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ABSTRACT

Quantum computing has emerged as a transformative force in the

evolution of computing technology. Recent e�orts have applied

quantum techniques to classical database challenges, such as query

optimization, data integration, index selection, and transactionman-

agement. In this paper, we shift focus to a critical yet underexplored

area: data management for quantum computing. We are currently

in the noisy intermediate-scale quantum (NISQ) era, where qubits,

while promising, are fragile and still limited in scale. After di�eren-

tiating quantum data from classical data, we outline current and

future data management paradigms in the NISQ era and beyond.We

address the data management challenges arising from the emerging

demands of near-term quantum computing. Our goal is to chart

a clear course for future quantum-oriented data management re-

search, establishing it as a cornerstone for the advancement of

quantum computing in the NISQ era.
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1 INTRODUCTION

Data management is crucial in our increasingly data-driven world,

exempli�ed by the widespread use of database systems and the

rapid advancement of big data systems [1, 129]. In recent years, the

�eld of computer science has been energized by the transformative

potential of quantum technologies. Quantum computing promises

computational capacities far beyond what traditional computers

can achieve [101]. However, quantum computing is still in a nascent
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stage, i.e., the noisy intermediate-scale quantum (NISQ) era, charac-

terized by quantum computers that are constrained by noise and

limited numbers of qubits [111].

With the ongoing development of quantum computing, new

data management challenges naturally emerge. The fundamental

di�erences between quantum and classical computing call for novel

data representations to e�ectively preserve quantum information

[101, 143]. Moreover, many quantum computing tasks are inher-

ently data- and computation-intensive due to the need to handle

large-scale quantum states [18], multidimensional quantum data

structures [11, 153], and error correction codes [47, 48, 55, 131]. For

example, simulating large-scale quantum computation on classical

computers involves processing vast amounts of quantum informa-

tion, leading to signi�cant scalability and optimization challenges

[18, 85, 151, 153]. By addressing data management challenges in

the NISQ era, the database community has a unique opportunity

to signi�cantly enhance the scalability and reliability of quantum

technologies, which will advance both research and real-world

quantum applications.

These new data management challenges are not yet clearly de-

�ned, despite the recent e�orts by the database community. Ex-

isting work has explored leveraging quantum computers as new

hardware to address classical database challenges, such as query

optimization [43, 44, 100, 118–121, 134, 147], data integration [49],

index selection [58, 74], and transaction management [12, 57, 132].

However, fundamental questions about data management in the

NISQ era remain unanswered. Speci�cally, how should we de�ne

and manage data in the context of near-term and future quantum

advancements? Given the unique features of quantum computing,

such as superposition and entanglement, what are the new con-

siderations to be addressed for e�ective data management? What

data structures and data management systems will best support the

development of quantum technologies, particularly given a limited

number of qubits, noise, and other challenges of the NISQ era?

While recent vision papers, tutorials, and surveys [23, 60, 148,

154, 155] have begun discussing the intersection of data manage-

ment and quantum computing, they primarily focus on how quan-

tum technologies can accelerate classical database operations. In

contrast, our work delves into an equally important yet under-

explored area: data management for quantum computing. At the

moment, the fundamental concepts, research directions, and prob-

lem de�nitions in this area remain obscure within the database
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community. This paper initiates the exploration of these critical as-

pects and lays the foundation for further deeper integration of data

management and quantum computing. We will not dive into the

basics of quantum computing and information, as ample resources

are available [11, 113, 151, 153]. Instead, we focus on outlining the

vision for data management paradigms in the NISQ era and on

identifying potential research challenges that are particularly rele-

vant to the database community, i.e., which could have a signi�cant

impact on the advancement of today’s quantum technologies.

Contributions. Our contributions are summarized as follows:

• Fundamentals: We �rst explain quantum data and di�er-

entiate it from classical data (Sec. 2).

• Roadmap: We present our vision for data management re-

search for quantum computing in three paradigms (Sec. 3).

• Research problems: We elaborate on near-term research

questions in data management for quantum computing, and

report on preliminary experimental results (Sec. 4).

2 DATA IN THE QUANTUM ERA

Classical data is the information that is collected, processed, and

stored with traditional computing methods. Today, most of the

classical data is stored and queried using database systems such as

relational databases, document stores, graph databases, and vector

databases [126]. We refer to quantum data as information collected

and processed using quantum computing devices, i.e., computing

devices that follow the rules of quantum mechanics to their advan-

tage [101]. Quantum data is represented by qubits. Next, we list

key di�erences between quantum and classical data below to help

understand the unique features of quantum data.

1. Quantum data is probabilistic. Unlike a classical bit, which is

0 or 1, a quantum bit can be in superposition. Mathematically, a zero

state and a one state may be represented by a unit vector in the

standard basis. That is, the zero state |0ð is represented by the vector
[

1
0

]

and the one state |1ð is represented by the vector
[

0
1

]

. A single

qubit state, denoted |ć ð, may be represented by a superposition,

i.e., a linear combination of |0ð and |1ð: |ć ð = Ă |0ð + ÿ |1ð, for
some pair of complex numbers Ă, ÿ called amplitudes, which satisfy

|Ă |2 + |ÿ |2 = 1. The probabilistic nature arises when ameasurement

is performed. When a measurement is performed on the state |ć ð,
the outcome 0 is obtained with probability |Ă |2 and the outcome 1 is

obtained with probability |ÿ |2, and the state permanently changes

to the obtained outcome. In classical computing, individual bits can

be concatenated to form a bit string, e.g., the three-bit string “010.”

Similarly, we may concatenate qubits into a multi-qubit state. In

this case, an Ĥ-qubit state can be represented as a superposition of

|Įð for Į ∈ {0, 1}Ĥ , or equivalently a vector of 2Ĥ components.

2. Quantum data is fragile. Quantum computers are anticipated

to outperform classical computers in solving certain problems. How-

ever, with current quantum technology in the NISQ era, quantum

resources remain scarce, and quantum data is prone to noise. De-

coherence [110], is the process where quantum states lose their

coherence due to environmental interactions, resulting in the grad-

ual loss of quantum information. Quantum noise, resulting from

unintended couplings with the environment, can signi�cantly de-

grade the performance of quantum computers [136]. Commonly

used noise models, such as amplitude damping, phase damping,

bit-�ip, and phase-�ip, mathematically describe how various types

of quantum noise lead to decoherence [101].

3. Quantum data can be entangled. Another di�erence between

qubits and bits is entanglement [40], which means that multiple

qubits are correlated such that measuring the state of one qubit

immediately a�ects the others. A well-known entangled state is

the Bell’s state:

|«ð = 1
√
2
( |00ð + |11ð) = 1

√
2

[

1
0
0
1

]

,

where knowledge of one qubit determines the other. Please see

Appendix A of our online report [59] for more background.

3 OUR VISION: DATA MANAGEMENT FOR
QUANTUM COMPUTING

To facilitate future research on data management for quantum com-

puting, we �rst sketch the whole landscape in Fig. 1. We categorize

this landscape into three distinct paradigms based on how quantum

and classical data are transformed and utilized, and the type of

hardware involved—whether a quantum or classical computer is

employed. Our goal is to introduce data management researchers

to quantum use cases, and by making a distinction based on the

nature and role of data within cases.

I Classical simulation of quantum computing paradigm: clas-

sical data represents quantum states and operations. This paradigm

presents great potential for new database challenges. It focuses on

using classical data to represent and simulate quantum data. For

example, Bell’s state from Sec. 2 is represented by a classical vector.

This paradigm is more accessible as it relies on classical computers,

not quantum ones.

The representative task in this paradigm is simulation. Simula-

tion is the process of emulating quantum computation, enabling

researchers to model and analyze quantum processes as if they were

operating on actual quantum hardware [151, 153].1 Simulations are

of paramount importance in the NISQ era [111]. Consider, for in-

stance, the concept of quantum supremacy [18], which seeks to

demonstrate the superior capabilities of quantum computers over

classical computers. Given that large-scale quantum computers are

not yet available in the NISQ era, simulation is essential for com-

paring the scalability of quantum computers with classical ones.

Additionally, simulations play a crucial role in the development of

new quantum algorithms, allowing researchers to design, debug,

and validate the correctness of these algorithms before deploy-

ing them on expensive quantum devices. Moreover, simulations

aid in the development of quantum hardware by evaluating er-

ror mitigation schemes, predicting algorithm runtimes, and more

[7, 71, 140, 158, 160]. Simulation serves as a foundational tool across

key areas of quantum computing, including quantum supremacy,

quantum algorithms, quantum hardware, error correction, and the

exploration of potential quantum applications [151].

The potential for database research in this paradigm is immense.

First, imagine innovative database systems speci�cally designed to

manage classical data that supports simulation. Second, e�cient

1In this work, by simulation we refer to classical simulation. Another related term is
quantum simulation [22, 53], which pertains to simulating quantum mechanics on a
quantum computer, a subject studied in physics.
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caching strategies for expensive operations, such as repeated simu-

lations of quantum circuits with varying error parameters, present

another important research direction. The third research direction

in this paradigm involves the representation of quantum states and

operations. This is useful for quantum design questions such as

optimizing the number of quantum gates or gate depth [77, 159] and

compiling textbook quantum circuits to only include the low-level

operations that real quantum devices support [125]. As the represen-

tation of a quantum state (a vector) or quantum gate (a matrix) gen-

erally grows exponentially with the number of qubits, developing

e�cient methods to store and process these data structures is key

to making simulations of quantum computation feasible, either in

vector form or through more compressed structures like tensor net-

works [11, 103] or other advanced representations [20, 72, 137, 160].

II Joint �antum-Classical Computing paradigm: classical

preprocessing & postprocessing for quantum computing. This para-

digm focuses on the situation involved inmost quantum-technology

applications: classical computers handle the preprocessing and post-

processing of data for quantum devices, such as quantum chips,

quantum sensors, and quantum computers. In this paradigm, the

focus is on data which is primarily stored and processed as classical

data. For instance, a classical computer sends instructions (clas-

sical data) to a quantum chip, which performs computations and

returns measurement outcomes—also classical data—back to the

classical computer. Thus, the quantum device takes classical input

and produces classical output.

Database research can enhance this process by developing e�-

cient systems for managing, storing, and querying the classical data

involved in preprocessing, postprocessing, and iterative feedback

loops between classical computers and quantum devices, ensur-

ing seamless integration and optimization of data work�ows. For

instance, the development of quantum error correction—a critical

area in quantum computing—can bene�t signi�cantly from e�cient

graph data analytics techniques, as further discussed in Sec. 4.3.

We demonstrate the importance of this paradigm through three

key categories of quantum applications: First, applications where

the quantum computation is completed immediately upon return-

ing a result. For example, two separated quantum computers can

generate a secure, shared key (password) by encoding bits into

qubits, then sending and measuring the qubits [10, 109]. This is

followed by classical postprocessing on the bitstring (i.e. classical

data) that the measurement returns [41]. The resulting bitstring is

a secret key that can later be used for secure communication. In the

second category, the quantum computation is stalled temporarily,

and the quantum chip still holds quantum data on which the com-

putation will continue later. An example is the detection of errors

during a quantum computation, where at �xed timesteps during the

computation check measurements are performed [55, 131], whose

outcomes are then decoded to �nd out which error has most likely

occurred [8, 92]. Third, e�cient preprocessing is critical for quan-

tum algorithms, which requires loading or encoding classical data

into the quantum domain, typically by mapping classical bits onto

quantum bits. This process often requires encoding classical data

into a quantum circuit, either as part of the algorithm [130] or to

output a quantum state with amplitudes representing the classical

data [32], which is a challenging problem.

(sensor, chip,…)

Figure 1: Landscape: Data management for quantum com-

puting

III Pure quantum computing paradigm: quantum-native data

storage and processing. Finally, we envision a future research para-

digm beyond NISQ, when we have large-scale, fault-tolerant quan-

tum computers. We will deal with pure quantum data, i.e., qubits.

Here, the quantum hardware supports storing the qubits for long

enough to perform other tasks in the meantime. This enables for

example a cloud quantum computer [21] that rotates its resources

among multiple clients, various types of quantum machine learn-

ing [24], and quantum random access memory [54], where data can

be queried in superposition. A recent vision [67] shows a possible

future: quantum data is collected from quantum sensing systems,

e.g., for discovering a black hole; then stored and processed via the

quantum memory of a quantum computer.

The data management research in this paradigm will be cen-

tered around handling quantum data, possibly developing quantum-

native algorithms. Moreover, storing quantum data will remain

challenging, as quantum data storage will still be costly in various

ways (the number of qubits is not unbounded, robust storage of

quantum data requires large-scale quantum error correction, which

is computationally intensive, etc.). Another research topic is to ef-

�ciently allocate the available qubits. This includes, for example,

various scheduling and allocation tasks [26, 45, 52, 64, 96, 123] and

e�cient use of di�erent quantum hardware types each of which has

speed-decoherence trade-o�s [38]. Given the amount of quantum

data in this paradigm, most research here calls for novel quantum

data processing algorithms and systems beyond NISQ era.

4 NEAR-TERM RESEARCH PROBLEMS

We will now explore data management research questions across

the three paradigms. In Sec. 4.1 and 4.2, we focus on a key challenge

within Paradigm I: Classical simulation of quantum computing

paradigm. In Sec. 4.3, we broaden the scope to include research

opportunities across all three paradigms.

4.1 The Challenge of Simulating Quantum
Computation

The input for a simulation is a quantum algorithm described as a

quantum circuit,2 consisting of input qubits upon which quantum

gates are applied, ultimately resulting in a probability vector of

the output states, i.e., measurement outcomes (see Sec. 2). Then,

a simulation is a classical computation that computes that output

2A uniform family of circuits, to be precise, one for each input size.
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(a) Quantum state
as a vector

(b) Quantum state as tensors (d) Gate operation as       
tensor contraction 

(c) Tensor contraction

First qubit Second qubit Third qubit

Tensor A (1x2x2) Tensor B (2x2x2) Tensor C (2x2x1)

H

Figure 2: (a) The 3-qubit GHZ state 1√
2
( |000ð + |111ð) repre-

sented as a state vector of size 23 = 8. (b) GHZ state as a

tensor network. For better visualization, in the grey box, we

write the tensors in vector/matrix form by slicing the last

dimension of A, B, and C. See Appendices A and B1 of [59]

for details.

distribution (so-called strong simulation), or samples from it (weak

simulation) [138]. We primarily focus on strong simulation.

The major practical bottleneck of (strong) simulation is scalabil-

ity [18, 85, 151, 153]. When simulating a quantum state of Ĥ qubits,

the state is typically represented as a vector with a size of 2Ĥ . The

size of the state vector grows exponentially as Ĥ increases. For in-

stance, an experiment demonstrating quantum supremacy required

2.25 petabytes for 48 qubits, reaching the memory limits of today’s

supercomputers [18]. To overcome the memory restriction, existing

simulation tools have explored approximation [73, 94, 139], data

compression [149], parallelization [66], and distributed computing

[124]. In Fig. 2 we illustrate concepts mentioned in this section.

4.2 Databases to the Rescue

Simulation o�ers signi�cant opportunities for database research,

and conversely, database expertise can greatly enhance simulation.

We envision a classical-quantum simulation system (CQSS) with

the following capabilities: (i) automatically providing the most

e�cient simulation of the input circuit by selecting optimal

data structures and operations based on available resources and

circuit properties; (ii) operating inherently out-of-core to sup-

port the simulation of large circuits that exceed main memory

capacity; (iii) ensuring consistency to prevent data corruption

and enabling recovery in the event of large-scale simulation

crashes; and (iv) improving the entire simulation work�ow,

including parameter tuning, data collection and querying, ex-

ploration and visualization.

At its core, a CQSS must, at a minimum, be capable of evaluating

quantum circuits. This primarily involves performing linear alge-

braic operations, often described in terms of tensor networks [11].3

A tensor is a multidimensional array, and the dimensions along

which a tensor extends are its indices. A tensor network consists of

vertices representing tensors, and edges the indices. Free indices

are depicted as legs, i.e., edges that only connect to one vertex in

the graph. Connecting two vertices by joining a leg corresponds

3For simplicity of exposition, we do not consider non-tensor-based simulation methods
which represent quantum states by their symmetries, rather than by complex-valued
vectors [56].

(a) GHZ State (sparse circuit) (b) QFT (dense circuit)

Figure 3: Memory usage comparison of three RDBMS-based

solutions (red) against a general approach, i.e., order-n ten-

sor baseline (blue) and the SotA MPS baseline (green), both

implemented in Python. The x-axis shows increasing num-

bers of qubits, and the y-axis shows memory consumption

(KB) in log10-scale. For sparse circuit (GHZ), RDBMS solu-

tions demonstrate signi�cantly lower memory usage than

the order-n tensor baseline, with SQLite showing a slight

advantage over the MPS baseline. For the dense circuit QFT,

the memory usage of RDBMS solutions grows comparably to

or exceeds the order-n tensor baseline, indicating the need

for improvements in handling dense tensor computations.

to the contraction with the corresponding indices. Fig. 2b shows

the tensor network representation of the GHZ state. Tensor con-

traction is the summation of shared indices between tensors and is

a generalization of matrix multiplication [11]. See Appendix A of

[59] for more details. The �rst question we ask is as follows.

Q1. Should we push the simulation workload to existing DBMSs?

In other words, should we map the simulation workload to SQL

queries and store the results in a DBMS? The advantage is that we

can bene�t from the e�ciency and portability of modern database

systems. And indeed, initial e�orts from the database community

[13, 133] have begun to address the out-of-core simulation challenge

by mapping quantum states and gates to SQL queries. For instance,

in [13], qubit states and gates are represented as tensor networks,

with sparse tensors in COO format and Einstein summation opera-

tions mapped to SQL queries. Additionally, the recent abstract [133]

introduces the idea of supporting dense vectors using SQL UNION

ALL and CASE statements. Despite these e�orts that support basic

quantum states and gates up to 18 qubits and a circuit depth of 18 in

separate experiments, the core challenges of representing general

quantum states and operations in DBMSs and achieving scalability

remain. Moreover, our preliminary results in Fig. 3 demonstrate

that RDBMS-based simulations are e�cient for quantum circuits

involving sparse tensor computations. All experimental details, to-

gether with a space and time complexity analysis, can be found in

Appendix B of [59]. An early prototype is described in [86]. RDBMS-

based solutions are competitive with, and may even outperform,

state-of-the-art representations like matrix product states (MPS)

[108] in speci�c scenarios. Interestingly, this advantage does not

extend to dense circuits such as quantum fourier transform (QFT)

circuits, highlighting the need for further optimizations to enhance

RDBMS systems for simulation workloads. In Appendix C of [59]
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we also discuss the use of NoSQL databases. On the other hand, the

connection to tensor computations suggests the following question.

Q2. Should we instead leverage tensor-based database technolo-

gies for simulation?

Indeed, the database community has a substantial body of work on

tensor computation, especially with the recent synergies between

databases and machine learning (ML) such as learning ML mod-

els over relational data [15, 76, 90, 104, 157]. These studies range

from high-level representations to the runtime optimization of ML

work�ows. At the representation level, numerous studies represent

data as tensors [80] and aim to integrate relational and tensor oper-

ations [68, 75, 115]. Meanwhile, system-building e�orts from the

database community [14, 14, 51, 62, 88, 97, 102, 107, 116, 117] fo-

cus on performance e�ciency and scalability, employing optimiza-

tion techniques during compilation (e.g., operator fusion [15, 16])

and runtime (e.g., parallelization [17]). Similar endeavours exist

in the areas of compilers and high performance computing (HPC)

[28, 70, 78, 114].

Our envisioned classical-quantum simulation system holds the

potential to achieve optimal performance. By integrating relevant

optimization techniques from the aforementioned existing systems,

we can facilitate the automatic optimization of the underlying ten-

sor network. The actual runtime performance will depend on sev-

eral factors: the operations within the tensor network, the sparsity

of the tensors involved, the memory layouts (i.e., how tensors are

stored in memory, such as row-major or column-major formats),

and the available hardware [15, 117]. To address challenges unique

to quantum computing, we highlight two key gaps below.

4.2.1 �antum-specific optimizations. Existing simulators for quan-

tum computing are mostly in Python [34, 141], C++ [3, 141] or Julia

[89]. There are also dedicated quantum programming languages

and domain-speci�c compilation techniques. See the survey [63].

In addition, tensor network rewriting techniques have been consid-

ered in the ZX-calculus [30]. ZX-calculus is a graphical language

for representing and reasoning about quantum computations, rep-

resented as tensor networks with specialized tensors called spiders

[137]. Its graphical nature enables simpli�cations by locally merg-

ing connected vertices while preserving the original tensor, useful

in various contexts including formal veri�cation [37, 83, 137].

Quantum-speci�c optimizations share some conceptual simi-

larities with classical database optimization, yet they diverge sig-

ni�cantly due to the unique characteristics of quantum data and

operations. First, classical databases rely on relational or NoSQL

data models (graph, document-based, etc.) with indexing mecha-

nisms like B-trees or hash tables to facilitate e�cient access and

retrieval. In simulations, however, quantum states are represented

as state vectors (Fig. 2a) or by using more advanced data structures

such as tensor networks (Fig. 2b). Second, in classical databases,

query optimization involves techniques like join ordering to iden-

tify the optimal ordering of join operations between relations for

an e�cient query plan [84, 128, 135]. For tensor-based simulators,

a de�ning feature is the optimization of contraction order, which

determines the most e�cient sequence to contract tensors repre-

senting quantum states [34, 153]. Contraction order optimization

parallels the role of join order optimization in traditional databases

but is more complex due to the exponential growth of quantum

state dimensions and the unique features of quantum data, such as

entanglement. Third, classical database systems rely heavily on cost

estimation to predict and minimize resource use for query execu-

tion. Quantum computation simulators, however, lack cost estima-

tion frameworks and instead use optimizations like parallelization,

SIMD (Single-Instruction, Multiple-Data) processing, and matrix

decomposition techniques (e.g., SVD) to improve performance [153].

Quantum-speci�c issues, such as quantum noise (Sec. 2), complicate

simulation further. These di�erences lead to the need for funda-

mentally new optimization frameworks to manage and simulate

quantum computation e�ectively, beyond classical structures and

processes. The following question now arises.

Q3. Can we build an optimizer for simulations?

An optimizer can be designed, given a circuit, to determine the

most e�cient way to simulate it. For example, when a circuit allows

for a tractable simulation (e.g., circuits of bounded treewidth), the

optimizer should compile it into an e�cient simulation. Similarly,

based on the sparsity of (intermediate) quantum states, specialized

sparse gate computations may be employed instead of the standard

dense computations. Particular to the quantum setting is the noisy

character of the quantum computation, which is known to impact

the e�ciency of simulation [2, 65, 66, 106, 112]. Hence, an optimizer

needs to take noise levels into account. Moreover, the optimizer

should consider the downstream task – whether it’s computing

precise probabilities for strong simulations or sampling measure-

ment outcomes for weak simulations – and select the appropriate

simulation strategy (algorithm) accordingly.

As part of the optimizer, we may also want to check whether two

quantum states are exactly or approximately equivalent, analogous

to checking equivalent conjunctive queries [27, 31, 79]. Having algo-

rithms in place for testing equivalence may help to avoid redundant

computations during simulation.

4.2.2 �antum-specific data representations. Simulating quantum

circuits requires precise and e�cient representations of quantum

states and operations, accounting for the complex nature of quan-

tum mechanics. Ensuring accuracy and scalability as the system

grows in complexity is crucial. We mentioned tensor networks as a

way to represent the simulation, but various other data representa-

tions exist [143], e.g., based on algebraic decision diagrams.

Q4.What are good data representations – possibly beyond tensors

– for supporting simulations?

An operation on a data structure is tractable if it executes in

polynomial time with respect to the input size [36]. The choice

of data representation can signi�cantly impact whether certain

quantum operations (e.g., gates, measurement explained in Sec. 2

and Appendix A of [59]) are tractable [143]. We emphasize three

main requirements for data representation: expressiveness, closure,

and succinctness/tractability.

For expressiveness, the data representation must be su�ciently

rich to represent quantum states and measurements. Closure refers

to the property that the result of quantum operations on the repre-

sented states can also be represented within the same data represen-

tation. This property ensures compositionality. Finally, it is crucial
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to minimize the space required to represent a quantum state, as the

number of qubits and the level of entanglement can result in expo-

nentially large states. Therefore, we seek data representations that

are succinct, minimizing the space needed to store data while still

allowing for e�cient query processing. It may also be interesting

to consider these questions beyond tensor network representations

as well [20, 72, 137, 160]. A concrete idea for a novel data represen-

tation is to combine MPS and the recently-proposed local-invertible

map decision diagram (LIMDD) [142]. LIMDD compresses a state

vector by lumping together parts of the vector that are equivalent

modulo simple quantum gates. In polynomial time and space in the

number of qubits, LIMDDs can simulate circuits that MPS cannot

and vice versa [143]. One approach to combine these strengths in a

single data structure is applying the lumping to the MPS matrices

instead of quantum state vectors, by building upon existing work

on equivalence characterizations of MPS [81].

Q5.Are there other bene�ts from relying on database technology?

By using database technology we aim for the simulation of com-

plex circuits that require signi�cant memory, without relying on

HPC infrastructures or the operating system’s memory manage-

ment. By controlling what data is pushed to secondary storage

during simulations, we can achieve more e�cient I/O behavior.

Additionally, transaction management and recovery become impor-

tant—where a transaction could, for example, represent a sequence

of quantum gates—ensuring that computations can restart from

saved checkpoints while maintaining the correctness of partially

saved results. Parallel evaluation strategies in quantum circuit sim-

ulations also highlight the need for e�ective transaction scheduling,

leading to more reliable computational processes. Undoubtedly,

many challenges remain in this context when considering quantum

simulation. We prioritize Q1–Q4, however, as �rst steps. A more

extensive discussion can be found in Appendix D in [59].

4.3 More Data Management Opportunities

Beyond simulation for quantum computing, quantum-related re-

search is broad, e.g., error correction [55, 122, 127], quantum net-

works [35, 146]. Next, we expand our discussion to uncover more

opportunities spanning all three paradigms shown in Fig. 1.

Quantum error correction & Graph analytics. Quantum error

correction (QEC) enables reliable execution of quantum compu-

tation on noisy quantum processors and is a crucial part of the

roadmap to fault-tolerant quantum computation [131]. QEC pro-

cess consists of two main aspects: coding and decoding. The input

quantum information as well as the operations to be performed

are coded using a quantum error-correcting code such as the sur-

face code [19, 47, 48]. Intermittently, decoding is applied: errors

are detected and corrected. Decoders [39, 46, 150] often leverage

graph theory, solving tasks like a minimum-weight perfect match-

ing (MWPM) problem on a graph where each node represents a

check measurement. For MWPM, the number of nodes is of the

same order as the number of qubits. Many interesting research

problems arise how to model such graphs and design the data

formats. Moreover, QEC has to be performed at high speeds to

avoid decaying quantum states over time (see Sec. 2), e.g. at most

several microseconds for some types of quantum hardware for

decoding [8]. The scalability to many qubits, and speed required

for QEC might bene�t from advanced data management tools and

techniques [9, 91, 93, 145, 152], o�ering a promising direction for

further exploration.

Quantum experiments & Scienti�c data management. Quan-

tum experiments, like any other scienti�c experiments, generate

data and require data management. For instance, quantum mechan-

ics experiments on supercomputers often apply HDF5 �les to store

data [33]. Another compelling direction is to explore how to build

specialized data lakes [61, 98] or lakehouses [5, 6, 69] to support

scienti�c data management for quantum computing.

ML & Quantum data management. i) Simulation: as explained

in Sec. 4.2.1, a key challenge in optimizing tensor network based

simulation is to �nd optimal tensor contraction order. A recent

research direction is to apply machine learning (ML), speci�cally

reinforcement learning (RL) and graph neural networks (GNN), to

optimize tensor contraction order, addressing the computationally

intensive nature of this challenge [87, 95]. ii) Error correction: de-

coding methods for quantum error correction like MWPM, face

scalability challenges in large quantum systems, where rapid error

detection within strict time limits is essential [144]. An interesting

new direction is data-driven QEC, which employs ML techniques

to quantum error correction, such as RL [4, 99, 156], multilayer

perceptrons (MLP) [29], convolutional neural networks [25], and

GNN [82]. iii) Improving quantum algorithm e�ciency: Quantum

algorithms are represented and implemented as quantum circuits,

where e�ciency can be improved by reducing costly gates like

SWAP gate or by minimizing circuit depth and gate count. ML

methods, speci�cally RL [42, 50] and MLP [105], have shown po-

tential in optimizing circuit design to enhance the e�ciency of

quantum circuits on real devices.

5 CONCLUSION

We are at a privileged time in the evolution of data management,

closely aligned with the rise of quantum computing. This conver-

gence calls for innovative approaches to data representation, pro-

cessing, and querying that are compatible with quantum computing.

We here identify the unique features of quantum data compared to

classical data, and advocate the exploration of three data manage-

ment paradigms, which reveal a rich �eld of complex and signi�cant

challenges. As we continue to explore these paradigms, it becomes

clear that the challenges we face, such as enhancing simulations

with database technologies, are just the beginning. There exists a

broader spectrum of challenges that remain unexplored, which re-

quire sustained and focused e�orts from both the data management

and quantum computing communities.
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