G-View: View Management for Graph Databases

Yunjia Zheng
McGill University, Canada
yunjia.zheng @mail.mcgill.ca

Owen Lipchitz
McGill University, Canada
owen.lipchitz@mail.mcgill.ca

ABSTRACT

Graph database systems (GDBS) have become popular for represent-
ing real-world entities and their relationships, and offering convenient
query languages based on graph pattern matching. As graphs increase
in size and complexity, GDBS need to provide the appropriate support
for abstraction for which views have demonstrated to be an effective
tool, facilitating query writing and improving query execution time
via materialization techniques. This paper explores how views can be
defined and used in GDBS. We propose view-based extensions to the
widely used graph query language Cypher, explore a wide range of
possible view types, and outline several implementation strategies for
view materialization. Using a set of micro- and macro-benchmarks,
we provide insight into how expressive different view types are and
how effective the proposed implementation strategies are for differ-
ent GDBS. Our results show that views can be a powerful tool for
GDBS, offering great flexibility in query expression and providing
performance improvements if materialized.

PVLDB Reference Format:

Yunjia Zheng, Charlotte Sacré,

Mohanna Shahrad, Owen Lipchitz, Yu Ting Gu, and Bettina Kemme. G-View:
View Management for Graph Databases. PVLDB, 18(6): 1730 - 1742, 2025.
doi:10.14778/3725688.3725702

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/DISLMcGill/GDB_Views_VLDB2025.

1 INTRODUCTION

Graph databases are used for a wide range of applications where rela-
tionships play a major role such as social networks, recommendation
engines or knowledge graphs. The property graph model, where nodes
and edges can have properties similar to attributes in relational systems,
has become the predominant data model of current graph database
systems (GDBS). These systems need to support large deployments
with growing volumes of data and increasingly complex networks and
queries. The use of views is an effective mechanismto address such com-
plexity. While views are a well-established and easily comprehensible
concept in relational database systems (RDBS), view management in
GDBS has only received limited attention. The approaches proposed

This work is licensed under the Creative Commons BY-NC-ND

4.0 International License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/

to view a copy of this license. For any use beyond

those covered by this license, obtain permission by emailing info@vldb.org. Copyright
is held by the owner/author(s). Publication rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 6 ISSN 2150-8097.
doi:10.14778/3725688.3725702

Charlotte Sacré
McGill University, Canada
charlotte.sacre @mail.mcgill.ca

Yu Ting Gu
McGill University, Canada
yutingxuegu @ gmail.com

1730

Mohanna Shahrad
McGill University, Canada
mohanna.shahrad @mail.mcgill.ca

Bettina Kemme
McGill University, Canada
bettina.kemme @mcgill.ca

so far vary widely and many are often developed for specific use cases.
For instance, Han and Ives [21] envision views as transformations on
the original graph, Kaskade [15] creates materialized views specifi-
cally for query optimization and GraphSurge [32] uses views to study
changes in the structural properties of graphs over time.

The goal of this paper is to explore the possibilities for generic
view management in GDBS so that views for graphs have the same
benefits as views in RDBS: streamline query writing by declaring
frequent sub-queries as views and reuse them in subsequent queries,
offer diverse abstractions from the underlying graph in order to hide
content thatis not relevant or for which users might not have authorized
access, and enhance query performance by using materialized views.

Inprinciple, if a graph query language allows graphs as return value,
then view definition and usage seem trivial: a view can be defined
as the output graph of a query over which new queries can be posed.
In fact, the C-CORE [9] language and the recently developed stan-
dard GQL [3] have specific keywords for creating such graph-based
views. However, in most query languages used by current GDBS a
query does not actually return a graph but a table which represents
the binding of variables to elements (nodes/edges) in the graph, or
collections of nodes and edges. Examples are programmatic APIs such
as Gremlin [4] or various declarative query languages such as Neo4j’s
Cypher [18], Oracle’s PGQL [39], and TigerGraph’s GSQL [5]. The
recently created standard SQL/PGQ [17] also follows this approach.
Not returning a graph contrasts with SQL’s inherent closed structure,
where queries return tables that can be input for subsequent queries.
The absence of such a closed nature for these graph query languages
complicates view definitions and their usage.

In this paper, we specifically focus on these languages in order
to provide solutions that can be integrated in current GDBS. Our
proposed approach, named G-View, has the following contributions.

Query Language Extensions. We propose a wide range of view types
that can return tables, or sets of nodes, edges and/or paths and also sub-
graphs of the original graph. Furthermore, we allow usage queries to
not only retrieve information from a view but also query views together
with the underlying graph similar to how base tables and views together
can be input of a SQL query in a relational system. We further discuss
how these view types can be used for application development. Our
query language extensions, presented in Section 4, are based on Cypher.

Implementation Strategies. We present several implementation
alternatives for view management. Our proposals do not create a fully
materialized view but create meta-information that is linked to the
original graph. The first option uses element identifiers that serve
as pointers to the elements in the graph that belong to the view. The
others encode the necessary information directly into the base graph
as metadata. We also analyze whether and how views can be updated

https://doi.org/10.14778/3725688.3725702
https://github.com/DISLMcGill/GDB_Views_VLDB2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3725688.3725702
https://www.acm.org/publications/policies/artifact-review-and-badging-current

incrementally when changes occur. We implemented our solutions
as a middleware for fast prototyping. This enabled us to use several
database systems and understand how implementation alternatives
perform with different execution engines. We implemented our ideas
on top of Neo4j [31], anative GDBS, Kuzu [33], that has a relational
storage and execution engine specifically designed for graph data,
and Apache AGE, a graph-based interface on top of PostgreSQL [1].
Section 5 covers the implementation details.

Evaluation. We gain insights into the usefulness of views for GDBS
and performance of our view implementations through a set of micro-
and macro-benchmarks. Through micro-benchmarks we analyze what
kind of views are beneficial for different usages, and how the different
implementation strategies differ for our example GDBS. Additionally,
two macro-benchmarks, one based on the LDBC benchmark [37],
compare view management across a wide range of different views and
usage queries. Section 6 covers our evaluation.

2 BACKGROUND

A property graph [9, 10, 13] consists of nodes connected via di-
rectional or non-directional edges (relationships). We assume each
node/edge element to have exactly one label as well as a set of
properties with a name and value. Over the years, many graph
query languages have been developed. The focus of this paper
is declarative query languages. They have two main components
([4, 5, 18, 30, 39]): they can contain graph patterns and SQL-like
constructs (projections, selections, joins over graph patterns, aggre-
gations, etc.). In Cypher, graph patterns are written in the form of
MATCH p_var = (n_var1:N_LABEL1)-[:E_LABEL]->(n_var2), where ex-
pressions in parentheses and square brackets refer to nodes resp. edges
and a path is visualized through the undirected "-" and directed "—>"

connectors. During query evaluation, qualifying nodes, edges and
paths are then bound to the variables. Many languages also allow
pipelining a query result into a follow-up query using a WITH clause.

In terms of output, the vast majority of query languages of existing
GDBS return variable bindings. This can happen either in the form
of independent collections of nodes, edges or paths, or in table format.
The output can also be restricted to only some attributes or aggregate
values. G-CORE, GQL and Apache Spark’s dialect of Cypher [2, 3, 9]
can return graphs by using a CONSTRUCT return clause. But even then,
nodes, edges, and paths of the base graph are often intermediate results
that are pipelined into the graph construction.

Popular native graph database systems adopting the property
graph model include Neo4j [7], JanusGraph [6], AgensGraph [36] and
Kuzu [33], among others. Our evaluations are based on Neo4j, Kuzu
and PostgreSQL, as they have significantly different architectures.

Neodj stores nodes, relationships, labels and properties as records
in separate files. To facilitate quick lookups, unique IDs corresponding
to the offset of each entity within the file are maintained for nodes and
edges. Neo4j employs iterative query processing where intermediate
results between operators are pipelined without full materialization,
known as the “Volcano" model [26]. Kuzu uses a Cypher dialect and
is a schema-based database where the labels and properties need to be
pre-defined for all node and edge types. It has a relational query engine
and organizes nodes and edges into different tables based on their
labels, with indices on user-defined primary keys. Kuzu excels in using
various types of joins for graph pattern matching [8]. Additionally, we

1731

Table 1: Design concern comparison with related work

o - e Han and | Zhuge and Garcia-
Geview | Kaskade[I5] | Graphsurge [32] |yl) W€ | GERE R
Node v v
. Edge v v
Vie Path 7
type Subgraph v v v
Table v
Transform v v
Query on view + base graph v X X X v
Maintenance v X X v v
Flexibility v view single WHERE 1 v
templates clause
ion i standalone middleware none
v . Cypher-SQL Cypher, Data-
language Cypher | o0 GVDL Jog and SQL 0QL

use Apache AGE [1], a Cypher API on top of PostgreSQL. Again,
a graph is translated into relations (one for each label). PostgreSQL
is a traditional row-based RDBS that has been optimized for general
table-based query execution.

3 RELATED WORK

View management is well understood for relational database sys-
tems [19]. When the first semi-structured data models such as XML
emerged, view-like components were discussed for indexing and query
rewriting [28, 29]. There also exists significant work on views and
query rewriting for SPARQL and RDF triplets [22, 24, 25]. When
the property graph model, which is significantly different from the
previous data models, became popular, a considerable amount of
theoretical work analyzed query rewriting. Aspects of views and view
maintenance played a significantrole [11, 13, 14].

More recently, a set of more applied papers proposed views in
particular contexts. Table 1 compares these works with our G-View
proposal in terms of the types of views supported, their implementation
and query language, whether they support view maintenance, whether
users can use views together with the base graph, and other particular
restrictions. Kaskade [15] uses views specifically to optimize graph
analytic queries. Views are based on query templates that return
graphs at different levels of abstraction, e.g., graphs that replace paths
with single edges or aggregate a group of nodes/edges into a super-
node/super-edge. Given a set of queries, relevant views are enumerated
using arule-based system and then the best views are selected through
a cost-based evaluation. The system exploits Neo4j for storage of
graphs, views and query execution. However, the views are not directly
exposed to users for usage. Graphsurge [32] targets the management
of graph view collections, where individual views can represent
varying snapshots of versions of data (e.g., over time) and provide
efficient mechanisms based on differential computation to execute
usage queries across all views in a collection. The view declaration
language has some restrictions and views consist of edges. Han and
Yves [21] discuss implementation strategies for views over property
graphs. Based on GQL, views are graphs that represent transformations
on the original graph (e.g., replacing part of the graph with a subgraph
at a different level of abstraction) with the expectation that the view
contains much of the original graph unchanged. Usage queries are local
on the view graph. The work analyzes several materialization strategies
and incremental view updates based on Datalog. Their experiments
are based on a custom-based benchmark with 6 views and 18 usage
queries and inspired our own micro- and macro-benchmark suites.

O Forum Q Tag O Post

) User

(a) Example Graph
O Tag QO Post

() Forum

) path view: V5 T g pathview:ve T hysubgraphview: VT

(b) Contents of different view types

Figure 1: Base graph and content of the views

The last work [40] in our comparison table is actually quite old but the
closest to G-View in terms of how they analyze and use views. Just like
us, the work explores possible language extensions for view definition
and usage, and they allow usage queries to access views together with
the base graph, discussing the challenge of connecting view elements
back to the underlying graph. However, their rooted graph data model
and their query language differ significantly from current GDBS.

4 VIEW DECLARATION AND USAGE

We want a language that supports diverse abstractions from the un-
derlying graph and convenient view usage. Unlike relational systems,
information in graph databases is already represented at different levels
of abstractions. Nodes and edges are basic graph elements while a path,
being an ordered list of nodes and edges, or sub-graphs are at a higher
level of abstraction. Each of them hasits own distinct characteristics and
might be of interest for users. For example, referencing specific paths
of the base graph might not be straightforward if views are graphs them-
selves. With this in mind, we propose a language that enables views to
representnodes, edges, paths, subgraphs or acombination of that. Addi-
tionally, we allow views to be tables as this is the typical return value of
currentquery languages. Justas inrelational systems, we support usage
queries on the view only as well as across views and the base graph.

In the remainder of this section, we propose an extension of the
Cypher language to allow the declaration and usage of views. We ex-
plain its semantics using examples based on the simple social network
shown in Figure 1a with nodes having labels User, Post, Forum and
Tag. Each node has a property name and its value is shown within the
node circle. A user may create a post, a post can have several tags and
have parent-child relationships with other posts, and a forum contains
posts. Some elements have a property creationDate.

IS

1732

4.1 View Declaration

The layout and content of the views for the declaration queries of this
section over the graph of Figure 1a are shown in Figure 1b.

4.1.1 Table Views. As Cypher queries usually output a table of vari-
able bindings or pipeline these bindings to the next subquery, it appears
natural to capture such a table as Table View. Table view VO below
returns all three qualifying pairs of (User, Tag) nodes.

CREATE VIEW AS VO

MATCH (u:User)-[:Created]->(:Post)-[:Has_Tagl->(t:Tag)

WHERE t.name = "Neo4j" OR t.name "Kuzu"
RETURN u,t

4.1.2 Node and Edge Views. Often, queries focus on a specific subset
of nodes (or edges), such as users of a certain city or users that post
in a certain forum. Keeping these elements in a view might facilitate
many usage queries. Below view V1 returns only nodes (referred to
as Node View)2. Note that while V1 has the same graph pattern as Vo,
it keeps user and tag nodes as independent sets. In contrast, V0 keeps
track of which user/tag pair is linked through the graph pattern and
thus, each user resp. tag can appear several times.

V2 returns a set of edges (edge view) and in V3 a post node can
appear in two of the returned sets.

CREATE VIEW AS V1

MATCH (u:User)-[:Created]->(:Post)-[:Has_Tagl->(t:Tag)
WHERE t.name = "Neo4j" OR t.name "Kuzu"

RETURN COLLECTSET (u), COLLECTSET(t)

CREATE VIEW AS V2

MATCH (:User)-[c:Created]->(:Post)-[:Has_Tagl->(t:Tag)
WHERE t.name "Neo4j" OR t.name
RETURN COLLECTSET (c)

"Kuzu"

CREATE VIEW AS V3
MATCH (u:User)-[:Created]->(pol:Post)-[:Parent_0f]->(po2:Post)
RETURN COLLECTSET(u), COLLECTSET(pol), COLLECTSET(po2)

4.1.3 Path Views. Path views keep track of paths in their entirety. As
Cypher supports variables for paths, we can define them similar to node
and edge views. Path view V4 has asingle pathUser1->Post1->Post2.
V5 and V6 have the same pattern overall but V5 returns a single set of
paths, while V6 returns two different sets of paths. In fact, using the
syntax of V6, concatenation paths via common variables, the query
itself can contain a graph pattern that does not represent anymore a
linear path. However, the path variables returned refer to a linear path.
So far, our implementation does not support variable-length paths. We
will see later that view usage queries often refer to specific nodes or
edges within a path through variable assignments which is non-trivial
for variable length paths.

CREATE VIEW AS V4
MATCH p=(:User)-[:Created]->(:Post)-[:Parent_0f]->(:Post)
RETURN COLLECTSET(p)

CREATE VIEW AS V5

MATCH p=(:User)-[:Created]->(:Post)-[:Has_tagl->(t:Tag)
WHERE t.name = "Neo4j" OR t.name "Kuzu"

RETURN COLLECTSET (p)

CREATE VIEW AS V6

MATCH pl1=(:User)-[:Created]->(po:Post),p2=(po)-[:Has_tagl->(t:Tag)
WHERE t.name "Neo4j" OR t.name "Kuzu"

RETURN COLLECTSET(p1), COLLECTSET(p2)

2We introduce COLLECTSET for referring to collections without duplicates.

3 UQ2:

4.1.4 Subgraph Views. As most of the work on graph-based views
assume views to be graphs, we also support subgraph views. They
use the keyword CONSTRUCT as shown for view V7 below. A subgraph
view is made up of all nodes and edges that are bound to any variable
in the RETURN clause or that are part of any path that is returned.
CREATE VIEW AS V7

MATCH p=(:User)-[:Created]->(:Post)-[:Has-Tagl->(t:Tag)

WHERE t.name = "Neo4j" OR t.name = "Kuzu"

CONSTRUCT p RETURN GRAPH

4.1.5 Additional features and restrictions. As node/edge/path views
return sets of entities, table/subgraph views do not. Therefore, a view
declaration query can return a mix of node, edge and path sets but
this cannot be combined with returning a table or subgraph. Further-
more, we do not allow view declaration queries to return attributes or
aggregations as we did not find an intuitive way to reconnect this with
the rest of the graph in view usage queries. Unlike other approaches,
we so far do not allow a view to have nodes or edges that do not exist
in the underlying graph, i.e., our subgraph views are always a true
subgraph of the original graph.

4.2 View Usage

A view usage query has local scope if it only references view data,
and global scope if it refers to both view(s) and the underlying graph.

4.2.1 Local Queries: Local queries need to use the keyword LOCAL.
Using Node and Edge Views, local usage queries typically return
the entire view or include conditions on the nodes/edges. Usage query
UQ1 below returns all nodes of view V1, while UQ2 only returns the user
nodes. By referring to the variable names that were used during view
declaration, the usage query can zoomin on specific sets of nodes/edges.
UQ3 retrieves the edges of edge view V2 that fulfill a restriction on one
of the properties. Its MATCH clause has to specify the end nodes of the
edge in order to follow Cypher syntax. Finally, as shown with UQ4, a
usage query canrefer to several views. In this case, we need to associate
the variables used within the usage query with the appropriate views.

UQ1: WITH VIEWS V1 LOCAL MATCH (n) RETURN n

WITH VIEWS V1 LOCAL MATCH (n)
WHERE n in V1.u RETURN n

UQ3: WITH VIEWS V2 LOCAL MATCH (O-[rl1->(0)

WHERE r.creationDate < 1313000000000 RETURN r

UQ4: WITH VIEWS V1 V3 LOCAL MATCH (n)

WHERE n in V1.u AND n in V3.u RETURN n

Using Path Views, we can return entire paths (that might need
to fulfill a certain condition), or individual nodes or edges from the
paths. We use the extension p=+ to refer to all paths in the path view or
paths bound to one of the path variables as shown in UQ5 and UQ6. UQ7
returns all the nodes that appear in the path. UQ8 retrieves only the user
nodes found in one of the paths of V5 with an additional condition on
tag. In this case, the MATCH clause has to include the full path pattern
of the view declaration query, and specify variable names for the
elements of interest. That is, we cannot omit the path pattern and
only write WITH VIEWS V5 LOCAL WHERE t.name = "Neo4j" RETURN u,
because when we create the view we do not keep track of any variable
names of elements within the path.

Currently, it is not possible to retrieve a sub-path within a path of
a view. Extending the language syntax to allow pattern matching on

1733

paths within a view would be straightforward. But this would mean we
treat each of the paths as a mini-graph. Recall that the view contains
sets of paths and there could be many such paths (in the hundreds and
thousands). Performing the pattern matching on each of them can be
very expensive. Thus, the last query UQ9 below will be empty as all
the paths in V4 have a parentship of posts.

UQ5: WITH VIEWS V4 LOCAL MATCH p=* RETURN p

UQ6: WITH VIEWS V6 LOCAL MATCH p=*
WHERE p in V6.p1 RETURN p

UQ7: WITH VIEWS V4 LOCAL MATCH (n) RETURN n

UQ8: WITH VIEWS V5 LOCAL MATCH p=(u:User)-[1->()-[]1->(t)
WHERE t.name = "Neo4j" RETURN u,t

UQ9: WITH VIEWS V4 LOCAL

MATCH p=(u:User)-[cr:Created]->(po:Post) RETURN p

Using Subgraph Views We do not support a view usage query that
returns the full subgraph captured in a subgraph view as Cypher does
not support graphs as return value. Instead we can query that subgraph
as if it were a standard graph. For instance, below query UQ10 returns
all nodes in V7. UQ11 has the same pattern as the empty usage query
UQ9 on paths above, but this time, it will return the sub-paths found
because subgraph views manage nodes and edges as a graph, allowing
for new graph patterns in the query.

While this might be advantageous in some situations, if one wants
to find the exact paths defined in the view declaration query, path
views can be more convenient (they allow for the p* expression) and
possibly faster because with a subgraph view the query engine has
to again execute the path pattern.

UQ1@: WITH VIEWS V7 LOCAL MATCH (n) RETURN n

UQ11: WITH VIEWS V7 LOCAL

MATCH p=(u:User)-[cr:Created]->(po:Post) RETURN p

Using Table Views A usage query must refer to the columns of
the table view. To do so, we use the variable names used during view
declaration. In query UQ12 below the keyword rec specifies that u1
and t1 are aliases to the u and t columns of Vo.

UQ12: WITH VIEWS V@ LOCAL MATCH (ul:User),(tl:Tag)
WHERE rec(ul,t1) IN V@.(u,t) AND t1.name = "Neo4j"
RETURN ul, t1

Note that this usage query provides the same result as the path usage
query UQ8. However, V0, in contrast to V5, cannot be used to retrieve any
information regarding posts because posts are not in V@’s result. But if
we let VO return all nodes and edges along the path, then it becomes as
expressive as V5. Furthermore, if the declaration query contains several
path patterns, then a table view can contain elements from the different
paths. Thus, comparing table views with path views, table views might
be more compact if we know that we do not need all elements anymore
in later usage queries. Furthermore, usage might be easier as rec()
only needs to refer to the elements of the table that are of interest for the
query while the path query needs to write out the entire path pattern.

We would like to note that the same result as UQ8 resp. UQ12 cannot
be obtained by using node view V1 as in the node view the users and
tags are no more associated with each other. Thus, if the relationships
expressed in a view declaration query are relevant in later queries,
node views might not be appropriate.

4.2.2 Global Queries: Global queries are used when information
from the base graph is also needed. A view usage query is like a
standard query on the original graph but will have some nodes/edges/-
paths/tuples matched in the query to be part of a view. Any variable
of the query that is not associated with a view is matched purely on
the base graph. UQ13 below looks for forums that were created before
a certain date and that contain the selected child posts from view V3.
Only the posts refer to a view, therefore the Container_Of edges and
Forum nodes pertain to the base graph.

WITH VIEWS V3 GLOBAL
MATCH (f:Forum)-[:Container_0fJ]->(po:Post)
WHERE po IN V3.po2 AND f.creationDate<X RETURN f

UQi3:

If we want to retrieve similar information using path view V4, we
cannot simply take UQ13 and replace node view V3 with path view V4,
because we did not keep track of the variable name po2 during view
creation time as already discussed for local views. Instead, we do have
to repeat the entire path pattern of V4 as depicted in UQ14 below in
order to bind the child post to the variable po2. In contrast, if we want
to do the match with any post in the path view, then we can use query
UQ15 below without specifying the pattern of the path view as the path
view keeps track of all nodes.

UQ14: WITH VIEWS V4 GLOBAL
MATCH p=()-[1->()-[1->(po2), (f:Forum)-[1->(po2)
WHERE p IN V4 AND f.creationDate<X RETURN f
UQ15: WITH VIEWS V4 GLOBAL

MATCH (f:Forum)-[:Container_0fJ]->(po)
WHERE po IN V4 AND f.creationDate<X RETURN f

We can get the same information using a sub-graph view by replac-
ing V4 with V7 in queries UQ14 and UQ15. In the first case, it will give
us the forums of the child posts while the latter also returns the forums
of parent nodes of the view.

Generally, usage queries need to be global when the search goes
beyond the data returned by the view declaration queries. They must
be global even if the patterns in the view declaration query captured
all the information but it was not returned. For instance, as table view
VO only returned users and tags but not the posts, UQ16 below must
be global because it refers to posts.

UQ16: WITH VIEWS V@ GLOBAL

MATCH (ul:User)-[]->(po:Post)-[]1->(t1:Tag)
WHERE rec(ul,t1) IN V@.(u,t) RETURN po

4.3 Discussion

4.3.1 Language Expressiveness. Our proposal represents a fairly
straightforward extension of the Cypher language, and the semantics
for pattern matching and pipelining remain the same while offering
a wide range of options to declare and use views.

View types Table views return what Cypher queries typically return
while our other view types contain sub-components of the original
graph at different levels of abstraction. Table and path views capture
the relationships as expressed in the graph pattern of the declaration
query, while the other view types are set based.

View Scope View usage queries with LOCAL scope can only
access the elements that are contained in the view while GLOBAL
usage queries also access the base graph.

Searching within views Our language proposal enables searching
within views at different levels of granularity. For instance, we can
consider all nodes in the view or restrict the search to a more specific

1734

Figure 2: Universal and seeded queries in real-world scenarios

“location" withthe "n in V.varname" notation. We expect table views
to typically be always used with specific matching of columns.

4.3.2 Use Cases. In order to illustrate the potential of views, we want
to outline some view scenarios for our social network example of
Figure 1a. We observe two main forms of graph search queries in
the literature, illustrated in Figure 2. First, universal queries involve
general graph patterns, often with conditions on properties, that target
recurring patterns across the graph, e.g., parent-child posts with a
common tag (purple in Figure 2). We can express this as a view
with pattern MATCH p1=(po1:Post)->(po2:Post), p2=(po1)->(t:Tag),
p3=(po2)->(t) that returns a table with all node variables, all paths or
everything as a subgraph. This view can serve as input for and simplify
a wide range of usage queries, e.g., understanding which tags trigger
conversations (count posts in the view with a given tag name), or
performing sentiment analysis on a tag basis (check the posts around
a topic that are supportive vs. hateful).

Another scenario is for access control. For instance, in order to
allow moderators to check for offensive content, one can create a node
view with all posts and allow moderators to only pose local queries
on this node view — hiding sensitive information about users.

A second type of graph search queries are seeded queries which
start the search from one specific node (usually with a high degree of
edges and referred to as a hub), such as a famous person. This is shown
in Figure 2 in green. Extracting popular nodes and their neighbors as
views can be useful for simplifying and speeding up many different
queries as such popular nodes are often of specific interest. Hub
presence and degree centrality are crucial in airline scheduling [16],
disease propagation [23] and user engagement analysis [27]. Our
simple example in Figure 2 could represent all posts of user "Mads
Mikkelsen’. Then queries interested in posts of this celebrity can use
this view locally while users interested in who responds to such posts
could use a global usage query. In fact, the LDBC benchmark [37, 38]
in its interactive complex query set has many queries that start by
searching for people connected to or acquainted with a specific person.

S IMPLEMENTATION STRATEGIES

Using materialized views, a view usage query runs over the material-
ized result of the view declaration query. With non-materialized views,
the database system rewrites the view usage query and combines it
with the view declaration query to run on the original data. What we
present is a hybrid, where a view declaration query is executed result-
ing in materialized “meta-information". A view usage query is then
rewritten based on the meta-information and runs on the original base
graph. The goal is that the rewritten view usage query executes faster

Table 2: Identifier Tables

View Table Type | Set
{(u,{ID(User1),ID(User2)}),
Vi Node Table (t,{ID(Neo4j),ID(Kuzu)})}
Path Table {(p,{[ID(User1,Post1),ID(Post1,Post2)]1})}
V4 Node Table | {ID(User1),ID(Post1),ID(Post2)3}
Edge Table | {ID(User1,Post1),ID(Post1,Post2)}

than if the user would have to write a baseline query that combines
the semantics of the usage and declaration queries.

We present two approaches for view management. In the ID-based
approach, we keep track of the IDs of the elements that constitute
the view. In the property-based approach the nodes and edges of the
original base graph are extended with special properties that capture
view containment. All our implementation is in a middleware layer —
we do not change the underlying database software. Instead, we use the
standard Cypher-based APIs of the GDBS to execute view declaration
and rewritten usage queries. Therefore, the two approaches are fully
portable to various systems. As the different GDBS we used have
interface variations, we had to adjust our solution slightly for each
system supported.

5.1 ID-based strategy

Identifiers are widely used in GDBS to identify and reference nodes,
edges or even properties. Therefore, we propose a strategy to use
identifiers as an index for the result set of a view. The middleware
keeps track of all necessary meta information about the views —leaving
the original graph untouched?.

5.1.1 View Declaration. Upon view declaration, the query is first
executed. For node/edge/path views, the identifiers of all returned
nodes resp. edges are then stored in a node resp. edge table. Were they
assigned to (a) variable(s), we also keep track of this. Additionally, for
path views the middleware keeps a path table where each qualifying
path is recorded as a list of edge identifiers sorted by their appearance
along the path. Subgraph views only maintain one node table and one
edge table for all the node and edge identifiers within the subgraph,
respectively. Table views contain a record table that has similar format
as the table returned by the original view declaration query, but only
with the identifiers instead of the complete elements. As examples,
Table 2 shows the meta-information the middleware maintains for
views V1 and V4. V1 maintains the identifiers of the two user and two
tag nodes and the variables u resp. t to which they were assigned
during declaration. V4 has a single path identified by its edges and
keeps also track of the individual nodes/edges in extra tables.

Note that declaration queries are rewritten so that they retrieve
only the identifiers and not the full elements with properties whenever
possible. Otherwise, identifier extraction is done in the middleware.

5.1.2 View Usage. A usage query is extended so that the search within
the graph is restricted to the components that are part of the view.
Consider a scenario when we have the following global view use query,
trying to expand from paths in V4 to tags in V1 as follows:

WITH VIEWS V4 V1 GLOBAL
MATCH p=()-[1->()-[1->(po2),

UQ19:
(po2)-[1->(t)

3While our current implementation does not provide fault-tolerance this could be easily
added by forcing the middleware to persist the information it maintains.

1735

V5_p_all=[3]

Figure 3: Property-based implementation for path view V5

WHERE p IN V4 AND t In V1 AND <other condition>
RETURN po2

The middleware rewrites the usage query including conditions,
ensuring that only elements that are part of the corresponding views
are considered during the execution as shown below in Neo4;j’s Cypher
notation. For checking path membership, we transform the list of path
sequences of the path table into a list of arrays (named edges) and
use the UNWIND operator to unfold the list (line 4) ensuring that each
path is matched individually. As UQ19 has not defined variable names
for the edges in the path but we need them in order to check contain-
ment, our rewriting algorithm adds them as needed. For checking
membership of nodes/edges, a search on the identifiers is conducted
(line 5) by providing the identifiers in form of a list. As UQ19 asks for
"t in V1" all node identifiers are in the search list. If the usage query
had "t in V1.t", then the search would be restricted to the tag nodes.
UNWIND $edges AS edges
MATCH () -[e11-()-[e2]1-(po2),

(po2)-[1->(tag)
WHERE ID(el) = edges[@] AND ID(e2) = edges[1]

AND ID(tag) IN [ID(User1),ID(User2),ID(Neo4j),ID(Kuzu)]
AND <other condition> RETURN po2

When using table views, the records in a table view are unwrapped
using the UNWIND operator similar to path views. Eachrow in the table is
considered individually when looking at membership matches for the
columns in the table. For subgraph views, we check the membership
for each node and edge in the usage query.

5.2 Property-based strategy

The second implementation approach augments the graph with ad-
ditional meta-information to indicate which elements of the graph
are part of which views. Usage queries are then rewritten to check
for the appropriate meta-information. The idea is to attach special
properties to nodes and edges to identify view inclusion. There are
several possible implementation alternatives and we present below
the one that was most efficient within Neo4j. At the end of this section,
we discuss alternative strategies that we have explored.

5.2.1 View Declaration. We attach the information for a view named
Vname to the graph in the following way.

Node/edge sets: Assume Vname returns COLLECTSET (u) where u is
anode resp. edge variable u. Then each node resp. edge in this set will
get a property Vname which is a list, and one of the list values is u. For
instance, for V1 each qualifying node has either property V1=[u] or
V1=[t]. In contrast, for V3, a post could be both parent and child. In
this case, its property would be V4=[po1,po2].

Subgraph views If Vname is a subgraph view, then all nodes and
edges in this subgraph view get a property Vname. Its value has no
importance as we do not keep track of the the variables from which
the subgraph was constructed.

Table 3: View Properties for table view V0

l Name H Properties]

Userl VO_r="1.u,2.u";Ve_all=[1,2]
User2 vo_r="3.u"; Vo_all=[3]
Kuzu vo_r="1.t"

Neodj || Vo_r="2.t,3.t"

Path sets If Vname returns COLLECTSET (p) of path variable p and let
{p1.p2,...} be the set of paths returned, then we give each path within
p a monotonically increasing sequence number s, and within a path,
each edge receives additionally a rank r indicating its position within
the path. From there, we create properties as follows.

o If an edge is involved in at least one of the paths bound to p, it
gets a string-based property Vname_p. If the edge has rank r in the
path with sequence number s, then Vname_p contains the path-rank
identifier s. r. We implement Vname_p as a string because Neo4j
provides efficient sub-string operators.

o Ifanode is the first node in any path returned by p, it gets a property
Vname_p_all. The value is the list of the sequence numbers of the
paths for which it is the first node. This will allow us to quickly find
the start points of all paths without doing a string comparison.

o Each node/edge that is part of any path returned by p gets a property
Vname. Its value has no importance. It allows us to quickly find all
elements of the view (similar to the node and edge tables for path
views in the ID-based implementation).

Figure 3 shows the view properties of all nodes and edges involved in
path view V5 omitting Vname. There is one path variable p and three
valid paths. User1 is start node of the first two paths and User2 of
the third path. The Create edge between User1 and Post1 is the first
edge of the first two paths and the Has_Tag edge to Kuzu is the second
edge of the first path.

Table views Table views are handled similar to path views. If Vname

returns a table with variables {v1,02,...} bound to nodes or edges,

then each row in the table gets a monotonically increasing sequence

number, and j.o; is the row-variable identifier for v; in row j.

e Each node/edge in the view gets a property Vname_r listing the
row-variable identifiers to which it is bound.

o Each element that is bound to the first variable v; at least once gets
aproperty Vname_all with the value being the list of row numbers
for which this element is bound to v;.

Table 3 shows the view properties of all nodes of table view V@. There

are three rows in the table and User1 is the first element for the first

two rows, and User2 for the third.

5.2.2 View Usage. Below shows the rewrite of the global usage query
UQ19 of the previous section. We reconstruct each of the paths in V4,
starting with their first nodes, and adding variable names for edges
as needed. We then check whether the relevant tag is in V1. Similar
to the ID-based strategy, if UQ19 had specified "tag In V3.t", then
the condition would be rewritten as "tag.V3 CONTAINS t".

MATCH (user) WHERE user.V4_p_all IS NOT NULL
WITH user UNWIND user.V4_p_all AS segNum

3 MATCH p=()-[e1]->()-[e2]->(po2),(po2)-[]1->(tag)

WHERE e1.V4_p CONTAINS seqNum+".1"

5 AND e2.V4_p CONTAINS segNum+".2"

» AND tag.Vi1

IS NOT NULL AND <other condition>
RETURN po2

1736

For the usage of table views we use similar unwind strategies for
each row and then extract the elements in the individual columns.

5.2.3 Implementation Alternatives. Adding additional properties
to existing graph elements is only one option. Alternatively, view
management information can be stored in new nodes and edges. For
example, one could create a special view node that has as label the view
name and then connect the view node with all relevant nodes of the
view through edges. Additional information can then be encoded as
properties of these edges (e.g., indicating that the connected element
is in a certain position of a returned path). However, we believe that
this would create many new edges in the system. Also, it is not clear
how to connect edges in the view to the view node.

Another option could be to create copies of qualifying elements for
view management purposes. This would probably resemble the most
the materialized views in a relational database system. However, in
order to support global queries, one has to relate these copies back to
original elements, which can quickly become complex. Nevertheless,
we did explore this approach partially for path views. Here, for each
edge of each qualifying path of view Vname, the edge is mapped to a
new edge between the same endpoints with a Vname label. Sequence
numbers and ranks are then encoded as properties of the new instead
of the original edge. This approach has shown benefits in Kuzu and for
Apache AGE because these GDBS have a table for all edges with the
same label. A compact edge table containing only the edges relevant
for a usage query can be significantly faster than looking for property
values in the potentially large original edge tables.

All these strategies change the base graph. As such, standard
queries on the base graph have to be rewritten so that none of the
meta-information is returned.

5.3 View maintenance

When the underlying graph changes, views might be affected. In this
section, we look at the insertion/deletion of individual elements, i.e.,
nodes or edges. If several elements are inserted or deleted within a
query, below actions are performed for each of these element.

We first determine the views that are guaranteed to not be affected
by the modification. This can be done if the view declaration query has
no negation and only contains labeled elements as is the case for all
views in Section 4. Then, if these labels are different from the label of
the inserted/deleted element then this element cannot affect the view’s
result, and no further action is required. For instance any insert/delete
of forum nodes or has_container edges will not affect any of the
views in Section 4.

For all other views, they are either updatable and then we can
perform incremental view maintenance or we invalidate and fully
reevaluate them when a graph update occurs.

For updatable views, we execute a “seeded” delta query. This is
the view declaration query with an additional condition that ensures
that a row/node/edge/path entity is part of the result only because
of the existence of the inserted/deleted element. More precisely, the
additional condition requires that the inserted/deleted element appears
at least once in the graph pattern of the query. The result of the delta
query is then added to resp. deleted from the view. If executing the
seeded delta query is faster than the original view declaration query,
then incremental view update is faster than reevaluation.

So far our delta queries are only possible for a restricted set of views
where we can add/remove delta results. In particular we support view
declaration queries where the MATCH clause only contains fixed-length
path patterns, and if there are several patterns, they have common
variables so that they represent one connected graph pattern. For
instance, V6 defines two paths with common variable po, and thus, in
every assignment of elements to the variables, the two paths together
build a connected graph. We do not support path patterns without
common variables as they lead to a Cartesian product in Neo4;j. We
also currently do not support aggregation or existence functions in
the query nor pipelines using WITH or UNWIND. On the other hand, we
support directional and non-directional edges, unlabeled elements
and conditions on properties (including numeric functions). All views
in Section 4 and a vast majority of views in Section 6 are updatable.

In the following we describe our maintenance algorithm for the ID-
based implementation. When a declaration query is executed, an entity
(node/edge/path) can be bound to a variable multiple times (e.g.,anode
can be part of several matching paths). As such, when we delete an edge,
we cannot simply delete all entities that are returned by the delta query
from the view because they might remain in the view. In order to handle
this we keep counters. First, when we execute the view declaration
query we keep track of the number of times each entity is returned by
adding appropriate counters for each entity in the node, path and edge
tables. For instance, in Neo4j, for V1 we use COLLECT (u) toretrieve the
users, which returns User1 twice for our example graph as two paths
match the path pattern, and we keep track of this in the node table. From
there, we look at insertions and deletions of nodes, and then of edges.
Insert or delete anode When anode is added or deleted it cannot have
any edges. Thus, if a view has a path pattern with edges, the delta query
is guaranteed to return an empty result. Therefore, the only meaningful
views to check are those with a single node pattern that return a single
node variable, possibly with property conditions on that node and/or a
label condition (e.g., MATCH (n) WHERE n.location=... RETURN n).In
this case, the delta query is simply the view declaration query with the
extra condition that n must be the inserted/deleted node. If the delta
query returns the node, it is added resp. removed from the view.
Add an edge Adding an edge has no influence on views that match on
nodes only. But if the query contains a graph pattern with at least one
edge, the query could now match on new paths that contain this edge
which might require adding new entities to the view. Therefore, we
execute the declaration query with the additional condition that at least
one of the edges in the graph pattern must be the inserted edge. This
might require a slight adjustment of the declaration query in order to
give variable names to all relevant edges in the query. We can ignore
edges with a label different to the label of the inserted edge. As an
example, the following delta query is executed for V1 upon inserting
an edge e with identifier ID(e) and label Has_Tag.

MATCH (u:User)-[:Created]->(:Post)-[el:Has_Tagl->(t:Tag)

2> WHERE t.name = "Neo4j" OR t.name = "Kuzu"

3 AND ID(el) =

ID(e)
RETURN COLLECTSET (u),COLLECTSET(t)

We do not perform the identifier comparison on the Created edge
because it has a different label, and thus, would never match. If there
are edges with no labels (e.g., if the : Created condition is missing
in V1), then we would have to check this edge, too, as below:

MATCH (u:User)-[el1]->(:Post)-[e2:Has_Tagl->(t:Tag)
WHERE t.name = "Neo4j" OR t.name = "Kuzu"

3 AND (ID(el) =

IS

1737

ID(e) OR ID(e2) = ID(e))
RETURN COLLECTSET (u),COLLECTSET(t)

This query matches on paths that did not exist before the edge was

created. In case a table is returned like in V@, we simply add every
matching variable assignment as row to the view table. If nodes are
returned as in the above example and a node already exists in the
view, its counter is increased according to how often this node was
in a match. If it does not yet exist, we insert it and set the counter
accordingly. Similar holds for edges and paths. Note that even returned
paths can already exist in the view. For instance, when we add an
edge from Post2 to Kuzu in our example graph, the returned path
User2->Post2 already exists in P1 of V6. We also keep the counters
for the nodes and edges of path and subgraph views as there can be
several paths that allow them to be part of the view.
Delete an edge We run a similar delta query before edge deletion. In
case of a table view, we simply remove for each record in the result of
the delta query one record in the record table with the same element
identifiers. For node, edge and path views, we decrease the counters
of the matching entities within the view (removing the entity if the
counter is 0), again according to the number of times the entities
appear in the return of the delta query. For instance, for node view
V1, the deletion of the edge from Post1 to Kuzu causes the counter of
User1 to decrease from 2 to 1.

Our approach has some similarities with incremental view main-
tenance in relational systems [12, 20] which relies on keeping track
of cardinalities of entities, and deltas for individual tables in the view
declaration query. Having one connected fixed-length graph pattern
somewhat resembles SQL queries with simple joins where we can
count the number of matches.

6 DEPLOYMENT AND SYSTEM EVALUATION

This section illustrates view behavior through a set of micro- and
macro-benchmarks. We first do a detailed analysis using Neo4j only,
and then perform further analysis with Kuzu and PostgreSQL as well
as compare with a recent related view management system [21].

6.1 Experimental setup

Experiments used amachine with an Intel Xeon E3-1220 V5 processor,
32 GB of RAM, using Neo4j v.5.2.0, Kuzu v.22.1, PostgreSQL 16.4
and Java v.19.0.2. The results show the average of 5 runs within a
warmed-up system. Note that I/O overhead was not a major factor.

Datasets Most experiments use the LDBC benchmark data [37, 38]
at scale factors (SF) 0.1, 1 and 10. The SF1 graph has 3.18M nodes and
17.2M edges. In the following, if not explicitly specified, experiments
run on the SFQ.1 dataset. Some further experiments were done with
StackOverflow data [34] containing 5.6M nodes and 9M edges. These
graphs represent characteristics from real-world social networks. In
general, the LDBC graphs are denser.

Workload Description Our query workloads consider both uni-
versal and seeded queries as described in Section 4.3.2.

Our micro-benchmarks consist of universal queries over the
LDBC dataset and aim to understand when views are beneficial, and
the differences in view types, and implementations. We create view
categories along three dimensions. First, a declaration query can
have either a simple (S) one-edge or a complex (C) three-edge graph
matching pattern. Second, for node and table views, only some of

ID-SFO.1 + ID-SFI + ID-SF10 = Property-SF0.1 -4 Property-SF1 + Property-SF10

02+ X u 07

:
4

+ |l X
s

Time (s)
e
Time (s)

PO | o » H
o
1000 < L] = LI) .

Time (s)
se
Time (s)
Xr
i

3
T

»
|

1000y I 1

(d) Table Views

(c) Subgraph Views

Figure 4: Declaration time for various SF (in seconds)

the nodes in the path pattern (e.g., only posts) or all the nodes are
returned (notations of _node resp. _path). Third, we create views with
small (S) or large (L) result sizes by having conditions on nodes with
varying selectivity. Combining these three dimensions (complexity,
returned variables and size) results in 8 different categories. For each
we create 4 different view types (node, path, subgraph and table views)
for a total of 32 view versions. We omit edge views as they are similar
to node views. There are between 150 and 7000 different nodes and
between 700 and 44,000 different paths in the result.

The first macro-benchmark is based on a subset of queries from
the LDBC benchmark that are characterised as interactive short (IS),
interactive complex (IC) and business intelligence (BI) queries, all
seeded queries. We rewrote them into semantically equivalent queries
using views. We create two view variations for each IC/BI query. A
declaration-heavy view covers nearly the entire benchmark query.
Thus, a usage query is often local performing minor tasks (e.g., ex-
tracting attributes). A usage-heavy view contains only one part of
the benchmark query and the usage query is thus likely global. The
more general usage-heavy view can then be potentially exploited for
various usage queries. Finally, we also created macro-benchmarks
with universal queries on the LDBC and StackOverflow benchmarks.

All benchmark queries can be found in our code repository.

6.2 View Declaration

In this section we evaluate the declaration times for our different views
in Neo4j using both the ID and the property-based implementation
approach. Figure 4 shows the declaration times for all 32 views in
our micro-benchmark for all three scale factors (0.1, 1, 10). Table 4
zooms in on the declaration times for SF0.1 and _node views for better
readability, as in most cases relative execution times at larger scales
and for _path views are similar. The table also has the execution time
for a baseline query that contains the same core query (graph pattern
and conditions) and returns all corresponding nodes. Overall, we view
it as acceptable that a declaration query be more expensive than the
baseline query as the overhead occurs only once.

Property-based Approach Property-based is generally slower
than ID-based because persisting the view information within the
GDBS has more overhead than materializing IDs in the middleware.
Also, execution times are considerably larger than for the baseline.

1738

Table 4: Declaration time for SF0.1 (in seconds)

ID-based

Baseline

Property-based

| Node ~ Path Subgraph Table | | Node Path Subgraph Table
VSS node | 0590 0642 0623 0.616 | 0.594 1143 1.686 119 1.072
VSI node | 0697 0748 0730 0.718 | 0.677 1473 2498 2,158 1.627
VCS node | 1331 1396 1373 1312 [1239|2117 - 9.321
VCL node | 4978 17807 17679 5105 | 2149 | 66.398 - 142,919

Table 5: Usage time (in seconds) retrieving nodes

ID-based

Baseline

Property-based

| Node Path Subgraph Table | | Node Path ~ Subgraph Table
VSS node | 0054 0083 0086 0056 | 0.594 | 0.180 0.192 0.183 0.188
VSI node | 0116 0.156 0.153 0.119 | 0667 | 0259 0263 0.261 0.256
VeS node | 0051 0.128 0.130 0050 | 1239 | 0.187 - 0.191 -
VL _node | 0094 0217 0227 0095 | 2149 | 0264 - 0262

For small views, node views are the fastest. Table views update
the same nodes but this is more complex because a node can occur
in many rows of the table. Subgraph and path views add properties
to both nodes and edges, but this is more complex for path views
similar to what we observe in table views. For large views, all scale
factors had memory issues leading to declaration failure (’-’/°x” in the
table/figure). The reason is a heap-size problem within the database
engine to keep track of all the paths/table rows.

ID-based Approach For most view versions, declaration is only
slightly longer than the baseline query because the actual query takes
most of the time and view management overhead is quite small. Only
the declaration for Vy 04, takes significantly longer. For path and
subgraph views all nodes and edges are returned with all their prop-
erties (because we use CONSTRUCT path RETURN GRAPH), leading to a
lot of data transfer and processing. Node views and table views only
retrieve ids and are thus much faster, but they are still more expensive
than the baseline because node views perform duplicate elimination
and table views create large record tables.

There are views in the ID-based approach that time out at larger
SFs, as seen, e.g., for Vor_po4e in Figure 4. This happens at the time
results are transferred and processed at the middleware.

6.3 Usage Behavior

Views are often defined to support frequent queries and the question
arises which views are useful for what kind of queries. If we only want
to return nodes then local usage queries on node views will be enough,
but path, subgraph and table views might also be used although they
might be more expensive. When a query is complex it might still be
able to use a node view but the usage would become global while
it might remain local for the other view types. In here, we explore
these different aspects, and compare again with baseline queries that
retrieve the same information without using views.

6.3.1 Retrieving nodes. Table 5 shows the runtime for finding a subset
of nodes within _node views, e.g., all comments in Vcs_node4-
Baseline vs Views View usage is significantly faster than the base-
line. The property-based approach is at least 2x faster for simple
views and 10x faster for complex views. The ID-based approach is
even better and between 4x to 20x faster than the baseline. Benefits

#The results are for SF 0.1. Higher scale factors show similar results.

Node m Path m Subgraph Table m Baseline

= 3

Runtime(s)
2

107!

=

Vsi_path Vss_path Ves_path

Vs patn Vss_parn VeL_pan Ves_pan

(b) SF1

Vsi_path Vss_path Ve parn Ves_path

(a) SFO.1 (c) SF10

Figure 5: Runtime retrieving path

are higher for complex views as the usage queries do not need to
execute the complex graph pattern. Additionally, if the return set is
small, the usage query only has to retrieve few nodes from the base
graph. The ID-based approach is between 1.2 and 3.6x better than the
property-based because Neo4j provides very fast lookup of nodes by
identifier. Although we created indices over the view properties for
the property-based approach, their lookup was less efficient.

View types For the ID-based approach and a given category, path
and subgraph views are slower than node and table views because
their node tables are larger (containing node information of all nodes
in the path), leading to longer lookup times. This is not true for the
property-based approach where the usage queries are nearly the same
within a given category, independently of the view type.

View size Executions take longer with larger views and the differ-
ence is more pronounced for the ID-based approach. There, every qual-
ifying identifier in the node table causes an extralookup. In contrast, for
the property-based approach, the search time might be more influenced
by the number of nodes that need to be searched instead of the nodes in
the view. This effectis not visible in our experiments as our queries look
for Post or Comment nodes, which have roughly the same cardinality.

6.3.2 Retrieving paths. We expect path views to be the most useful
when a query wants to retrieve exactly the paths stored in the view but
other view types can also be used. In case of node views, we need a
global usage query that looks for the graph pattern in the base graph
and requires all nodes to be part of the node view. As our table views
only contain the nodes, we require a global query to also retrieve the
edges for each row in the table. We use the views from the _path
category where node and table views maintain all the nodes that are
part of the graph pattern. Figure 5 illustrates the runtime across all
scale factors. We only analyze the ID-based approach as it has shown
so much better performance in our previous experiments. As the
queries using Vr as well as the corresponding baseline query took
very long for SF10, we omit them from the figure.

The behavior varies considerably between view categories. Surpris-
ingly, path views, while being the best option for the simple view cate-
gory, behave worse than other view types for the complex one. Cypher’s
UNWIND operator, that retrieves the paths from the base graph given
their edge identifiers, turns out to be expensive. Furthermore, Neo4;j’s
engine first looks for all edges of a given source node and then checks
edge identifiers as a condition. It would be faster if Neo4; did first the
lookup of only the relevant edges. Still, using path views is faster than
the baseline query most of the times, and in particular for large graphs
asthey facilitate amore focused search. Table views also use UNWIND for
eachrow in the view. In our case, they perform worse than the path views

1739

Table 6: LDBC benchmark queries (in seconds)

| Declarationheavy Baseline Usage Heavy |Type Creation Usage| Baseline

| Type Creation Usage | | Type Creation Usage ~ IS1|NODE 0296 0219 |0.310

IS2 |NODE 0.324 0.209 [0.513

IC2 |GRAPH 0.734 0.826 | 0.806 NODE 0.215 0.689 IS3 |PATH 0309 0.315 |0.590
IC5 |PATH 3399 0389 |1.848 |NODE 0374 1597 1S4 |NODE 0.179 0.187|0.181
IC6 |TABLE 3.022 0478 [1225 |NODE 0962 0354 [S5|NODE 0307 0.091 |0.293
BI5 | GRAPH 0.766 0.477 [0.864 PATH 0.512 0.466 1S6 |TABLE 0.453 0.142 [0.454
BI17| TABLE 12423 0.329 |6.244 TABLE 0.749 86.614 1S7| TABLE 0.339 0.200 |0.504

Table 7: Runtimes (in s) for incremental view maintenance

| 1C2 | BIS | ISI | IS2 | 1S3 | Is4 | IS5 | 16 | IS7 |

insertion 0.296 | 0421 | 0.279 | 0.641 | 0.287 | 0.259 | 0.724 | 0.584 | 0.498
deletion 0.275 | 0.224 | 0.263 | 0.287 | 0.277 | 0.542 | 0.329 | 0.280 | 0.273
insertion overhead | 0.078 | 0.168 | 0.085 | 0.101 | 0.058 | 0.060 | 0.103 | 0.195 | 0.127
deletion overhead | 0.086 | 0.173 | 0.109 | 0.127 | 0.071 | 0.082 | 0.112 | 0.210 | 0.142

as they maintain more node variables than the path has edges, leading
to more lookups. Generally, node and subgraph views behave similarly.
The rewritten usage query restricts the retrieval from the base graph
by requiring the nodes (and also the edges for subgraph views), to be
in the view. In fact, this reduced search space allows them to be always
faster than the baseline query and the path views for complex views.

Generally, at larger scales and assuming the right view choice, view
usage becomes increasingly beneficial in absolute terms because if
we can avoid doing path traversal for a certain percentage of nodes,
the benefits overall increase with the number of qualifying paths.

6.4 Macro-benchmark with universal queries

In order to cover a wider spectrum of queries than is possible with
micro-benchmarks, we had various students generate a large and
diverse set of universal view declaration and relevant usage queries
over the StackOverflow and LDBC graphs.

For StackOverflow, we generated 34 views with 70 usage queries
where around half were node views and half more complex views.
Some of the StackOverflow queries were presented in [35]. For the
ID-based approach in Neo4j, view declaration was only 1.3x slower
than the baseline queries, showing an acceptable overhead for our
hybrid view materialization. The view usage queries then only took
6.67% of the execution time of the baseline queries.

For the LDBC graph, we generated 38 views with 57 usage queries
where around 1/3 were node views and the others were more complex
views. Here, view declaration took 2.2 times longer than the baseline
but the usage queries only took 3.1% of the time of the baseline queries.

The results mostly reflect the performance shown in our micro-
benchmarks. Overall, view usage performance was excellent but in
few cases, using views was not beneficial.

6.5 Experiments with LDBC queries

As a second macro-benchmark, we took the 7 short (IS1-7) and 3 of
the complex queries (IC2,5,6) from the LDBC SNB interactive bench-
mark, as well as 2 queries (BI5,17) from the LDBC BI benchmark and
split them into pairs of view declarations and corresponding usage
queries. These queries are seeded queries where graph patterns start
from a specific node that is identified as query input.

View Content While the simple IS queries themselves represent the
views (just returning full elements instead of attributes), we developed

two sets of splits for each of the ID and BI queries. A declaration-
heavy view encodes the majority of query logic, and thus usage queries
are more likely to be local with additional conditions. By contrast,
usage-heavy views contain a smaller part of the query logic and then
global usage queries need to cover the remaining parts. Usage-heavy
views have the potential to serve more than one usage query but they
might then have longer execution times.

View Type For each of the views, we chose the type that keeps the
minimum information needed and is the most promising in terms of
run-time for usage as explored in the previous sections. For example,
the usage-heavy view for IC2 only needs the friend nodes and thus,
anode view is enough. On the other hand, when node views are not
sufficient to preserve the relationship between entities, then table,
subgraph or path views are more appropriate. We found edge views
less useful because searches on edges were less frequent.

Performance Analysis Table 6 presents the creation and usage
times as well as the runtime of the baseline query. We show the view
types that had the fastest runtime. Most view usages are significantly
faster than the baseline but some outliers exist. The experiments
in this section confirm the overall observations and usefulness of
views. Similar to the previous experiments, usage-heavy views have
an advantage when the additional search is simple and short, such as
for views Vjcy and Vicg. On the contrary, when the view is small like
Vics, alocal usage of a declaration-heavy view will be more beneficial.
Table views were used more often than one would expect with our
micro-benchmarks. The reason is that in this case, they captured
exactly what was needed, making search faster.

6.6 View Maintenance

Graph modifications require to update or reevaluate affected views.
Table 7 gives an intuition of the overhead. The first two lines indicate the
runtime of an insert/delete that affects a particular view but without the
view maintenance overhead. The last two lines indicate the additional
costs forupdating the view. From the LDBC benchmark, all the IS views
are updatable. The more complex queries contain nesting, negation and
aggregation. Thus, with our current view maintenance algorithm, only
the usage-heavy versions of IC2 and BI5 are updatable. IS4 matches
on nodes, and thus the corresponding graph updates are node insertion
and deletion while the rest are adding or deleting an edge. Comparing
the results from Table 7 with full recreation of Table 6, shows that
updating views incrementally incurs significantly less overhead for
all cases. While we only show results for SF0.1, these times do not
increase significantly for larger scale factors. Therefore, the benefits
of incremental view maintenance are even larger for larger databases.
We also ran experiments on our micro-benchmark queries, which all
allow for incremental view updates, and the results were similar.

6.7 Querying graphs over relational engines

We run similar micro-benchmarks to the ones we used for Neo4;,
this time using Kuzu and Apache AGE on top of PostgreSQL. We
performed slight adjustments to the setup. Table 8a shows declaration

SWe experienced memory problems with Kuzu with large intermediate or end results,
even with the baseline queries. Using the WITH clause in our rewritten usage queries
aggravated the problem. As such, we changed Vsy, node and Ver, node to return less
nodes. With Apache AGE, the overall performance degrades dramatically for both view
declaration and baseline queries with large graphs and large return sets. As such we
generated views with generally smaller result sets.

1740

Table 8: Runtime (seconds) in the two relational engines

|Baseline Declaration ~ Usage | |Baseline Declaration ~ Usage |

| [ID prop. [ID Prop | | [ID prop.[ID Prop |
Vss node 0025|0131 0.121 0.197 0.006| Vss node |0243 [0.201 0.352]0.228 0.050
VEs node [0328[0.259 6.138 0743 0.028| Vos node |3771 [3.861 20.86[0.231 0.071
VSI node |0-080 0135 0.396 |0.219 0.033| Vi 04 [0266 [0.437 1.575(0.269 0.132
VOL node [2306 [0.496 22.258(1.065 0.058| Vo node |1232 [12.58 55.61(0.277 0.174
Vss_path |0080 0347 0253 [5.666 0.070| Vs pazp (0090 0316 0.878/0.382 0.142
VMS_path [0-141 1264 1121 3256 0.110| Virs payp 0401 [0.414 1.084/0493 0235
VeS_path (0223 (0390 0.529 10389 0.406| Vios_parp |1028 (0498 2.3870.742 0.361
VSL_path |0644 26234309 [407.70529| Vp pgzy |0305 2640 13.13|11.36 1059
VML_path [+853 1267 1352 |149.0 1069| Vrp pqyp 3407|1783 258.86.130 1486
VCL_path 0911|2289 1086 |58.02 0.938| Vor_parp |3:864 |1.775 289.7)5.157 2.959

(a) Kuzu (b) Apache AGE/PostgreSQL

and usage times for Kuzu and Table 8b for Apache AGE for the node
and path views as well as execution times for the baseline queries. As
path views had varied results, we added a medium complexity level
where the path has two edges.

Kuzu: The ID-based approach always executes declaration queries
faster than the property-based approach, but its usage times are much
worse and even worse than the baseline query in most cases. Kuzu
works poorly with the ID-based approach because of limited index
support for IDs. Kuzu searched for elements by checking for each
record in the table whether the ID of the record is in the ID list of the
view which was inefficient when the list was large.

For the property-based approach, the declaration queries are con-
siderably more expensive than the baseline, similar to what we saw
in Neo4j. For usage queries, they are 2.5 to 40x faster on node views
than the respective baseline query. Looking up a view property is
well supported by Kuzu and thus allows for significant performance
benefits. Using path views outperforms the baseline for simple and
medium views (between 1.14x to 4.5x faster), but not for complex
views. Recall that for Kuzu we created extra edges for each path with
appropriate labels so that Kuzu could keep them in special tables.
With 1- and 2-edge path patterns, Kuzu first looks up the edges and
then combines them to paths. For the 3-edge path, it does this only for
the first two edges and then performs a join. Despite the smaller edge
tables, this was still inefficient. The lookup for sequence numbers and
ranks turned out to be inefficient.

Furthermore, we ran the same marco-benchmarks on universal
queries from Section 5.4 on Kuzu using the property-based approach.
View declaration queries overall took nearly 9x longer than the base-
line queries for StackOverflow and 3x for the LDBC data, but view
usage queries were overall 5x faster than the baseline for StackOver-
flow and 3x faster for the LDBC data. These results validate our
micro-benchmark findings.

Apache AGE/PostgreSQL The ID-based approach, similar to
Kuzu, is faster in declaration than the property-based approach while
always slower for usage for all view types. ID-based usage, in contrast
to Kuzu, is often faster or takes similar time as the baseline for both
node and path views although they are also sometimes slower.

Similar to Kuzu, using node views in the property-based approach
is always significantly faster than the baseline (2x to 53x faster) be-
cause of the fast view property lookup. Interestingly, using path views
is faster than the baseline for medium and complex views (up to 2.8x)
but up to 3.5x slower for simple paths. The short paths have a large

result set and unwinding the identifiers in Apache AGE appears to be
costly while direct joins are more efficient.

We would like to note that Kuzu, having a specialized relational
engine, executed queries significantly faster than Neo4j or Apache
AGE. The latter, based on the general-purpose relational database
system PostgreSQL, had the overall slowest execution times.

6.8 Comparison with existing implementations

In recent work, Han and Yves [21] proposed views as transformations
over the original graph. As such, they do support local usage over
subgraphs. Furthermore, they provide implementations on top of
Neo4j and PostgreSQL. Therefore a partial comparison is possible.
We consider a user that is interested in a complex graph pattern that
has either a small amount (CS) or a large amount (CL) of matches. In
Scenario I the user wants to find specific nodes in this complex pattern.
In Scenario I1, the user looks for patterns and/or new conditions within
the complex pattern. The usage queries can cover a small (S) or large
(L) portion of the view. Using the approach of [21] we always create
a subgraph view. For G-View, we use a node view for the first scenario
and a subgraph view for the second.

Neodj For G-View we use the ID-based implementation and for
[21] the Overlay implementation, where they attach properties to
nodes and edges (in spirit similar to our property-based approach).
These are the implementations with the best performance for each of
the systems. Figure 6(a) shows the performance for declaration and
usage. Declaration is always faster with G-View as managing IDs is
more light-weight than adding properties to nodes/edges in [21]. In
scenario I, when G-View can exploit a node view for usage, it is up to
20x faster than [21], and that independently of the size of the view and
the result set of the usage query. In scenario II, where both solutions
use subgraphs, G-View is still faster by up to a factor of 2.

Apache AGE /PostgreSQL For G-View we use the property-based
option and for [21] the implementation based on Subgraph Substitution
Relations (SSRs), that keep track of transformations in a rule-based
manner. Again, these are the best-performing options for both systems.
Figure 6 (b) shows the results. In scenario I, G-View again always
performs better than [21] asitcan use the simpler node views (achieving
1.4xto4.5x speedup). In scenario II, where both use subgraphs, G-View
is better than [21] for large views but worse when the view is small. The
results are the same independently of the result size of the usage query.

Overall, the performance of the approaches varies depending on
view type, usage queries and internal implementation. Note also that
all usage queries in this experiment set outperform the baselines (not
shown in the figures). G-View can use different view types depending
on the need and thus, has more potential for optimization.

6.9 Lessons Learned

Our results show that our middleware-based view management can
significantly reduce runtime for frequent queries compared to baseline
queries. For Neo4j, an ID-based implementation performs better than
a property-based implementation and the inverse holds true for rela-
tional execution engines. This shows that view management needs to
be adjusted to the underlying system. Furthermore, our analysis shows
that the performance of different view types can differ depending on
the complexity of the views, the size of the result and the further usage
of the views. It is not always obvious which view types are the best

1741

G-view Declaration = G-view Usage (S) = G-view Usage (L)

[21] Declaration [21] Usage (S) = [21] Usage (L)

10° | | |
— i
@ I I I
T | | :
E 101 I ! I
p= I 1 I
g 1 1 1
& 107! ‘ 3 ‘

Vesnode VeLnode VCS,rztbgraphVCLJulvgrajlll
(a) Views in Neo4j

103 ‘ : ‘ —
— i : i
2 I I I
T | | :
E 101 I ! I
= I 1 I
g 1 1 1
& 107! ‘ 3 ‘

Vesnode Vernode VCS,xubgraphVCL;ubgraph

(b) Views in Apache AGE/PostgreSQL

Figure 6: G-View vs. Han and Yves [21]

but node views are generally good for node lookups and can also be
used for global usage queries with new graph patterns. Path views
are efficient when usage queries want to access specific path patterns
that are simple, but might have a performance penalty if complex.
Generally, our strategy to use UNWIND did not always create the best
execution plans in the database engine.

In terms of convenience and the ease of crafting a usage query
each view type has its advantages and limits. Node and table views
allow referring back to nodes (and edges) based on variable names
used during view declaration, which can be useful and also reduce
overhead. As to finding paths, global usage is necessary for node
views but local usage could be enough for other view types. Table
views allow to keep track only of those elements in a path pattern that
are of interest for a user. Usage queries for path and subgraph views,
even if local, must rewrite the actual path pattern if the usage query
has additional conditions or only partial results should be returned.
Our experiments show that global queries do not necessarily have bad
performance. Thus, one might want to consider to keep views simpler
so that they can serve a wider range of usage queries.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed graph-based language extensions to declare
and use various types of views that differ in how they capture sub-
components of the underlying graph. Our views can be used together
with the underlying graph similar to view usage in relational systems.
We presented various implementation strategies to maintain view
information and for incremental view maintenance. We developed
micro- and macro-benchmarks to understand how views could help
query execution. We demonstrated that with careful implementation
and usage choices, views can offer significant advantages.

In the future, we are interested in looking how such view man-
agement strategies could be implemented within the query engine
to further optimize creation and utilization, in particular in order to
quickly find relevant paths, and choose appropriate execution plans.
The property-based approach could also potentially better separate
view data from the actual data of the underlying graph.

REFERENCES

[1]
[2]

[3]
[4]

[5

[6]
[7]
[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[n.d.]. Apache AGE. https://age.apache.org/. (Accessed December. 19,2024).
[n.d.]. Cypher — the SQL for Graphs — Is Now Available for Apache Spark.
https://neo4j.com/blog/cypher-for-apache-spark/. (Accessed July.14,2024).
[n.d.]. GQL Standard. https://www.gqlstandards.org/. (Accessed July. 14,2024).
[n.d.]. Gremlin Query Language. https:/tinkerpop.apache.org/gremlin.html.
(Accessed Mar. 14,2024).

[n.d.]. GSQL Query Language. https://www.tigergraph.com/gsql/. (Accessed
Mar. 14,2024).

[n.d.]. JanusGraph. https://janusgraph.org/. (Accessed April. 25,2024).

[n.d.]. Neo4j. https://neodj.com/. (Accessed July.14,2024).

[n.d.]. Transforming your data to graphs - Part 1. https://blog.kuzudb.com/post/
transforming- your-data-to-graphs-1/. (Accessed Jun.23,2024).

Renzo Angles, Marcelo Arenas, Pablo Barcel6, Peter Boncz, George Fletcher, Clau-
dio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan Sequeda,
etal.2018. G-CORE: A core for future graph query languages. In Proceedings of the
2018 International Conference on Management of Data (SIGMOD). 1421-1432.
Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair
Green, Jan Hidders, Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, Filip
Murlak, Stefan Plantikow, Ognjen Savkovic, Michael Schmidt, Juan Sequeda,
Slawek Staworko, Dominik Tomaszuk, Hannes Voigt, Domagoj Vrgoc, Mingxi Wu,
and Dusan Zivkovic. 2023. PG-Schema: Schemas for Property Graphs. Proc. ACM
Manag. Data 1,2, Article 198 (jun2023), 25 pages. https://doi.org/10.1145/3589778
Thomas Beyhl and Holger Giese. 2016. Incremental View Maintenance for
Deductive Graph Databases Using Generalized Discrimination Networks.
In Proceedings Second Graphs as Models Workshop, GaM @ETAPS 2016,
Eindhoven, The Netherlands, April 2-3, 2016 (EPTCS), Vol. 231. 57-71.
https://doi.org/10.4204/EPTCS.231.5

José A. Blakeley, Neil Coburn, and Per-Ake Larson. 1989. Updating derived
relations: detecting irrelevant and autonomously computable updates. ACM Trans.
Database Syst. 14,3 (Sept. 1989), 369-400. https://doi.org/10.1145/68012.68015
Angela Bonifati and Stefania Dumbrava. 2019. Graph Queries:
From Theory to Practice. SIGMOD Rec. 47, 4 (may 2019), 5-16.
https://doi.org/10.1145/3335409.3335411

Angela Bonifati, George H. L. Fletcher, Hannes Voigt, and Nikolay
Yakovets. 2018. Querying Graphs. Morgan & Claypool Publishers.
https://doi.org/10.2200/S00873ED1V01Y201808DTMO051

Joana MF da Trindade, Konstantinos Karanasos, Carlo Curino, Samuel Madden, and
Julian Shun. 2020. Kaskade: Graph views for efficient graph analytics. In Proceed-
ings of the 36th International Conference on Data Engineering (ICDE). 193-204.
Nigel Dennis. 1994. Scheduling strategies for airline hub opera-
tions. Journal of Air Transport Management 1, 3 (1994), 131-144.
https://doi.org/10.1016/0969-6997(94)90034-5

Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, et al. 2022. Graph
pattern matching in GQL and SQL/PGQ. In Proceedings of the 2022 International
Conference on Management of Data (SIGMOD). 2246-2258.

Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker,
Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor.
2018. Cypher: An evolving query language for property graphs. In Proceedings of
the 2018 International Conference on Management of Data (SIGMOD). 1433-1445.
Ashish Gupta and Inderpal Singh Mumick. 1999. Maintenance of
Materialized Views: Problems, Techniques, and Applications. In
Materialized Views: Techniques, Implementations, and Applications.
The MIT Press. https://doi.org/10.7551/mitpress/4472.003.0016
arXiv:https://direct.mit.edu/book/chapter-pdf/2305627/9780262287500_cak.pdf

Ashish Gupta and Inderpal Singh Mumick. 1999. Maintenance of
Materialized Views: Problems, Techniques, and Applications. In
Materialized ~ Views: Techniques, Implementations, and Applications.

The MIT Press. https://doi.org/10.7551/mitpress/4472.003.0016
arXiv:https://direct.mit.edu/book/chapter-pdf/2305627/9780262287500_cak.pdf
Soonbo Han and Zachary G. Ives. 2024. Implementation Strategies for
Views over Property Graphs. Proc. ACM Manag. Data 2, 3 (2024), 146.
https://doi.org/10.1145/3654949

Edward Hung, Yu Deng, and Venkatramanan S Subrahmanian. 2005. RDF
aggregate queries and views. In Proceedings of the 21st International Conference
on Data Engineering (ICDE). 717-728.

1742

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Elizabeth Hunter, John Kelleher, and Brian Mac Namee. 2019. Degree centrality
and the probability of an infectious disease outbreak in towns within a region.
In 33rd Annual European Simulation and Modelling Conference 2019, ESM
2019 (33rd Annual European Simulation and Modelling Conference 2019, ESM
2019), Pilar Fuster-Parra and Oscar Valero Sierra (Eds.). EUROSIS, 195-202.
https://doi.org/10.21427/bbp3-hr31 Publisher Copyright: Copyright © 2019
EUROSIS-ETL; 33rd Annual European Simulation and Modelling Conference,
ESM 2019 ; Conference date: 28-10-2019 Through 30-10-2019.

Dilshod Ibragimov, Katja Hose, Torben Bach Pedersen, and Esteban Ziményi.

2016. Optimizing aggregate SPARQL queries using materialized RDF views. In
Proceedings of the 15th International Semantic Web Conference (ISWC). 341-359.

‘Wangchao Le, Songyun Duan, Anastasios Kementsietsidis, Feifei Li, and Min
Wang. 2011. Rewriting queries on SPARQL views. In Proceedings of the 20th
International Conference on World Wide Web (WWW). 655-664.

Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis. 2018. Beyond
macrobenchmarks: microbenchmark-based graph database evaluation. Proc. VLDB
Endow. 12,4 (dec 2018), 390—-403. https://doi.org/10.14778/3297753.3297759
Fragkiskos D. Malliaros and Michalis Vazirgiannis. 2013. To stay or not to stay:
modeling engagement dynamics in social graphs. In Proceedings of the 22nd
ACM International Conference on Information & Knowledge Management (San
Francisco, California, USA) (CIKM ’13). Association for Computing Machinery,
New York, NY, USA, 469-478. https://doi.org/10.1145/2505515.2505561

Tova Milo and Dan Suciu. 1999. Index Structures for Path Expressions. In Database
Theory — ICDT’99, Catriel Beeri and Peter Buneman (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 277-295.

Yannis Papakonstantinou and Vasilis Vassalos. 1999. Query rewriting for
semistructured data. In Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data (Philadelphia, Pennsylvania, USA) (SIGMOD
’99). Association for Computing Machinery, New York, NY, USA, 455-466.
https://doi.org/10.1145/304182.304222

E. Prud’hommeaux and A. Seaborne. [n.d.]. SPARQL query language for RDF.
W3C Recommendation. https://www.w3.org/TR/rdf-sparql-query/. (Accessed
Mar. 14, 2024).

Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph databases: new
opportunities for connected data. O’Reilly Media, Inc.

Siddhartha Sahu and Semih Salihoglu. 2021. Graphsurge: Graph analytics on view
collections using differential computation. In Proceedings of the 2021 International
Conference on Management of Data (SIGMOD). 1518-1530.

Semih Salihoglu. 2023. Kuzu: A Database Management System For "Beyond
Relational" Workloads. SIGMOD Rec. 52, 3 (nov 2023), 39-40.

Bryce Merkl Sasaki. [n.d.]. Import 10M Stack Overflow Questions into Neo4;j
In Just 3 Minutes. https://neo4j.com/blog/import- 10m-stack-overflow-questions/.
(Accessed Mar. 14, 2024).

M. Shahrad, Y. Gu, Y. Zheng, and B. Kemme. 2024. Towards View Management
in Graph Databases. In 2024 IEEE 40th International Conference on Data
Engineering Workshops (ICDEW). IEEE Computer Society, Los Alamitos, CA,
USA, 355-359. https://doi.org/10.1109/ICDEW61823.2024.00053

‘Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios Kementsietsidis, Gang
Hu, and Guotong Xie. 2015. SQLGraph: An Efficient Relational-Based Property
Graph Store. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data (Melbourne, Victoria, Australia) (SIGMOD ’I5).
Association for Computing Machinery, New York, NY, USA, 1887-1901.
https://doi.org/10.1145/2723372.2723732

Gabor Szdrnyas, Jack Waudby, Benjamin A. Steer, Ddvid Szakéllas, Altan Birler,
Mingxi Wu, Yuchen Zhang, and Peter Boncz. 2022. The LDBC Social Network
Benchmark: Business Intelligence Workload. Proc. VLDB Endow. 16, 4 (dec
2022), 877-890. https://doi.org/10.14778/3574245.3574270

Gabor Szdrnyas, Jack Waudby, Benjamin A Steer, Ddvid Szakallas, Altan Birler,
Mingxi Wu, Yuchen Zhang, and Peter Boncz. 2022. The LDBC Social Network
Benchmark: Business Intelligence Workload. Proceedings of the VLDB Endowment
16,4 (2022), 877-890.

Oskar Van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. 2016.
PGQL: a property graph query language. In Proceedings of the Fourth International
Workshop on Graph Data Management Experiences and Systems. 1-6.

Yue Zhuge and Hector Garcia-Molina. 1998. Graph structured views and their
incremental maintenance. In Proceedings 14th International Conference on Data
Engineering. 116-125.

https://age.apache.org/
https://neo4j.com/blog/cypher-for-apache-spark/
https://www.gqlstandards.org/
https://tinkerpop.apache.org/gremlin.html
https://www.tigergraph.com/gsql/
https://janusgraph.org/
https://neo4j.com/
https://blog.kuzudb.com/post/transforming-your-data-to-graphs-1/
https://blog.kuzudb.com/post/transforming-your-data-to-graphs-1/
https://doi.org/10.1145/3589778
https://doi.org/10.4204/EPTCS.231.5
https://doi.org/10.1145/68012.68015
https://doi.org/10.1145/3335409.3335411
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.1016/0969-6997(94)90034-5
https://doi.org/10.7551/mitpress/4472.003.0016
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/2305627/9780262287500_cak.pdf
https://doi.org/10.7551/mitpress/4472.003.0016
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/2305627/9780262287500_cak.pdf
https://doi.org/10.1145/3654949
https://doi.org/10.21427/bbp3-hr31
https://doi.org/10.14778/3297753.3297759
https://doi.org/10.1145/2505515.2505561
https://doi.org/10.1145/304182.304222
https://www.w3.org/TR/rdf-sparql-query/
https://neo4j.com/blog/import-10m-stack-overflow-questions/
https://doi.org/10.1109/ICDEW61823.2024.00053
https://doi.org/10.1145/2723372.2723732
https://doi.org/10.14778/3574245.3574270

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 View Declaration and usage
	4.1 View Declaration
	4.2 View Usage
	4.3 Discussion

	5 Implementation Strategies
	5.1 ID-based strategy
	5.2 Property-based strategy
	5.3 View maintenance

	6 Deployment and System evaluation
	6.1 Experimental setup
	6.2 View Declaration
	6.3 Usage Behavior
	6.4 Macro-benchmark with universal queries
	6.5 Experiments with LDBC queries
	6.6 View Maintenance
	6.7 Querying graphs over relational engines
	6.8 Comparison with existing implementations
	6.9 Lessons Learned

	7 Conclusion and Future Work
	References

