), 195:1ś
195:27. https://doi.org/10.1145/3589775

[45] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, T. S. Eugene Ng,
and Yida Wang. 2023. GEMINI: Fast Failure Recovery in Distributed Training
with In-Memory Checkpoints. In Proceedings of the 29th Symposium on Operating
Systems Principles, SOSP 2023, Koblenz, Germany, October 23-26, 2023, Jason Flinn,

Margo I. Seltzer, Peter Druschel, Antoine Kaufmann, and Jonathan Mace (Eds.).
ACM, 364ś381. https://doi.org/10.1145/3600006.3613145

[46] Jinzhao Xiao, Yuxiang Huang, Changyu Hu, Shaoxu Song, Xiangdong Huang,
and Jianmin Wang. 2022. Time Series Data Encoding for Efficient Storage: A
Comparative Analysis in Apache IoTDB. Proc. VLDB Endow. 15, 10 (2022), 2148ś
2160. https://doi.org/10.14778/3547305.3547319

[47] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In Proceedings of the 9th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 2012, San Jose, CA, USA, April 25-27,
2012, Steven D. Gribble and Dina Katabi (Eds.). USENIX Association, 15ś28.
https://www.usenix.org/conference/nsdi12/
technical-sessions/presentation/zaharia.

[48] Jiachi Zhang, Shi Cheng, Zhihui Xue, Jianjun Deng, Cuiyun Fu, Wenchao Zhou,
ShengWang, Changcheng Chen, and Feifei Li. 2022. ESDB: Processing Extremely
Skewed Workloads in Real-time. In SIGMOD ’22: International Conference on
Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives,
Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 2286ś2298. https://doi.org/10.
1145/3514221.3526051

[49] Zhou Zhang, Peiquan Jin, Xike Xie, Xiao-Liang Wang, Ruicheng Liu, and
Shouhong Wan. 2024. Online Nonstop Task Management for Storm-Based
Distributed Stream Processing Engines. J. Comput. Sci. Technol. 39, 2 (2024),
116ś138. https://doi.org/10.1007/S11390-021-1629-9

[50] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph,
and John Kubiatowicz. 2004. Tapestry: a resilient global-scale overlay for service
deployment. IEEE J. Sel. Areas Commun. 22, 1 (2004), 41ś53. https://doi.org/10.
1109/JSAC.2003.818784

1797

https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/S41019-024-00251-0
https://doi.org/10.1007/S41019-024-00251-0
https://doi.org/10.1109/TNET.2002.808407
https://www.timescale.com/
https://www.timescale.com/
http://www.usenix.org/events/osdi04/tech/renesse.html
https://doi.org/10.1145/3589775
https://doi.org/10.1145/3600006.3613145
https://doi.org/10.14778/3547305.3547319
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://doi.org/10.1145/3514221.3526051
https://doi.org/10.1145/3514221.3526051
https://doi.org/10.1007/S11390-021-1629-9
https://doi.org/10.1109/JSAC.2003.818784
https://doi.org/10.1109/JSAC.2003.818784

	Abstract
	1 Introduction
	1.1 Terminology
	1.2 Background
	1.3 Challenge
	1.4 Contribution

	2 Data Partitioning and Allocation
	2.1 Data Partitioning
	2.2 Partition Allocation
	2.3 Load Balance Analysis

	3 Replica Placement
	3.1 Preliminaries
	3.2 Replica Placement Problem
	3.3 Partite Graph Placement
	3.4 Fault Tolerance Analysis

	4 Leader Selection
	4.1 Leader Selection Problem
	4.2 Cost Flow Selection
	4.3 Optimality Analysis

	5 Evaluation
	5.1 Experimental Setup
	5.2 Migration Evaluation
	5.3 Replica Placement Evaluation
	5.4 Leader Selection Evaluation

	6 Related Work
	6.1 Decentralized Partitioning and Allocation
	6.2 Replica Placement
	6.3 Leader Selection

	7 Conclusion
	Acknowledgments
	References

