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ABSTRACT
The widespread adoption of digital services, along with the scale

and complexity at which they operate, has made incidents in IT

operations increasingly more likely, diverse, and impactful. This

has led to the rapid development of a central aspect of “Artificial

Intelligence for IT Operations" (AIOps), focusing on detecting anom-

alies in vast amounts of multivariate time series data generated

by service entities. In this paper, we begin by introducing a unify-

ing framework for benchmarking unsupervised anomaly detection

(AD) methods, and highlight the problem of shifts in normal behav-

iors that can occur in practical AIOps scenarios. To tackle anomaly

detection under domain shift, we then cast the problem in the

framework of domain generalization and propose a novel approach,

Domain-Invariant VAE for Anomaly Detection (DIVAD), to learn

domain-invariant representations for unsupervised anomaly detec-

tion. Our evaluation results using the Exathlon benchmark show

that the two main DIVAD variants significantly outperform the best

unsupervised AD method in maximum performance, with 20% and

15% improvements in maximum peak F1-scores, respectively. Eval-

uation using the Application Server Dataset further demonstrates

the broader applicability of our domain generalization methods.
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1 INTRODUCTION
Time series anomaly detection has been studied intensively due to

its broad application to domains such as financial market analysis,

system diagnosis, and mechanical systems [10, 16]. Recently, it has

been increasingly adopted in an emerging domain known as “Arti-

ficial Intelligence for IT operations" (AIOps) [15], which proposes

to use AI to automate and optimize large-scale IT operations [51].

Not long ago, the role of IT was to support the business. Today

as digital services and applications become the primary way that
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enterprises serve and interact with customers, IT is the business
– almost every business depends on the continuous performance

and innovation of its digital services.

With this paradigm shift, incidents in IT operations have become

more impactful, inducing ever-increasing financial costs, both di-

rectly through service-level agreements made with customers and

indirectly through brand image deterioration. Concurrently, the

popularity of such services, along with their widespread migra-

tion to the cloud, has greatly increased the scale and complexity at

which they operate, relying on more resources to process larger vol-

umes of data at high speed. This evolution has made incidents more

frequent, costly, diverse, and difficult for engineers to manually

anticipate and diagnose, thus calling for more automated solutions.

To respond to such needs, this paper focuses on anomaly detec-
tion in multivariate time series that suits the challenges in AIOps.

More specifically, a large set of multivariate time series are gener-

ated from the periodic monitoring of service entities, and “anom-

alies” are reported as patterns in data that deviate from a given

notion of normal behavior [9].
Challenges. Detecting anomalies in AIOps presents a set of

technical challenges [51]. (CH1) The scarcity of anomaly labels
is due to the lack of domain knowledge of IT operations to reli-

ably label anomalies, and the labor-intensive process of examining

large amounts of time series data. (CH2) The high dimensionality of
recorded time series, both in terms of time and feature dimensions,

is common in AIOps due to the collection of numerous metrics

at high frequency across a large number of entities. (CH3) The

complexity and variety in normal behaviors arise because multi-

ple, complex entities are monitored at scale in different contexts.

(CH4) The shifts in normal behaviors further arise due to poten-

tially frequent changes in software/service components, hardware

components, or operation contexts of the monitored entities. The

recent Exathlon benchmark [22] exhibits significant shifts in nor-

mal behaviors across traces collected from different runs of Spark

streaming applications. Similarly, the Application Server Dataset

(ASD) [27] exhibits shifts in behaviors of different servers. In these

cases, the shifts in normal behaviors are so significant that they

appear to be samples collected from different domains or contexts.
A large number of anomaly detection (AD) methods for multi-

variate time series have been developed, as categorized recently

by Schmidl et al. [40]. CH1 has been typically addressed through

the development of unsupervised AD methods, assuming no label

information for training, and semi-supervised methods that assume

(possibly noisy) labels for the normal class only [9]. In this paper, we

jointly refer to them as “unsupervised” methods, trained on mostly-

normal data and evaluated on a labeled test set. Concurrently, the

advent of deep learning (DL) [25] has been instrumental in partly
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addressing CH2 and CH3, offering the ability to learn succinct yet

effective representations of high-dimensional data while capturing

both temporal (i.e., intra-feature) and spatial (i.e., inter-feature) de-

pendencies in multivariate time series [27, 45, 50]. Despite covering

a wide range of assumptions about both normal data and anomalies,

all these methods are vulnerable to CH4, by assuming a similar

distribution of training and test normal data, which makes them of

limited use in the new AIOps scenario.

This paper tackles the last challenge (CH4), compounded by

other challenges (CH1-Ch3), through the framework of domain
generalization (DG). In this framework, data samples are collected

from multiple, distinct domains (the normal contexts here), with

certain characteristics of the observed data being determined by

the domain, and others being independent from it. This amounts

to associating shifts in normal behavior to the concept of domain
shift, and aiming to build models from a set of training (or source)
domains that can generalize to another set of test (or target) do-
mains. Most of existing DG methods were proposed for image

classification, categorized as based on explicit feature alignment,
domain-adversarial learning or feature disentanglement [48, 53]. In
practice, adversarial methods can suffer from instabilities that make

them hard to reproduce [24, 37], and explicit feature alignment be-

come very costly as the number of source domains increases, like in

AIOps. For these reasons, this paper focuses on feature disentangle-

ment [20, 33, 34], where methods seek to decompose the input data

into domain-shared and domain-invariant features. The existing
methods, designed for image classification, are not applicable to

unsupervised time series anomaly detection (with no labels). Fur-

ther, recent efforts on domain generalization for time series AD

handle only univariate sound waves with various labeling assump-

tions [11], making them unsuitable for the AIOps setting.

Contributions. In this paper, we present the first multivariate
time series anomaly detection approach that generalizes across het-
erogeneous domains. Given that this topic has been underaddressed

in the anomaly detection literature, we conduct an in-depth study

to characterize the problem of normal behavior shifts using the

recent Exathlon benchmark [22] (which was motivated by AIOps

use cases) and to highlight the performance issues of existing unsu-

pervised anomaly detection methods under domain shift. We then

address this challenge by proposing a novel approach based on do-

main generalization and feature disentanglement, custom-designed

for unsupervised time series anomaly detection. More specifically,

our paper makes the following contributions:

• We introduce a unifying framework for benchmarking un-

supervised anomaly detection methods, and highlight the

domain shift problem in AIOps scenarios (Section 3).

• To tackle the problem of domain shift, we develop a theo-

retical formulation of unsupervised anomaly detection in

the framework of domain generalization (Section 4).

• In this proposed framework, we develop a novel approach,

called Domain-Invariant VAE for Anomaly Detection (DI-

VAD), with a set of variants to learn domain-invariant rep-

resentations, thereby enabling effective anomaly detection

in unseen domains (Section 5).

Our evaluation using the Exathlon benchmark shows that our

two main DIVAD variants can significantly outperform the best

unsupervised AD method in maximum performance, with 20%

and 15% improvements in maximum peak F1-scores (0.79 and 0.76

over 0.66), respectively. Our evaluation also applies DIVAD to the

Application Server Dataset (ASD) [27], reflecting a similar use case,

and shows that its explicit domain generalization can be more

broadly applicable and useful in this second use case.

The code for our DIVAD method and experiments is available at

https://github.com/exathlonbenchmark/divad.

2 RELATEDWORK
Anomaly Detection inMultivariate Time Series.Numerous un-

supervised anomaly detection methods in multivariate time series

have been proposed over the years [9, 10, 16]. Schmidl et al. [40]

recently introduced a taxonomy based on the way the methods

derive their anomaly scores for data samples (the higher the score,

the more deemed anomalous by the method). The only category we

do not consider in this work is distance methods, which typically

do not scale well with the large dimensionality of AIOps.

Forecasting methods define anomaly scores of data samples as

forecasting errors, based on the distance between the forecast and

actual value(s) of one or multiple data point(s) in a context window

of length 𝐿. LSTM-AD [31] is the most popular forecasting method.

It trains a stacked LSTM network to predict the next 𝑙 data records

from the first 𝐿 − 𝑙 of a window. It then fits a multivariate Gaussian

distribution to the error vectors it produced in a validation set, and

defines the anomaly score of a record as the negative log-likelihood

of its error with respect to this distribution.

Reconstruction methods score data samples based on their recon-

struction errors from a transformed space. Principal Component

Analysis (PCA) [2] and Autoencoder (AE) [18, 39] are representa-

tive shallow and deep reconstruction methods, respectively. PCA’s

transformation is a projection on the linear hyperplane formed by

the principal components of the data, while AE’s is a non-linear

mapping to a latent encoding learned by a neural network that was

trained to reconstruct data from it. More recently, Multi-Scale Con-

volutional Recurrent Encoder-Decoder (MSCRED) [50] turns a mul-

tivariate time series into multi-scale signature matrices characteriz-

ing system status at different time steps, and learns to reconstruct

them using convolutional encoder-decoder and attention-based

ConvLSTM networks. TranAD [45] relies on two transformer-based

encoder-decoder networks, with the first encoder considering the

current input window, and the second one considering a larger con-
text of past data in the window’s sequence. It defines the anomaly

score of an input window as the average of its reconstruction errors

coming from two decoders and inference phases, with the second

phase using the reconstruction error from the first phase as a focus

score to detect anomalies at a finer level.

Encoding methods score data samples based on their deviation

within a transformed space. Deep SVDD [38] is the most popular

recent encodingmethod, training a neural network to map the input

data to a latent representation enclosed in a small hypersphere, and

defining anomaly scores of test samples as their squared distance

from this hypershere’s centroid. More recently, DCDetector [49]

uses a dual-view attention structure based on contrastive learning

to derive representations where differences between normal points

and anomalies are amplified, subdividing windows into adjacent

“patches", with one view modeling relationships within patches
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and the other across patches. To derive anomaly scores, it uses the

insight that normal points tend to be similarly correlated for both

views, while anomalies tend to be more correlated to their adjacent

points than to the rest of the window.

Distribution methods define anomaly scores of data samples as

their deviation from an estimated distribution of the data. The Ma-

halanobis method [2, 42] and Variational Autoencoder (VAE) [6] are

representative shallow and deep distribution methods, respectively.

The Mahalanobis method estimates the data distribution as a multi-

variate Gaussian, and defines the anomaly score of a test vector as

its squared Mahalanobis distance from it. VAE estimates it using

a variational autoencoder, with the anomaly score of a test point

derived by drawing multiple samples from its probabilistic encoder,

and averaging the negative log-likelihood of the reconstructions

obtained from each of these samples. A more recent method is

OmniAnomaly [43]. It estimates the distribution of multivariate

windows with a stochastic recurrent neural network, explicitly

modeling temporal dependencies among variables through a com-

bination of GRU and VAE. It then defines a test window’s anomaly

score as the negative log-likelihood of its reconstruction.

Isolation tree methods score data samples based on their “isolation

level" from the rest of the data. Isolation forest [28] is the most

popular isolation tree method. It trains an ensemble of trees to

isolate the samples in the training data, and defines the anomaly

score of a test instance as inversely proportional to the average

path length required to reach it using the trees.

Overall, these methods cover a wide range of assumptions about

both normal data and anomalies. As we show in this paper, by
assuming a similar distribution of training and test normal data, all
of them are vulnerable to shifts in normal behavior, limiting their

applicability in our AIOps scenario.

Domain Generalization.Domain generalization (DG) has been

mainly studied in the context of image classification, with the do-

mains usually corresponding to the way images are represented

or drawn. DG methods can broadly be categorized as based on

explicit feature alignment, domain-adversarial learning or feature
disentanglement [48, 53]. Explicit feature alignment methods seek

to learn data representations where feature distribution divergence

is explicitly minimized across domains, with divergence metrics in-

cluding theWasserstein distance or Kullback-Leibler divergence [48,

53]. Rather than using such divergence metrics directly, domain-

adversarial learning methods seek to minimize domain distribution

discrepancy through a minimax two-player game, where the goal is

to make the features confuse a domain discriminator [14], usually

implemented as a domain classifier [3, 26, 32, 41]. Such adversarial

methods can suffer from instabilities that make them hard to re-

produce [24, 37], while explicit feature alignment can become very

costly as the number of source domains increases, like in AIOps.

For these reasons, this work considers domain generalization based

on feature disentanglement [20, 33, 34], where methods seek to de-

compose the input data into domain-specific and domain-invariant
features, and perform their tasks in domain-invariant space.

Our work is specifically related to Domain-Invariant Variational

Autoencoders (DIVA) [20], designed for image classification. It

uses variational autoencoders (VAE) to decompose input data into

domain-specific, class-specific, and residual latent factors, condi-

tioning the distributions of its domain-specific and class-specific

factors on the training domain and class, respectively, and enforc-

ing this conditioning by using classification heads to predict the

domain and class from the corresponding embeddings. It then uses

its class-related classifier to derive its predictions for the test images.

Because of this class supervision, this method cannot be applied to

our unsupervised AD setting.

Domain generalization for time series AD recently gained at-

tention through anomalous sound detection and the DCASE2022

Challenge, where the task was to identify whether a machine was

normal or anomalous using only normal sound data under domain-

shifted conditions [11]. The methods proposed however modeled

single-channel (univariate) soundwaves, while also assuming labels

such as themachine state, the type of machine, domain shift or noise

considered to train domain-invariant or disentangled representa-

tions [47]. This univariate aspect, coupled with these simplifying

assumptions, makes such methods unsuitable for our AIOps setting.

DataDrift Detection.Many techniques exist for data drift detec-

tion [13]. However, popular methods such as using the Kolmogorov-

Smirnov distance [8, 12] require a significant amount of drifted data

to detect a distribution change accurately. Anomaly detection under

domain shift is essentially a different problem, where anomalies

must be detected with low latency as they arise, although the nor-

mal behaviors in the current domain may appear to be drawn from

a different context from those seen in training data.

3 GENERAL AD FRAMEWORK
In this section, we present the unsupervised anomaly detection

(AD) problem, propose a unifying framework to encompass AD

approaches in evaluation, and highlight the presence of domain

shift in the current framework using the Exathlon [22] benchmark.

3.1 Unsupervised Anomaly Detection
We first introduce the notation of the paper and define the AD

problem in the unsupervised setting. More specifically, we consider

𝑁1 training sequences and 𝑁2 test sequences:

Strain = (𝑺 (1) , . . . , 𝑺 (𝑁1 ) ) , Stest = (𝑺 (𝑁1+1) , . . . , 𝑺 (𝑁1+𝑁2 ) ),

where each 𝑺 (𝑖 ) consists of 𝑇 ordered data records of dimension𝑀 .

To simplify the notation, our problem definition uses 𝑇 to denote

the (same) length of all sequences, while our techniques do not

make this assumption and can handle variable-length sequences.

For each test sequence, we consider a sequence of anomaly labels:

Ytest = {𝒚 (𝑁1+1) , . . . ,𝒚 (𝑁1+𝑁2 ) },

with 𝒚 (𝑖 ) ∈ {0, 1}𝑇 , such that:(
𝑦
(𝑖 )
𝑡 = 1 if the record at index 𝑡 in sequence 𝑖 is anomalous,

𝑦
(𝑖 )
𝑡 = 0 otherwise (i.e., the record is normal).

Our goal is to build an anomaly detection model as follows.

Definition 1. An anomaly detection model is a record scoring

function 𝑔 : R𝑇×𝑀 → R𝑇 , mapping a sequence 𝑺 to a sequence of
real-valued record-wise anomaly scores 𝑔(𝑺), which assigns higher
anomaly scores to anomalous records than to normal records in test
sequences. That is, 𝑔(𝑺 (𝑖 ) )𝑡1 > 𝑔(𝑺 ( 𝑗 ) )𝑡2 , ∀𝑖, 𝑗 ∈ [𝑁1 . . 𝑁1 + 𝑁2],
𝑡1, 𝑡2 ∈ [1 . . 𝑇 ] s.t. 𝑦 (𝑖 )𝑡1 = 1 ∧ 𝑦 ( 𝑗 )𝑡2

= 0.
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This record scoring function should further be constructed in

a setting of offline training and online inference. More precisely,

it means that training has to be performed offline on Strain, and

inference must be performed online on Stest by considering only

the data preceding a given record at time index 𝑡 :

𝑔(𝑺 (𝑖 ) )𝑡 = 𝑔(𝑺 (𝑖 )
1:𝑡

)𝑡 , ∀𝑖 ∈ [𝑁1 . . 𝑁1 + 𝑁2] , 𝑡 ∈ [1 . . 𝑇 ] .

Due to this requirement, we refer to the anomaly detection methods

based on 𝑔 as online scorers.

3.2 Unifying Anomaly Detection Framework
We next propose a framework unifying AD approaches under a

common evaluation structure. In this framework, each online scorer

relies on a windowing operator𝑊𝐿 that extracts sliding windows,

or samples, of length 𝐿 > 0 from a given sequence 𝑖:

𝑊𝐿 (𝑺 (𝑖 ) ) = {𝑺 (𝑖 )
𝑡−𝐿+1:𝑡 }

𝑇
𝑡=𝐿 =: {𝒙 (𝑖 )

𝑡 }𝑇𝑡=𝐿,

with 𝒙 (𝑖 )
𝑡 ∈ R𝐿×𝑀 . Then the training set is composed of the samples

extracted from all the training sequences:

Dtrain :=

𝑖∈[1. .𝑁1 ]

n
𝑊𝐿 (𝑺 (𝑖 ) )

o
.

Definition 2. A window scorer, trained on 𝐷train, is a window
scoring function that assigns an anomaly score to a given window,
proportional to its abnormality for the method, 𝑔𝑊 : R𝐿×𝑀 → R,
𝒙 ↦→ 𝑔𝑊 (𝒙).

We encapsulate each individual AD method within a window

scorer, and then propose a universal online scorer constructed from

the window scorer. Given a test sequence 𝑺 and a smoothing factor

𝛾 ∈ [0, 1), the online scorer assigns anomaly scores as follows:

𝑔(𝑺;𝐿,𝛾)𝑡 =


−∞ if 𝑡 < 𝐿,

(1 − 𝛾)𝑦𝐿 =:𝑚𝐿 if 𝑡 = 𝐿,
𝛾𝑚𝑡−1+(1−𝛾 ) �̂�𝑡

(1−𝛾𝑡+1 ) =:𝑚𝑡 if 𝑡 > 𝐿.

𝑦𝑡 = 𝑔𝑊 (𝑺𝑡−𝐿+1:𝑡 ) , ∀𝑡 ∈ [𝐿 . . 𝑇 ] .
In other words, for a test sequence, we assign an anomaly score to

the current sliding window of length 𝐿 using𝑔𝑊 (which is fixed and

trained offline). We then define this window score as the anomaly

score of its last record (i.e., the one just received in an online setting).

To allow additional control on the tradeoff between the “stability"

and “reactivity" of the record scoring function, we further apply

an exponentially weighted moving average with smoothing hyper-

parameter 𝛾 to the anomaly scores. This produces the final output

of the record scoring function 𝑔 for a test sequence, prepended

with infinitely low anomaly scores for the timestamps before its

first full window of length 𝐿. In this framework, both 𝐿 and 𝛾 are

hyperparameters to set for every anomaly detection method.

3.3 Domain Shift in Exathlon
Inspired by real-world AIOps use cases, the Exathlon benchmark

[22] is one of the most challenging benchmarks for anomaly detec-

tion due to the high-dimensionality and complex, diverse behaviors

in its dataset, as reported in a recent comprehensive experimental

study of AD methods [40].

(a) Records colored by context. (b) Records colored by dataset.

Figure 1: t-SNE scatter plots of application 2’s normal data, under-
sampled to 10,000 data records balanced by context.

3.3.1 Background on Exathlon. Exathlon [22] has been systemati-

cally constructed based on repeated executions of distributed Spark

streaming applications in a cluster under different Spark settings and
input rates. The dataset includes 93 repeated executions of 10 Spark
applications, with one trace collected for each execution containing

2,283 raw features, resulting in a total size of 24.6GB. While 59

traces were collected in normal execution (normal traces), 34 other
traces were disturbed manually by injecting anomalous events (dis-
turbed traces). There are 6 different classes of anomalous events

(e.g., misbehaving inputs, resource contention, process failures),

with a total of 97 anomalous instances. For each of these anomalies,

Exathlon provides the ground truth label for the interval spanning

the root cause event and its lasting effect, enabling accurate evalua-

tion of AD methods. In addition to anomalous instances, both the

normal and disturbed traces contain enough variety (e.g., Spark’s

checkpointing activities) to capture diverse normal behaviors.

3.3.2 Analysis of Domain Shift. Given the limited number of Spark

applications (or entities [52]) in the Exathlon dataset, our study

focuses on the ability of an AD method to generalize, not to new ap-

plications, but rather to the new contexts of the Spark applications.

For this reason, the domain of a trace is defined as its context, char-
acterized by the following factors: (i) The Spark settings for each
application run includes its processing period (i.e., batch interval or

window slide), set to a specific value for the application, the number

of active executors and “memory profile" (i.e., maximum memory

set for the driver block manager, executors JVM, and garbage col-

lection). The last two aspects had either a direct or indirect impact

on a lot of features (e.g., executors memory usage). (ii) The input
rate is the rate at which data records were sent to the application,

which had a direct effect on many recorded features (e.g., last com-

pleted batch processing delay). The “normal behavior” in a trace is,

therefore, mainly determined by its trace characteristics, defined as

the combination of its entity and domain/context.
To illustrate the diversity and shift in domains/contexts, Figure 1

shows t-SNE scatter plots [46] of application 2’s normal data, under-

sampled to 10,000 data records. The diversity is shown in Figure 1a,

where data records are colored by context (where context labels

include the processing period, number of Spark executors, maxi-

mum executors memory, and data input rate). We see that different

contexts appear as distinct clusters, constituting amultimodal distri-
bution for data records. Figure 1b illustrates the shift in context: the

different contexts induce a distribution shift from the training to the
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(a) Observed variable x de-
pends on its domain d and
latent (unobserved) class y.

(b) x is caused by independent
domain-specific z𝑑 and domain-
independent z𝑦 .

Figure 2: Generative models. For (b), constructing 𝑓𝑦 amounts to
inferring z𝑦 from x (dashed arrow).

test data, even within normal records of the same application—we

refer to this phenomenon as the domain shift problem.

4 PROBLEM OF DOMAIN SHIFT
In this section, we formally define the problem of anomaly de-

tection under domain shift. We took inspiration from one of the

first adopted definitions of an anomaly proposed by Douglas M.

Hawkins in 1980, describing it as “an observation which deviates

so much from the other observations as to arouse suspicions that it

was generated by a different mechanism" [17].

This definition naturally suggests addressing our AD problem

from a generative perspective, assuming data samples were gener-

ated from a distribution 𝑝
data

(x, y)1, with normal samples generated

from 𝑝
data

(x|y = 0). Our general goal then translates to construct-

ing amodel 𝑝𝜽 (x) of 𝑝data (x|y = 0), parameterized by 𝜽 ∈ Θ. This
yields a natural definition for the anomaly score of a test sample,

as its negative log-likelihood with respect to this model:

𝑔𝑊 (𝒙 ;𝜽 ) := − log𝑝𝜽 (x = 𝒙)
Since normal samples from the training and test sets are assumed

generated from 𝑝
data

(x|y = 0) ≈ 𝑝𝜽 (x), we would indeed expect

them to have a higher likelihood under this model than anomalous

samples, generated from 𝑝
data

(x|y = 1) ≠ 𝑝𝜽 (x).
A unique aspect of AIOps scenarios, however, is that the dis-

tribution generating an observed sample can be conditioned not

only on its class, but also on the specific sequence this sample was

extracted from. In particular, each sequence corresponds to a do-
main/context that impacts the distribution of observed data, even

for the same entity being recorded. These domains can be included

in our generative model, by assuming that the selection of a se-

quence 𝑖 corresponds to the realization 𝑑𝑖 of a discrete random

domain variable d ∼ 𝑝
data

(d) with infinite support
2
. In this setting,

the samples of class 𝑐 ∈ {0, 1} from sequence 𝑖 can be seen as inde-

pendently drawn from a sequence-induced, or domain distribution:

𝑝𝑖 (x|y = 𝑐) = 𝑝
data

(x|y = 𝑐, d = 𝑑𝑖 ).
This amounts to assuming the distribution of x is conditioned

on the two independent variables d and y, the former determining

the domain the sample originates from, and the latter determining

whether the sample is normal or anomalous. We illustrate the cor-

responding generative model in Figure 2a. Under this model, the

1
To simplify the notation, we use 𝑦 to refer to the label of an input sample in the

following: 𝑦 = 0 if the sample is (fully) normal, 𝑦 = 1 otherwise.

2
We use 𝑑𝑖 (as opposed to 𝑖) to reflect the fact that multiple sequences can correspond

to the same context, and thus value 𝑑 (i.e., we can have 𝑑𝑖 = 𝑑 𝑗 for 𝑖 ≠ 𝑗 ).

Figure 3: Illustration of the (a) reconstruction and (b) regularization
terms in the ELBO objective (Eq. 1).

data-generating distribution of normal samples can be expressed

as the countable mixture of all possible domain distributions:

𝑝
data

(x|y = 0) =
∞∑︁
𝑑=1

𝑝
data

(x|y = 0, d = 𝑑)𝑝
data

(d = 𝑑).

Definition 3 (Domain Shift Challenge). Directly applying
traditional generative methods in an unsupervised setting amounts to
making 𝑝𝜽 (x) estimate the data-generating distribution of the normal
training samples (with 𝑑𝑖 ’s fixed and all samples equally-likely to
come from every sequence 𝑖):

𝑝train (x|y = 0) = 1

𝑁1

𝑁1∑︁
𝑖=1

𝑝
data

(x|y = 0, d = 𝑑𝑖 ),

which, given the infinitude of possible domains, is likely to differ from
the data-generating distribution of the normal test samples:

𝑝test (x|y = 0) = 1

𝑁2

𝑁1+𝑁2∑︁
𝑖=𝑁1+1

𝑝
data

(x|y = 0, d = 𝑑𝑖 ),

with {𝑑𝑖 }𝑁1

𝑖=1
≠ {𝑑𝑖 }𝑁1+𝑁2

𝑖=𝑁1+1. This mismatch induces a domain shift

challenge, characterized by test normal samples 𝒙0 ∼ 𝑝test (x|y = 0)
and test anomalous samples 𝒙1 ∼ 𝑝test (x|y = 1) being both unlikely
in uncontrollable ways under 𝑝𝜽 (x) ≈ 𝑝train (x|y = 0), which hinders
anomaly detection performance.

A suitable framework to address this domain shift challenge

is domain generalization [48, 53]. In this framework, the domains

sampled for training are referred to as source domains, while those
sampled at test time are called target domains.

Definition 4 (Anomaly Detection with Domain General-

ization). Our problem can be framed as building an ADmodel from

the source domains that generalizes to the target domains. We do
so by assuming that the observed variable x can be mapped via 𝑓𝑦 to
a latent representation z𝑦 , whose distribution is discriminative with
respect to the class y (i.e., normal vs. anomalous) and at the same
time, independent from the domain d. Our goal can be formulated
as: (1) Finding such a mapping 𝑓𝑦 (x) = z𝑦 ; (2) Constructing 𝑝𝜽 (x) to
estimate 𝑝train (𝑓𝑦 (x) |y = 0) instead of 𝑝train (x|y = 0).

Since 𝑓𝑦 (x) = z𝑦 is independent from d, we then have:

𝑝train (z𝑦 |y = 0) = 1

𝑁1

𝑁1∑︁
𝑖=1

𝑝 (z𝑦 |y = 0, d = 𝑑𝑖 )

= 𝑝 (z𝑦 |y = 0) = 𝑝test (z𝑦 |y = 0),

which means that, under 𝑝𝜽 (x) ≈ 𝑝train (z𝑦 |y = 0) = 𝑝test (z𝑦 |y =

0), the normal test samples 𝒙0 should be more likely than the
test anomalies 𝒙1, hence addressing the domain shift challenge.
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5 THE DIVAD METHOD
In this section, we introduce a new approach to anomaly detection

under domain shift. At a high level, our central assumption is that

anomalies should have a sensible impact on the properties of the
input samples that are invariant with respect to the domain. In an

AIOps scenario, this means that, although some aspects of a running

process may vary from domain to domain (e.g., its memory used or

processing delay), others typically remain constant and characterize

its “normal" behavior (e.g., its scheduling delay, processing delay

per input record, or any other Key Performance Indicator (KPI) [52]

that behaves similarly across contexts). These domain-invariant,

normal-specific characteristics tend to reflect whether the process

functions properly, while domain-specific characteristics simply

manifest different modes of normal operation.
To realize this intuition, we propose Domain-Invariant VAE for

Anomaly Detection, or DIVAD. This method embodies (i) a new

generative model with feature disentanglement to decompose the

input data into domain-invariant and domain-specific factors, (ii) an

effective training approach in the VAE framework, with a custom

training objective for our unique AD model, and (iii) different alter-

natives for model inference, deriving anomaly scores based on the

training distribution of domain-invariant factors only.

5.1 Modeling
Based on the notion of feature disentanglement [48, 53], our model

assumes that the observed variable x is caused by two independent
latent factors z𝑑 and z𝑦 : (i) z𝑑 is conditioned on the observed do-

main d, and (ii) z𝑦 is assumed independent from it and can be used

to detect anomalies in test samples. The corresponding generative

model is shown in Figure 2b. Assuming that the model is parame-

terized bymodel parameters 𝜽 ∈ Θ, the marginal likelihood 𝑝𝜽 (x|d)
can be derived based on the structure of the generative model:

𝑝𝜽 (x|d) =
∫

𝑝𝜽 (x, z𝑑 , z𝑦 |d)𝑑z𝑑𝑑z𝑦

=

∫
𝑝𝜽 (x|z𝑦, z𝑑 )𝑝𝜽 (z𝑑 |d)𝑝 (z𝑦)𝑑z𝑑𝑑z𝑦 .

5.2 Model Training
We seek to learn the model parameters of 𝑝𝜽 (x|d) through max-

imum likelihood estimation. Since computing 𝑝𝜽 (x|d) directly is

intractable, we leverage a variational autoencoder (VAE) frame-
work [23, 35], considering variational parameters 𝝓𝑑 , 𝝓𝑦 ∈ Φ, and
optimizing the following evidence lower bound (ELBO) instead,
known to be a lower bound on 𝑝𝜽 (x|d) and lead to effective learning
of its model parameters:

LELBO (𝒙, 𝑑 ;𝜽𝑦𝑑 , 𝜽𝑑 , 𝝓𝑑 , 𝝓𝑦) =
E𝑞𝝓𝑑 (z𝑑 |𝒙 )𝑞𝝓𝑦 (z𝑦 |𝒙 ) [log𝑝𝜽𝑦𝑑 (𝒙 |z𝑑 , z𝑦)]
− 𝛽𝐷KL (𝑞𝝓𝑦

(z𝑦 |𝒙)∥𝑝 (z𝑦)) − 𝛽𝐷KL (𝑞𝝓𝑑
(z𝑑 |𝒙)∥𝑝𝜽𝑑 (z𝑑 |𝑑)) .

(1)

where the KL divergence terms are weighted by a factor 𝛽 [19, 20].

Figure 3 illustrates the effects of the different terms in the above

training objective. The first term of Eq. 1 involves the likelihood
𝑝𝜽𝑦𝑑 (𝒙 |z𝑑 , z𝑦). It measures DIVAD’s ability to reconstruct an input

from its latent factors, z𝑑 and z𝑦 , as shown in Figure 3a. The second

and third terms act as domain-invariant and domain-specific regu-
larizers, pushing the variational posteriors 𝑞𝝓𝑦

(z𝑦 |𝒙) and 𝑞𝝓𝑑
(z𝑑 |𝒙)

toward their priors 𝑝 (z𝑦) and 𝑝𝜽𝑑 (z𝑑 |𝑑), respectively, as illustrated
by Figure 3b. The prior 𝑝 (z𝑦) will be used for anomaly scoring

and further detailed in Section 5.3. The remaining distributions are

learned using neural networks:

𝑝𝜽𝑦𝑑 (x|z𝑑 , z𝑦) = N(NN𝜽𝑦𝑑 (z𝑑 , z𝑦),NN𝜽𝑦𝑑 (z𝑑 , z𝑦))
𝑝𝜽𝑑 (z𝑑 |d) = N(NN𝜽𝑑 (d),NN𝜽𝑑 (d))
𝑞𝝓𝑦

(z𝑦 |x) = N(NN𝝓𝑦
(x),NN𝝓𝑦

(x))
𝑞𝝓𝑑

(z𝑑 |x) = N(NN𝝓𝑑
(x),NN𝝓𝑑

(x)),

where N denotes a Gaussian distribution with mean and variance

each modeled by NN𝜽 (·), a neural network with parameters 𝜽 .
The conditional prior 𝑝𝜽𝑑 (z𝑑 |d) has the effect of making z𝑑 more

dependent on d, by ensuring that signals from d are incorporated

into z𝑑 (and thus facilitating the classification of d given z𝑑 ). To
further facilitate this domain classification, we add to maximum

likelihood the following domain classification objective:

L𝑑 (𝒙, 𝑑 ; 𝝓𝑑 ,𝝎𝑑 ) = E𝑞𝝓𝑑 (z𝑑 |𝒙 ) log𝑞𝝎𝑑
(𝑑 |z𝑑 ),

with𝝎𝑑 ∈ Ω the domain classifier parameters. This objective amounts

to training a domain classification head, by minimizing the cross-

entropy loss based on the source domain labels.

We perform gradient ascent on the final maximization objective:

L(𝒙, 𝑑 ;𝜽𝑦𝑑 , 𝜽𝑑 , 𝝓𝑑 , 𝝓𝑦,𝝎𝑑 ) =
LELBO (𝒙, 𝑑 ;𝜽𝑦𝑑 , 𝜽𝑑 , 𝝓𝑑 , 𝝓𝑦) + 𝛼𝑑L𝑑 (𝒙, 𝑑 ; 𝝓𝑑 ,𝝎𝑑 ),

where 𝛼𝑑 ∈ R is a tradeoff hyperparameter balancing maximum

likelihood estimation and domain classification.We do not share the

parameters of our encoder networks NN𝝓𝑦
and NN𝝓𝑑

, but instead

consider a multi-encoder architecture.

DIVAD is similar in spirit to Domain-Invariant Variational Au-
toencoders (DIVA) [20], proposed for image classification. However,

our new problem setting of unsupervised anomaly detection leads

to major differences from classification-based DIVA. First, by not re-

lying on training class labels, DIVAD fuses DIVA’s class-conditioned

and residual latent factors z𝑦 and z𝑥 into a single, unconditioned

domain-invariant factor z𝑦 , considering a conditioning and aux-

iliary classification objective only for the domain-specific factor

z𝑑 . Second, rather than relying on an explicit classifier on top of

the class-specific factor z𝑦 , DIVAD derives its anomaly scores from

these factors’ training distribution, modeled with the flexibility

described in the following section.

5.3 Model Inference
Based on Definition 4, our inference goals are to: (1) find a mapping

𝑓𝑦 (x) = z𝑦 from the input to domain-invariant space, and (2) model

the training distribution of z𝑦 to derive our anomaly scores.

For task (1), a known result fromVAE [23, 35] is that after training

based on Eq. 1, the variational posterior 𝑞𝜙𝑦
(z𝑦 |x) should approxi-

mate the true posterior 𝑝𝜽 (z𝑦 |x) (dashed arrow in Figure 2b). We

can therefore use it to construct our mapping 𝑓𝑦 :

z𝑦 = 𝑓𝑦 (x) ∼ 𝑞𝝓𝑦
(z𝑦 |x) ≈ 𝑝𝜽 (z𝑦 |x) .

For task (2), we propose two alternatives below to model the

training distribution of z𝑦 : prior and aggregated posterior estimate.
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5.3.1 Scoring from Prior. In the first alternative, we derive the

anomaly score 𝑔𝑊 (𝒙) of a sample 𝒙 as the negative log-likelihood

of 𝑓𝑦 (𝒙) with respect to the prior 𝑝 (z𝑦):

𝑔𝑊 (𝒙) := − log𝑝 (z𝑦 = 𝑓𝑦 (𝒙)) (2)

The rationale behind this method is the following: First, we ob-

serve that maximizing Eq. 1 on average on the training set amounts

to maximizing the regularization term of the ELBO w.r.t. z𝑦 :

Ω𝝓𝑦
:= −E𝑝train (x)𝐷KL (𝑞𝝓𝑦

(z𝑦 |x)∥𝑝 (z𝑦)) .

However, based on [44], we have the result:

Ω𝝓𝑦
=

∫
1

𝑁train

𝑁train∑︁
𝑖=1

𝑞𝝓𝑦
(z𝑦 |𝒙𝑖 ) log 𝑝 (z𝑦)𝑑z𝑦

−
∫

1

𝑁train

𝑁train∑︁
𝑖=1

𝑞𝝓𝑦
(z𝑦 |𝒙𝑖 ) log𝑞𝝓𝑦

(z𝑦 |𝒙𝑖 )𝑑z𝑦,

where 𝑁train is the number of training samples. By considering:

𝑞𝝓𝑦
(z𝑦) =

1

𝑁train

𝑁train∑︁
𝑖=1

𝑞𝝓𝑦
(z𝑦 |𝒙𝑖 ),

themarginal, or aggregated posterior [4, 30] (here the empirical

distribution of encoded, presumably domain-invariant, samples),

we therefore have:

Ω𝝓𝑦
=

∫
𝑞𝝓𝑦

(z𝑦) log 𝑝 (z𝑦)𝑑z𝑦

−
∫

1

𝑁train

𝑁train∑︁
𝑖=1

𝑞𝝓𝑦
(z𝑦 |𝒙𝑖 ) log𝑞𝝓𝑦

(z𝑦 |𝒙𝑖 )𝑑z𝑦

Ω𝝓𝑦
= −𝐻 (𝑞𝝓𝑦

(z𝑦), 𝑝 (z𝑦)) + 𝐻 (𝑞𝝓𝑦
(z𝑦 |x)),

where 𝐻 (𝑞𝝓𝑦
(z𝑦), 𝑝 (z𝑦)) is the cross-entropy between the aggre-

gated posterior and the prior, and 𝐻 (𝑞𝝓𝑦
(z𝑦 |x)) is the conditional

entropy of 𝑞𝝓𝑦
(z𝑦 |x) with the empirical distribution 𝑝train (x) [44].

As we can see, the maximization process of the ELBO has
the effect of trying to make the aggregated posterior 𝑞𝝓𝑦

(z𝑦)
match the prior 𝑝 (z𝑦), which a priori motivates the choice above

of using the prior to derive anomaly scores.

Fixed Standard Gaussian Prior. We first consider the default z𝑦
prior in VAEs, a fixed standard Gaussian:

𝑝 (z𝑦) = N(0, 𝑰 ),
and refer to the method that uses this z𝑦 prior and scores with

Eq. 2 as DIVAD-G. A limitation of DIVAD-G is that, although the

aggregated posterior and prior should be brought closer when max-

imizing the ELBO, they usually do not end up matching in practice

at the end of training [4, 36]. This phenomenon is sometimes de-

scribed as “holes in the aggregated posterior”, referring to the regions
of the latent space that have high density under the prior but very

low density under the aggregated posterior [7].

Learned Gaussian Mixture Prior. A method that has been shown

to (at least partly) address the problem of aggregated posterior holes

is to replace the fixed z𝑦 prior with a learnable prior 𝑝𝝀 (z𝑦) [7,
44], and hence have the maximization process update both the

aggregated posterior and the prior. If sufficiently expressive, the

prior can serve as a good approximation 𝑞𝝓𝑦
(z𝑦) of the aggregated

posterior at the end of training, which makes it safer to use for

anomaly scoring:

𝑔𝑊 (𝒙) := − log𝑝𝝀 (z𝑦 = 𝑓𝑦 (𝒙)) (3)

In a way, considering a learnable prior amounts to explicitly

performing a joint density estimation of the marginal likelihood

and aggregated posterior. With sufficiently expressive priors, this

joint estimation also has the effect of putting less constraints on the
aggregated posterior, letting it capture normal clusters with more

variance and arbitrary shapes. This is particularly useful in AD,

where the “normal" class can refer to a variety of different behaviors

(even for the same entity). In practice, any density estimator 𝑝𝝀 (z𝑦)
can be used to model the aggregated posterior. In this work, we

consider a Gaussian Mixture (GM) distribution with 𝐾 components:

𝑝𝝀 (z𝑦) =
𝐾∑︁
𝑘=1

𝑤𝑘N(𝝁𝑘 ,𝝈2

𝑘
),

with 𝝀 = {𝑤𝑘 , 𝝁𝑘 ,𝝈2

𝑘
}𝐾
𝑘=1

randomly initialized and trained along

with the other parameters. We refer to the method that uses this

z𝑦 prior and scores with Eq. 3 as DIVAD-GM.

5.3.2 Scoring from Aggregated Posterior Estimate. An alternative

(or complementary) solution to the problem of aggregated poste-

rior holes is to perform the density estimation of the aggregated

posterior 𝑞𝝓𝑦
(z𝑦) separately, and then define the anomaly score

with respect to this estimate instead of the prior:

𝑔𝑊 (𝒙) := − log𝑞𝜙𝑦
(z𝑦 = 𝑓𝑦 (𝒙)) (4)

In the following, we consider this alternative in addition to the

prior-based scoring for both DIVAD-G and DIVAD-GM. For DIVAD-

G, the aggregated posterior is estimated by fitting a multivariate

Gaussian distribution to the training samples in latent space. For

DIVAD-GM, it is estimated by fitting to them a Gaussian Mixture

model with the same number of components 𝐾 as the prior.

5.4 Putting It All Together
We illustrate the multi-encoder architecture of our DIVAD method

in Figure 4, shown here for the learned Gaussian Mixture prior

detailed in Section 5.3. From this figure, we can see that encoder

networks NN𝝓𝑑
and NN𝝓𝑦

take the same sample 𝒙 as input to

output the mean and variance parameters of multivariate Gaus-

sians 𝑞𝝓𝑑
(z𝑑 |x) and 𝑞𝝓𝑦

(z𝑦 |x), respectively. These parameters are

first used to compute the KL divergence terms of Equation 1, with

the parameters of the conditional prior 𝑝𝜽𝑑 (z𝑑 |d) outputted by

a network NN𝜽𝑑 from the domain 𝑑 of 𝒙 , and the parameters of

𝑝𝝀 (z𝑦) learned as described in Section 5.3. They are then used to

sample the corresponding domain and class encodings of 𝒙 : 𝒛𝑑 and

𝒛𝑦 . These encodings, considered here of same dimension 𝑀′
, are

further concatenated to form the input of the decoder NN𝜽𝑦𝑑 , out-

putting the parameters of the multivariate Gaussian 𝑝𝜽𝑦𝑑 (x|z𝑑 , z𝑦),
from which the likelihood (or reconstruction) term of Equation 1 is

computed. The bottom right of the figure finally shows the domain

classification head, NN𝝎𝑑
, which takes the domain encoding 𝒛𝑑 of 𝒙

as input, and outputs the parameters of the Categorical 𝑞𝝎𝑑
(d|z𝑑 ),

used to compute the domain classification objective L𝑑 .
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Figure 4: Multi-encoder architecture of our DIVAD-GMmodels, with 𝑁dom the number of source domains (DIVAD-G models use a similar
architecture, with the learned Gaussian Mixture parameters replaced with fixed Gaussian parameters).

Regarding computational cost, assuming that the encoding di-

mension 𝑀′
and number of source domains 𝑁

dom
are negligible

compared to the input dimension 𝐿 ·𝑀 (i.e., the network is domi-

nated by its encoder-decoder architecture), DIVAD has the same

asymptotic training time as a regular VAE. In practice, DIVAD re-

quires more training resources than VAE, as it uses (i) 2 encoder

networks, resulting in twice the encodings and encoder gradients

to compute, and (ii) 2 encodings as input to the decoder, leading to

more parameters for the first decoder layer. During inference, DI-

VAD incurs about half the cost of a VAE, since its anomaly scoring

involves only a forward pass through a single encoder, compared to

a complete input reconstruction for the VAE. Finally, using DIVAD-

GM over DIVAD-G incurs modest increase in both training and

inference costs, with (limited) 𝐾 · 2𝑀′
prior parameters to learn

(2𝑀′
for each GM component), and 𝐾 components, instead of 1, to

consider when evaluating likelihoods with respect to the prior.

6 EXPERIMENTS
In this section, we evaluate the anomaly detection performance

of DIVAD against existing AD methods using both the Exathlon

benchmark [22] and Application Server Dataset (ASD) [27].

6.1 Experimental Setup
Our experimental setup involves different steps of the Exathlon

pipeline [22]. In data preprocessing, we excluded applications 7

and 8, for which there are no disturbed and normal traces, respec-

tively. In feature engineering, we dropped the features constant

throughout the whole dataset and took the average of Spark execu-

tor features to reduce dimensionality. These steps result in𝑀 = 237

features to use by the AD methods.

Data Partitioning. To build a single AD model for all Spark ap-

plications, we ensure that the 8 Spark applications are represented

in both the training and test sets. The training set includes nor-

mal traces and some disturbed traces to increase the variety in

application settings and input rates. After data partitioning, our

test sequences contain 15 Bursty Input (T1) anomalies; 5 Bursty

Input Until Crash (T2) anomalies; 6 Stalled Input (T3) anomalies; 7

CPU Contention (T4) anomalies; 5 Driver Failure (T5) anomalies; 5

Executor Failure (T6) anomalies.

Training and Inference. All deep learning methods use the same

random 20% of training data as validation. By default, they are

trained for 300 epochs, using a Stochastic Gradient Descent (SGD)

strategy, mini-batches of size 𝐵, the AdamW optimizer [29], a

weight decay coefficient of 0.01, early stopping and checkpointing

on the validation loss with a patience of 100 epochs.

The hyperparameters are treated by following recommended

practices [1, 5]. For architecture parameters, we start with the default
architecture setting of each AD method as suggested in its original

paper, and vary the number of hidden units, number of layers or

latent dimension by a factor of 2-4, resulting in 𝑛1 architectures per

method (we generate more model variants for shallow methods,

leading to larger values of 𝑛1). Then, the learning rate is tuned for

each architecture, considering 𝜂 ∈ {1e−5, 3e−5, 1e−4, 3e−4}, and
selecting the value that yields the lowest validation loss (i.e., the best

modeling performance [5]). The batch size is method-dependent and

set to the value used in the method’s original paper (or if absent, to

32 by default). This entails 𝑛1 trained models per method, each with

its “best” learning rate and recommended batch size. At inference

time (running each model on the test sequences), we derive the

record scoring function𝑔 using a grid of 12 anomaly score smoothing
factors 𝛾 , leading to 12𝑛1 runs per AD method. We further filter

out the architectures whose runs give overall poor performance,

resulting in 12𝑛2 runs, with 𝑛2 ≤ 𝑛1, per AD method.

We evaluate AD methods based on their point-based AD perfor-

mance, using the peak F1-scoremetric of the Exathlon benchmark
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Figure 5: Box plots of peak F1-scores achieved by the existing and DIVAD methods, separated by modeling strategy (point vs. sequence) and
colored by method category (from Schmidl et al. [40] plus DIVAD).

(i.e., the “best"-possible F1-score on the Precision-Recall curve).

When computing F1-scores, we average Recall values across differ-

ent event types. We finally summarize the performance of each AD

method, in terms of peak F1-score, using a box-plot over its 12𝑛2
model runs. Additional details are available in [21].

Representative AD Methods. Our analysis compares DIVAD to

13 unsupervised AD methods, either performing a point modeling
(i.e., window length 𝐿 = 1) or sequence modeling (window length

𝐿 > 1) of the data. The unsupervised AD methods are further

grouped based on their anomaly scoring strategy, as per the taxon-

omy of Schmidl et al. [40] discussed in Section 2.

We include the following point modeling AD methods in our

study (details about these methods and hyperparameter grids con-

sidered are given in [21]): (1) Isolation forest [28] (iForest), as the
most popular isolation tree method; (2-3) Principal Component

Analysis (PCA) [42] and Dense Autoencoder (Dense AE) [18, 39],
as representative and popular shallow and deep reconstruction

methods, respectively; (4)Dense Deep SVDD [38] (Dense DSVDD),
as a recent and popular encoding method; (5-6)Mahalanobis [2, 42]

(Maha) and Dense Variational Autoencoder (Dense VAE) [6], as
representative shallow and deep distribution methods, respectively.

We include the following sequence modeling methods (with

further details given in [21]): (7-9) Recurrent Autoencoder [18,
39] (Rec AE),MSCRED [50] and TranAD [45], as the sequence

modeling version of Dense AE and more recent reconstruction

methods, respectively; (10) LSTM-AD [31], as the most popular

forecasting method; (11) Recurrent Deep SVDD [38] (Rec DSVDD)
as the sequence modeling version of the Dense DSVDD encoding

method; (12-13) Recurrent VAE (Rec VAE) and OmniAnomaly [43]

(Omni) as the sequence modeling version of Dense VAE and a more

recent distribution method, respectively. We also tried to include

the more recent encoding method DCDetector [49], but did not

retain it due to its poor performance on our dataset.

DIVAD Variants. This study considers 4 DIVAD variants, either

performing a point modeling or sequence modeling of the data. The

point modeling variants, referred to asDenseDIVAD-G andDense
DIVAD-GM, use a fully-connected architecture for the encoders

NN𝝓𝑑
, NN𝝓𝑦

and decoder NN𝜽𝑦𝑑 . The sequence modeling variants,

referred to as Rec DIVAD-G and Rec DIVAD-GM, use recurrent

architectures instead (more details are in [21]). We employ the same

hyperparameter selection strategy for DIVAD variants as the other

DL methods, considering KL divergence weights 𝛽 ∈ {1, 5} (i.e., a
regular VAE and 𝛽-VAE [19] framework with increased latent space

regularization), and a domain classification weight 𝛼𝑑 = 100, 000

set based on the scale we observed for the losses LELBO and L𝑑
in initial experiments. We study the sensitivity of DIVAD to those

two hyperparameters in Section 6.2.6.

6.2 Results and Analyses using Exathlon
For the Exathlon benchmark (detailed in §3), Figure 5 shows the

box plots of the peak F1-scores achieved by the DIVAD variants and

13 AD methods across their hyperparameter values. It separates

point from sequence modeling methods into two subplots with a

shared y-axis, with boxes colored based on the method category.

6.2.1 Existing AD Methods. Our main observations about existing

ADmethods are the following: (1) The best performance achieved is

the maximum peak F1-score of 0.66 by TranAD, which is not highly

accurate. (2) Across different categories, reconstruction methods per-
formed the best (with a maximum peak F1-score of 0.66 by TranAD)

while distribution methods performed the worst on average (with

a maximum peak F1-score of 0.58 by OmniAnomaly). These re-

sults are also consistent with the study of [45], which reported that

TranAD outperformed OmniAnomaly and MSCRED. (3) The use of

deep learning was beneficial among reconstruction methods, while

it tended to degrade performance for distribution methods—our

subsequent domain shift analysis will explain this behavior.

6.2.2 Analysis of Domain Shift. Figure 6 illustrates the impact of do-

main shift on AD methods by showing the Kernel Density Estimate

(KDE) plots of the anomaly scores they assigned to the training

normal, test normal, and test anomalous records. On these plots, the

separation between the anomaly scores assigned to the test normal

and test anomalous records (i.e., between the blue and red KDEs)

directly relates to the AD performance of a method. As illustrated

for the point modeling reconstruction and distribution methods, all

the methods have the test normal scores and test anomalous scores

overlapping, hence the limited detection accuracy.

Furthermore, the overlap between the scores of training normal

and test normal records (i.e., green and blue KDEs) reflects its

“robustness" to the domain shift from training to test data. (1) Com-

paring Figures 6c to 6a and 6d to 6b, respectively, we can see that

distribution methods, by modeling the training distribution more

explicitly, tended to produce more similar anomaly scores across

the training normal records (i.e., tighter green KDEs). However,

this tighter modeling of the training distribution also made these

methods more sensitive to domain shift, deeming test normal and

test anomalous records “similarly anomalous” (i.e., high blue and
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(a) PCA (shallow reconstruction method).

(b) Dense AE (deep reconstruction method).

(c) Maha (shallow distribution method).

(d) Dense VAE (deep distribution method).

Figure 6:Kernel Density Estimate (KDE) plots of the anomaly scores
assigned by reconstruction and distribution methods to training
normal, test normal and test anomalous records.

red KDEs overlap), which hindered their performance. (2) Com-

paring Figures 6b to 6a and 6d to 6c, we see that deep methods

achieved a better separation between the training normal and test

anomalous records, by modeling the training data at a finer level

than shallow methods. At the same time, they suffer from a larger

separation between the training normal and test normal records, in-

dicating their sensitivity to domain shifts. In both cases, the more
a method precisely and explicitly models the training data,
the more vulnerable it is to the domain shift challenge. We

made a similar observation for distribution-based OmniAnomaly:

its anomaly scores assigned to training normal records and test

anomalies overlapped significantly, indicating a shortcoming in

normal data modeling (more details are given in [21]).

6.2.3 DIVAD vs. Existing AD Methods. We now examine DIVAD’s

performance. First, Figure 5 shows that Dense DIVAD-GM and
Dense DIVAD-G significantly outperform the SOTA method
TranAD in maximum performance, achieving 20% and 15% im-

provements in maximum peak F1-scores (0.79 and 0.76 over 0.66),

respectively. Between the variants, using a learned Gaussian Mix-

ture prior (DIVAD-GM) instead of a fixed Gaussian prior (DIVAD-G)

is beneficial in improving both the maximum and median peak F1-

scores for the point and sequence modeling variants.

Second, the higher performance of Dense DIVAD-GM can
be directly attributed to its accurate domain generalization.
To illustrate this, Figure 7 shows t-SNE scatter plots of the domain-

specific and domain-invariant encodings it produced for test normal

records (sampled from 𝑞𝝓𝑑
(z𝑑 |x) and 𝑞𝝓𝑦

(z𝑦 |x), respectively), un-
dersampled to 10,000 data records, balanced and colored by domain.

Figure 7: t-SNE scatter plots of Dense DIVAD-GM’s domain-specific
(left) and domain-invariant (right) encodings of test normal records,
undersampled to 10,000 records, balanced and colored by domain.

Figure 8:KDEplots of the anomaly scores assigned byDenseDIVAD-
GM to training normal, test normal, and test anomalous records.

We can see that the mapping learned by Dense DIVAD-GM from

the input to its domain-specific space produced the distinct domain

clusters expected, while the mapping learned from the input to its

domain-invariant space produced more scattered encodings.

Furthermore, Figure 8 shows the KDE plots of the anomaly scores

assigned by the best-performing Dense DIVAD-GM to the training

normal, test normal and test anomalous records. We see that the

explicit modeling of the training data distribution by Dense DIVAD-

GM led to a similar benefit as Dense VAE (see Figure 6d), with a

low variance in the anomaly scores assigned to the training normal

records. Contrary to Dense VAE, Dense DIVAD-GM performed

this precise density estimation in a domain-invariant space (where
distribution shifts were drastically reduced), which made it gener-

alize to test normal records as well (i.e., better aligned and similarly

narrow green and blue KDEs). As such, Dense DIVAD-GM could

generally view test anomalies as “more abnormal” than test normal

records, which led to the better performance.

6.2.4 DIVAD Variants. Another observation we can make from

Figure 5 is that point modeling DIVAD variants could outperform
TranAD for our dataset and experimental setup, while sequence mod-
eling variants could not. Point modeling variants being sufficient

here can be explained by the dataset’s event types being mostly re-
flected as contextual anomalies given our features (i.e., data records

that are anomalous in a given context/domain, but normal in some

others). Figure 9 illustrates this by showing KDE plots of the last
completed batch processing delay feature over normal data and T1

(Bursty Input) events. The top plot shows the distributions for

a given test T1 trace, while the bottom plot shows them for the

remaining data, using the same x-axis in log scale. We can see that,

although T1 events induce higher processing delays than normal

within the context of a trace, these “higher" values actually appear
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Figure 9: KDE plots of the last completed batch processing delay
for training normal data, test normal data, and test anomalous data
in a Bursty Input (T1) trace (top) and non-T1 traces (bottom).

normal with respect to the training and test normal data globally,

in particular, in some other contexts/domains. When viewed in the

domain-invariant spaces of our DIVAD methods, such contextual

anomalies could typically be turned into point anomalies (data

records deviating from the rest of the data, no matter the context).

Referring back to the central assumption of DIVAD, considering

feature combinations at single time steps at a time was here sufficient

for the point modeling methods to learn domain-invariant patterns,

given that most anomalies in Exathlon are of the contextual type.

The lower performance observed for sequence modeling DIVAD

variants could be explained by the heightened challenge of learning
domain-invariant patterns in the sequential setting. While leveraging

sequential information can be useful in theory, identifying domain-

invariant shapes within and across𝑀 = 237 time series constitutes

a harder task than relying on simple feature combinations at given

time steps for our dataset and setup. This can be verified using the

anomaly score distributions, with a higher overlap between the test

normal and abnormal records explaining the lower performance.

6.2.5 Sensitivity to Anomaly Scoring Strategy. Figure 10 presents
a sensitivity analysis of the anomaly scoring strategy used by our

DIVAD methods. It shows the box plots of peak F1-scores achieved

by each DIVAD variant and anomaly scoring strategy, with “(P)"

indicating the scoring is based on the class encoding prior (fixed
Gaussian for DIVAD-G, learned Gaussian Mixture for DIVAD-GM),

and “(AP)" indicating the scoring is based on the class encoding

aggregated posterior (estimated as a Gaussian for DIVAD-G, and as

a Gaussian Mixture with𝐾 components for DIVAD-GM). As we can

see from this figure, sequence modeling DIVAD methods again per-

formed worse than the point modeling variants in both median and

maximum peak F1-scores no matter the scoring strategy used. Like

expected, deriving the anomaly scores from an aggregated
posterior estimate instead of the prior was significantly ben-
eficial for both DIVAD-G methods, which, by relying on a fixed

Gaussian prior, are particularly subject to the issue of “holes in the

aggregated posterior" discussed in Section 5.3. By relying on amore
expressive and learned class encoding prior, DIVAD-GM was less
sensitive to the type of scoring strategy used, with the scoring

based on the prior performing better in point modeling, and the one

based on the aggregated posterior performing better in sequence

modeling. This observation is consistent with our expectations, and

motivated our choice of including both scoring strategies into the

hyperparameters grid of DIVAD-GM in our study.

Figure 10: Box plots of peak F1-scores achieved by each DIVAD
variant and anomaly scoring strategy (class encoding prior (P) vs.
aggregated posterior (AP)), colored by modeling strategy.

Figure 11: Box plots of peak F1-scores achieved by Dense DIVAD-
GM for different KL divergence weights 𝛽 .

Figure 12: Box plots of peak F1-scores achieved by Dense DIVAD-
GM for different domain classification weights 𝛼𝑑 .

6.2.6 Sensitivity to Hyperparameters. Figure 11 shows the box plots
of peak F1-scores achieved by Dense DIVAD-GM across different

KL divergence weights 𝛽 . From this figure, we can see that finding

an optimal 𝛽 value improves both the maximum and median per-

formance significantly (by up to 16% and 20%, respectively, from

the worst value). The benefit of Dense DIVAD-GM over other AD

methods, however, remains robust across all 𝛽 values tested (recall

that the best peak F1-score of other AD methods is 0.66).

Figure 12 shows the peak F1-scores achieved by Dense DIVAD-

GMacross different domain classificationweights𝛼𝑑 .We see that its

maximum peak F1-score is robust across low andmedium 𝛼𝑑 values,

with some even yielding better results than the value of 100, 000

selected for our study. This figure also shows that obtaining the best

performance is possible even without domain classification head

NN𝝎𝑑
(i.e., setting 𝛼𝑑 = 0). However, enforcing domain information

via NN𝝎𝑑
helps reduce Dense DIVAD-GM’s sensitivity to other

hyperparameters, enabling it to outperform existing methods more

consistently, with significantly higher median and upper quartile

peak F1-scores for suitable 𝛼𝑑 values than for 𝛼𝑑 = 0.

6.2.7 Training and Inference Times. Table 1 shows the average

time of training and inference steps (one step per mini-batch of

size 𝐵 = 32) for the VAE and DIVAD variants on an NVIDIA A100

80GB PCIe, with hyperparameters adjusted to make DIVAD and

VAE directly comparable (more details are in [21]). This table shows

the expected trend for training: DIVAD’s training steps take about
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Table 1: Training and inference times for DIVAD and VAE.

Method Training Step (ms) Inference Step (ms)
Dense VAE [6] 3.3 19.4

Dense DIVAD-G 7.3 9.1

Dense DIVAD-GM 9.7 8.9

Rec VAE [6] 7.2 28.1

Rec DIVAD-G 11.6 12.9

Rec DIVAD-GM 13.3 12.4

Figure 13: Box plots of peak F1-scores achieved by TranAD and Rec
DIVAD-GM for ASD, using each server as a test set.

(a) TranAD

(b) Rec DIVAD-GM.

Figure 14: KDE plots of the anomaly scores assigned by TranAD
and Rec DIVAD-GM to ASD’s data records, using server 1 as test.

twice the time of VAE’s, and DIVAD-GM takes 16.5% longer than

DIVAD-G on average for a given architecture. During inference,

Table 1 confirms that DIVAD takes less than half the time of VAE,

with no significant difference between DIVAD-G and DIVAD-GM.

6.3 Broader Applicability: ASD Use Case
We now study the broader applicability of our DIVAD framework

using the Application Server Dataset (ASD) [27]. This dataset, col-

lected from a large Internet company, consists of 12 traces, each
of which recorded the status of a group of services running on a

separate server, using 19 metrics every five minutes. The goal is to

detect the labeled anomaly ranges located at the end of the traces.

The anomaly ratio is 4.61%, with minimum, median and maximum

anomaly lengths of 3, 18 and 235 data records, respectively.

In this study, we use ASD to assess the extent to which our

DIVAD framework can learn server-invariant normal patterns to

detect anomalies in a new, unseen test server. As such, our experi-

mental setup considers 11 out of the 12 traces as training (without

the anomalies) for a single model instance, and the remaining trace

as test. For these 12 runs, we report the performance of TranAD (the

best-performing existing method) and Rec DIVAD-GM. This time,

Rec DIVAD-GM indeed outperformed Dense DIVAD-GM in our

experiments, most likely due to (i) a higher presence of collective
anomalies in ASD (i.e., data records that are anomalous collectively,

but not individually), and (ii) the lower number of features𝑀 = 19,

making it easier to identify meaningful domain-invariant shapes

among them. We consider a window length 𝐿 = 20 for both meth-

ods, and the same model training and selection strategy as in the

previous study. More details can be found in [21].

Figure 13 presents the results of our 12 tests, showing the box

plots of peak F1-scores achieved by TranAD and Rec DIVAD-GM

across their hyperparameter values for each test server. We see that

Rec DIVAD-GM outperforms TranAD in maximum peak F1-score

for 11 out of 12 test servers (i.e., 92% of the cases), improving the

maximum performance by more than 10% for 8 of them. These

results also show that the median performance is improved by Rec

DIVAD-GM for 7 out of the 12 test servers, indicating the sensitivity

of DIVAD with respect to hyperparameters, and the necessity of

properly tuning them to benefit from a performance gain.

Figures 14a and 14b show the KDE plots of the anomaly scores

assigned by the best-performing TranAD and Rec DIVAD-GM to

training normal, test normal, and test anomalous records when

using server 1 as a test set (i.e., the setup for which Rec DIVAD-GM

improved the performance the most, by 167%). From Figure 14a,

we can see that the low performance of TranAD was primarily to

the lower mode of its distribution of anomaly scores assigned to

anomalies, which had a significant overlap, and thus were consid-

ered “similarly abnormal", to some test normal data. As shown in

Figure 14b, Rec DIVAD-GM was able to alleviate this issue, produc-

ing much less overlap between this lower mode and the rest of test

normal data, which explains the performance gain.

7 CONCLUSIONS AND FUTURE DIRECTIONS

This paper presented a unified framework for benchmarking anom-

aly detection (AD) methods, and highlighted the problem of shifts
in normal behavior in practical AIOps scenarios. We then formally

formulated the AD problem under domain shift and proposed a new

approach, Domain-Invariant VAE for Anomaly Detection (DIVAD),

to learn domain-invariant representations for effective anomaly

detection in unseen domains. Evaluation results show that the two

main DIVAD variants significantly outperform the best unsuper-

vised AD method using the Exathlon benchmark, with 15-20% im-

provements in maximum peak F1-scores, and can be applied to the

Application Server Dataset to demonstrate broader applicability.

Our future research directions include aweakly-supervised exten-

sion of DIVAD, combining its explicit modeling of normal behavior

shifts with a higher robustness to removing anomaly signals en-

abled by a few training anomalies, and enhancing the model with

explainability, indicating the reasons behind anomalies, which will

be key to widespread adoption in real-world use cases.
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