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ABSTRACT

Local Differential Privacy (LDP) has emerged as a widely adopted
privacy-preserving technique in modern data analytics, enabling
users to share statistical insights while maintaining robust privacy
guarantees. However, current LDP applications assume a single
service gathering perturbed information from users. In reality, mul-
tiple services may be interested in collecting users’ data, which
poses privacy burdens to users as more such services emerge. To
address this issue, this paper proposes a framework for collecting
and aggregating data based on perturbed information from multi-
ple services, regardless of their estimated statistics (e.g., mean or
distribution) and perturbation mechanisms.

Then for mean estimation, we introduce the Unbiased Averaging
(UA) method and its optimized version, User-level Weighted Aver-
aging (UWA). The former utilizes biased perturbed data, while the
latter assigns weights to different perturbed results based on pertur-
bation information, thereby achieving minimal variance. For distri-
bution estimation, we propose the User-level Likelihood Estimation
(ULE), which treats all perturbed results from a user as a whole for
maximum likelihood estimation. Experimental results demonstrate
that our framework and constituting methods significantly improve
the accuracy of both mean and distribution estimation.
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1 INTRODUCTION

With the proliferation of the Internet, smart devices, and artificial
intelligence, data has become one of our most valuable resources.
Businesses across various sectors, especially healthcare, retailing,
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collector

Figure 1: An example for multiple services under LDP

and finance, optimize their operations and decision-making by
leveraging massive amounts of data. For instance, E-Commerce
companies such as Amazon and Netflix rely on big data to provide
personalized recommendations, enhancing customer experience
and sales [19, 26]. However, privacy concerns grow as data scales
exponentially and AI analysis techniques mature [5].

To address these concerns, local differential privacy (LDP) [2, 8,
22], a local variant of differential privacy model [10, 11, 28], has
widespread adoption in real-world applications. It allows privacy
protection at the data source on the user’s end to minimize the
risk of privacy leakage, and thus helps enterprises to comply with
increasingly stringent data protection regulations. As a result, lead-
ing tech companies embrace LDP in their mainstream products. For
example, Google employs LDP to collect user data on Chrome home
pages [13], while Apple utilizes it on iOS devices to analyze app en-
gagement patterns privately [38]. Similarly, Samsung incorporates
LDP into its Android phones to securely gather telemetry data [30],
and Huawei implements differential privacy techniques in various
products and services to protect users’ personal information [20].

Many existing LDP applications assume a standalone service
where each user’s information is collected only once. However, in
the era of big data, data are often collected and processed bymultiple
services early on. This is common in government statistical systems,
which aggregate data from multiple agencies or organizations in
the field of health, education, justice, and social welfare, such as
the U.S. Federal Data Strategy [31] and the European Statistical
System [14]. In the healthcare domain, medical institutions inde-
pendently collect patient data, as demonstrated by PCORnet [39],
which involves multiple healthcare organizations collecting similar
patient data, and the FDA’s Sentinel Initiative [33], which gathers
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data from multiple healthcare providers to monitor drug safety.
Public health authorities like CDC can leverage existing data from
these institutions for population-level analyses by using perturbed
data [18], reducing privacy risks and patient burden.

The multi-service data collection scenario is illustrated in Figure
1, where various services in the yellow box independently collect
users’ age information. In this scenario, users need to submit their
age information multiple times, spending a privacy budget for each
submission. Suppose a new service (e.g., Microsoft Azure), referred
to as data collector S , aims to acquire users’ age information. If
S directly requests users to upload their data, according to the
composition theorem [24], the users’ privacy would be further com-
promised by increasing the overall privacy budget by an additional
ϵ . As an alternative, S can leverage the existing perturbed data
from other services and thus keep the privacy budget of all users
unaltered. Moreover, since the perturbed data gathered by multiple
services is abundant, data collector S can aggregate more accurate
statistical results than from any single service.

In this paper, we investigate such a scenario where multiple
services gather identical numerical data from users with the same
or different mechanisms and privacy budgets. Unlike prior stud-
ies such as [7, 47], which only consider mean aggregation from
a single mechanism using different privacy budgets, our study
explores both mean and generic distribution estimation under vari-
ous mechanisms and privacy budgets. For collecting mean value,
various perturbation mechanisms exist (e.g., Laplace [11], Stochas-
tic Rounding [9], Piecewise Mechanism [41]). As for distribution
estimation, state-of-the-art perturbation mechanisms include Piece-
wise Mechanism [41] and Square Wave [25]). By leveraging all
perturbed results provided by different services, we can prevent
further privacy leakage of user data while also enhancing data util-
ity. However, aggregating statistical results from different services
poses several challenges:

• Perturbation mechanisms for numerical data are designed
for different statistics — some for mean, and others for dis-
tribution estimation. This raises the question of how to use
distribution estimation mechanisms for mean estimation and
vice versa.
• Perturbed results from different mechanisms fall in various
ranges, and some are even biased, making them unsuitable
for direct use in mean estimation. It is an open question how
to maximize their utility for the best aggregate results.

To address these challenges, we first propose the Unbiased Av-
eraging (UA) method for mean estimation, which converts biased
perturbed results into unbiased ones before averaging. Based on
this, we introduce an optimized method called User-level Weighted
Averaging (UWA), which employs Bayesian updating [17] to infer
the distribution of original values and assigns different weights
to their perturbed values, which obtains an optimized mean with
minimal variance. Additionally, we propose a general method for
distribution estimation, namely User-level Likelihood Estimation
(ULE), which treats all perturbed results from a user as a whole for
maximum likelihood estimation to infer the original distribution.
By exploiting the correlation between perturbed values from the
same user, our aggregation method extracts information about the
original values and is agnostic to perturbation mechanisms, privacy

budget settings, and the number of services. The main contributions
of this paper are summarized as follows:

• This is the first work to investigate a new data collection
and aggregation paradigm in the context of LDP, where a
data collector gathers and aggregates perturbed values from
multiple services.
• Under this paradigm, we propose Unbiased Averaging (UA)
and User-level Weighted Averaging (UWA) for mean estima-
tion, and User-level Likelihood Estimation (ULE) for distribu-
tion estimation. These methods can integrate all perturbed
information to aggregate accurate mean or distribution sta-
tistics.
• We conduct extensive experiments, and show that our ap-
proach significantly improves the performance of any single
mechanism in either mean or distribution estimation.

The rest of this paper is organized as follows. In Section 2, we
introduce some preliminaries of LDP and existing LDP perturba-
tion mechanisms for numerical data. Section 3 formally presents
the system framework and problem definition. In Section 4, we
propose the mean estimation method, followed by the distribution
estimation method in Section 5. Section 6 provides extensive exper-
imental evaluations. We then review related studies in Section 7
and conclude the paper in Section 8.

2 PRELIMINARIES

2.1 Local Differential Privacy

LDP is a promising privacy protection technique that enables users
to perturb their data before publishing. It is defined as follows:

Definition 2.1. A randomized algorithm A satisfies ϵ-local dif-
ferential privacy (ϵ-LDP), if and only if for any two values x and x ′,
and any possible output y ∈ Range(A), the following condition holds:

P[A (x ) = y]

P[A (x ′) = y] ≤ eϵ ,ϵ > 0.

The core idea of LDP lies in its probabilistic nature: mechanism
A maps any specific input to an output based on a probability
distribution. This distribution is controlled by the privacy budget
ϵ . As a result, no one can determine an individual’s true input by
observing an output y. The privacy budget ϵ , controls the trade-off
between privacy protection and data utility. A smaller ϵ provides
stronger privacy guarantees but potentially reduces the accuracy
of data analysis, while a larger ϵ allows for more accurate analysis
at the cost of reduced privacy protection.

2.2 Laplace Mechanism

Laplace mechanism [11] is a commonly used differential privacy
mechanism that achieves privacy protection by adding Laplace
noise to the original data. The input value v is always normalized
into [-1, 1]. The Probability Density Function(PDF) of the perturbed
result Alap (v ) can be expressed as:

ρ (Alap (v ) = x |v ) = 1

2b
exp(− |x −v |

b
),

where b = 2
ϵ . This distribution has a mean of v , so the estimate

Alap (v ) is unbiased. In addition, the variance is varlap (v ) =
8
ϵ 2
. If

the service receives n perturbed values, it simply computes their
average 1

n

∑n
i=1Alap (vi ) as an estimate of the original mean.
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2.3 Stochastic Rounding (SR)

Stochastic Rounding (SR) [9], also known as the Duchi et al. solution,
the core principle is rooted in the Bernoulli distribution, resulting
in outputs that are both bounded and discrete.The input domain
is typically normalized to [-1, 1], and the output value follows a
two-point distribution. The probability mass function (PMF) of the
output Asr (v ), given input v , can be formally written as:

P (Asr (v ) = x |v ) =
{

p, if x = eϵ+1
eϵ−1

1 − p, if x = − eϵ+1eϵ−1
(1)

where the probability p is given by:

p =
eϵ − 1
2eϵ + 2

· v + 1

2
.

In SR mechanism, Asr (v ) is an unbiased estimator of the input
value v . In addition, the variance is varsr (v ) = ( e

ϵ+1
eϵ−1 )2 −v2.

2.4 Piecewise Mechanism (PM)

Different from SR, PM [41] perturbs values into a domain instead
of two values. Given input value v ∈ [−1,1], the PDF of output
Apm (v ) ∈ [−C,C] has two parts: domain [l (v ),r (v )] and domain

[−C,l (v )) ∪ (r (v ),C], where C = eϵ /2+1
eϵ /2−1 , l (v ) =

C+1
2 v − C−1

2 and
r (v ) = l (v ) + C − 1. Given input v , the perturbed value is in the
range [l (v ),r (v )] with high probability and in the range [−C,l (v ))∪
(r (v ),C] with low probability.

The conditional probability density function of the PM, denoted
as ρ (Apm (v ) = x |v ), is given by:

ρ (Apm (v ) = x |v ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

eϵ−eϵ /2
2(eϵ /2+1)

, if x ∈ [l (v ),r (v )]
eϵ /2−1

2(eϵ /2+eϵ )
, if x ∈ [−C,l (v )) ∪ (r (v ),C]

Perturbed valueApm (v ) is an unbiased estimator of input value
v , the service can use the mean of collected values as an unbiased
estimator of the mean of input values. Moreover, the variance is

varpm (v ) =
v2

eϵ/2 − 1 +
eϵ/2 + 3

3(eϵ/2 − 1)2 .

2.5 Square Wave Mechanism (SW)

SW [25] is designed for distribution estimation, and the main idea
is to increase the probability of output value that can provide more
information about the input value. The service receives perturbed
values from users and reconstructs the distribution over a discrete
numerical domain. Each user processes a floating value in the do-
main [0,1] and generates an output value in [−b,1 + b], where
b = ϵeϵ−eϵ+1

2eϵ (eϵ−ϵ−1) . The conditional probability density function of

the SW, denoted as ρ (Asw (v ) = x |v ), is given by:

ρ (Asw (v ) = x |v ) =
⎧⎪⎪⎨⎪⎪⎩

eϵ

2beϵ+1 , if x ∈ [v − b,v + b]
1

2beϵ+1 , if x ∈ [−b,v − b) ∪ (v + b,1 + b],

where p = eϵ

2beϵ+1 and q = 1
2beϵ+1 . After reviving the perturbed

values, the service aggregates the original distribution by using the
Maximum Likelihood Estimation (MLE) [36] and reconstructs the
distribution of original values.Asw (v ) is not an unbiased estimator

of v , and its variance is:

varsw (v ) =
q(b3 − (b +v )3 − (b −v )3 + (b + 1)3)

3

− (q + 2bq + 4bpv − 4bqv )2
4

+
2bp (b2 + 3v2)

3

3 SYSTEM FRAMEWORK AND PROBLEM
DEFINITION

Consider a system withm services which have already collected
user data. Each service j employs a perturbation mechanism Aj ,
which consumes a privacy budget of ϵj . It’s important to note that
these perturbation mechanisms can be the same across different ser-
vices or completely different. There are n users and the i-th user has
an original value vi . For user i , the value vi is perturbed by mecha-
nism Aj , resulting in the perturbed value Aj (vi ) being sent to the
j-th service. From a user’s perspective, the set of data transmitted
to all services is represented as Ui = {A1 (vi ), . . . ,Am (vi )}. Con-
versely, from a service’s viewpoint, the j-th service receives a set of
perturbed data from all users, denoted asCj = {Aj (v1), . . . ,Aj (vn )}.

In addition to the m services that have already collected data
sets, we also consider a data collector S . S will collect data from
these services and aggregate the perturbed data sets to produce
an accurate statistical result1. The specific process is illustrated
in Figure 2. All users perturb their data according to the given
perturbation mechanismAj with ϵj and then upload the perturbed
value to the j-th service (Step 1©). Each service can perform its
own statistical analysis to obtain the desired results. S collects the
perturbed data set {C1, . . . ,Cm } from services (Step 2©). Finally, S
utilizes these data to aggregate an accurate mean and distribution
estimation (Step 3©).

Users,
Service 1 Service 2 Service Service  1 Service  … …

… …

, , , ,

Figure 2: The multiple service data collecting system

Mean estimation for multiple services. LetM denote the mean
of the original values from all users, which can be expressed as:

M =
1

n

n∑
i=1

vi .

Data collector S accesses the maximum amount of perturbed in-
formation, which can be represented as the set {C1, . . . ,Cm }. This
set, representing data sent by all users, can also be expressed as
{U1, . . . ,Un }.
1This data collector S can be any one of them services, and it can collaborate with
the otherm − 1 services to enhance performance.
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The first task is to find an algorithm Am that, based on the
perturbed information available, estimates the mean M̂ as follows:

M̂ = Am (C1, . . . ,Cm ) = Am (U1, . . . ,Un ).

Our objective is to ensure that the estimated mean M̂ is as close
as possible to M . To evaluate the quality of our mean estimation,
we primarily use the Mean Squared Error (MSE) [29].
Distribution estimation for multiple services. In this paper,
we will also investigate the distribution estimation of numerical
data. For practical purposes, such as computational efficiency and
ease of analysis, we often approximate a continuous distribution
with a discrete one. This involves discretizing the original values’
distribution into l buckets, resulting in the discrete ground truth
distribution D = {d1, . . . ,dl }.

Similar to the setting for mean estimation, data collector S pos-
sesses the maximum amount of perturbed information represented
as {C1, . . . ,Cm }. We need to propose a distribution estimation al-
gorithm Ad to estimate the distribution D. This estimation can be
expressed as:

D̂ = Ad (C1, . . . ,Cm ) = Ad (U1, . . . ,Un ).

where D̂ is the estimated discrete density distribution. The proba-
bility associated with each bucket in D̂ is given by:

D̂ = {d̂1, . . . ,d̂t , . . . ,d̂l },
and these probabilities must satisfy the condition:

l∑
t=1

d̂t = 1, d̂t > 0 for all t = 1,2, . . . ,l

Our goal is to achieve a distribution estimate D̂ that closely ap-
proximates the true distribution D. The quality of this approxima-
tion is evaluated using either the Kullback-Leibler (KL) divergence
[27] or the Jensen-Shannon (JS) divergence [4].

4 MEAN ESTIMATION

A naive way to estimate the mean M̂ is to average all the perturbed
results directly. However, this approach typically requires the per-
turbed values to be unbiased. Therefore, in Section 4.1, we propose
a method to convert biased mechanisms into unbiased ones to facil-
itate averaging. Subsequently, Section 4.2 and Section 4.3 introduce
an optimization method that assigns weights to each perturbed
result based on its variance, thereby achieving better utility.

4.1 Unbiased Averaging (UA)

When all the perturbed results are unbiased, i.e., the expected output
is equal to the input value, the direct method for mean estimation
is to average all the collected data directly, as follows:

M̂ =

∑m
j=1
∑n
i=1Aj (vi )

n ×m . (2)

Not all perturbation mechanisms are unbiased - the SW mech-
anism is a notable example of a biased mechanism for mean esti-
mation. To effectively utilize these biased perturbed values, it is
necessary to transform them into unbiased ones in order to accu-
rately estimate the mean. We propose an unbiased method, which
is presented in Theorem 4.1.

Theorem 4.1. (Unbiasing Process) Given a perturbation mech-

anism A and an input v , the perturbed value follows a distribution
related to v , and the expectation of this perturbed value is denoted

as EA (v ) = y. If y � v , we say the mechanism is biased. Assume

that the function EA (v ) is invertible, i.e., there exists a function E−1A
such that E−1A (y) = v . Then, E−1A (y) is an unbiased estimation of the

original input v .

Proof. To prove that E−1A (y) is an unbiased estimation of the

original input v , we need to show that E[E−1A (y)] = v . The proof
proceeds as follows:

E[E−1A (y)] = E[E−1A (EA (v ))] = E[v]

Since the expectation of a random variable is equal to its expected
value, i.e., E[v] = v . Therefore, E−1A (y) is an unbiased estimator of
v . �

Case study.We present an example of an unbiasing process for the
SW mechanism. For the original data v , the expectation ofAsw (v )
can be calculated as follows:

E (Asw (v )) =

∫ v−b

−b
xq dx +

∫ v+b

v−b
xp dx +

∫ 1+b

v+b
xq dx

= q

[
x2

2

]v−b
−b
+ p

[
x2

2

]v+b
v−b
+ q

[
x2

2

]1+b
v+b

=
q

2
+ qb + 2b (p − q)v .

where b,p,q are listed in Section 2.5. Let Ausw (v ) denote the un-
biased result of v using the unbiased SW method. According to
Theorem 4.1, Ausw (v ) can be expressed as:

Ausw (v ) =
Asw (v ) − q/2 − qb

2b (p − q) .

The variance for unbiased SW is:

varusw (v ) =
varsw (v )

(2b (p − q))2 .

4.2 Posterior Distribution Estimation for
Individual Users

In the UA algorithm, directly averaging all perturbed results as-
sumes an equal contribution from each perturbed value. However,
to achieve better utility, mechanisms with lower variance should be
assigned higher weights. The challenge lies in determining the vari-
ance of each mechanism’s estimation results without prior knowl-
edge of the original distribution. Moreover, the variance heavily
relies on the privacy budget ϵ , original valuev , and the perturbation
mechanisms themselves.

Figure 3 illustrates the variance for several common LDP pertur-
bation mechanisms. Specifically, Figure 3(a) depicts the variance
with varying v when ϵ = 1, while Figure 3(b) shows the variance
with varying ϵ when v = 1. Although these two figures do not
encompass all possible variance scenarios, they demonstrate that
the variance of a single mechanism changes with both v and ϵ .
Furthermore, the relative ranking of variances among different
mechanisms shifts under different parameter settings.

If we knew the ground truth of v and the corresponding ϵ , we
could select the optimal mechanism to perturb the data and thus
achieve minimum variance. However, this approach is impractical.
Firstly, v is unknown in real-world scenarios. Additionally, select-
ing only one mechanism’s result would waste information from
other perturbation results. Fortunately, since multiple perturbed
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(a) ϵ = 1. (b) v = 1.

Figure 3: Variance comparison with varying v and ϵ

values are transmitted from the same user, we can perform Bayesian
inference to infer the PDF of the original value v based on these
perturbed values as its posterior distribution [1]. This inference
enables us to assign optimal weights to different perturbed results,
ultimately leading to a minimal variance for more accurate mean
estimation. Next, we will describe how we estimate the posterior
distribution of each user’s value in this section. Then, in Section
4.3, we will explain how to allocate weights based on the estimated
posterior distributions for individual users.
BayesianUpdating for PosteriorDistributionEstimation. Let
us consider a single user’s original data, denoted as v , which corre-
sponds tom observed perturbed values {A1 (v ), . . . ,Am (v )}. Our
goal is to infer the posterior distribution of v using these observed
values through Bayesian updating. The utilization of each observed
value shall be referred to as an update.

Let fj (v ) represent the current estimate of the posterior dis-
tribution of v after updating j times. Given the absence of prior
information about v , we initialize its prior distribution f0 (v ) as a
uniform distribution. We start by considering how to update the
distribution using only one observed value, A1 (v ).

Let P (A1 (v ) | v ) denote the probability of obtaining the per-
turbed value A1 (v ) given the original value v . Using Bayes’ the-
orem, we can update our prior belief f0 (v ) based on the observed
A1 (v ), obtaining the posterior probability f1 (v ) as follows:

f1 (v ) = P (v | A1 (v )) =
P (A1 (v ) | v ) f0 (v )

P (A1 (v ))
, (3)

where

P (A1 (v )) =

∫
P (A1 (v ) | v ) f0 (v )dv . (4)

To facilitate computation, we discretize Equation 4. We uni-
formly divide the input domain into h buckets {B1, . . . ,Bk , . . . ,Bh },
with μk denoting the midvalue of the k-th bucket. The posterior
distribution can be represented as a set of pairs, each contain-
ing a bucket midvalue and its corresponding probability estimate:
fj (v ) = (μ1, f

1
j ), . . . , (μk , f

k
j ), . . . , (μh , f

h
j ) (j ∈ {0, . . . ,m}). Conse-

quently, Equation 4 can be rewritten as:

P (A1 (v )) =
h∑

k=1

P (A1 (v ) | μk ) f k0 .

To calculate P (A1 (v ) | μk ), we discretize the output domain by
uniformly partitioning it into multiple buckets in a similar manner.
For clarity, we denote A1 (v ) ∈ B′ as the event that A1 (v ) falls
into a specific bucket B′. Let s be the width of bucket B′, with μ ′
representing its midpoint. We can then calculate P (A1 (v ) ∈ B′ |
μk ) as follows:

P (A1 (v ) ∈ B′ | μk ) = s · ρμk ,A1 (μ
′), (5)

where ρA1,μk (μ
′) denotes the probability density at point μ ′. This

probability density function is determined by the input value μk and
the mechanism A1. The probability density functions for different
mechanisms are detailed in Section 2. To calculate P (A1 (v ) | v ),
we need to find the nearest bucket midvalue μt to the input v . The
calculation of P (A1 (v ) | v ) is then equivalent to P (A1 (v ) | μt ).

As the number of observations increases, we can gradually up-
date the posterior distribution. The result after updating with the
first j − 1 observations is:

fj−1 (v ) = P (v |A1 (v ), ...,Aj−1 (v )).
Based on the (j − 1)-th observed value Aj−1, we update and

obtain fj (v ) as follows:

fj (v ) = P (v |A1 (v ), ...,Aj (v )) =
P (Aj (v ) |v ) fj−1 (v )

P (Aj (v ) |A1 (v ), ...,Aj−1 (v ))
,

(6)
where

P (Aj (v ) |A1 (v ), ...,Aj−1 (v )) =
h∑

k=1

P (Aj (v ) |μk )) fj−1 (μk ).
Algorithm 1 outlines the procedure for estimating the posterior

distribution of a single value v . The process begins by initializ-
ing the prior distribution of v as a uniform distribution (line 1).
Subsequently, the algorithm sequentially processesm perturbed ob-
servations. Each iteration calculates the conditional probability of
the current observation and updates the posterior distribution of v
using Bayes’ theorem (line 2). This iterative process continues until
allm observations have been processed. The algorithm concludes
by returning the final updated posterior distribution of v , denoted
as fm (v ) (line 3).

Algorithm 1 Bayesian updating

Input: Original data v ; the observed perturbed results
{A1 (v ),A2 (v ), . . . ,Am (v )}, the size of discrete buckets for
distribution estimation h.
Output: Updated posterior distribution of v : fm (v )

1: Initialize f0 (v ) = { f 10 (v ), . . . , f k0 (v ), . . . , f h0 (v )}, f k0 (v ) = 1
h

2: for j = 1 tom do

p (Aj (v ) |A1 (v ),. . .,Aj−1 (v )) =
h∑
j=1

P (Aj (v ) |v ) · fj−1 (v )

fj (v )=P (v |A1 (v ),. . .,Ai (v ))=
P (Aj (v ) |v ) ·fj−1 (v )

P (Aj (v ) |A1 (v ),...,Aj−1 (v ))

3: return fm (v ) = {(μ1, f 1m ), . . . , (μk , f
k
m ), . . . , (μh , f

h
m )}

Probability updating for the Laplace Mechanism. In Equation
4, the method for computing P (Aj (v ) | v ) is to uniformly dis-
cretize both the input and output domains into multiple buckets.
This approach is relatively straightforward for PM, SW, and SR,
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as their input domains and output domains are bounded. How-
ever, the Laplace mechanism poses a challenge. Since the Laplace
distribution is unbounded, its output domain is also unbounded.
This prevents the use of a simple discretization approach, unlike
the other mechanisms. In addition, the Laplace mechanism per-
turbs the original values by directly adding noise. This method of
perturbation makes the calculation of the discretized perturbation
probability less intuitive. To leverage the information provided by
the Laplace mechanism, we need to develop a discretization ap-
proach for its unbounded output domain in order to determine the
posterior distribution of the original value v .

Firstly, similar to other mechanisms, we discrete input domain
intoh buckets, with the midpoint of each bucket denoted as {μ1, . . . ,
μk , . . . ,μh }. Based on the different μk values, we can obtain the
perturbed result Alap (μk ) following these Laplace distributions:

ρ (Alap (μk ) = x |μk ) =
ϵlap

4
exp

(
−ϵlap |x − μk |

2

)
. (7)

The perturbed value isAlap (v ), which is a constant. Our task is
to calculate P (Alap (v ) | μk ) (k ∈ 1, . . . ,h) as shown in Equation 5.
To do so, we need to appropriately determine an output bucket B′.
The selection of this B′ should satisfy three key requirements: (a)
the bucket must be bounded to ensure practical computability; (b)
it should accurately reflect the sensitivity of the output Alap (v )
to different input values μk , thereby capturing the probabilistic
variation characteristics of the Laplace distribution; and (c) for
a given output Alap (v ), the width of the corresponding bucket
should be consistent across different values of μk , maintaining
fairness in our probability estimations.

For requirement (a), we need to truncate the unbounded output
domain into a bounded one. The probability of the Laplace distribu-
tion decreases with increasing distance from the axis of symmetry,
so the information contained in the tails becomes less significant.
This characteristic allows us to truncate the distribution without
significant information loss, thereby enabling us to determine an
appropriate B′. We define the output bucket B′ by the truncation
distance τ :

B′ =
[
Alap (v ) − τ ,Alap (v ) + τ

]
,

where the truncation distance τ is defined as:

τ =
√
|Alap (v ) |

Since τ depends solely on |Alap (v ) |, which is a constant, the length
of the output bucket B′ remains consistent across different μk val-
ues. This choice of τ ensures that the bucket B′ satisfies require-
ments (b) and (c).

The probability P (Alap (v ) ∈ B′|μk ) is given by:

P (Alap (v ) ∈ B′|μk ) =
∫ Alap (v )+τ

Alap (v )−τ
ρ (Alap (μk ) = x |μk )dx .

Finally, we normalize this value to ensure that the sum of all
P (Alap (v ) |μt ) for t ∈ {1, . . . ,h} equals 1. And then we can obtain
P (Alap (v ) |μk ) is

P (Alap (v ) |μk ) =
P (Alap (v ) ∈ B′|μk )∑h
t=1 P (Alap (v ) ∈ B′|μt )

.

4.3 User-level Weighted Averaging (UWA)

After obtaining the posterior distribution for each user, we assign
weights to different mechanisms based on this information. We
propose the User-level Weighted Averaging (UWA) Algorithm to
minimize variance under different settings. Before delving into the
details of UWA, we need to explain how to calculate the variance
based on the fm (v ) = {(μ1, f 1m ), . . . , (μk , f

k
m ), . . . , (μh , f

h
m )}. The

variance for fm (v ) in terms of Aj is:

Vj ( fm (v )) =
h∑

k=1

f kmvar j (μk ), (8)

where the variance vari (μk ) represents the output variance when
the input value is μk and the perturbation mechanismAi is applied.
The methods for calculating variances of different mechanisms are
detailed in Section 2.
The procedure of UWA. Algorithm 2 presents our user-level
weighted averaging process. It takes the perturbation mechanisms,
their corresponding privacy budgets, and perturbed results from
n users as input. For each user, the algorithm calculates posterior
distributions using Algorithm 1 (line 1) and initializes weights (line
2). It then computes variances for each mechanism across the dis-
cretized values {μ1, . . . ,μh }, calculatingVj ( fm (vi )) as the estimated
variance for mechanism Aj (line 3). Based on Vj ( fm (vi )), the algo-
rithm determines optimal weights (line 4) and computes a weighted
mean v ′i for the i-th user(line 5). Finally, it aggregates the results
by averaging the weighted means of all users (line 6).

Algorithm 2 User-level weighted averaging algorithm

Input: Perturbation mechanisms {A1,A2, ...,Am }, corresponding
privacy budget {ϵ1,ϵ2, ...,ϵm }, perturbed result sets from n users
{U1,U2, ...,Un }.
Output: The aggregated mean M̂

1: for i = 1 to n do

Calculate fm (vi ) = {(μ1, f 1m ), . . . , (μh , f
h
m )} according to

Algorithm 1
2: Initialization weight:wt =

1
m , t = {1,2, ...,m}

3: for j = 1 to m do

for t = 1 to h do
Calculate var j (μt ) according to Section 2

Calculate Vj ( fm (vi )) according to Equation 8

4: for j = 1 to m do

w j = [Vj ( fm (vi ))
∑h
t=1

1
Vt (fm (vi ))

]−1

5: v ′i =
∑m
j=1w jA (vi )

6: M̂ =
∑n
i=1

1
nv
′
i

7: return M̂

For each original value v , we calculate a weighted mean v ′. The
weights are assigned to the perturbed values of v to minimize
variance, as shown in Theorem 4.2.

Theorem 4.2. Given the original valuev and corresponding vari-

anceV1 ( fm (v )), . . . ,Vm ( fm (v )). The variance ofv ′ = ∑mj=1w jAj (v )

reaches the minimum, if the following formula holds:

wt =
1

Vt ( fm (v ))
∑m
i=1

1
Vi (fm (v ))

,t ∈ {1, . . . ,m}.
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The minimal variance is:

Var (v ′)min = [
m∑
t=1

1

Vt ( fm (v ))
]−1.

Proof. The variance of v ′, which is a linear combination of
At (v ), can be written as:

Var (v ′) = Var (
m∑
t=1

wtAt (v )) =
m∑
t=1

w2
tVt ( fm (v )). (9)

where
∑
wt = 1.

We regard the variance as a function of wt , and the minimal
variance is the extreme point of Equation 9. By the Lagrangian
method, we have:

L =
m∑
t=1

w2
tVt ( fm (v )) +C0 (1 −

h∑
t=1

wt ).

The first partial derivatives of L w.r.t.wt is
∂L
∂wt
= 2wtVt ( fm (v ))−

C0. Let
∂L
∂wt

= 0, then we have wt = C0
2Vt (fm (v )) . Through the

restriction
∑m
t=1wt = 1, we figure out

C0 =
2∑m

t=1
1

Vt (fm (v ))

, wt =
1

Vt ( fm (v ))
∑m
i=1

1
Vi (fm (v ))

.

And the final minimal variance of M̃ is:

Var (v ′)min = [
m∑
t=1

1

Vt ( fm (v ))
]−1.

�

Since users are mutually independent, the overall variance across
all users will be minimized by summing the minimum variance
attained for each individual perturbed value.

Var ({v ′1, . . . ,v ′n })min =

n∑
i=1

[
m∑
t=1

1

Vt ( fm (vi ))
]−1.

While UWA and UA perform similarly when services have com-
parable estimation performance, UWA demonstrates significant
advantages in scenarios when different services exhibit varying
estimation performance. In such cases, UA’s uniform weighting
leads to results that are less effective, whereas UWA maintains
effectiveness through appropriate weight assignment.

5 USER-LEVEL LIKELIHOOD ESTIMATION
(ULE) FOR DISTRIBUTION ESTIMATION

Some mechanisms (e.g., the SR) are not designed for estimating
distributions, and their perturbations can degrade a significant
amount of effective information, leading to high inaccuracies if
these perturbed results are used directly to aggregate the original
distribution. However, we can make the most of all the perturbed
results by treating these perturbed values for each user as a whole,
because the perturbed results from the same user all stem from
the same original value. By applying the Maximum Likelihood
Estimation (MLE), we can better estimate the distribution of the
entire user population (to clarify, this is distinct from Section 4.2,
where we focus on estimating the posterior distribution of each in-
dividual user’s value). Based on this method, we propose a general
framework called User-level Likelihood Estimation (ULE), which
leverages information from different services to provide more ac-
curate distribution estimates.

Likelihood estimation. Recall that for each valuevi , its perturbed
values fromm mechanisms are represented asUi = {A1 (vi ), . . . ,
Am (vi )}. For each service j (j ∈ {1,2, . . . ,m}), its perturbation
mechanism is Aj , and its collection is Cj = {Aj (v1), . . . ,Aj (vn )}.
To adopt the MLE, we formulate the log-likelihood function of F as
follows:

L(D) = lnP[C1, . . . ,Cm |D] (10)

where D = {d1, . . . ,dl } represents the original distribution over l
buckets for all users. Specifically, we discretize the input domain
into l buckets, denoted as {B1, . . . ,Bk , . . . ,Bl }, where dk represents
the proportion of data falling within bucket Bk .

We consider distribution from the perspective of users, and the
Equation 10 can be written as:

L(D) = lnP[U1, . . . ,Un |D]. (11)

Expectation-Maximization (EM) algorithm. Our goal is to
determine the parameter D that maximizes the likelihood function
L(D). To achieve this, we employ the Expectation-Maximization
(EM) algorithm, inspired by its successful application in distribution
recovery estimation for CFO and SW [15, 25, 34]. The EM algorithm
converges to the MLE of the original distribution D according to
the following theorem.

Theorem 5.1. The EM algorithm converges to the maximum-

likelihood estimator of the true frequencies D.

Proof. Equation 11 can be written as:

L(D) =
n∑
i=1

ln(
l∑

k=1

dkP[A1 (vi ), . . . ,Am (vi ) |vi ∈ Bk ]). (12)

Since the perturbations of different mechanisms are independent
of each other, we have
P[A1 (vi ), . . . ,Aj (vi ), . . . ,Am (vi ) |vi ∈ Bk ] =
P[A1 (vi ) |vi ∈ Bk ] . . . P[Aj (vi ) |vi ∈ Bk ] . . . P[Am (vi ) |vi ∈ Bk ],

(13)
where P[Aj (vi ) |vi ∈ Bk ] is a constant determined by perturba-
tion mechanism, and thus L(D) is a concave function. So the EM
algorithm converges to the MLE of the original distribution D. �

To compute P[Aj (vi ) |vi ∈ Bk ], we also discretize the output
domain of Aj into hj uniform buckets. For Aj , its output domain
is discretized into buckets Hj [1],Hj [2], . . . ,Hj [r ], . . . ,Hj [hj ]. We
need to determine which bucket Aj (vi ) belongs to and then calcu-
late its probability. For instance, consider P[Aj (v ) ∈ Hj [r ]|v ∈ Bk ],
which represents the probability that the perturbed value Aj (v )
falls into bucket Hj [r ], given that the original value v falls into
bucket Bk .

In Equation 13, for vi , the perturbation results will fall into dif-
ferent buckets. To simplify the representation and facilitate the
computation, we can represent the combination of these buckets as
a bucket vector. Let’s define the r -th bucket vectorWr as a set con-
tainingm elements:Wr = {Wr [1],Wr [2], . . . ,Wr [m]}. Each element
Wr [j] represents one of the discretized bucketsHj [1], . . . ,Hj [r ], . . . ,
Hj [hj ] from the output domain of Aj . When we say {A1 (v ), . . . ,
Am (v )} ∈Wr , it meansA1 (v ) ∈Wr [1],A2 (v ) ∈Wr [2], . . . ,Am(v )
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∈Wr [m]. Consequently, we can reformulate Equation 13 as follows:

L(F ) =
n∑
i=1

ln(
l∑

k=1

dkP[{A1 (vi ), . . . ,Am (vi )} ∈Wr |vi ∈ Bk ]).
(14)

The number of possible bucket vectors, denoted as l ′, is given by
l ′ = min{n,∏m

j=1 hj }. Then, we employ the EM algorithm to deter-

mine the MLE of Equation 14, following the methodology described
by Li et al. [25]. E step computes the conditional probability distri-
bution of the latent data Pt given the current estimate of the model
parameters:

Pt = d̂t

l ′∑
k=1

nk
P[{A1 (v ), . . . ,Am (v )} ∈Wk |v ∈ Bt ,D̂]

P[{A1 (v ), . . . ,Am (v )} ∈Wk |D̂]
=

d̂t

l ′∑
k=1

nkP[A1 (v ) ∈Wk [1]|v ∈ Bt ]. . .P[Am (v ) ∈Wk [m]|v ∈ Bt ]∑l
k=1

P[A1 (v ) ∈Wk [1]|v∈Bt ]. . .P[Am (v ) ∈Wk [m]|v∈Bt ]d̂k
(15)

where nk denotes the count of perturbed values corresponding to
the bucket vectorWk .

M step calculates parameters d̂t (t ∈ {1, . . . ,l }) that maximize
the expected log-likelihood obtained in the E step:

d̂t =
Pt∑l

k=1
Pk
. (16)

Building upon this approach, we propose the ULE algorithm.
The procedure of ULE. The ULE algorithm reconstructs the dis-
tribution as illustrated in Algorithm 3. The algorithm begins by
assigning non-zero initial values to D̂, ensuring

∑l
t=1 d̂t = 1 (line

1). It then executes the EM algorithm, alternating between the Ex-
pectation (E) and Maximization (M) steps (lines 3-4). In the E-step,
the algorithm evaluates the log-likelihood expectation using the
current estimate D̂ and the observed counts nk , where nk denotes
the count of perturbed values corresponding to the bucket vector
Wk . The M-step calculates a new D̂ that maximizes the expected
likelihood, which serves as input for the next E-step (line 4). The
algorithm terminates when the results converge and returns the
estimated frequency histogram D̂ once the convergence condition
is met (line 5).

Algorithm 3 Procedure for ULE

Input: Perturbation mechanisms {A1,A2, ...,Am }, corresponding
privacy budget {ϵ1,ϵ2, ...,ϵm }, perturbed result sets from n users
{U1,U2, ...,Un }, number of discrete buckets for the input domain l .
Output: The aggregated distribution D̂

1: d̂t =
1
l
,t ∈ {1, . . . ,l }

2: while not converge do
E-step:

3: for t ∈ {1, . . . ,l } do
Calculate Pt according to Equation 15

M-step:

4: for t ∈ {1, . . . ,l } do
Calculate d̂t according to Equation 16

5: Return D̂ = {d̂1, . . . ,d̂l }

To summarize, the performance advantage of ULE over any
single service primarily depends on the informativeness of data
from other services, which is determined by four key factors: the
number of services, privacy budget settings, mechanism types, and
user base size.

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup

We conduct experiments on a workstation equipped with an AMD
Ryzen 7 2700X eight-core processor, 64 GB of RAM, an NVIDIA
GeForce RTX 3090 GPU, and Windows 10 operating system. All
experiments are implemented in Python 3.12.0. The experimental
code and datasets are available online [35].

6.1.1 Experiment Design. Each ofm services may employ the same
or different perturbation mechanisms for estimating statistical re-
sults. We will demonstrate that our proposed methods achieve
better accuracy than any individual service, while preventing fur-
ther privacy leakage of user data. For mean estimation, we compare
our proposed methods UA and UWA against existing mechanisms
such as Laplace, SW, PM, and SR. For distribution estimation, we
compare our proposed method, ULE, against SW, PM, and SR mech-
anisms. We exclude the Laplace mechanism from our distribution
estimation framework due to its limitations in distribution esti-
mation tasks. When discretizing the continuous perturbed data,
truncation to a feasible range is necessary, leading to significant
information loss that distorts the distribution estimate. In contrast,
the SR, PM, and SW mechanisms can be discretized without trunca-
tion, avoiding additional information loss. The stopping criterion
for EM in our paper is when |L(F̂ (t+1) ) − L(F̂ (t ) ) | < ϵ , which is the
same as setting in paper [25].

6.1.2 Datasets. Our analysis employs four datasets — two syn-
thetic and two real-world numerical sets. The first synthetic dataset,
Beta(2,5), is drawn from the Beta distribution [21] where the shape
parameters α = 2 and β = 5 determine the skewness and concentra-
tion of the distribution. Beta+Sin is constructed by superimposing
sinusoidal noise onto the Beta(2,5) distribution to introduce peri-
odic fluctuations in the probability density. Each synthetic dataset
comprises 1,000,000 samples uniformly distributed within the in-
terval [0,1]. For the real-world data analysis, we utilize the Taxi
dataset [32], which consists of pick-up times extracted from the
New York Taxi data for January 2018. This dataset encompasses
1,048,575 integer values, each representing the number of seconds
within 24 hours (range: 0 to 86,340). The second real-world dataset,
Retirement [12], is sourced from the San Francisco city employee
retirement plans, providing comprehensive data on salary and ben-
efits disbursements since the fiscal year 2013. Our analysis specifi-
cally focuses on the total compensation data, incorporating a subset
of 606,507 entries within the range of 10,000 to 60,000.

6.1.3 Utility Metrics.

MSE. We use Mean Squared Error (MSE) [23] to evaluate the ac-
curacy of mean estimation. MSE is a commonly used metric to
measure the average squared difference between predicted values
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ŷi and the ground truth yi in regression tasks. Formally,

MSE =
1

t

t∑
i=1

(ŷi − yi )2.

where t is the number of observations and we set t = 50 (i.e., 50
trials) in our experiments.
Jensen-Shannon divergence. The Jensen-Shannon divergence
(JS divergence) [4], denoted as dJS, is to measure the similarity
between two probability distributions. Given two probability dis-
tributions P and Q , the Jensen-Shannon divergence is calculated
as:

dJS (P ,Q ) =

√
1

2
DKL (P ‖ M ) +

1

2
DKL (Q ‖ M ),

whereM = 1
2 (P+Q ) is the average distribution, andDKL represents

the Kullback-Leibler divergence [27] defined as:

DKL (P ‖ Q ) =
∑
i

P (i ) log .
P (i )

Q (i )

In our experiments, we employ the JS divergence to evaluate the
performance of the distribution estimation.

6.2 Multiple Services Statistics

In this set of experiments, we evaluate mean estimation across
four heterogeneous services, each using a different mechanism (SR,
Laplace, PM, and SW), with UA and UWA utilizing these services’
information. For distribution estimation, we evaluate three services
using three different mechanisms (SR, PM, and SW), with ULE
utilizing their information. We compare the statistical accuracy of
aggregated results against individual service estimates throughout
all experiments.
Results with Same Privacy Budgets. Figures 4(a)-(d) show the
MSE of mean estimation results with privacy budget ϵ increasing
from 0.1 to 0.6. As ϵ increases, the MSE of all methods decreases.
Our proposed methods, UA and UWA, demonstrate significant
performance improvements of 53.3%-85.0% compared to the best
results from any single mechanism. Furthermore, UWA consistently
outperforms UA in most scenarios, with improvements typically
ranging from 1% to 15% across different privacy budgets.

Figures 4(e)-(h) present the distribution estimation results with
varying ϵ . The JS divergence of all methods decreases correspond-
ingly with increasing ϵ . SR exhibits the worst performance due to
significant information loss from discretizing. PM and SW mecha-
nisms achieve better performance than SR through their ability to
preserve the original distribution shape, maintaining high probabil-
ity density around the true values. By leveraging information from
all available mechanisms, our proposed ULE consistently achieves
superior performance across various datasets compared to any sin-
gle service, demonstrating improvements of 21.1%-81.0% over SR,
3.3%-36.9% over PM, and 4.8%-36.10% over SW.
Results with Different Privacy Budgets. In Figures 5(a)-(d), we
investigate the impact of varying privacy budgets across mecha-
nisms using four configurations (A1-A4) on mean estimation. The
privacy budgets [SR, Laplace, PM, SW] are set to A1[0.1, 0.2, 0.3,
0.4], A2[0.2, 0.4, 0.1, 0.3], A3[0.3, 0.1, 0.4, 0.2], and A4[0.4, 0.3, 0.2,
0.1]. Each mechanism’s performance directly correlates with its
privacy budget, as demonstrated by the superior performance of

mechanisms with a 0.4 budget (PM in A3 and SR in A4). UA’s
uniform weighting scheme gives excessive influence to highly per-
turbed results, leading to performance worse than some single
mechanisms. In contrast, UWA leverages Bayesian approaches to
determine appropriate weights, thus consistently achieving supe-
rior performance, surpassing the best single mechanism by 11.51%
to 72.41%, with an average improvement exceeding 40%.

Figures 5(e)-(h) present the distribution estimation results under
four privacy budget configurations [SR, PM, SW]: C1[0.1, 0.2, 0.3],
C2[0.2, 0.3, 0.1], C3[0.3, 0.1, 0.2], and C4[0.2, 0.1, 0.3]. SR consistently
exhibits a higher MSE regardless of its budget allocation. Between
PM and SW, the mechanism with budget 0.3 achieves better results,
as shown by SW in C1/C4 and PM in C2. Our proposed ULE con-
sistently outperforms existing individual mechanisms across all
four datasets, achieving improvements of 23.65%-92.56% over SR,
0.15%-73.42% over PM, and 0.02%-73.32% over SW.

ULE achieves only modest improvements over SW and PM in
configurations C1/C4 and C2 respectively. This limited enhance-
ment is primarily due to two factors: the high estimation accuracy
already achieved by SW (C1/C4) and PM (C2) with maximum pri-
vacy budgets, and the constrained information available from other
services due to smaller budgets or mechanism limitations. The SR
mechanism, in particular, provides minimal contribution owing to
significant information loss during perturbation.

6.3 Robustness Verification

To evaluate the robustness of our methods, we conduct experiments
under four distinct scenarios: (1) implementation with a single
perturbation mechanism for all services, (2) application to high-
dimensional datasets, (3) performance with varying numbers of
services, and (4) scalability across different user base sizes.
Impact of Same Mechanism. Figures 6(a)-(b) evaluate the sce-
nario where four services employ identical mechanisms with pri-
vacy budgets ranging from 0.1 to 0.4. For mean estimation in Figure
6(a), while all mechanisms improve with increasing ϵ , UA performs
worse than the single service with privacy budget ϵ = 0.4. This
performance degradation stems from its simple averaging strategy
across different privacy budgets, making it susceptible to services
with poor performance. In contrast, UWAmaintains the lowest MSE
across all settings, demonstrating superior estimation accuracy re-
gardless of mechanism type. Figure 6(b) displays the JS divergence
for distribution estimation, where three services utilize the identi-
cal mechanism with privacy budgets ranging from 0.1 to 0.3. ULE
consistently achieves the lowest JS divergence across all settings.
Applicability to High-Dimensional Data. To demonstrate the
effectiveness of our methods on high-dimensional data, we utilize
the Taobao [3], which comprises advertising click records from
1,172,556 users over three days. Each record captures the category
of the last click in 10-minute intervals. After normalizing the 10,401
category values to [-1, 1] and extracting 60-timestamp sequences,
we evaluate our methods’ performance with dimensionality vary-
ing from 10 to 60, as shown in Figures 6(c)-(d). To address the
high dimensionality challenge, we adopt sampling strategy [13]
that partitions users instead of splitting the privacy budget across
dimensions. Although performance degrades with increasing di-
mensionality due to fewer users per dimension, our UA and UWA
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Figure 4: Comparison ofMSE and JS divergence across different privacy budgets (ϵ ): mean estimation (a)-(d) and distribution estimation (e)-(h)
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Figure 5: Comparison of MSE and JS divergence across different ϵ configurations: mean estimation (a)-(d) and distribution estimation (e)-(h)

methods maintain superior performance in mean estimation com-
pared to individual services (Figure 6(c)), with ULE showing better
distribution estimation performance (Figure 6(d)).
The Impact ofm. Figures 7(a)-(b) illustrate the impact of service
countm on both mean and distribution estimation performance,
comparing results between the data collector and individual ser-
vices. In Figure 7(a), which evaluates 4-16 services with privacy
budget ϵ = 0.1 for each service, both UWA and UA demonstrate sig-
nificant utility improvements over single-mechanism approaches.
This enhanced performance can be attributed to the availability
of multiple services, which provide comprehensive information
about the posterior distribution of the original values. Similarly,

Figure 7(b) presents distribution estimation results across 3-15 ser-
vices. The results demonstrate that ULE achieves improvements
of 0.24% to 26.04% over any single service. In Figure 7(b), we an-
alyze how the number of services influences ULE’s performance
improvement. With fewer services (m=2,3), ULE shows modest im-
provements of 0.24% and 0.62% respectively, while achieving a 3.62%
improvement over PM atm=6. This demonstrates that ULE’s per-
formance gains scale with the number of services, as more services
provide richer information for distribution estimation.
The Impact of n. Figures 7(c) (d) illustrate the performance under
varying user counts n (from 0.5 to 10 million) with privacy budget
ϵ = 0.1, where all datasets follow the same distribution asBeta+Sin.
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Figure 6: Performance evaluation in different scenarios: single mechanism (a)-(b) and high-dimensional cases (c)-(d)

Table 1: Execution Time of Beta+Sin — UWA for Mean Estimation

and ULE for Distribution Estimation (in second)

m
UWA
n = 1M

m
ULE

n = 1M
n

UWA
m = 4

ULE
m = 3

4 3.45 6 131.85 0.5M 2.43 69.79
8 6.73 9 135.72 1M 3.45 124.05
12 9.87 12 138.91 5M 11.75 9461.53
16 13.16 15 141.16 10M 349.37 12620.94

As the user count increases, we observe a consistent decrease in both
MSE and JS divergence across all methods. This improvement can be
attributed to the larger user base size providing more information,
thereby reducing variance in the estimates. Our proposed methods -
UA, UWA, and ULE - demonstrate superior performance compared
to single perturbation mechanisms.

6.4 Analysis and Discussion

Execution Time Analysis. Table 1 presents the execution time
of Beta+Sin with varying numbers of services (m) and users (n).
With n fixed at 1M, UWA exhibits linear growth from 3.45s to 13.16s
asm increases from 4 to 16, while ULE maintains relatively stable
performance (131.85s to 141.16s) asm increases from 6 to 15. When
varying n from 0.5M to 10M (with fixedm=4 for UWA andm=3 for
ULE), both components demonstrate substantial increases in exe-
cution time. UWA grows from 2.43s to 349.37s, while ULE shows a
more dramatic increase from 69.79s to 12620.94s. When the number
of users exceeds 1M, the significant performance degradation of
ULE can be attributed to GPU memory constraints, which necessi-
tate matrix partitioning in the EM algorithm, consequently leading
to substantially reduced computational efficiency.
Privacy Budget Analysis. In the LDP setting, privacy budgets ex-
hibit a direct relationship with individual privacy leakage - higher
budgets correspond to increasing privacy risks for users. Figures
8(a)-(b) compare the utility and privacy budget consumption of
each user under different data collection strategies. In the mean
estimation scenario with four services, we evaluate two collection
strategies. When the data collector gathers additional information
directly from users with a privacy budget of 0.1, the total privacy
budget increases to 0.5. When aggregating information from all ser-
vices without additional queries, the total privacy budget remains at
0.4. The data collector using UWA and UA strategies achieves lower
MSE compared to direct collection, regardless of the perturbation

mechanism. Similarly, in distribution estimation, the ULE method
maintains the lowest JS divergence compared to direct collection,
without any additional privacy budget consumption.
A More Dynamic General Case. We further investigate a gen-
eral scenario where users distribute their information across vary-
ing numbers of services, resulting in different user counts across
services. In Figures 8(c)-(d), users are divided into eleven groups
(G1-G11): G1-G6 transmit data to two services, G7-G10 to three
services, and G11 to all four services. We introduce Single best

as the baseline, representing the optimal performance among in-
dividual services. Figure 8(c) shows that UWA (i.e., the red area)
consistently achieves the lowest MSE across all groups, followed by
UA (i.e., the orange area), while Single best (i.e., the yellow area)
shows higher MSE. Figure 8(d) compares distribution alignment
between Single best (i.e., the green area) and ULE (i.e., the blue
area), with ULE showing better performance in most cases. When
m = 2, some groups show minimal improvement due to the limited
information provided by each group, since the number of users per
group is less than 10,000. These results validate the effectiveness of
our methods in more complex and dynamic scenarios with varying
user participation patterns.
Effectiveness Analysis. For UA, this simple averaging approach
performs well when services have equal privacy budgets (Figures
4(a)-(d)), as different mechanisms achieve similar mean estima-
tion performance, making uniform weighting naturally effective.
However, when services have different privacy budgets, UA’s equal
weighting scheme gives excessive influence to high-noise data,
leading to performance worse than some individual services (Fig-
ures 5(e)-(h) and 6(a)). For UWA, when services have equal privacy
budgets, modest improvements are shown over UA as services
demonstrate comparable mean estimation performance, resulting
in nearly equal weights being assigned by UWA. UWA’s slight ad-
vantage stems from its Bayesian inference approach. For services
with different privacy budgets, UWA significantly outperforms UA
by assigning larger weights to low-noise data.

The performance enhancement of ULE over individual services
primarily depends on the informativeness of perturbation data from
all services. Four key factors influence this informativeness: (1) the
number of services - more participating services provide richer
information (Figure 7(b)); (2) perturbation mechanism - SW and PM
mechanisms preserve more information than SR (Figures 4, 5); (3)
privacy budget - larger budgets lead to less perturbation and better
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Figure 7: Performance evaluation across system scales: server countm (a)-(b) and user base size n (c)-(d)
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Figure 8: Comparison of utility and privacy guarantees under different data collector strategies (a)-(b), and multi-group performance analysis

in generalized implementation scenarios (c)-(d)

information preservation (Figures 5(e)-(h)); and (4) user base size -
more users contribute to more comprehensive estimation (Figures
7(d), 8(d)). The more effective information ULE can utilize compared
to an individual service, the better the performance improvement
becomes.

7 RELATEDWORK

Local Differential Privacy (LDP)[2, 8, 22] extends the concept of
Differential Privacy (DP)[10, 11, 28] to distributed systems, pro-
viding robust privacy guarantees for individual users’ data. The
concept of local privacy originated in 1965 with Warner’s [43] in-
troduction of the randomized response (RR) technique, a simple
yet effective perturbation method. Since then, LDP has been exten-
sively studied and widely adopted in various applications. Notable
implementations include Google Chrome [13], Apple iOS [38], and
Microsoft’s Windows 10 [6]. Samsung has also conducted research
in this area [30]. LDP’s applications span diverse domains, includ-
ing graph data collection [37, 45], key-value data analysis [16, 46],
and machine learning [40, 42, 48].

Recent work by [44] introduces data fusion for multi-source,
multi-table data with differential privacy, focusing on joint data col-
lection and OLAP queries on fused data. While their work handles
multi-attribute data, our research specifically addresses numerical
data and situations where the same data point may be repeatedly
collected using different LDP mechanisms across collectors, aspects
not addressed in their work. Moreover, our research does not in-
volve the data collection process itself, instead concentrating on
the analysis of already perturbed values. This difference, combined
with our handling of distinct LDP perturbation mechanisms, adds

another layer of complexity to the aggregation process. Another
line of work [7, 47] examines scenarios with inconsistent privacy
budgets across user groups using the same perturbation mecha-
nism. They propose Advanced Combination schemes that optimize
weight allocation through least squares method. However, [47]
only considers RR mechanism for binary data, and [7] focuses on
worst-case minimum variance. In contrast, our work doesn’t group
users but rather leverages perturbation knowledge to characterize
true data distribution and assigns weights to results from different
perturbation mechanisms per individual user.

8 CONCLUSIONS

This paper addresses the growing privacy concerns in the era of
multi-service data collection where many services increasingly de-
sire users’ information. To mitigate this issue, we propose a novel
framework that enables aggregating perturbed data from multiple
services while preserving strong user privacy guarantees, including
two novel methods for mean estimation, i.e., UA and UWA. Ad-
ditionally, we develop the ULE method for accurate distribution
estimation, which treats the perturbed results from each user as a
whole to perform maximum likelihood estimation. The experimen-
tal results demonstrate the effectiveness of our framework and the
constituent methods.
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