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ABSTRACT

Graph neural networks (GNNs) have emerged as a promising direc-
tion. Training large-scale graphs that relies on distributed comput-
ing power poses new challenges. Existing distributed GNN systems
leverage data parallelism by partitioning the input graph and dis-
tributing it to multiple workers. However, due to the irregular
nature of the graph structure, existing distributed approaches suf-
fer from unbalanced workloads and high overhead in managing
cross-worker vertex dependencies.

In this paper, we leverage tensor parallelism for distributed GNN
training. GNN tensor parallelism eliminates cross-worker vertex
dependencies by partitioning features instead of graph structures.
Different workers are assigned training tasks on different feature
slices with the same dimensional size, leading to a complete load
balance. We achieve efficient GNN tensor parallelism through two
critical functions. Firstly, we employ a generalized decoupled train-
ing framework to decouple NN operations from graph aggregation
operations, significantly reducing the communication overhead
caused by NN operations which must be computed using complete
features. Secondly, we employ a memory-efficient task scheduling
strategy to support the training of large graphs exceeding single
GPU memory, while further improving performance by overlapping
communication and computation. By integrating the above tech-
niques, we propose a distributed GNN training system NeutronTP.
Our experimental results on a 16-node Aliyun cluster demonstrate
that NeutronTP achieves 1.29X-8.72X speedup over state-of-the-art
GNN systems including DistDGL, NeutronStar, and Sancus.
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Figure 1: Illustration of a single-layer computation process
in a GNN model, including graph aggregation operations and
neural network (NN) operations.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/AiX-im/NeutronTP.

1 INTRODUCTION

Graph Neural Networks (GNNs) have demonstrated remarkable ef-
fectiveness in machine learning tasks [9, 45, 48, 49]. Graph-structured
data serves as the input for GNNs, where each vertex is associated
with a high-dimensional feature vector. The expressive power of
GNN s stems from their ability to learn from relationships between
data samples, whereas traditional DNNs are trained on individ-
ual samples [57]. Figure 1 illustrates the computational process
of GNNs, involving graph aggregation and neural network (NN)
operations. In each GNN layer, obtaining a vertex’s new embedding
entails aggregating its neighbors’ embeddings from the previous
layer (or neighbors’ features at layer 0) and then applying NN oper-
ations. By iteratively performing these two steps, the GNN model
can capture structural information from multi-hop neighbors.

Recently, full-graph GNN training, which involves training on
the entire graph, has emerged as a promising GNN training method
for its effectiveness brought by full-neighbor aggregation semantics
and full-batch gradient descent [16, 25, 40, 42, 43]. Given the massive
scale of graphs generated from applications, large-scale parallel
and distributed computing becomes imperative for handling GNNs
effectively [21, 32, 50]. A common approach to scaling GNN training
on large-scale graph data is data parallelism, where the graph data
is partitioned across different workers for parallel training [16, 25,
29, 36, 38, 40, 42, 43, 51, 54, 58].

Despite that partitioning graph data enables distributed GNN
systems to handle large-scale data, it also constitutes a primary
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constraint on the performance of GNN data parallelism. Firstly,
as illustrated in Figure 2 (a), the irregular nature of graph data
makes it challenging to ensure load balance when partitioning
the workload. Many survey papers [21, 32, 50] highlight workload
imbalance as a primary challenge, both in mini-batch and full-graph
training. Secondly, the edges among data samples (i.e., vertices)
lead to complex cross-worker vertex dependencies since graph
aggregation may require neighbor data located on remote workers
[16, 43]. Existing systems adopt methods such as cross-worker
neighbor replication [11, 51, 54, 58] and neighbor communication
[16, 25, 29, 38, 40] to manage vertex dependencies. As a result, the
efficiency of GNN data parallelism is constrained by redundant
computations and substantial communication overhead [16, 40, 43].

In this paper, we leverage tensor parallelism for distributed GNN
training, eliminating cross-worker vertex dependencies by partition-
ing features instead of the graph structure. GNN tensor parallelism
efficiently balances workload by evenly partitioning vertex features
along dimensions. As illustrated in Figure 2 (b), GNN tensor paral-
lelism divides vertex features according to the number of workers.
Different workers are responsible for GNN training with feature
slices of the same dimension, achieving complete computational
load balance. GNN tensor parallelism involves two communication
operations: gather and split. They collect complete embeddings
for NN operations at each model layer, as NN operations include
some non-linear operations that cannot be partially computed, and
then redistribute the embedding slices back to the corresponding
workers. These two communication operations involve all vertices.
We only need to ensure that each worker handles the communica-
tion task of the same number of vertices to achieve load-balanced
communication.

We further enhance the efficiency of GNN tensor parallelism
by optimizing communication and memory overhead. Firstly, we
employ a generalized decoupled training approach to reduce com-
munication overhead, avoiding frequent execution of two commu-
nication operations in each model layer. Inspired by existing decou-
pled GNN training methods [4, 23, 56], we decouple NN operations
from graph aggregation operations, confining split and gather
operations to occur before and after consecutive graph operations,
significantly reducing communication overhead. Additionally, we
support decoupled training of complex models [37] through the
precomputation of edge attention, providing generalized support
for decoupled training. Secondly, we employ a memory-efficient
task scheduling strategy to reduce memory overhead, mitigating
out-of-memory errors caused by loading the entire graph topology
during training. This strategy offers a lightweight subgraph logical
partitioning method and further enhances performance by overlap-
ping the computation and communication of different subgraphs.

By integrating the above techniques, we propose NeutronTP,
a distributed GNN training system that achieves a well-balanced
workload. We make the following contributions in this paper.

e We propose a distributed GNN training method based on tensor
parallelism, which eliminates cross-worker vertex dependencies
and achieves complete load balancing.

o We propose a generalized decoupling training method to separate
NN operations from graph aggregation, significantly reducing
communication frequency in GNN tensor parallelism.
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Figure 2: GNN data parallelism vs. GNN tensor parallelism.
The thickness of the arrows and the size of the circles are
positively proportional to the feature/embedding dimension
and indicate the computation volume of GNN training,.

e We propose a memory-efficient task scheduling strategy to sup-
portlarge-scale graph processing and overlap the communication
and computation.

e We develop NeutronTP, a distributed system for full-graph GNN
training that utilizes tensor parallelism to achieve fully balanced
workloads and integrates a series of optimizations to achieve
high performance.

We evaluate NeutronTP on a 16-node Aliyun GPU cluster. The
experimental results show that NeutronTP outperforms the state-
of-the-art GNN systems on homogeneous graphs, achieving 1.29x-
6.36% speedups over DistDGL [54], 4.68%-8.72X speedups over Neu-
tronStar [43], and 3.41X-4.81% speedups over SANCUS [29]. Addi-
tionally, NeutronTP achieves 6.15X speedups over DistDGLv2 [55]
on heterogeneous graphs.

The rest of this work is organized as follows. Section 2 describes
the background and motivations. Section 3 provides a detailed
description of the proposed GNN tensor parallelism. Section 4 gives
an overview of NeutronTP and describes the generalized decoupling
training method and the memory-efficient task scheduling strategy.
Section 5 presents results. Section 6 presents a discussion on related
work. Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION

2.1 Graph Neural Networks

Graph-structured data is input to GNNs, with each vertex having
a high-dimensional feature vector. A typical GNN computes low-
dimensional embeddings for vertices through multiple layers, aiding
tasks like node classification and link prediction. Each layer includes
an aggregation and an update phase [57]. In a GNN with L layers,
during layer I’s aggregation phase, each vertex v aggregates its
neighbors’ embeddings from layer [ — 1 and its own to produce dl,

using an AGG function:

al, = AGG(hL;!|Vu € Nin(v) U {0}) (1)

where Nj, (v) represents the incoming neighbors of vertex o, hf)
represents the embedding vector of vertex v at [-th layer, and 9 is
the input feature of vertex v. Next, during the update phase, each
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Figure 3: GNN training workload of 4 partitions under dif-
ferent partitioning methods. (2-layer GCN on Reddit)

vertex computes its output embedding vector hgj by applying an
UPDATE function to the aggregation result aﬁ,:

h. = UPDATE(W!, al) ®)

After L layers, each vertex’s feature vector becomes a low-dimensional
embedding of its neighbors up to L hops away.

Both the AGG and UPDATE functions can be neural networks,
which are updated during training. For simple GNN models, such as
GCN [18], which only incorporate vertex-associated NN operations.
The computational formulas for GCN are as follows:

= WY @)

AGG : d, = ( ,
u€N; (v) \/degin(v) - degour (1)

UPDATE : hl, = o(W'al) )

, where degoy; (1) is the out-degree of vertex u, and deg;, (v) de-
notes the in-degree of vertex of vertex v. The update phase applies
standard DNN operations, including a matrix multiplication and a
ReLU activation function (i.e., o) to the aggregation result.

For complex GNN models, such as GAT [37], which include edge-
associated NN operations and vertex-associated NN operations. The
computational formulas for GAT are as follows:

GG . | =softmax@ (@ (WKW hiT) s
. al _ Z ( 1 hl—l ( )

v = 2aueN;, (v) Gyoty )
UPDATE : hl = o(W'dl) (6)

The aggregate phase first needs to assign an edge weight ay,, for
each incoming edge to vertex v. This process involves concatenating
(i.e., []|-]) and mapping (i.e., aT) the parameterized representations
of the source u and destination v to derive edge-wise attention coef-
ficients. Then, these coefficients are fed to a LeakyReLU activation
function (i.e., o) and use a softmax function to compute normalized
edge weight for subsequent neighborhood aggregation. The update
phase is the same as GCN.

2.2 Distributed GNN Training with Data
Parallelism

When dealing with large-scale graphs, single machines’ limited
memory and computational resources become bottlenecks for large-
scale GNN training. Distributed computing offers sufficient compu-
tational resources, thereby enhancing training efficiency. Existing
GNN systems [16, 24, 40, 42, 43, 54, 58] leverage data parallelism by
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partitioning the input graph and distributing it to multiple work-
ers to train the same GNN model collaboratively. However, due to
the graph aggregation operations in GNNs, which create vertex
dependencies across these partitions, these graph partitions can-
not be processed independently. In NeutronStar [43], the authors
summarize the current GNN systems into two categories according
to the way they manage vertex dependencies: Dependency Cache
(DepCache) methods and Dependency Communication (DepComm)
methods. The GNN systems [11, 51, 54, 58] employ the DepCache
methods to replicate data of neighboring nodes from partitions
outside to the local worker, enabling independent GNN training
locally but incurring redundant computations. In contrast, systems
[16, 25, 29, 38, 40] employing the DepComm methods collect data of
neighboring vertices through communication from remote workers.
While avoiding redundant computations, these systems incur neces-
sary communication costs. The irregular nature of the graph causes
extensive cross-worker vertex dependencies in data parallelism and
thereby increases the difficulty of high-performance distributed
GNN training. We summarize two major limitations below.

Limitation #1:Workload imbalance. Distributed GNN training
with data parallelism is prone to workload imbalance due to the
skewed interconnection structure of graphs. To confirm our analy-
sis, we employ Chunk-based graph partitioning and METIS-based
graph partitioning in NeutronStar [43], evaluating the balance be-
tween computational and communication loads across each par-
tition. The results are shown in Figure 3. The chunk-based graph
partitioning strategy, employed by systems such as NeuGraph [24],
ROC [16], and NeutronStar [43], divides the graph into chunks
where nodes are arranged with consecutive IDs. Although this
method achieves vertex balance, it may lead to significant workload
imbalance because it does not account for the edge distribution
among workers. On the other hand, the METIS algorithm, utilized
by DistDGL [54], SANCUS [29], and BNS-GCN [38], aims to mini-
mize cross-worker edges (i.e., edge-cuts) in its partitioning decisions.
However, focusing on minimizing edge cuts does not guarantee



balanced remote and local vertices within each partition, resulting
in varied communication and computation loads across workers.

Limitation #2:High overhead in managing cross-worker ver-
tex dependencies. Managing vertex dependency (VD) constitutes
the primary overhead in GNN data parallelism. Furthermore, as the
cluster scale expands or model layers deepen, the proportion of VD
management overhead further increases. To confirm our analysis,
we analyze VD management overhead in DistDGL [54] and Neu-
tronStar [43] when altering the cluster scale or model layer. We
measure the proportion of VD management overhead by account-
ing for communication time and redundant computation time and
quantify VD’s scale by calculating communication and redundant
computation edges. As shown in Figure 4, across different cluster
sizes and model layers, the VD management overhead in DistDGL
and NeutronStar averages 80.6% and 46.5% of the total execution
time, respectively. Furthermore, as shown in Figure 5, no matter
increasing the number of partitions and workers or deepening mod-
els, the VD scale can be substantially increased. When the number
of workers scales from 2 to 16, the time proportion of VD man-
agement overhead in DistDGL and NeutronStar increases by 1.21x
and 1.45X%, respectively, with the VD scale increasing by 8.1x and
6.2, respectively. Similarly, as increases the model layer from 2 to
5, the time proportion of VD management overhead in DistDGL
and NeutronStar increases by 1.22X and 1.06X, respectively, with
the VD scale increasing by 7.7x and 3.0, respectively.

2.3 Opportunity: Tensor Parallelism

Avoiding partitioning the graph structure across different workers
is crucial to mitigating the limitations outlined above. Therefore,
we exploit tensor parallelism for distributed GNN training, par-
titioning vertex features instead of the graph structure, thereby
eliminating cross-worker vertex dependencies while ensuring load
balancing. Inspired by DNN tensor parallelism [33] that supports
DNN training with large-scale model data by partitioning model
parameters instead of data samples. We extend tensor parallelism to
distributed GNN training and change the partitioning target from
model parameters to vertex data, as the memory overhead of GNN
training mainly stems from vertex data (i.e., features and embed-
dings), while model data is typically small. Past DNN works employ
multidimensional partitioning, such as 2D [47], 2.5D [41], and 3D
[3] partitioning, to reduce the communication and memory over-
head in tensor parallelism. These multidimensional partitioning
methods further partition DNN data samples into multiple disjoint
subsets for matrix operations with model parameter subsets. How-
ever, due to the unique graph aggregation training semantics of
GNNs, further partitioning GNN data samples (i.e., graph data)
reintroduces vertex dependencies. This renders us unable to di-
rectly apply past DNN tensor parallelism methods to optimize the
efficiency of GNN tensor parallelism.

Recent works in vertical feature partitioning. We note that
some recent studies [6, 11] explore vertical feature partitioning
in distributed GNN training. However, they employ feature parti-
tioning approach only in partial training processes and focus on
reducing the feature communication overhead (See Section 6 for
details). This feature partitioning approach cannot guarantee load
balancing in the end-to-end training because most training still
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Figure 6: GNN tensor parallelism workflow for a single layer.

employs data parallelism. In contrast, we explore tensor parallelism
throughout the entire training process, vertically partitioning both
features and embeddings across all layers, achieving complete load
balancing.

3 GNN TENSOR PARALLELISM

In this section, we provide a detailed exposition of the workflow
involved in GNN tensor parallelism and elucidate its advantages
and challenges through workload analysis.

3.1 GNN Tensor Parallelism Workflow

Unlike GNN data parallelism, which partitions the graph topology,
GNN tensor parallelism vertically partitions vertex features along
dimensions, where each worker is responsible for the complete
graph GNN training of different feature slices with the same dimen-
sional size. Figure 6 illustrates the single-layer training workflow
for GNN tensor parallelism. Initially, the feature vectors of the ver-
tices are evenly partitioned among all workers according to their
feature dimensions, i.e., each worker holds % dimensions of the
feature vectors where D is the total number of vertex feature dimen-
sions, and N is the number of workers. The GNN tensor parallelism
directly leverages the structure of the raw graph for its computa-
tions. Specifically, at each layer of the GNN model, every vertex
aggregates information from all its neighboring vertices along the
incoming edges and then applies NN operations.

Each worker stores the complete graph structure and conducts
full-neighbor aggregation operations locally (@). Before the start
of NN computations, a gather operation is performed to obtain
complete vertex embeddings because nonlinear operations in NN
computations cannot be partially computed (@). To ensure the uni-
form distribution of NN computation tasks and communication
tasks across different workers, each worker is responsible for com-
puting and communicating with % vertices, where V represents the
total number of vertices and N denotes the number of workers. All
workers initiate gather operations simultaneously, sending local
embedding slices to the corresponding workers. Subsequently, each
worker commences the NN computation tasks for local vertices (©).
Finally, upon completion of NN computations, all workers initiate
split operations simultaneously to re-segment local embeddings
and send them to the corresponding workers to continue the next
layer of GNN training (@). The gather and split operations are
implemented by collective communication libraries such as NCCL
[28] and Gloo [8].



3.2 Workload Analysis

GNN tensor parallelism achieves a well-balanced computation and
communication load by evenly partitioning vertex features along
dimensions. In the computation process, each worker handles the
full-graph aggregation operations of the same dimension feature
slices and performs NN computations for the same number of ver-
tices. The time and space complexities of graph aggregation op-
eration are O(E %) and O(V%), respectively. The time and space
complexities of NN operation are O(%DZ) and O(%D), respec-
tively, where V and E represent the total number of vertices and
edges, N denotes the number of workers, and D denotes the feature
dimension, for simplicity, we assume that the feature dimensions
are uniform across all layers. In the communication process, during
the gather phase, each worker receives the embedding slices of
local NN computation vertices from the other N — 1 workers. The
time and space complexities are (N — 1) - % . % ~ O(%) and
O(%), respectively. The split phase can be understood as the
inverse process of the gather phase, and it has the same time and
space complexity as the gather phase.

We further analyze the total computation and communication
load of GNN tensor parallelism. GNN tensor parallelism maintains
the same total computational load as single-machine full-graph
training without any redundant computations. Regarding commu-
nication load, GNN tensor parallelism performs split and gather
operations at each layer to communicate embedding slices with the
other (N — 1) workers. The total communication load for GNN ten-
sor parallelism is N X 2(N — l)%L ~ 2VDL, where L denotes the
number of model layers. The total communication load of GNN data
parallelism is Zg 1IRi|DL, where R; denotes the remote vertices of
worker i. As the number of workers increases, the remote vertices
(Zi\il |R;|) rise significantly, often exceeding 2V [42]. In contrast,
the total communication volume in GNN tensor parallelism remains
relatively constant with worker increases, typically having a lower
communication load than data parallelism.

In GNN tensor parallelism, more memory is used to replicate
the graph structure to eliminate cross-worker vertex dependencies
and ensure load balancing. This overhead is generally acceptable
since the primary memory consumption in GNN training comes
from vertex data, including features, embeddings, and gradients
[42]. For example, in the Ogbn-paper dataset, the graph topology
size is 6.4 GB, while vertex features occupy 82.7 GB. GNN tensor
parallelism distributes all vertex data across different workers by
either dimension or vertex count.

3.3 Challenges

The benefits of GNN tensor parallelism come with challenges that
must be overcome to fully exploit acceleration opportunities.

Challenge #1: Frequent collective communication. Compared
to GNN data parallelism, GNN tensor parallelism involves more
rounds of communication (i.e., twice per layer) to gather and split
vertex embeddings. This frequent communication may impact com-
putation efficiency due to substantial layer-wise synchronization.
Therefore, reducing the overall communication frequency is crucial
for effectively implementing GNN tensor parallelism.
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Challenge #2: Processing the entire graph on a single worker.
GNN tensor parallelism becomes impractical when a single GPU
memory cannot accommodate the entire graph and corresponding
embedding slices. To support the training of large-scale graphs,
we need to offload the training data to the CPU main memory.
This requires the further design of a task scheduling strategy and
consideration of integration with pipeline techniques to minimize
latency when accessing data in CPU main memory.

4 THE NEUTRONTP

We present NeutronTP, a distributed system for full-graph GNN
training that utilizes tensor parallelism and addresses the challenges
outlined in Section 3.3 through two critical functions. Figure 7
provides an architectural overview of NeutronTP.

Generalized decoupled training method. The main reason
for challenge #1 lies in the coupled training patterns of NN and
graph aggregation operations, which frequently switch between
using complete embeddings and embedding slices. Therefore, we
decouple NN operations from graph aggregation operations, re-
stricting collective communication to the beginning and end of
consecutive graph operations, thereby reducing communication
frequency. To address the issue that existing decoupling training
methods [4, 23, 56] do not support complex GNN models involving
edge-associated NN operations, we further explore a decoupling
approach for these operations, providing a generalized decoupling
training method. Specifically, before initiating the graph aggre-
gation, we precompute edge-associated NN operations for each
edge.

Memory-efficient task scheduling strategy. To address chal-
lenge #2, we further partition subtasks within each worker to per-
form fine-grained GNN training. NeutronTP employs a memory-
efficient task scheduling strategy that reduces runtime memory
consumption through chunk-based task scheduling and further
enhances performance by inter-chunk pipeline. Specifically, within
each worker, we partition the entire graph logically into multiple
chunks that can fit into GPU memory, with each chunk containing
a set of vertices with contiguous IDs along with all their incoming
edges. During training, each worker schedules chunks onto the
GPU in the same order, maintaining load balance for GNN tensor
parallelism. Without compromising the layer-wise synchroniza-
tion barrier, the inter-chunk pipeline overlaps the computation and
communication of different chunks.



4.1 Generalized Decoupled Training Method

GNN tensor parallelism requires frequent collective communication
for gathering and splitting embeddings by dimensions between NN
computation (requiring the embedding split by vertices) and graph
propagation (requiring the embedding split by dimensions), which
results in substantial layer-wise data synchronization overhead. To
improve communication efficiency for high performance training,
NeutronTP employs a decoupled training method that reorganizes
the execution order by moving NN computation to the beginning
or end of the computation graph. This design reduces the collective
communication of switching data organizations.

4.1.1 Decoupled GNN Training Approaches. Previous works [13,
45, 52] have indicated that the expressive power of GNNs originates
from NN operations and graph operations themselves, not their
coupling execution. Moreover, the coupling execution of graph ag-
gregation and NN operations may lead to over-smoothing problems
when training deep GNN models [19, 23, 52]. Therefore, some de-
coupled GNN approaches [19, 23, 30, 34, 45] advocate separating NN
operations from graph aggregation. This decoupling method has
been shown to effectively enhance both model accuracy and scala-
bility in deep model training. A recent study [56] has also applied
decoupled training methods to dynamic GNN training, achieving
significant scalability and performance. However, existing decou-
pling training methods [19, 23, 30, 34, 45] typically focus only on
decoupling vertex-associated NN operations and do not support
decoupling edge-associated NN operations. For complex models
incorporating edge-associated NN operations, such as GAT [37],
graph aggregation in itself may introduce non-linear operations
that cannot be partially computed.

We extend the decoupled GNN training method by precomputing
all the attention coefficients required for each edge. This approach
further decouples edge-associated NN operations from graph aggre-
gation, thereby supporting the training of complex models. Specifi-
cally, before the graph aggregation operation starts in this round,
it computes attention coefficients using data parallelism. Since the
computation of edge attention coefficients requires complete vertex
embeddings and involves all edges, we employ data parallelism
to compute attention coefficients for all incoming edges of local
vertices on each worker. After the computation is completed, the at-
tention coefficients are shared among all workers. For other stages,
the approach remains consistent with simple GNN models, allow-
ing the use of GNN tensor parallelism. With the above design, we
can perform edge-associated NN computations before initiating the
graph aggregation operation.

4.1.2  Decoupled GNN Tensor Parallelism. For the given input GNN
model, NeutronTP provides its corresponding decoupled training
mode and applies tensor parallelism for training. Specifically, af-
ter specifying the model layers L, in each epoch, NeutronTP first
performs L rounds of NN operations on each vertex to obtain the
low-dimensional vertex embeddings. For complex models incorpo-
rating edge-associated NN operations, NeutronTP further computes
attention coefficients for all edges to be used in subsequent graph
aggregation operations. Upon completing the L rounds of NN op-
erations, NeutronTP performs a split operation to restore tensor
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parallelism, where each worker holds partial embedding dimen-
sions for all vertices. Subsequently, each worker utilizes embedding
slices to complete L rounds of full-graph aggregation operations.
Upon completion of the graph aggregation operations, the forward
propagation is executed, followed by a gather operation to collect
complete vertex embedding to ensure the correct execution of the
loss function. Backward propagation follows the inverse process
of forward propagation, where NeutronTP still needs to perform
split and gather operations before and after L rounds of graph
aggregation operations, respectively.

Figure 8 illustrates the comparison in overall communication fre-
quency between naive GNN tensor parallelism and decoupled GNN
tensor parallelism. For a 3-layer GNN model, the naive GNN tensor
parallelism requires 10 rounds of collective communication, and
the frequency of communication increases linearly as the number
of model layers increases. In contrast, the decoupled GNN tensor
parallelism only requires 4 rounds of collective communication, re-
gardless of the number of model layers. Additionally, after multiple
NN operations, the vertex embeddings involved in graph aggrega-
tion typically have lower dimensions compared to the raw features,
further reducing the collective communication overhead.

Decoupled GNN tensor parallelism is particularly effective for
message-passing based GNNs such as GCN [18], GraphSAGE [12],
GAT [37], and GIN [46]. These models rely on updating and ag-
gregating vertex features across the graph, making them ideal for
GNN tensor parallelism, which efficiently partitions features and
balances loads. The decoupled training method reduces communi-
cation overhead by decoupling update and aggregation processes.
However, our approach may not directly benefit GNNs that do not
rely on message passing, such as spectral-based GNNs (e.g., Cheb-
Net [35]) and GNNs with global attention mechanisms (e.g., Graph
Transformer [7]). By focusing on message-passing based GNNs,
NeutronTP enhances training efficiency and scalability, demonstrat-
ing broad applicability within widely-used GNN models.

4.1.3 Convergence Analysis. In this section, we provide a theoreti-
cal analysis of convergence guarantees for NeutronTP. Decoupled
GNN training methods have been widely used by machine learning
systems [19, 23, 30, 34, 45], and we present the theoretical analy-
sis referring to the APPNP [19] and DAGNN [23]. The expressive
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Figure 9: (a) An example of graph data partitioned into four chunks. (b) An example of the sequential execution of different
phases. (forward computation for a 2-layer GNN) (c) An example of inter-chunk pipelining. (forward computation for a 2-layer
GNN) (d) An example of partitioning the split operation into chunk-level communication tasks.

power of GNNs originates from NN operations and graph opera-
tions themselves, not their coupled execution. Thus, the decoupled
GNN training method separates and sequentially executes these
operations while maintaining comparable expressive power to orig-
inal GNNs. Experimental results from DAGNN [23] demonstrate
that training on the input vertex feature with NN operations can
achieve a certain level of accuracy in node classification and apply-
ing graph aggregations in a decoupled manner can further enhance
the performance. Therefore, we provide Assumption 1 as follows:

e Assumption 1 The initial features have sufficient information
for the machine learning task, and the graph aggregation opera-
tion can help the model learn structural information.

e Theorem 1 Under Assumption 1, the decoupled GNN training
method separates graph operations from NN operations. The
convergence of the decoupled GNN training can be guaranteed
by the convergence of the NN and graph operations.

Decoupled GNN training uses the iterative equation

L = UPDATE(X) = MLP*(X), )
Z° =1, (8)
7K = AGG(Z) = yAZF 1, )

where k represents the number of times the NN operations and
graph operations are executed, X is input features. UPDATE(-)
represents NN operation, i.e., X is fed into a multi-layer neural
network to obtain the embeddings L. To learn the structural infor-
mation of the graph, decoupled GNN training performs multi-layer
graph operations, i.e., AGG(-). A is symmetrically normalized adja-
cency matrix (A = f)_%fif)_%, where A represents the adjacency
matrix, D represents the degree matrix. Here, A and D correspond
to A +1I and D + I, respectively, with I being the identity matrix). y
(y € (0,1]) is the weight of edges, which can be computed through
a self-attention mechanism as in GAT or weighted neighbor convo-
lution as in GCN.

MLPF(X) is the convergent function. This is because multiple
NN operations can be viewed as a traditional deep neural network
model (i.e., multi-layer perceptron), whose convergence properties
are well-established [1, 27]. Therefore, we only need to consider
AGG(Z). After k iterations of graph propagation, AGG(Z) can be
expressed as:

zk = Yk AL (10)

If we take the limit k — oo in Formulation 10, the result tends to
0 since yi € (0, 1], the eigenvalues of A are the same as those of A,
which can be proven through Gershgorin circle theorem [44] that
the maximum eigenvalue is 1, i.e., lAll <1, and L is convergent,
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resulting in

Z% = y®A®L — 0, (11)
the above concludes that the convergence is guaranteed.

In Section 5.7, we also evaluate the accuracy of decoupled GNN
training, which performs comparably to coupled GNN training
across different datasets.

4.2 Memory-efficient Task Scheduling Strategy

4.2.1 Chunk-based task Scheduling. To address challenge #2, Neu-
tronTP employs chunk-based task scheduling, where the global
graph topology is partitioned on each worker, and different work-
ers simultaneously schedule the same subgraph. This does not incur
cross-worker vertex dependencies, as each worker partitions the
entire graph locally using the same strategy. All workers execute
communication and computation tasks for each chunk in the same
order to ensure load balancing. As shown in Figure 9 (a), each chunk
comprises a subset of destination vertices with contiguous vertex
IDs and all in-edges for each vertex, facilitating independent full-
neighbor aggregation for each chunk. In GNN tensor parallelism,
using chunk-based partitioning offers two advantages. Firstly, using
chunk-based partitioning to obtain subgraphs is lightweight, as the
graph topology only needs to be logically partitioned within local
workers without modifying any physical storage locations. Sec-
ondly, ensuring load balancing merely requires scheduling chunks
for computation in the same order across all workers, thus elimi-
nating the need to handle load balancing between chunks.

It is worth mentioning that we only need to group the in-edges
of destinations, as complex aggregations are performed only during
the forward pass. During the backward pass, source vertices can
accumulate gradients along out-edges through summation. Lever-
aging the associativity of summation operations, multiple copies
of source vertices in different chunks can independently compute
gradients and then be summed afterward. During the actual par-
titioning process, unlike traditional distributed training systems
where chunks are divided among multiple workers, we do not spec-
ify a predetermined number of chunks to partition. Generally, to
better utilize GPU resources and reduce scheduling overhead, we
should aim to make each chunk as large as possible.

When using chunks as the scheduling unit, full-graph GNN
training requires consideration of intermediate result management.
Intermediate results are generated during forward computation and
consumed in the gradient computation during backward pass [42].
To avoid exceeding the GPU memory capacity with intermediate
results, they need to be sent back to CPU memory after forward
computation and returned to GPU during backward computation.



Algorithm 1 Workflow of NeutronTP for a single epoch

Input: Graph G(V,E), Feature h°, Initial parameterized GNN layers
{wWo,w!. .  wi-1 }, cluster size m, chunk number n
Output: Updated parameterized GNN layers {W°, W1 .. . wl~1}
1: {G;|0<j<n}=chunk_partition(G, n)
2: {Vi,h(i)|Ogi<m}=distribute_vertex({Gj|O§j<n},ho, m)
3: for worker i = 0 to m — 1 do in parallel
4 forlayer /=0to L —1do
5 h'*! of V; = worker (i) . UPDATE(W, h of V;)
6 for layer /= 0to L — 1 do
7: for chunk withid j =0ton — 1 do
8
9

if layer == 0 then
h_cut? of Nj —Split(h® of Nj)

10: h_cut!™! of V; = worker (i) .AGG(h_cut! of N}, G;)
11: if layer == L — 1 then
12: h” of Vj«—Gather(h_cutt of V})

13: loss = downstream_task(h’)
14: Vh™ = loss.backward()
15: for worker i = 0 to m — 1 do in parallel

16: for layer I = L — 1to 0 do

17: for chunk withid j=0ton — 1 do

18: if layer == L — 1 then

19: Vh_cut! of V;«Split(Vhe of V)

20: Vh_cut! of N; = worker (i) .AGG(Vh_cut!*! of V;, G;)
21: if layer == 0 then

22: Vh of N;—Gather(Vh_cutF of Nj)

23: forlayer /=L —1to 0 do

24: Vh¥*! of V; = worker (i) . UPDATE(W!,Vh! of V;)

25: for layer [ =0to L — 1do
sync_and_update (W?) //parameter update

This frequent host-GPU data exchange may impact overall perfor-
mance. Fortunately, benefiting from the decoupled GNN training
approach, NeutronTP avoids generating intermediate results during
consecutive graph aggregation operations. Thus, we only need to
handle intermediate results produced during the NN operations.
Considering that the computational overhead of GNN training typi-
cally lies in graph aggregation operations rather than NN operations
[50], we push down NN operations to be executed on the CPU. This
not only reduces a significant amount of host-GPU communication
for intermediate results but also leverages CPU resources.

4.2.2  Inter-chunk Pipelining. Based on chunk-based task schedul-
ing, we can further overlap the communication and computation
processes of each chunk. Our plan involves overlapping each split
and gather operation with the adjacent graph aggregation opera-
tion without disrupting the original layer-wise synchronization. As
illustrated in Figure 9 (b), the full graph computation process and
two collective communication operations need to be executed seri-
ally to ensure layer-wise synchronization. Benefiting from chunk-
based task scheduling, we can further partition the two collective
communication operations into chunk-level communication tasks
to overlap with computation tasks. As shown in Figure 9 (c), the
split operation pre-splits the embeddings of src vertices for each
chunk, while the gather operation collects the embedding slices
of dst vertices for each chunk. This chunk-level communication
task requires further design to avoid redundant communication.
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Firstly, for each chunk, we evenly distribute its vertex-related com-
munication tasks across all workers to ensure communication load
balancing. However, due to duplicate src vertex sets within chunks,
this may result in redundant communication operations for some
vertices. Therefore, when assigning communication tasks for each
chunk, NeutronTP checks whether the vertices within the current
chunk have already been communicated in previous chunks. As
illustrated in Figure 9 (d), upon detecting that the vertices have
been communicated, NeutronTP directly reuses the previous com-
munication results. After traversing each chunk and determining
the vertex-related communication tasks assigned to each worker,
we aggregate them into a non-redundant vertex set. Each worker
executes the relevant communication tasks and NN computation
tasks based on its local vertex set.

4.3 Overall Execution Flow in NeutronTP

Algorithm 1 outlines the overall execution flow. To begin with,
NeutronTP employs a chunk-based task scheduling strategy to
partition the graph topology into a series of chunks G;, each con-
taining a set of disjoint vertex sets V; and their in-neighbor sets N,
where j is the chunk id (line 1). Subsequently, NeutronTP evenly
distributes the vertex-related tasks within each chunk across all
workers. After deduplication, each worker obtains its local vertex
work queue V;, where i is the worker id, utilized for subsequent
execution of NN computations and communication operations (line
2). During the forward pass, each worker first completes L rounds
of NN operations to obtain local vertex embeddings (line 5). Next,
all workers schedule chunks in the same order and begin by split-
ting the embeddings of their in-neighbor sets, i.e., h of N i (Line
9). Upon completion of the splitting phase, each worker initiates
graph aggregation operations using its local embedding slices, i.e.,
h_cutf of Nj (Line 10). Following L rounds of graph aggregation
within the chunk, all workers gather the complete embeddings of
destination vertices in each chunk, i.e., hl of V; (Line 12). Upon
completion of all chunk computations and communication tasks,
each worker initiates downstream tasks and computes gradients
Vhe (lines 13-14). The backward pass is the reverse process of the
forward pass, requiring embedding split and gather operations
before and after the graph aggregation operation, respectively.

5 EVALUATION
5.1 Experimental Setup

Environments. Our experiments are conducted on the Aliyun
ECS cluster with 16 GPU nodes. Each node (ecs.gnéi-c16g1.4xlarge
instance) is equipped with 16 vCPUs, 186GB DRAM, and 1 NVIDIA
Tesla T4 GPU, running Ubuntu 18.04 LTS OS. The network band-
width is 15 Gbps/s. Libraries CUDA 11.1, OpenMPI-3.0.2, PyTorch
v1.5 backend, and cuDNN 7.0 are used in both clusters.

Datasets and GNN algorithms. Table 1 lists six graph datasets
that we used in our evaluation, including three popular GNN datasets:
Reddit [12], Ogbn-products [15], and Ogbn-paper [15], and one
graph dataset Friendster [20]. Ogbn-mag [15] and Mag-lsc [14] are
two heterogeneous graphs that we use to evaluate the heteroge-
neous GNN training. For graphs without ground-truth properties
(Friendster), we use randomly generated features, labels, training



Table 1: Dataset description

Dataset [V] [E]  ftr.dim #L  hid. dim
Reddit (RDT) 023M  114M 602 41 256
Ogbn-products (OPT) 2.45M  61.68M 100 47 64
Ogbn-paper (OPR) 111.1M 1.616B 128 172 128
Friendster (FS) 65.6M 2.5B 256 64 128
Ogbn-mag (MAG) 1.9M 21M 128 349 64
Mag-lsc (LSC) 244.2M 1.7B 768 153 256

(65%), test (10%), and validation (25%) set division. We use two pop-
ular GNN models with different computation patterns, GCN [18]
and GAT [37]. All of them are in a 2-layer structure. The vertex
feature dimensions, hidden layer dimensions, and the number of
labels of datasets are listed in Table 1.

Competitor systems. In our performance evaluation, we compare
NeutronTP with two kinds of GNN training systems, i.e., mini-batch
system and full-graph system. For the mini-batch system, we com-
pare NeutronTP with DistDGL [54], a representative deep learning
library for graphs. DistDGL relies on data sampling to reduce com-
putation cost [54], which is set to execute a (25, 10) neighborhood
sampling for the training. In such a configuration, DistDGL picks a
maximum of 10 neighbors for the first hop of a vertex, and then a
maximum of 25 neighbors for each of those 10. For the full-graph
system, we compare NeutronTP with NeutronStar [43] and Sancus
[29]. Neutronstar [43] designs hybrid vertex dependency manage-
ment for a more balanced use of communication and computational
resources. Sancus [29] reuses historical embedding for cross-worker
vertices to reduce communication.

5.2 Overall Comparison

We conduct a comprehensive performance comparison with Neu-
tronStar [43], DistDGL [54], and Sancus [29] on a 16-node cluster.
We record the computation time, communication time, and the per
epoch runtime. "max" indicates the longest computation and com-
munication time among all workers, which typically determines
the actual runtime of distributed training. Similarly, "min" indicates
the shortest computation time and communication time among
all workers. For systems employing pipelining techniques to over-
lap computation and communication (i.e., NeutronStar [43] and
NeutronTP), the sum of the longest computation and communica-
tion time exceeds the total runtime. By meticulously logging these
times, we gain insights into the workload of distributed training.
The experimental results are summarized in Table 2.

Comparison with mini-batch system. Compared to DistDGL
[54], NeutronTP exhibits superior performance across most datasets,
achieving up to 6.23% speedup. The METIS partitioning used by
DistDGL may result in certain workers having more vertices, lead-
ing to more frequent access by other workers. As shown in Table 2,
DistDGL exhibits an imbalance in both computation and communi-
cation times among different workers, with disparities reaching up
to 1.38% and 2.2X, respectively, thereby causing resource wastage in
the less loaded workers. NeutronTP mitigates these issues by adopt-
ing tensor parallelism, achieving more balanced workloads while
avoiding redundant computations and communications. On the
Ogbn-paper dataset, DistDGL demonstrates a better performance
as it trains only on 1.1% of the total vertices, resulting in reduced
computational load compared to NeutronTP.
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Table 2: Comparison with different systems a 16-node ECS
cluster. "max" and "min" indicate the longest and shortest
computation or communication times among workers, re-
spectively. "total" indicates the per-epoch runtime.

Runtime (s)
Model | Dataset System Computation ~ Communication total
max min max min
DistDGL 0.15 0.11 2.12 1.38 2.27
RDT NeutronStar 0.86 0.77 1.17 0.87 1.92
Sancus 0.35 0.31 0.82 0.71 1.17
NeutronTP 0.39 0.38 0.19 0.18 0.40
DistDGL 0.26 0.16 2.82 1.28 3.18
OPT NeutronStar 2.71 1.42 2.89 1.78 4.45
Sancus 0.86 0.36 1.59 1.22 2.45
GCN NeutronTP 0.46 0.44 0.24 0.22 0.50
DistDGL 5.35 4.19 20.1 11.21 254
NeutronStar - - - - OOM
OPR Sancus - - - - OOM
NeutronTP 95.8 95.2 53.6 49.4 134.4
DistDGL 1364 1189 3234 197.5 459.5
S NeutronStar - - - - OOM
Sancus - - - - OOM
NeutronTP 74.3 73.5 32.9 29.4 90.5
DistDGL 0.75 0.52 2.17 1.49 2.92
NeutronStar - - - - OOM
RDT Sancus - - - - OOM
NeutronTP 0.92 0.88 0.48 0.42 1.29
DistDGL 1.17 0.94 2.76 1.29 3.93
OPT NeutronStar 8.72 5.98 15.9 8.29 224
Sancus - - - - OOM
GAT NeutronTP 2.17 1.94 1.06 0.95 3.03
DistDGL 8.40 6.48 21.1 11.7 29.5
NeutronStar - - - - OOM
OPR Sancus - - - - OOM
NeutronTP 154.3 136.4 98.9 84.7 235.4
DistDGL 157.8 1104  419.8 283.7 577.6
S NeutronStar - - - - OOM
Sancus - - - - OOM
NeutronTP 115.2 92.5 72.1 61.4 167.9

Comparison with full-graph system. Compared to Neutron-
Star [43] and Sancus [29], NeutronTP demonstrates superior per-
formance across all datasets, achieving speedups of up to 8.72x
and 4.81X, respectively. They are both constrained by imbalanced
workloads and communication overhead resulting from extensive
cross-worker vertex dependencies. The computation and commu-
nication time gap between different workers in NeutronStar can
reach up to 1.91x and 1.62X, respectively. For Sancus, these gaps
can reach up to 2.38X and 1.18X, respectively. NeutronStar exhibits
long communication times due to its chunk-based partitioning
strategy, which has more cross-worker vertex dependencies, as
described in Section 2.2. Sancus reduces communication overhead
by reusing historical embeddings. However, when updating his-
torical embeddings, Sancus sequentially triggers each worker to
broadcast embeddings, sending all local embeddings to all workers,
regardless of whether other partitions contain these vertices. This
not only leads to prolonged waiting times for workers but also re-
sults in considerable redundant communication. Both NeutronStar
and Sancus encounter out-of-memory errors when dealing with
large-scale graphs and complex model due to their lack of intra-
worker task scheduling strategies. The advantages of NeutronTP
stem from two main factors: (1) Tensor parallelism training achieves
a more balanced computation and communication load, while the
decoupled GNN training approach significantly reduces commu-
nication overhead. (2) The chunk-based task scheduling strategy
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Figure 10: The computation/communication load of each
partition in different systems. "TP" indicates NeutronTP
with naive GNN tensor parallelism and "DTP" indicates Neu-
tronTP with decoupled GNN tensor parallelism.

partitions local graph data into multiple chunks smaller than GPU
memory and loads them sequentially, overlapping computation and
communication while avoiding out-of-memory errors.

5.3 Computation and Communication Analysis

We evaluate the computational and communication loads of differ-
ent systems to illustrate the load-balanced advantages of NeutronTP.
Experiments are performed on the Reddit dataset using DistDGL,
NeutronStar (NTS), Sancus, NeutronTP with naive GNN tensor
parallelism (TP), and NeutronTP with decoupled GNN tensor paral-
lelism (DTP). We train a 2-layer GCN on a 4-node cluster and record
the workload for each worker as well as the overall workload. The
communication load was measured based on the amount of data
transferred, while the computational load was determined by the
number of edges involved in the computation. Since NeutronTP
utilizes feature slices during computation, whereas other systems
use complete features, we scale the edge computation of NeutronTP
accordingly. Experimental results are shown in Figure 10.
Regarding computational load, NeutronTP achieves complete
load balancing by partitioning vertex data, as shown in Figure 10
(a). Regarding total computation, NeutronTP is comparable to other
full-graph systems but surpasses the DistDGL. Although DistDGL
reduces the computation through sampling, the sampling process
incurs significant overhead and leads to decreased efficiency as
the model layer increases (see details in Section 5.5). As illustrated
in Figure 10 (b), regarding communication load, NeutronTP en-
sures load balance by assigning each worker an equal number of
vertices for embedding gather and split. However, naive tensor
parallelism requires embedding gather and split operations at
each layer, leading to frequent communication. Benefiting from
the decoupled tensor parallelism training approach, NeutronTP
reduces the overall communication frequency while converting
the communication entities into lighter-weight vertex embeddings,
significantly reducing communication volume by up to 7.23 X.

5.4 Performance Gain Analysis of NeutronTP

We analyze the performance gain of GNN tensor parallelism (TP),
decoupled training method (DT), chunk-based task scheduling
(CS), and inter-chunk pipelining (IP) on the GCN model with four
datasets. To ensure a fair comparison, we start with a data paral-
lelism baseline based on the NeutronTP codebase and gradually
integrate the four optimization methods. The data parallelism base-
line employs a chunk-based approach for graph partitioning. Figure
11 shows the normalized speedups. Compared to the baseline, the
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Figure 11: Performance gain analysis. "CS" indicates the
chunk-based task scheduling, "TP" indicates the GNN tensor
parallelism training, "DT" indicates the decoupled training
method, and "IP" indicates the inter-chunk pipelining.

baseline+CS addresses the memory requirements of large-scale data
by further partitioning chunks within each worker. Compared to the
baseline+CS, TP achieves speedups ranging from 1.92X to 2.45% by
implementing a more balanced workload. On the Friendster dataset,
TP achieves the highest speedup, attributed to its inherent power-
law distribution as a social network graph. The chunk-based parti-
tioning strategy exacerbates severe workload imbalances in such
graphs. Compared to the baseline+CS+TP, DT achieves speedups
ranging from 2.56X to 4.47X by significantly reducing communica-
tion overhead. DT achieves a 4.47X speedup on the Reddit dataset,
whereas on the Ogbn-paper dataset, the speedup is only 2.21x. This
discrepancy is due to the embedding dimension in Reddit being
significantly lower than the raw features, facilitating a reduction
in communication volume through the early computation of NN
operations. Lastly, IP provides speedups ranging from 1.1X to 1.5X
by overlapping computation and communication. IP achieves an
average speedup of 1.47x on the Reddit and Product datasets, while
on the two larger datasets, the speedup averages only 1.11X. This
is because large datasets require more chunks partitioned, leading
to more frequent CPU-GPU communication.

5.5 Scalability Analysis

Performance with varying cluster sizes. In this experiment, we
compare NeutronTP with baselines when training GCN with differ-
ent cluster sizes over two datasets. The results are shown in Figure
12. Across different cluster sizes, NeutronTP consistently outper-
forms the baselines. Specifically, as the cluster size increases from 2
to 16, NeutronTP achieves an average speedup of 6.33%, 5.97%, and
2.69x compared to DistDGL, NeutronStar, and Sancus, respectively.
We observe that the execution time of NeutronTP, DistDGL, and
NeutronStar decreases with an increase in the number of nodes.
However, Sancus demonstrates poor scalability. That may be due
to its communication implementation, where each worker needs to
fetch the entire partition data from remote workers, even if only a
small portion of the data is required. In contrast, NeutronTP adopts
tensor parallelism to eliminate vertex dependencies and employs a
decoupled training approach to reduce communication overhead,
achieving nearly linear speedup. Specifically, as the number of
nodes in the cluster increases from 2 to 16, NeutronTP achieves an
average speedup of 6.33x and 4.97x on Reddit and Ogbn-products.

Performance with varying model layers. In this experiment,
we compare NeutronTP with baselines when training GCN with
different model layers over two datasets in a 16-node cluster. For
the 2, 3, and 4-layer models, the DGL sampling strategies were set
to (25,10), (25,15,10), and (25,20,15,10) respectively. The results are
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shown in Figure 13. We observe that the performance advantage of
NeutronTP over other baselines gradually increased with the model
depths. For the 2-layer model, NeutronTP achieves an average
speedup of 5.99x. For the 3-layer and 4-layer models, the speedups
were 8.65X and 11.13X respectively. This is because NeutronTP’s
tensor parallelism can effectively eliminate the cross-worker vertex
dependencies among layers in GNN data parallel training, thereby
removing substantial communication overhead. DistDGL experi-
ences the most severe efficiency degradation because of the neigh-
bor explosion problem [16], where the computation and memory
requirements for mini-batch GNN training increase exponentially
with the number of layers. NeutronTP outperforms DistDGL by up
to 26.64% in the 4-layer model on the Ogbn-products dataset. This
is because the average degree of Ogbn-products is much smaller
than that of Reddit, making the graph topology sparser and causing
a faster increase in the sampled subgraph size.

Performance with varying feature dimensions. In this experi-
ment, we compare NeutronTP with baselines when training GCN
with different input feature dimensions over two datasets in a 16-
node cluster. The results are shown in Figure 14. We observe that the
performance advantage of NeutronTP over other baselines gradu-
ally increased with the feature dimensions. For the 128-dimensional
dataset, NeutronTP achieves an average speedup of 5,87x. For the
256-dimensional, 512-dimensional, and 1024-dimensional datasets,
the speedups are 7.28X, 8.14%, and 12.74X respectively. When fea-
ture dimensions increase, GNN data parallelism suffers from signif-
icant communication overhead, particularly during the communi-
cation of raw features in the first layer. NeutronTP employs decou-
pled GNN tensor parallelism, which only gathers and splits vertex
embeddings. Compared to GNN data parallelism, it reduces commu-
nication frequency and transforms features into lower-dimensional
embeddings before communication.

5.6 GPU Utilization

We evaluate the GPU utilization during the training of GCN on
Reddit for NeutronTP and baselines in a 16-node cluster. Figure 15
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Figure 15: GPU utilization comparison. The average GPU
utilizations are 62.85%, 19.91%, 33.97%, and 37.67% for Neu-
tronTP, DistDGL, NeutronStar, and Sancus, respectively.

shows the results in a 20-second time window. The GPU utiliza-
tion is recorded every 100 milliseconds and averaged in a 1-second
interval. NeutronTP exhibits higher GPU utilization (62.85% on
average) compared to DistDGL (19.91% on average), Sancus (37.67%
on average), and NeutronStar (33.97% on average), with consistently
higher peak GPU utilization for most of the time. DistDGL shows
relatively low GPU utilization due to the sampling step involving
a large amount of random access, which can be the bottleneck to
limit GPU utilization. Additionally, baselines based on GNN data
parallelism suffer from GPU idle time due to unbalanced workloads,
resulting in decreased overall GPU utilization. NeutronTP expe-
riences minimal GPU idle time, attributed to balanced workloads
and a pipeline design between chunks, maximizing the overlap of
communication and computation.

5.7 Accuracy Comparisons

The changes in the execution process introduced by the decou-
pled training method may impact model performance. We plot the
epoch-to-accuracy curve on different systems for a GCN model
over two datasets. The results are shown in Figure 16. After 100
epochs, the test accuracy reaches a stable state, NeutronTP and
other baselines almost achieve the same test accuracy. However,
NeutronTP converges slightly slower compared to the traditional
GNN training method. Sancus exhibits the slowest increase in ac-
curacy over epochs due to its use of historical embeddings. Addi-
tionally, it is worth noting that while many works [16, 25] have
demonstrated that sampling strategies can lead to lower accuracy,
we find that DistDGL performs close to full-graph training accuracy
on commonly used datasets. We attribute this to the well-tuned
parameters of DistDGL. Both mini-batch and full-graph training
methods have their advantages. In summary, NeutronTP exhibits
advantages when training deep GNNs or when the input graph
includes a large proportion of training vertices. However, when the
training set and the number of model layers are small, DistDGL
still holds certain advantages.
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Figure 16: Epoch-to-accuracy.

5.8 Extension to heterogeneous graphs

NeutronTP can be naturally extended to heterogeneous graphs. We
compare NeutronTP with DistDGLv2 [55] using two heterogeneous
graphs [14, 15] and the R-GCN algorithm [31] in a 16-node clus-
ter. DistDGLv2 extends DistDGL to support heterogeneous GNN
training. R-GCN are designed to handle heterogeneous graphs,
which consist of multiple types of edges. On the Ogbn-mag dataset,
NeutronTP achieves a 6.15X speedup. On the Mag-Isc dataset, Dist-
DGLv2 exhibits better performance as it trains on only 0.4% of the
total vertices, reducing the computational load compared to Neu-
tronTP. This is similar to the Ogbn-paper dataset, which includes
only 1.1% training vertices, leading to significant differences in
overall computation between full-graph and mini-batch training.

5.9 Training cost breakdown

We evaluate the training costs of different stages for both node
classification and link prediction tasks using the GCN algorithm
with the Reddit dataset. The results are presented in Table 4. We
can observe that GNN computation is the primary cost, accounting
for an average of 94% of the time in node classification and 79% in
link prediction. By optimizing the GNN computation process, Neu-
tronTP reduces end-to-end training time by 65% to 80% compared
to NeutronStar. Therefore, the practical downstream tasks that ben-
efit most from NeutronTP are those where GNN computation is a
significant part of the overall training cost.

6 RELATED WORK

Full-graph GNN training. A set of GNN systems [5, 10, 16, 24,
29, 36, 39, 40, 42, 43] adopt full-graph GNN training to guarantee
high accuracy. NeuGraph [24] defines a new, flexible SAGA-NN
model to express GNNs. CAGNET [36] proposes 1.5D, 2D, and 3D
graph partitioning to optimize the data distribution among GPUs.
ROC [16] optimizes graph partitioning with online learning while
managing memory with dynamic programming. DGCL [5] designs
a communication planning algorithm that avoids conflict on var-
ious links. PipeGCN [39] reduces communication for boundary
vertices by utilizing historical embeddings and effectively over-
laps computation across different partitions. G3 [40] propose GNN
hybrid parallelism to scale out GNN training with carefully sched-
uled peer-to-peer intermediate data sharing. Hongtu [42] designs
a recomputation-cache-hybrid intermediate data management to
significantly reduce the GPU memory requirement.

Load balancing study in distributed GNN training. Many sur-
vey papers [2, 21, 32] highlight workload imbalance as a primary
challenge in distributed GNN training. Experimental studies [26, 50]
have empirically demonstrated the prevalence of load imbalance.
Many GNN systems attempt to address this issue by exploring
graph partitioning strategies [17, 22, 36, 40, 53, 54]. SALIENT++
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Table 3: Comparison with DistDGLv2 on two heterogeneous
graphs.

Runtime of R-GCN (s)

System

Ogbn-mag  Mag-lsc
DistDGLv2 36.3 56.9
NeutronTP 5.9 695.2

Table 4: The runtime breakdown (in seconds) with different
tasks. (NC: node classification, LP: link prediction)

Negative GNN Classification Loss
Task System ) . . )
Sampling Computation Computation Calculation
NC NeutronStar -/- 1.88/97% 0.03/2% 0.01/1%
NeutronTP -/- 0.36/90% 0.03/7% 0.01/3%
P NeutronStar 0.07/3% 2.12/90% 0.11/5% 0.04/2%
NeutronTP 0.07/9% 0.53/67% 0.15/19% 0.04/5%

[17] extends the METIS partitioning approach with additional con-
straints to balance workloads while minimizing edge-cuts. PaGraph
[22] and ByteGNN [53] employ streaming partitioning methods,
selecting the optimal partition for each vertex individually. G3 [40]
adopts an iterative partitioning approach, continuously exchang-
ing vertices between different partitions. Given the complexity of
real-world graph data, these methods often approximate load bal-
ance and may experience diminishing effectiveness with increasing
graph power-law characteristics [26, 50]. Furthermore, the mem-
ory and computation overhead of these methods is considerable,
especially for METIS and streaming partitioning, which may even
surpass the training itself [6, 11, 50]. Therefore, we believe that par-
titioning features instead of graph data for GNN tensor parallelism
is a promising distributed training approach.

Vertical feature partitioning. Some recent studies [6, 11] ex-
plore vertical feature partitioning in distributed GNN training. P3
[11] utilizes feature slices to complete the first graph aggregation
operation, reducing feature fetching overhead. Du et al. [6] propose
skipping feature fetching in some iterations, leveraging only partial
feature dimensions for local training to achieve a trade-off between
convergence error and feature communication time.

7 CONCLUSION

We present NeutronTP, a load-balanced and efficient distributed
full-graph GNN training system. NeutronTP leverages GNN tensor
parallelism for distributed training, which partitions feature rather
than graph structures. Compared to GNN data parallelism, Neu-
tronTP eliminates cross-worker vertex dependencies and achieves
a balanced workload. To address the unique challenges of GNN
tensor parallelism, NeutronTP employs a generalized decoupled
training approach to significantly reduce communication overhead
and a memory-efficient task scheduling strategy to reduce memory
consumption while overlapping computation and communication.
Extensive experiments demonstrate that our approach accelerates
distributed GNN training significantly compared to GNN data par-
allelism while achieving comparable model accuracy.
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