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ABSTRACT

Graph neural networks (GNNs) have emerged as a promising method
for learning from graph data, but large-scale GNN training requires
extensive memory and computation resources. To address this, re-
searchers have proposed using multi-GPU processing, which parti-
tions graph data across GPUs for parallel training. However, vertex
dependencies in multi-GPU GNN training lead to significant neigh-
bor replications across GPUs, increasing memory consumption.
The substantial intermediate data generated during training further
exacerbates this issue. Neighbor replication and intermediate data
constitute the primary memory consumption in GNN training (i.e.,
typically accounting for over 80%). In this work, we propose GNN
task parallelism for multi-GPU GNN training, which reduces neigh-
bor replication by partitioning training tasks in each layer across
different GPUs rather than partitioning the graph structure. This
approach only partitions the graph data within individual GPUs,
reducing the memory requirements of single tasks while overlap-
ping subgraph computation across different GPUs. Shared neighbor
embeddings among different subgraphs can be efficiently reused
within a single GPU. Additionally, we employ a task-decoupled
GNN training framework, which decouples different training tasks
to manage their associated intermediate data independently and re-
lease it as early as possible to reduce memory usage. By integrating
these techniques, we propose a multi-GPU GNN training system,
NeutronTask. Experimental results on a 4xA5000 GPU server show
that NeutronTask effectively supports billion-scale full-graph GNN
training. For small graphs where the training data fits into the
GPUs, NeutronTask achieves 1.27X - 5.47X speedup compared to
state-of-the-art GNN systems including NeutronStar and Sancus.
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ogbn-products 256 0.4MB
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10.68GB
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1 INTRODUCTION

Graph Neural Networks (GNNs) have demonstrated superior perfor-
mance across various practical applications such as social networks
[29, 68, 75], recommendation systems [15, 67, 74], financial fraud de-
tection [61], protein structure analysis [18], drug prediction [37, 49],
traffic forecasting [6, 28], and natural language processing [42, 73].
GNN training consists of two tasks in each model layer: embed-
ding transformation (T) and graph propagation (P). Each vertex
applies T to update vertex embeddings and uses P to propagate
neighbor embeddings. By iteratively executing these two tasks,
GNN can learn rich structural information of data samples.
Recently, full-graph GNN training has emerged as a promising
GNN training method as it provides more stable model quality com-
pared to mini-batch training [27, 52, 55, 60, 63-65, 77]. However,
full-graph GNN training requires extensive memory and computa-
tional resources [60, 63]. Considering the continuously increasing
size of real-world graphs, researchers have proposed employing
multi-GPU processing to meet the resource-intensive requirements
of large-scale GNN training [8, 9, 19, 27, 43, 54, 65, 71]. These sys-
tems typically employ data parallelism, partitioning the input graph
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Figure 1: GNN data parallelism vs. GNN task parallelism. The square matrix inside the GPU represents GPU memory space,
and the arrows between GPUs represent communication. (a) GNN data parallelism requires caching neighbor replications
and intermediate data to complete backward propagation, leading to out-of-memory (OOM) errors. (b) GNN task parallelism
partitions training tasks across GPUs rather than partitioning the graph, reducing neighbor replications. (c) GNN task parallelism
with task-decoupled breaks the alternated execution of the T and P tasks, releasing the intermediate data of P tasks in advance.

to enable parallel computation across multiple GPUs and handle
remote neighbor aggregation by caching neighbor replicas. Despite
the significant performance improvements achieved by multi-GPU
processing, handling large-scale graphs remains a challenge due to
the substantial disparity between the limited memory capacity of
GPUs and the extensive memory consumption. As shown in Figure
1(a), this memory consumption primarily comes from neighbor
replication (in yellow) and intermediate data (in orange and blue),
accumulating with the increasing number of GNN tasks.

The neighbor replication arises from inter-GPU graph partition
in data parallelism. When an entire graph is partitioned across
multiple GPUs, the common neighbors between subgraphs must
be stored multiple times on different GPUs. The neighbor replica-
tion increases rapidly with the number of graph partitions. Taking
the ogbn-papers100M dataset as an example, when the number of
partitions reaches 8, the size of neighbor replication increases by
200.1GB. Since each model layer requires additional memory to
cache neighbor embeddings, the memory consumption associated
with neighbor replication increases with the deeper model layers.

The intermediate data includes the vertex embeddings of various
tasks [63]. During forward propagation, each model layer generates
vertex embeddings, which are cached and consumed in the gradient
computation of each layer during backward propagation. In GNN
models, T tasks and P tasks are executed alternately. Although
linear P tasks is not directly involved in parameter updates, the
input of T tasks is the output of P tasks, and the output of P tasks is
required when calculating the gradient of the parameter in T tasks.
Therefore, the vertex embeddings of T tasks and P tasks both need
to be cached. We conduct experiments using NeutronStar [64] in a
single-CPU environment to evaluate the memory consumption of
intermediate data. As shown in Table 1, for a 3-layer GCN training,
the intermediate data averages 86.38% of total memory usage.

In this paper, we reduce the memory consumption caused by
neighbor replication and intermediate data through two key tech-
niques. Firstly, we propose task parallelism for GNN training to
reduce neighbor replications through inter-GPU task partition and
intra-GPU graph partition. As illustrated in Figure 1(b), GNN task
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parallelism partitions T and P tasks in each model layer across
different GPUs, such that each GPU only needs to handle one type
of task. Intra-GPU graph partition splits each training task over the
entire graph into smaller processing units (subgraphs), ensuring
each task can be sequentially scheduled on a single GPU, without
exhausting the GPU memory. Concurrently, the subgraph computa-
tion can be overlapped across different GPUs to enhance parallelism.
The shared neighbor embeddings among different subgraphs can
be efficiently reused within a single GPU. As a result, GNN task
parallelism effectively reduces neighbor replication by avoiding
inter-GPU graph partition. Secondly, we propose a task-decoupled
GNN training framework to reduce the memory consumption of
intermediate data. The framework transforms the alternating execu-
tion mode of T tasks and P tasks into a sequence where continuous
P tasks follow continuous T tasks. As illustrated in Figure 1(c), this
framework not only reduces intermediate data generated by linear
P tasks but also facilitates the use of traditional DNN recomputa-
tion techniques [12] to reduce the runtime memory consumption
of intermediate data. In addition, the framework offers a flexible
task scheduling model that allocates different numbers of GPUs
to T and P tasks to meet the different resource requirements of
T and P tasks. By integrating the above techniques, we propose
NeutronTask, a multi-GPU system for full-graph GNN training. The
experimental results on a 4-GPU (A5000) server demonstrate that
NeutronTask can train large-scale graphs and achieve performance
improvements compared to Sancus [43] and NeutronStar [64].
Our primary contributions are summarized as follows:

We propose GNN task parallelism, which reduces neighbor repli-
cation by partitioning tasks across GPUs and partitioning graph
of each task within a GPU, instead of partitioning graph data
across GPUs.

We propose a task-decoupled GNN framework that decouples T
and P tasks. Then, we utilize the recomputation technique and
flexible resource allocation to improve memory efficiency.

We develop NeutronTask, a multi-GPU accelerated system that
reduces memory usage by 49% — 67% and achieves 1.27 X —5.47X
speedup compared to the state-of-the-art GNN training system.
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Figure 2: The data flow of a 2-layer GCN. The ellipses repre-
sent vertex embeddings at different stages, which need to be
cached in the GPU memory. The red arrows connect to the
dependent data, representing parameter gradient computa-
tions in backward propagation.

2 PRELIMINARIES
2.1 Graph Neural Network

Graph data are utilized to manage real-world data due to their ability
to express entities and their relationships efficiently [3, 14, 20-22,
36, 39, 57]. As input to GNNs, graph data can be represented as G =
(V,E), where V and E represent vertex and edge sets, respectively,
and each vertex contains a feature vector X,, where (v € V).

GNN Models. GNN models consist of multiple layers, which gener-
ate embeddings by leveraging the structural and feature information
of the graphs. Each layer of the GNN model consists of T and P
tasks. T tasks apply neural networks to extract the information of
vertices or edges, generating updated embeddings. P tasks include
scattering vertex embeddings to edges or neighbors. We formalize
these tasks using the aggregate-update computation pattern:

x = upPDATE(X!™Y, w®), (1)

HY = AGGREGATE({X" |Vu € Nin(v)}), @

where ngl_l) and XZI, represents the embedding of vertex v in the
(I-1)-th layer and I-th layer respectively. XZEO) represents the input
feature of vertex v. Nj,(v) represents the incoming neighbors of
vertex v. Model parameters exist only in T tasks, while P tasks
are responsible solely for propagating and aggregating vertex in-
formation. The model parameters are updated through gradient
computation during the backward propagation.

Different GNN models are characterized by different functions
of UPDATE and AGGREGATE. For instance, GCN [29] aggregates
neighbor embeddings by the Symmetric Normalized Laplacian in P
tasks and uses neural networks to update vertex embeddings in T
tasks. The formula for a single-layer GCN is as follows:

HD = a(fr%Afy% w<l>), 3)

where o represents the activation function, w® represents the
neural network parameter of the [-th layer. The A and D correspond
to A+ 1 and D + I, where A represents the adjacency matrix, D
represents the degree matrix and D;; = Y/ AU,

Intermediate Data in GNN Training. Intermediate data in full-
graph GNN training refers to the inputs and outputs of T and P
tasks for each GNN layer, which is generated during the forward
propagation and cached to compute gradients for T tasks during
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Table 2: Neighbor replication factor () and total memory
consumption (MC) in the ogbn-papers100M dataset under
varying numbers of partitions (3-layer GCN).

Partitions 1 2 4 8 16 32 64
NR 1 1.25 1.52 2.13 3.02 4.46 6.34
MC (/GB) 335.95 380.22 428.03 536.05 693.65 948.65 1281.56

backward propagation [63]. Figure 2 is the data flow in a 2-layer
GCN [29] model. In forward propagation, each vertex updates its
embedding to generate updated results (i.e., X O)) by the T task,
which generates intermediate data of the neural network model
for gradient computation. Then, each vertex aggregates neighbor
embeddings to generate aggregation results (i.e, H(?)). Both neigh-
bor embeddings and aggregated results need to be cached. The
final layer’s vertex embeddings (i.e., H (2)) compute the loss value
based on truth data labels, generating gradient vectors (i.e., VH (2)),
whose dimensions match those of the vertex embeddings. Backward
propagation starts from the final layer to the first, computing model
parameter gradients using vertex gradients and embeddings. Each
layer applies the chain rule for vertex gradient computation, includ-
ing gradient propagation and derivative computation. Intermediate
data from forward propagation must be retained until gradient
computation for the corresponding backward layer is completed.

2.2 Multi-GPU GNN Systems with Data
Parallelism

Given the resource-intensive requirement of large-scale GNN train-
ing, researchers have employed multi-GPU processing to accelerate
the training process. As shown in Figure 3, a common approach
to scaling GNN training across multiple GPUs is data parallelism,
which partitions the graph data across multiple GPUs to enable
parallel training. During GNN training, P tasks may require access
to neighbor vertices located on remote GPUs, leading to substantial
vertex dependencies (the dashed vertices in Figure 3). To manage
these dependencies, GNN data parallelism involves inter-GPU com-
munication to fetch remote vertex data, followed by creating local
replicas of these remote vertices to facilitate local computation.
Neighbor replication refers to each GPU creating replicas of
neighbors from remote GPUs, which increases memory consump-
tion. We evaluate the memory consumption of neighbor replica-
tion in the ogbn-papers100M dataset under varying numbers of
partitions. We quantify the size of neighbor replication using the
replication factor «, defined as the average number of replicas per
vertex. The results are presented in Table 2, where the scale of
neighbor replication rises rapidly with the number of partitions. As
the number of partitions expands from 1 to 64, neighbor replication
causes the total memory consumption to increase by 3.81x.
Despite multi-GPU platforms offering increased memory avail-
ability, the substantial volume of neighbor replication and interme-
diate data still hinders the effectiveness and efficiency of GNN data
parallelism in handling large-scale GNN training. For real-world
graphs, the data often exceeds the memory capacity even with mul-
tiple GPUs. As shown in Table 2, training a 3-layer GCN model on
the ogbn-papers100M dataset requires at least 428.03GB of available
memory when the number of partitions is 4. Even with 4 NVIDIA
A100 GPUs (each with 80GB), there remains a discrepancy between
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Figure 3: The data parallelism training flow for a single-layer
GNN and the generation of neighbor replications.

the available and required memory. Some recent works [27, 64] pro-
pose offloading data storage to the CPU to alleviate GPU memory
consumption. However, these frameworks introduce frequent data
switches between the CPU and GPU. Given the low-bandwidth
PCle connection between the CPU and GPU, such frequent data
transfers can significantly impact performance [63].

In summary, the performance and scalability of existing frame-
works are still limited by the substantial neighbor replication across
multiple GPUs. Avoiding the partitioning of graph data across dif-
ferent GPUs is crucial to addressing these issues. In this paper,
we explore task parallelism approaches for multi-GPU GNN train-
ing by fully partitioning GNN tasks before partitioning the graph
structure. This strategy minimizes graph partitions and reduces
communication and memory overhead from neighbor replication.

3 THE NEUTRONTASK

We propose NeutronTask, a multi-GPU system for large-scale GNN
training, which reduces memory consumption caused by neigh-
bor replication and intermediate data through two key techniques.
Figure 4 provides an architecture overview of NeutronTask.

GNN Task Parallelism. NeutronTask designs GNN task paral-
lelism, which reduces the substantial memory consumption caused
by neighbor replication. Firstly, we partition the T and P tasks of
each model layer across different GPUs, limiting each GPU’s mem-
ory usage to the intermediate data of the allocated tasks, rather than
managing all tasks and neighbor replications as in data parallelism.
Secondly, we employ the intra-GPU graph partition to address the
issue where the memory requirements of a single training task
exceed the GPU memory. Then, we design a vertex dependency
management approach with cross-subgraph neighbor reusing and
random subgraph grouping, caching neighbors on the same GPU
to prevent replication. Additionally, the subgraph computation and
communication can be overlapped to improve performance. Thirdly,
we propose a hybrid parallelism approach to efficiently utilize sce-
narios where the number of GPUs exceeds the number of tasks.
By adopting these strategies, GNN task parallelism significantly
enhances the scalability and efficiency of multi-GPU GNN training.
Task-decoupled GNN Training Framework. Full-graph GNN
training caches intermediate data, which can only be released dur-
ing backward propagation. The linear P task does not contain param-
eters, and caching its intermediate data is caused by the alternating
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Figure 4: NeutronTask overview.

execution of T and P tasks. To address this, we propose a task-
decoupled GNN training framework, which extends the decoupled
training to task parallelism. Specifically, we separate T and P tasks
within the GNN model, executing all T tasks first, followed by all P
tasks. This framework reduces intermediate data from P tasks and
facilitates using traditional DNN recomputation techniques [12] to
reduce intermediate data from T tasks. Additionally, we provide a
flexible task scheduling model, which adjusts the number of GPUs
executing T and P tasks and meets different resource requirements
to enhance training performance.

4 GNN TASK PARALLELISM

In this section, we provide a detailed design of GNN task parallelism,
including task partition and intra-GPU graph partition.

4.1 Task Partition

Based on the following observations, we propose partitioning tasks
across GPUs rather than partitioning the graphs. Firstly, T and
P tasks have distinct computational characteristics and resource
requirements. T tasks involve contiguous storage and matrix mul-
tiplication of vertex embeddings and model parameters, making
them compute-intensive. P tasks involve frequent random memory
access, making them memory-intensive. Therefore, partitioning
tasks on the same GPU leads to significant memory requirements
and prevents full utilization of GPUs. In contrast, partitioning tasks
across GPUs allows for tailored optimizations based on the specific
computational and memory characteristics of T and P tasks, ulti-
mately improving performance. Secondly, the intermediate data
generated by T and P tasks serve different roles. Storing them sepa-
rately has no impact on model training. The intermediate data of
T tasks is to compute neural network parameter gradients, which
is the main objective of GNN training. The intermediate data of P
tasks is used to link the computation graphs between two T tasks.

Initial Partitioning Setting. Based on the above analysis, we

partition the T and P tasks of each model layer across different

GPUs. This requires coordinating the allocation by considering the

relationship between the number of GPUs and tasks. Based on the

determined number of GPUs (Ngpy) and GNN tasks (N; gk ), we
provide three initial partitioning strategies:

e When Ngpy < Nygsr: We allocate the same type of tasks to
the same GPU, so each GPU handles only one computational
characteristic (either compute-intensive or memory-intensive),
maximizing resource utilization.
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Figure 5: GNN task parallelism with intra-GPU graph parti-
tion on the forward propagation of a 2-layer GNN model. (i)
represents the i-th subgraph.

When Ngpy = Nkt Each GPU executes a single task, reduc-
ing memory requirement by avoiding neighbor replication.
When Ngpy > N;gsr: We use a hybrid parallelism approach,
grouping GPUs to use data parallelism within groups and task
parallelism between groups. The neighbor replication occurs
only within P task groups.

4.2 Intra-GPU Graph Partition

GNN task parallelism execution flow is illustrated in Figure 5(a),
where four GPUs are responsible for T tasks and P tasks in each
model layer, respectively. Initially, the entire graph data is processed
by GPUL1 for the T tasks, and the results are then transferred to
GPU2 for the P tasks. We propose an intra-GPU graph partition to
address situations where the intermediate data generated by the
allocated tasks exceeds a single GPU memory capacity and to over-
lap the computation of GPUs. All GPUs use the same partitioning
strategy to partition the entire graph into multiple subgraphs that
fit within a single GPU memory and then process them sequentially.

With intra-GPU graph partition, the training flow of GNN task
parallelism is illustrated in Figure 5(b). The input graph is parti-
tioned into three subgraphs, each storing a disjoint set of vertices
along with their vertex dependencies. Vertex dependencies necessi-
tate that the P tasks of each subgraph involve vertex embeddings
from other subgraphs in their computations. For instance, GPU2
cannot execute the P task for subgraphl until the T task of all
subgraphs in GPU1 has been completed.

Vertex Dependency Management Approach. To reduce the
waiting time of GPUs executing P tasks and enable the task-level
pipeline parallelism illustrated in Figure 5(c), we design a vertex
dependency management approach. Firstly, cross-subgraph neigh-
bors located within the same GPU can be reused. As illustrated
in Figure 5(b), after GPU2 executes the P tasks for subgraphl, it
caches the neighbors that belong to subgraph2 and subgraph3.
When subgraph2 and subgraph3 are executed, these neighbors can
be reused. Since these neighbors are cached only once within GPU2,
it avoids neighbor replication. Secondly, to overlap the computation
between subgraphs as shown in Figure 5(c), we apply an approach
similar to ClusterGCN [13], which skips the aggregation of un-
computed neighbor embeddings and reconfigures the edges within
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each subgraph at the beginning of every epoch to ensure that all
neighbors are computed. As shown in Figure 6, we divide the entire
graph into multiple chunks, where C[i][j] represents the graph
structure with destination vertices in chunk i and source vertices
in chunk j. Before the start of each epoch, multiple chunks are
randomly regrouped into a subgraph, allowing the edges between
these chunks to be trained in the current epoch. From a probabilistic
perspective, as the number of training epochs increases, different
chunks have a chance to combine into one subgraph, meaning all
edges have a probability of being computed.

Algorithm 1 outlines the flow for executing the P task using
vertex dependency management. To begin with, we initialize the
aggregated vertex embeddings to zero (line 1). Then, we shuffle the
chunks and group every k chunks into a subgraph (i.e., k = %) (line
3). In the task executing stage, we traverse each subgraph s, with
chunki € [sxk, (s+1)*k] belonging to the current subgraph (lines 5-
21). For the chunks before subgraph s, we reuse the cached neighbor
embeddings for aggregation (lines 10-13), while the chunks after
s will be dropped. It is worth mentioning that we utilized sparse
matrix multiplication with cuSparse to execute P tasks, which is
suitable for leveraging the CPU capability. After completing the
aggregation computation within each chunk of a subgraph, we
cache the subset of vertices that have dependencies on chunks
following the subgraph s (line 19). Finally, we return the aggregated
vertex embeddings of the P task (line 22).

The Effectiveness of Task Parallelism. For data parallelism,
the boundary vertices of each subgraph (B;) may be replicated on
other GPUs and each GPU caches the embeddings of the remote
neighbors and local vertices. Assuming the average replication
count is f§, where 1 < f < (M — 1), the memory requirement for P
tasks can be formalized as MRy, = Zy(ﬂ |Bi|+|Vi|) - L-|d|, where
M represents the number of GPUs, L represents the model layers,
and |d| represents the average dimension of hidden layers. For task
parallelism, each subgraph is loaded onto each GPU sequentially,
and the memory requirement for P tasks is MR;, = Zf\il (|Bi| +
[Vil) - L - |d|. Since § > 1, we have MRyp < MRy,,. Therefore, task
parallelism has lower memory requirements than data parallelism.

4.3 Hybrid Parallelism

We propose hybrid parallelism to address the scenario where the
number of GPUs exceeds the number of GNN tasks. Hybrid par-
allelism combines data parallelism and task parallelism through a
grouping mechanism, with data parallelism within groups and task
parallelism between groups. This approach maximizes resource



Algorithm 1 The P tasks using vertex dependency management.

Input: Graph chunks C[i][j], The number of chunks M, The number of
subgraphs S, Vertex embeddings of each chunk i X;
Output: Aggregated vertex embeddings: Hy, Hy, - - - , Hpyr
1: Init Hy, Hy, - - -, Haps
2: // Every k chunks will be grouped into a subgraph (k

,ﬂ)

S

3: k,C’ = Chunk_Shuf fle(C,M,S);
4: // Traverse each subgraph
5: fors «—0,..., S—-1do
6: Traverse all chunks within this subgraph
7 fori—s=x*k, ..., (s+1)+kdo
8 Traverse all chunks prior to this subgraph
9 forj«—o,..., (s+1)*kdo
10: if j < sk then
11: Reuse the embeddings of computed subgraphs
12: X =load({X;|Vj € C'[i]l[j1});
13: h = AGG_with_reuse(X);
14: else
15: h=AGG({X;}|Vj € C'[i][j]});
16: end if
17: H;.add(h);
18: end for
19: Caching X;;
20: end for
21: end for
22: return Hy, Hy, - - -, Hpp;
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Figure 7: An illustration of hybrid parallelism.

utilization on multi-GPU platforms while minimizing neighbor
replication compared to solely data parallelism.

The grouping mechanism is illustrated in Figure 7. All GPUs are
divided into groups according to the number of tasks, with each
group handling one task. Within each group, data parallelism is
used. Taking the ogbn-papers100M from Table 2 as an example, the
issue in Figure 7 causes only 1.25x neighbor replication. Compared
to data parallelism with 8 GPUs (2.13x), hybrid parallelism reduces
neighbor replications by 1.7x. This is because only the group han-
dling the P task generates neighbor replications. Consequently, hy-
brid parallelism reduces neighbor replication by minimizing graph
partitions, making it advantageous for training large-scale graphs.

Hybrid parallelism executes task parallelism between groups.
The chunk-based graph structure shown in Figure 6 can be directly
applied to hybrid parallelism. Specifically, we set the chunk count
as a multiple of GPUs in a group, ensuring each GPU processes an
equal share for workload balance. It is worth mentioning that if each
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group consists of a single GPU, hybrid parallelism degrades into
GNN task parallelism. In summary, hybrid parallelism is utilized
when there are a large number of GPUs. The core idea is to use idle
GPUs to help heavily workload GPUs complete training tasks.

5 TASK-DECOUPLED GNN TRAINING
FRAMEWORK

In this section, we provide a task-decoupled approach and recom-
putation technique to further reduce memory usage of full-graph
GNN training. Then, we give the overall workflow of NeutronTask.

5.1 Task-decoupled GNN Training

Decoupled GNN Techniques. Related studies [25, 66] show that
the character with T tasks extracting feature information and P
tasks learning structural information drives the efficiency of GNNs,
rather than alternating execution mode. Therefore, some decoupled
GNN models [11, 24, 30, 35, 48, 50, 66, 81, 83] advocate separating
the execution of T and P tasks, achieving high model accuracy and
scalability. A recent work (NeutronTP) [2] has extended decoupled
GNN training to general GNN training, reducing the frequency
of distributed communication caused by tensor parallelism while
providing convergence proof to ensure model accuracy. Specifically,
the general decoupled GNN training is as follows:

Y =g0(X©) - ep(g0(XV).4) - f(A), )

where gg () represents vertex-based T tasks, transforming the input
features into vertex embeddings. eg() represents the Scatter P task
and edge-based T task, which send vertex embeddings to edges
to compute edge weights. f() represents P tasks, which perform
multi-layer graph propagation using edge weight.
Task-decoupled Approach. In this paper, we further analyze
the role of decoupled training in reducing memory usage during
GNN training. We integrate task parallelism with the decoupled
training and propose a task-decoupled approach that immediately
releases the intermediate data generated by P tasks. As shown in
Figure 8(b), the P tasks are extracted from the GNN model and
executed consecutively after all T tasks. During backward propaga-
tion, consecutive P tasks propagate and aggregate vertex gradients,
and their intermediate data does not need to be stored (i.e., H (i+1)
and H(+2)), Compared to the original GNN model that caches in-
termediate data from all P tasks (Figure 8(a)), the task-decoupled
approach only requires reserving space for one P task, reducing the
memory requirements. For complex GAT models, since the Scatter
P task is executed before the edge T task, we must cache the edge
embeddings generated by the Scatter P task, which consumes a sig-
nificant memory resource. To address this challenge, we swap the
execution order of the Scatter P task and the edge T task following
the solution proposed by GATv2 [5], ensuring that all P tasks are
executed consecutively so that release their intermediate data.
The flow of the task-decoupled approach is as follows. Given
the L-layer GNN model, we first separate all T tasks from P tasks
and execute the task partition based on the L-layer T and P tasks.
Then, we load the subgraphs to execute the L-layer vertex-based
T tasks and transfer the obtained vertex embeddings to the GPUs
of P tasks. Subsequently, we execute L-layer P tasks, obtaining
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Figure 9: An illustrative example for comparing the com-
munication frequency of original GNN task parallelism and
task-decoupled GNN task parallelism (3-layer GNN).

aggregated vertex embeddings and calculating the loss. Backward
propagation involves executing the previous process in reverse,
using the obtained vertex gradients instead of vertex embeddings.

Furthermore, we analyze the communication complexity of data
parallelism, task parallelism, and task-decoupled approach. Let L
be the number of layers, M be the number of GPUs, |V| be the num-
ber of vertices, and |d| be the average embedding dimension. For
data parallelism, which only communicates neighbor vertices, the
communication complexity is O((« —1)|V||L||d|), where & > 1 rep-
resents the replication factor. For task parallelism, which transfers
all vertex embeddings between the T and P tasks, the communica-
tion complexity is O((2L — 1)|V||d|). For task-decoupled approach,
the communication complexity is O((M — 1))|V||d]). Since « is
proportional to the average degree, datasets with a higher average
degree exhibit greater communication volume in data parallelism.
When Ngpy < Nygsk, the task-decoupled approach can effectively
address the frequent communication issues inherent in the alter-
nating execution mode, as shown in Figure 9.

Recomputation Technique. Based on task-decoupled GNN train-
ing, T tasks are grouped together for execution, and this part can
be seen as a traditional DNN operation. Therefore, we can use
recomputation techniques [12] to reduce the intermediate data gen-
erated by T tasks. As is illustrated in Figure 8(c), the recomputation
technique involves re-executing the T tasks during backward prop-
agation instead of caching their intermediate data, reducing the
runtime memory consumption in decoupled GNN training.
NeutronTask implements the recomputation technique into task-
decoupled GNN task parallelism to reduce memory consumption.
In forward propagation, after each GPU completes the T task for a
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subgraph, it immediately releases all intermediate data to reserve
memory space for the next subgraph. In backward propagation,
each subgraph performs recomputation and gradient propagation
in parallel (recomputing the T task starting from the first GPU and
propagating gradients starting from the last GPU). Note that the
recomputation technique maintains the accuracy of the original
approach because the recomputed intermediate data are identical
to that generated during forward propagation.

The Effectiveness of Task-Decoupled Approach. For data par-
allelism, the memory requirement for intermediate data is IDg,, =
2 - |V|L|d|, where |V| is the number of vertices, L is the model
layers, and |d| is the average dimension of hidden layers. For task-
decoupled approach, intermediate data is released after perform-
ing tasks and the memory requirement is [Dyp = |d| X1, |Vil,
where m and n represent the subgraphs being processed. Since
o Vil <|V], we have IDgy, < ID¢p. Therefore, task-decoupled
approach reduces memory requirement for intermediate data.

5.2 Task Scheduling Model

NeutronTask integrates task parallelism and task-decoupled GNN
training framework, minimizing runtime memory consumption
during GNN training. In this section, we provide a task scheduling
model that optimizes GPU resource utilization by adjusting the
number of GPUs allocated to each task based on the workload.
Initially, we analyze the factors that affect the execution time of
T and P tasks. Firstly, T tasks run slower on graphs with larger
input feature dimensions, while P tasks run slower on graphs with
higher average degrees. Secondly, T tasks are compute-intensive,
with performance primarily related to computational resources,
whereas P tasks are memory-intensive, primarily associated with
memory access speed [53].

Based on the above analysis, we design a task scheduling model.
Firstly, we estimate the computation time of T and P tasks in a
given GNN workload using the following formulas:

g2 a2V d” ™ vz - de - de
FLOPS
2.v|-d-dP
" FLOPS

©)

Tfi(y

=1

V]-d-(1+2-dP)+|v]|
Bandwidth ) ©

where L is the number of GNN layers, e.g., L vertex-based T task,

L P tasks, and an edge-based T task in complex models. |V| and

+(1-y)-



Algorithm 2 Workflow of NeutronTask for a single epoch.

Input: G = (V,E), input feature X Epoch e, the number of GPU N,
the number of subgraph S
Output: Updated Parameter of GNN model W
1: {Tx|,0 < k < q}, {Pxl,q < k < N} = Task_Partition(N, G);

2: > Py represents the number of P tasks in each GPU
3: {SG[i][j]]0 < i,j < S} = Graph_Partition(G,S);

4: SyncALLGPU();

5: for each s € SG[i][j] do in pipeline

6: Transfer feature to the first "T" GPU, i.e., HS(O);

7 for GPU k =0to g — 1do

5 H® = go (Xs, Wie, Ti) (o1 y = €9 (X, We));

9: Transfer Hs(k) to next "T" GPU;

10: end for

11: Transfer H from "T" GPU to first "P" GPU;

12: for GPU k =qto N — 1do

13: Hs(k) =f(H, A, Py); // vertex dependency management
14: Transfer Hgk) to next "P" GPU;

15: end for

16: loss = downstream_task (Hs(k) );

17: VH = loss.backward();

18: Re_forward(); // from GPU 0 to g — 1

19: P_backward(); // from GPUN — 1toq

20: T_backward() and Update(W);

21: end for

|E| are the number of vertices and edges in the graph, respectively.
dz(,l) is the embedding dimensions of the vertices and edges at layer
I, and d, represents the last layer of T tasks (d, = di(,L)). d is the
average degree of vertices in the graph. FLOPS denotes the compu-
tational capacity of the GPU in terms of floating-point operations
per second. Bandwidth is the memory bandwidth. y represents the
extent to which computation and communication overlap, typically
determined empirically based on hardware characteristics.

Based on these measurements, we calculate the number of GPUs
allocated to P tasks (Nj) and T tasks (N;) as follows:

T
Np=Ny- —L2—, )
Ty + Ty
N, =N, - N, ®)

where Nj; is the total number of available GPUs. By task scheduling
model, NeutronTask ensures optimal performance and efficient
utilization of available hardware. Additionally, the task scheduling
model is a pre-processing phase. The complexity of task scheduling
is constant and its overhead is relatively small, accounting for about
0.01% of the total time for running 100 epochs.

5.3 Overall Execution Flow in NeutronTask

Algorithm 2 outlines a single epoch’s execution in NeutronTask. To
begin with, GNN tasks are allocated by the task scheduling model.
The {Ti|0 < k < q} and {Px|q — 1 < k < N} represent the number
of T and P tasks in each GPU, N represents the number of GPUs,
and g represents the boundary point for handling two types of GPU,
where GPUs with GPU;; < q handle T tasks, and the remaining
GPUs handle P tasks (line 1). Then, we employ intra-GPU graph
partitioning to partition the input graph into multiple subgraphs
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Table 3: Dataset description. |V|, |E|, #F, #L, and #hidden repre-
sent the number of vertices, edges, feature dimensions, and
labels, respectively. |TR| represents the ratio of train vertices.

Dataset V] |E| #F  #L  |TR|

cora [45] 2.70K 5.43K 1433 7 59.3%

reddit [23] 23296K  114.62M 602 41 90.6%
ogbn-products [26] 2.45M 61.86M 100 47  8.03%
it-2004 [4] 41M 1.2B 256 64 25%
ogbn-papers100M [26] 111.06M 1.62B 128 172 1.1%
friendster [31] 65.6M 2.5B 256 64 25%

(SG), where the organization of each SG resembles the chunk-based
graph structure shown in Figure 6 (line 3).

Before the start of each epoch, all GPUs are synchronized (line
4). During the training process, SGs are trained sequentially within
a GPU and scheduled with pipeline parallelism across GPUs. The
feature HS(O) is transferred from the host to the GPU executing the
first T task (line 6). Then, the embeddings of each SG are trans-
mitted across GPUs in the predetermined order, performing the
corresponding tasks (lines 7-15). In backward propagation, recom-
putation (line 18) and gradient propagation (line 19) can be executed
in parallel, ultimately updating the model parameters (line 20).

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup

Environments. The multi-GPU experiments are conducted on
a GPU server equipped with 2 Intel(R) Xeon(R) Silver 4316 CPUs,
377GB DRAM, and 4 NVIDIA A5000 (24GB) GPUs. Each CPU is
connected to two GPUs via the PCle link, and the multi-GPU devices
are connected with PCle 4.0x 16. The server runs Ubuntu 20.04 OS
with GCC-9.4.0, CUDA 11.3, PyTorch 1.13.0, and NCCL backend.

Datasets and GNN Algorithms. Table 3 presents the parameters
of real-world graphs used in our experiments. For graphs without
properties (it-2004 and friendster), we use randomly generated
features, labels, training (25%), test (25%), and validation (50%) set
division. We use two popular GNN models (GCN [29] and GAT
[56]). The hidden layer dimensions for reddit and ogbn-products
are 256, while for cora, it-2004, ogbn-papers100M, and friendster,
they are 128. The partitions are 4, while for the large graphs (it-2004,
ogbn-papers100M, and friendster), the partitions are 32.

System for Comparison. We compare NeutronTask with three
popular GNN systems: DGL [62], NeutronStar [64], and Sancus [43],
all of which employ data parallelism. DGL uses mini-batch training
to save memory by splitting training vertices into batches, each
sampling a subset of neighbors for GPU training. In our evaluation,
the batch size is set to 1024 and the fan-out is set to 10. NeutronStar
divides the entire graph into subgraphs and loads them sequentially
into the GPU. Sancus reduces communication by using historical
embeddings and caches these embeddings locally.

6.2 Overall Comparison

We compare NeutronTask with DGL [62], Sancus [43], and Neu-
tronStar [64] on a node with 4 GPUs to show the processing scale
with limited GPU resources. The results are reported in Table 4.



Table 4: Comparison of the per-epoch time (unit: s) with DGL, Sancus, and NeutronStar. (OOM represents out-of-memory)

GCN GAT
Layers Dataset
DGL Sancus NeutronStar NeutronTask | DGL Sancus NeutronStar NeutronTask
cora 0.025(3.13%)  0.017(2.13%)  0.013(1.66x) 0.008 0.021(2.1x) 0.023(2.3%) 0.028(2.8%) 0.010
) reddit 0.34(3.4x) 0.18(1.8x) 0.52(5.2x) 0.10 1.04(4.0x) OOM OOM 0.26
ogbn-products | 1.06(3.03x)  0.66(1.89X)  0.94(2.69x) 0.35 0.88(1.31x) ~ OOM OOM 0.67
it-2004 48.77(3.31x) OOM OOM 14.72 96.83(3.78x)  OOM OOM 25.6
ogbn-papers100M | 2.76(0.13x)  OOM OOM 25.88 10.71(0.2x) ~ OOM OOM 54.84
friendster 65.6(3.46X)  OOM OOM 18.98 108.73(2.51x) OOM OOM 43.33
cora 0.044(2.32x)  0.03(1.58X)  0.05(2.63x) 0.019 0.0358(1.7x)  0.036(1.71x)  0.078(3.71X) 0.021
s reddit 0.625(3.29x)  0.36(1.89X)  0.92(4.84x) 0.19 1.96(5.45x)  OOM OOM 0.36
ogbn-products | 1.378(2.46x) 1.82(3.25X)  1.75(3.13x) 0.56 3.86(4.71x) ~ OOM OOM 0.82
it-2004 64.4(3.45x)  OOM OOM 18.69 OOM OOM OOM 47.43
ogbn-papers100M | 17.86(0.36x) OOM OOM 57.72 61.65(0.6x) ~ OOM OOM 102.39
friendster OOM OOM OOM 35.31 OOM OOM OOM 75.95
cora 0.063(1.91x)  0.042(1.27x)  0.05(1.52x) 0.033 0.058(1.81x)  0.057(1.78%)  0.099(3.09%) 0.032
s reddit 1.546(4.83X)  0.71(2.22x)  1.75(5.47x) 0.32 OOM OOM OOM 0.41
ogbn-products OOM OOM 6.23(5.32%) 1.17 OOM OOM OOM 1.58
it-2004 96.45(2.58x) OOM OOM 37.45 OOM OOM OOM 77.85
ogbn-papers100M | OOM OOM OOM 84.54 OOM OOM OOM 212.94
friendster OOM OOM OOM 71.71 OOM OOM OOM 152.96
Compared to DGL, NeutronTask achieves an average speedup of — T‘::':orﬁ;?k"w,m - = sag Noutroract we onere! 5
2.87x. The sampling method of DGL faces the neighbor explosion g 16 g =
problem [27], causing computation and memory costs to grow expo- g 12 - g %
nentially with model depth. Since DGL needs to store intermediate :; 8 D; 30 5
data, it encounters OOM errors when handling deep GNN models. g 4 rl_l—»‘ i g 15 FH‘h ﬁ ¢ W
In contrast, by utilizing the task-decoupled approach and recompu- 2 otfy e R 4 B

tation techniques, NeutronTask can immediately release intermedi-
ate data after completing each task. Additionally, DGL’s sampling
process is time-consuming, leading to lower training efficiency than
NeutronTask. For ogbn-papers100M, DGL performs better because
it trains only on the 1.1% training set, while NeutronTask performs
full-graph training, incurring higher computational overhead.

Compared to Sancus and NeutronStar, NeutronTask supports
large-scale graph training and outperforms them. Sancus increases
memory usage by caching historical embeddings locally. Neutron-
Star partitions subgraphs but still stores intermediate data in GPUs.
NeutronTask reduces the memory consumption by task parallelism
and task-decoupled approach, enhances system performance by
efficient pipeline parallelism. Firstly, NeutronTask reduces neigh-
bor replication by avoiding inter-GPU graph partition and reduces
intermediate data by decoupling T tasks from P tasks. As a result,
NeutronTask can train on all datasets. Secondly, each GPU transmits
its computation results to the GPU handling the next task, hiding
communication within pipeline computations. On successfully runs,
NeutronTask achieves a speedup from 1.27X to 5.47X.

Our observations indicate that the performance advantage of
NeutronTask over other systems increases as the model layer grows.
For the 2-layer model, NeutronTask achieves an average 2.37X
speedup over systems. For the 4-layer and 8-layer models, the
speedups are 2.65x and 3.14X, respectively. As the number of layers
increases, data parallelism must manage more remote neighbors
(i.e., inter-GPU communication), while task parallelism reduces the
communication overhead from these neighbors.
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Figure 10: Memory reduction analysis, where each bar rep-
resents the peak memory consumption. "TP" indicates task
parallelism, and "TD" indicates task-decoupled training,.

6.3 Memory Reduction Analysis

We analyze the memory reduction achieved by task parallelism (TP)
and task-decoupled training (TD), comparing with NeutronStar [64]
and Sancus [43]. Figure 10 shows the results across 4 GPUs.
NeutronStar uses 19.9% — 43.7% of its memory to cache neighbor
replication, while Sancus additionally caches historical embeddings
by 32.7% — 43.3%. In contrast, NeutronTask reduces neighbor repli-
cation through TP. For reddit, TP reduces more neighbor replica-
tions than ogbn-products due to its higher average degree, which
causes significant vertex dependencies across subgraphs. To cache
the intermediate data, NeutronStar and Sancus use 17.6% — 28.9%
of the memory, while NeutronTask leverages TD to release this
memory early. Additionally, NeutronTask employs recomputation
techniques to further reduce intermediate data of T tasks. For the
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Figure 12: Performance gain analysis with error bars. "TP" in-
dicates the naive task parallelism, "DM" indicates the vertex
dependency management, "TD" indicates the task-decoupled
GNN training, and "TS" indices the task scheduling model.

GAT model, both NeutronStar and Sancus exceed the total memory
of 4 GPUs (96GB), and we compute their theoretical memory re-
quirements. NeutronTask reduces memory usage by 81.5% — 97.4%
by leveraging vertex weights for storage instead of storing a large
number of edge embeddings. In summary, compared to these sys-
tems, NeutronTask reduces total memory usage by 49% — 67%.

6.4 Efficiency of the Hybrid Parallelism

NeutronTask employs hybrid parallelism (HP) to handle cases
where the number of GPUs exceeds the number of tasks. We com-
pare HP with data parallelism (DP) and task parallelism (TP) to
analyze performance. The experiments are conducted on an Alibaba
Cloud ECS server equipped with 128 vCPU cores, 512 GB of DRAM,
and 8 A10 GPUs (each with 24 GB). The software setup is described
in Section 6.1. We use a 2-layer GCN model, consisting of two P
tasks and two T tasks. In this setup, DP uses NeutronStar as the
baseline. TP only utilizes 4 GPUs. For HP, the GPUs are divided into
4 groups, with each group handling one task. Neither TP nor HP
includes the task-decoupled approach. Figure 11 shows the results.
Compared to DP, HP achieves a 1.52X - 1.56X speedup. This is be-
cause DP requires frequent communication with remote neighbors.
However, HP reduces the communication overhead and overlaps
communication with computation. Compared to TP, HP achieves a
1.46X - 1.47x speedup since TP uses only 4 GPUs, leaving the rest
idle, while HP maximizes GPU utilization by grouping GPUs.

6.5 Performance Gain Analysis

We analyze the performance gain of NeutronTask with vertex de-
pendency management (DM), task-decoupled GNN training (TD),
and task scheduling model (TS). Using naive task parallelism (TP)
as the baseline, we gradually integrate these optimizations. Figure
12 shows the results. Compared to TP, TP+DM achieves 1.6 - 1.8X
speedups. As shown in Figure 5, DM reduces GPU bubble time in
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Figure 13: Epoch-to-accuracy. MB represents the mini-batch
training, and FG represents the full-graph training.

task parallelism by overlapping subgraph task execution across
GPUs. Compared to TP+DM, TP+DM+TD achieves 1.8x - 2.9X
speedups due to the inherent advantages of decoupled training. In
the general GNN model, P tasks perform computations using vertex
embeddings from each hidden layer. In contrast, TD first executes
all T tasks, which may reduce vertex embedding dimensions. TD
achieves greater performance gains for reddit than ogbn-products.
This is because after T tasks, the vertex embedding dimensions in
reddit dataset sharply decrease, directly reducing P task execution
time. For the GAT model, TD provides greater performance gains
than for the GCN model because it decouples edge weight compu-
tation for P and T tasks, further reducing inter-GPU communica-
tion frequency. Finally, compared to TP+DM+TD, TP+DM+TD+TS
achieved 1.35X - 1.39x speedups by adjusting the number of GPUs
executing different tasks, enhancing resource utilization.

6.6 Accuracy Comparison

NeutronTask employs task-decoupled training, executing L layers
of T tasks first, followed by L layers of P tasks, which impact model
accuracy. We compare the model accuracy with DGL [62] and San-
cus [43] by running GCN on reddit and ogbn-products. Figure 13
reports the epoch-to-accuracy results. After 100 epochs, the test
accuracy reaches a stable state. NeutronTask achieves almost the
same accuracy as other systems, demonstrating the effectiveness
of task-decoupled GNN training in ensuring model accuracy. Re-
garding the convergence speed, NeutronTask achieves the highest
accuracy in fewer epochs. Additionally, with a significantly faster
per-epoch time, NeutronTask demonstrates better time-to-accuracy
performance. Sancus has the slowest convergence speed due to
the use of history embedding. For deeper layers, all methods suffer
from decreased accuracy, as the increased number of P and T tasks
leads to over-smoothing (7, 10, 16, 17, 40, 41, 69, 78] and over-fitting
[32, 44, 70, 82]. Graphs with higher average degrees are more sus-
ceptible to over-smoothing. Therefore, reddit suffers from a more
significant accuracy drop compared to ogbn-products.
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6.7 Efficiency of Pipelining

We conduct pipeline ablation experiments to demonstrate the ef-
fectiveness of the pipeline and analyze the impact of the number of
subgraphs on system performance and model accuracy.

Ablation Study of the Pipeline. To evaluate the efficiency of
pipelining shown in Figure 5(c), we compare it with the serial ex-
ecution of 4 subgraphs. Figure 14(a) shows the result, the time
elapsed on both T and P tasks is roughly the same, which exceeds
the time elapsed on communication. By overlapping the communi-
cation and computation through pipelining, the total runtime can
be significantly reduced (ranging from 1.2X to 1.5x).

Sensitivity Study of the Pipeline. In intra-GPU graph parti-
tion, the number of subgraphs is a configurable parameter that
controls the memory consumption of training data and pipeline
parallelism. To evaluate the impact of this parameter on training
performance and accuracy, we run a 2-layer GCN on reddit, increas-
ing the number of subgraphs from 1 to 6. As shown in Figure 14(b),
as the number of subgraphs increases, the performance gradually
improves, while accuracy decreases by less than 1%.

6.8 Communication Analysis

We evaluate the communication overhead of NeutronTask by in-
tegrating task parallelism (TP) and task-decoupled (TD). Figure
15 presents the experimental results compared to two full-graph
data parallelism systems (NeutronStar and Sancus). For reddit, Neu-
tronTask with TP reduces the communication overhead by an aver-
age of 36%, while for ogbn-products, NeutronTask with TP increases
the communication overhead by an average of 17%. This is because
when data parallelism runs on datasets with a higher average de-
gree (reddit), there are more cross-GPU edges, resulting in a higher
communication volume. Compared to other methods, NeutronTask
with TP+TD reduces communication column by an average of 54.2%.
This is because TD involves fewer communication frequencies.
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Figure 16: Scalability analysis when varying GPU number
from 1 to 4 by running 2-layer GNN models.
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Figure 17: Scalability analysis when varying dataset charac-
teristics when fixing the number of vertices at 20M.

6.9 Scalability Analysis

Scalability with Varying GPUs. We evaluate the scalability of
NeutronTask by varying the number of GPUs. Figure 16 reports the
results of 2-layer GCN and GAT using DGL and Sancus as baselines.
We observe that the performance of NeutronTask, DGL, and Sancus
improves as the number of GPUs increases. NeutronTask leverages
an efficient pipeline to achieve high scalability by overlapping com-
putation and communication. Sancus has poor scalability because
the increase in the number of GPUs leads to more graph partitions
(i.e., more vertex dependencies and inter-GPU communication). For
GAT, Sancus encounters an OOM error. DGL achieves high scalabil-
ity as the total number of batches remains fixed, and increasing the
number of GPUs reduces the batches processed per GPU linearly.

Scalability with Varying Dataset Characteristics. We compare
NeutronTask with DGL, NeutronStar, and Sancus by varying dataset
characteristics. Specifically, we utilize the RMAT [28] to generate
datasets and fix the number of vertices at 20M while varying the
number of edges (#E, 80M, 160M, 320M), the feature dimensions
(#F, 256, 512, 1024), the labels (#L, 16, 32, 64), and the ratio of train
vertices (|TR|, 10%, 50%, 80%). The results are shown in Figure 17.
With varying #E, #F, #L. |TR|, NeutronTask achieves speedup of
5.60%, 3.68x%, and 4.52X compared to DGL, Sancus, and NeutronStar,
respectively. The computational overhead of mini-batch training in
DGL is proportional to |TR|, while the computational overhead of
full-graph training is independent of |TR)|.
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Figure 18: GPU utilization comparison. The average GPU
utilizations are 97.24%, 97.11%, 94.65%, and 94.89% for Neu-
tronTask, Sancus, DGL, and NeutronStar, respectively.

6.10 GPU Utilization

We evaluate GPU Utilization by running a 2-layer GCN on red-
dit. Figure 18 reports the results in a 0.7-second time window,
with GPU utilization recorded every 1 millisecond. NeutronTask
achieves higher GPU utilization (97.24% on average) compared to
DGL (94.65%), Sancus (97.11%), and NeutronStar (94.89%), with
consistently higher peak GPU utilization for most of the time. Neu-
tronTask optimizes GPU allocation for T and P tasks by a task
scheduling model but experiences some fluctuation due to pipeline
bubble time. DGL shows the worst GPU utilization due to frequent
random memory accesses during sampling.

6.11 Comparison with NeutronTP

We compare NeutronTask with NeutronTP, a tensor parallelism
that evenly divides vertex features for load balancing. Moreover,
we combine NeutronTask with tensor parallelism, grouping GPUs
for tensor parallelism within each group while applying task paral-
lelism across groups. Figure 19 reports the results with NeutronStar
(data parallelism) as the baseline. Compared to NeutronStar, all
methods improve performance. When training small-scale graphs,
NeutronTP achieves an average speedup of 4.11x than NeutronTask.
However, for large-scale graphs, the subgraph loading of NeutronTP
reduces GPU utilization, leading to performance degradation and
even memory exhaustion errors, while NeutronTask achieves 4.21x
speedup on it-2004. By combining tensor parallelism, NeutronTask
not only supports large-scale graph training but also further en-
hances performance. In summary, tensor parallelism and task par-
allelism are orthogonal techniques. Combining them can achieve
better performance than using a single one.

7 LIMITATION AND FUTURE WORK

Currently, NeutronTask is designed for training large-scale graphs
with limited GPU memory. When resources are sufficient or the
graph scale is smaller, NeutronTask may need to be combined with
other parallel methods to further enhance performance. Recently,
various GNN parallel training methods, such as GNN tensor par-
allelism [2] and GNN model parallelism [59], have been proposed
to enhance performance. However, evaluating the appropriate use
cases for these methods and effectively combining them remains an
open research problem. In future work, we aim to integrate existing
techniques to enable automatic parallelism for GNNs, which would
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Figure 19: Comparison with various parallelization methods

select suitable execution strategy (or combine multiple methods) to
adapt to varying requirements of environments and data inputs.

8 RELATED WORK

GNN Data Parallelism. GNN data parallelism refers to partition-
ing graphs for parallel computation [1, 8, 19, 27, 33, 34, 38, 43, 46,
47, 51, 54, 58-60, 63-65, 71, 72, 76, 77, 79, 80, 84]. GNNLab [72],
DUCATI [76], PaGraph [34], and XGNN [51] reduce CPU-GPU
communication by utilizing GPU caching. P3 [19] and ByteGNN
[79] improve sampling efficiency by optimizing data distribution.
CAGNET [54], MGG [65], PipeGCN [59], and Sancus [43] optimize
inter-GPU communication by specific parallel strategies. NeuGraph
[38], ROC [27], and Hongtu [63] reduce GPU memory usage by
subgraph scheduling and intermediate data management.

GNN Tensor Parallelism. Recently, NeutronTP [2] proposes
tensor parallelism, ensuring that different workers process nearly
identical workloads by partitioning vertex tensors instead of parti-
tioning graphs (as vertex tensors have equal sizes and are easier to
partition evenly). To address frequent communication, NeutronTP
proposes a general decoupled training technique. In contrast, we
employ decoupled training based on task parallelism, releasing
intermediate data in advance to reduce memory requirements.

9 CONCLUSION

We present NeutronTask, a scalable and efficient system for full-
graph GNN training on limited GPU memory. Firstly, NeutronTask
provides task parallelism, which reduces neighbor replication and
reorganizes intermediate data placement in multi-GPU GNN train-
ing by inter-GPU task partition and intra-GPU graph partition.
Secondly, NeutronTask integrates a task-decoupled GNN training
framework, which reduces the intermediate data in GNN training
through task-decoupled GNN training and recomputation tech-
niques. Our experiments demonstrate that NeutronTask can effi-
ciently train on billion-scale graphs using just 4xA5000 GPU (each
with 24GB of memory) by significantly reducing the memory con-
sumption of neighbor replication and intermediate data.
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