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ABSTRACT

We consider the fundamental problem of decomposing a large-

scale approximate nearest neighbor search (ANNS) problem into

smaller sub-problems. The goal is to partition the input points into

neighborhood-preserving shards, so that the nearest neighbors of

any point are contained in only a few shards. When a query arrives,

a routing algorithm is used to identify the shards which should

be searched for its nearest neighbors. This approach forms the

backbone of distributed ANNS, where the dataset is so large that it

must be split across multiple machines.

In this paper, we design simple and highly efficient routing meth-

ods based on clustering and locality-sensitive hashing. We prove

strong theoretical guarantees for the LSH-based method, whereas

the clustering-based method exhibits better empirical performance.

A crucial characteristic of our routing algorithms is that they are

inherently modular, and can be used with any partitioning method.

This addresses a key drawback of prior approaches, where the

routing algorithms are inextricably linked to their associated parti-

tioning method. In particular, due to their modular structure, our

routing methods enable the use of balanced graph partitioning,
which is a high-quality partitioning method without a naturally

associated routing algorithm. Prior routing methods compatible

with graph partitioning are too slow to train on large-scale data.

We provide the first routing methods that are simultaneously

compatible with graph partitioning, fast to train, admit low latency,

and achieve high recall. In a comprehensive evaluation of our par-

titioning and routing on billion-scale datasets, we show that our

methods outperform existing scalable partitioning methods by sig-

nificant margins, achieving up to 1.72× higher QPS at 90% 10-recall

than the best competitor and 1.27× in the geometric mean. Through

fast and modular routing we establish graph partitioning as the

new method of choice for partitioning large-scale ANNS datasets.
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1 INTRODUCTION

Nearest neighbor search is a fundamental algorithmic primitive that

is employed extensively across several fields including computer

vision, information retrieval, and machine learning [42]. Given a

set of points 𝑃 in a metric space (X, 𝑑) (where 𝑑 : X × X ↦→ R≥0 is
a distance function between elements of X), the goal is to design
a data structure which can quickly retrieve from 𝑃 the 𝑘 closest

points from any query point 𝑞 ∈ X. The typical quality measure of

interest is 𝑘-recall, which is defined as the fraction of true 𝑘 nearest

neighbors found.

Solving the problem with perfect recall in high-dimensional

space effectively requires a linear scan over 𝑃 in practice and in the-

ory [2]. Therefore, most work has focused on finding approximate
nearest neighbors (ANNS). The most successful methods are based

on quantization [24, 31] and pruning the search space using an

index data structure to avoid exhaustive search. Widely employed

index data structures are k-d trees, k-means trees [8, 36, 38], graph-

based indices such as DiskANN/Vamana [44] or HNSW [35] and

flat inverted indices [13, 15, 28, 31, 34]. For a comprehensive review

we refer to one of the several surveys on ANNS [1, 6, 33].

While graph indices offer the best recall versus throughput trade-

off, they are restricted to run on a singlemachine due to fine-grained

exploration dependencies and thus communication requirements.

For a distributed system, the currently best approach is to decom-

pose the problem into a collection of smaller ANNS problems that fit

in memory [13]. The decomposition starts by performing partition-
ing – splitting the set 𝑃 into some number 𝑠 of subsets ∪𝑠

𝑖=1
𝑆𝑖 = 𝑃

(the shards). Then, to query for a point 𝑞 ∈ X, a lightweight routing
algorithm is used to identify a small subset of the shards to search

for the nearest neighbors of 𝑞. The search within a shard is then

performed using an in-memory solution such as a graph index if the

shards are large (e.g., in distributed ANNS), or exhaustive search if

the shards are small. Optimizing the partition is crucial to achieving

good query performance, because it allows querying only a small

subset of the shards.

The partitioning and routing methods are closely connected, and,

in some cases, inextricably intertwined. As a result, many existing

routing methods require a particular partitioning method to be used.

For example, consider partitioning via k-means clustering. Each

shard (a 𝑘-means cluster) is naturally represented by the cluster

center. The folklore center-based routing algorithm identifies the

shards whose centers are closest to the query point to be searched,

i.e., solves a much smaller ANNS problem first.

In a parameter regime where exhaustive search in a shard is

feasible (e.g., |𝑆𝑖 | ≤ 10
5
) this approach is known as IVF (inverted

file), another popular in-memory ANNS data structure [4, 24, 31].

For billion-scale datasets this entails 𝑠 ≥ 10
4
shards. In this paper,
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on the other hand, we are interested in investigating these methods

for 𝑠 in the order of 𝑠 ∈ [10, 100], with substantially more points

per shard |𝑆𝑖 | ≈ 10
7 − 108, as needed in the distributed setting.

We are interested in determining the best partitioning method

for large-scale ANNS. In the following, we argue that despite being

a very natural idea, the potential of balanced graph partitioning
has remained untapped at billion-scale until now, due to several

limitations.

The idea is to first compute a 𝑘-nearest neighbor graph 𝐺 =

(𝑉 , 𝐸) of 𝑃 and then compute a balanced partition of 𝐺 with ap-

proximately minimal edge cut, which is a well-known NP-hard

optimization problem with highly developed heuristic off-the-shelf

solvers [7]. The 𝑘-nearest neighbor graph (𝑘-NN) is a graph 𝐺

whose vertices are points in 𝑃 , in which each point has edges to its

𝑘 nearest neighbors in 𝑃 . The shards are computed by partitioning

the vertices into roughly equal size sets, such that the number of

edges which connect different sets is approximately minimized.

More formally, compute a partition 𝚷 : 𝑉→[𝑠] of 𝐺 into 𝑠 ∈ N

shards of size |𝚷−1 (𝑖) | ≤ (1+𝜀 ) |𝑃 |
𝑠 ∀𝑖 ∈ [𝑠], while minimizing

|{(𝑢, 𝑣) ∈ 𝐸 | 𝚷(𝑢) ≠ 𝚷(𝑣)}|. This attempts to put the maximum

possible number of nearest neighbors of each vertex 𝑣 in the same

shard as 𝑣 .

Recently, Dong et.al. [15] achieved good results with this method

on million-scale data as an IVF data structure, beating the widely

used k-means partitioning. To tackle the routing problem, they

train a neural model after partitioning. Unfortunately, training their

routing model is extremely slow even at million-scale, ruling out

use at billion-scale. While partitioning with 𝑘-NN graphs promises

significantly improved recall, it comes with two main limitations,

which have hindered its adoption in favor of k-means partitioning.

(1) The shards do not admit natural geometric properties, such as

convexity of shards computed by k-means clustering. As a result,

there is no obvious method to route query points to shards. In

fact, as mentioned, the best known routing method requires

training computationally expensive neural models [15, 17].

(2) A 𝑘-NN graph is required to partition the pointset. This is com-

putationally expensive and seemingly introduces a chicken and

egg problem, as computing a 𝑘-NN graph requires solving the

ANNS problem.

In this paper, we show how to address the above limitations and

unleash the benefits of balanced graph partitioning for billion-scale

ANNS problems.

Contribution 1: Fast, Inexact Graph Building Suffices for

High-Quality Partitions.We empirically demonstrate that a very

rough approximate 𝑘-NN graph built by recursively performing

dense ball carving suffices to obtain high quality partitions and

query performance, and that such a coarse approximation can be

computed quickly.

Contribution 2: Fast, Accurate, and Modular Combinatorial

Routing. We devise two combinatorial routing methods which are

fast, high quality, and can be used with any partitioning method, in

particular with graph partitioning, as they are trained on a finalized

partition. Both adapt center-based routing to large shards, which

is needed for distributed ANNS. Our first and empirically stronger

routing method is called kRt. It is based on sub-clustering the

points within each shard using hierarchical 𝑘-means. We use either

the tree representation of the clustering or HNSW to retrieve center

points, routing the query to the shards associated with the closest

retrieved points. Our second method called hRt is based on locality

sensitive hashing (LSH). It works by locating the query point in the

sorted ordering of LSH compound hashes, and inspecting nearby

points to determine which shards to query.

Contribution 3: Theoretical Guarantees for Routing. We pro-

vide a theoretical analysis of hRt, and establish rigorous guarantees

on its performance. Specifically, we prove that each query point

will be routed to a shard containing one of its approximate near-

est neighbors with high probability. To the best of our knowledge,

these are the first theoretical guarantees for the routing step.

While kRt performs better in practice, it does not offer theo-

retical guarantees, which is the benefit of hRt. This gap between

theory and practice is common in approximate nearest neighbor

search, where LSH-based methods provide better theoretical un-

derstanding of the problem, whereas clustering or graph-based

methods perform better empirically due to being data-dependent.

Contribution 4: Empirical Evaluation. In our extensive eval-

uation, we demonstrate that shards obtained via balanced graph

partitioning attain up to 1.72x higher throughput than the best

competing partitioning method, and 1.27x in the geometric mean at

billion-scale. While the partitioning time is 3× slower, the absolute

time is reasonable: 2 hours for the highest-dimensional instance,

giving a highly favorable trade-off. We analyze the shards and find

that the concentration of ground-truth neighbors in the top-ranked

shard per query is significantly higher (up to +25%).

Our routing methods are multiple orders of magnitude faster to

train than the existing neural network based approaches [15, 17]

while obtaining similar or better recall at similar or lower routing

time. Specifically, our kRtmethod can be trained in half an hour on

billion-point datasets, compared to multiple hours required by the

neural network approaches on 1000x smaller million-point datasets

where kRt training takes under a second.

2 PARTITIONING

We present two improvements to𝑘-NN graph partitioning. To speed

up the 𝑘-NN graph construction we present a highly scalable ap-

proximate algorithm in Section 2.1. Moreover, we propose an al-

gorithm to compute overlapping shards in Section 2.2, to prevent

recall losses in boundary regions. To compute the initial disjoint

partition, we use the KaMinPar graph partitioner [23], for which

we give a brief description in Section 5.

2.1 Approximate 𝑘-NN Graph-Building

To speed up 𝑘-NN graph building, we use a simple approximate

algorithm based on recursive splitting with dense ball clusters,

as outlined in Algorithm 1. As long as the number of points is not

sufficiently small for all-pairs comparisons, we split them using the

following heuristic. We sample a small number of pivots 𝐿 from the

pointset, and assign each point to the cluster 𝑃𝑐 represented by its

closest pivot 𝑐 . Ties are broken arbitrarily. The clusters are treated

recursively, either splitting them again or generating edges for all

pairs in the cluster, filtered down to the top 𝑘 neighbors for each

point. We take the union of the edges generated in different clusters.
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Algorithm 1: Recursive Dense Ball Graph Construction

Input: Pointset 𝑃 , all-pairs threshold 𝛼 , pivot sampling

fraction 𝛽 , maximum number of pivots 𝛾

if |𝑃 | ≤ 𝛼
Compute 𝑑 (𝑃 × 𝑃) in parallel

Emit top 𝑘 neighbors for each 𝑝 ∈ 𝑃
else

Sample 𝐿 ⊂ 𝑃 uniformly at random with

|𝐿 | = min(𝛽 · |𝑃 |, 𝛾)
Compute 𝑑 (𝑃 × 𝐿) in parallel

for 𝑐 ∈ 𝐿 do in parallel

𝑃𝑐 ← {𝑝 ∈ 𝑃 | 𝑑 (𝑝, 𝑐) = min𝑙∈𝐿 𝑑 (𝑝, 𝑙)}
Recurse on 𝑃𝑐
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Figure 1: The 𝑥-axis shows the recall of the approximate 𝑘-

NN graph used for partitioning. The𝑦-axis shows the average

recall of queries for 10 nearest neighbors when only a single

shard is inspected. The plot uses a 1M slice of the DEEP

dataset.

The intuition is that top-𝑘 neighbors will be clustered together with

good probability.

We use a constant threshold 𝛼 below which we deem a cluster

sufficiently small for all-pairs comparison. The number of pivots

𝑙 = |𝐿 | is determined with a parameter 𝛽 ∈ (0, 1) and a large

constant 𝛾 (around 1000), as 𝑙 = min(𝛽 · |𝑃 |, 𝛾).
Improved graph quality is attained via 𝑟 independent repetitions,

and assigning points to the 𝑓 closest pivots instead of just one. The

latter can only be done a few times without increasing running time

exponentially, as this replicates each point in the current cluster to

𝑓 subclusters for recursion. We use 𝑓 > 1 on the first recursion level

and 𝑓 = 1 at lower levels. We again take the union of generated

edges from different repetitions and filter down to the top 𝑘 for

each point.

Using an approximate 𝑘-NN graph for partitioning the dataset

is acceptable since only coarse local structure must be captured

to ensure partition quality, i.e., the edges need only connect near

neighbors together, not necessarily the exact top-𝑘 . Figure 1 demon-

strates that even low-quality graphs (𝑘-NN graph recall ≈ 0.3)

lead to high query recall: more than 81% of top-10 neighbors are

concentrated in one shard per query. Using an exact 𝑘-NN graph

(100% recall) for partitioning only increases the query ground

truth neighbor concentration to 84%. Here we use a slice of the

DEEP dataset [3, 43] with 𝑛 = 10
6
points partitioned into 𝑠 = 16

shards of size |𝑆𝑖 | ≤ 65625 each (𝜀 = 5%). The x-axis shows the

recall of the 𝑘-NN graph; the 𝑦-axis shows the average fraction

of top−10 ground-truth neighbors of a query in the shard with

most ground-truth neighbors (the concentration). To obtain approx-

imate graphs with different quality scores, we vary the number

of repetitions 𝑟 ∈ {2, 3, 5, 8, 10}, top-level fanout 𝑓 ∈ {2, 3, 5, 8, 10},
cluster size threshold 𝛼 ∈ {500, 1000, 2000, 5000, 10000} and the

degree ∈ {3, 5, 8, 10, 20, 50, 80, 100}. The pivot sample fraction 𝛽 is a

constant set to 𝛽 = 0.005.

We also observe that higher degrees may in some cases lead to

slightly worse query recall. We suspect that since we use a low-

quality method, adding more approximate neighbors pollutes the

graph structure. Note that this effect does not appear with an exact

𝑘-NN graph computed via all-pairs comparison (marked as diamond

in the plot). Notably, the query performance between approximate

and exact graphs differs only by a small margin. Overall, these

observations justify the use of highly sparse approximate graphs

with only a few edges per point for the partitioning step, without

sacrificing much of the query performance.

2.2 Partitioning into Overlapping Shards

When partitioning into disjoint shards, we can incur losses on

points on the boundary between shards, whose 𝑘-NNs straddle

multiple shards. To address this issue, we propose a greedy algo-

rithm inspired by local search for graph partitioning [18] which

eliminates cut edges by replicating nodes in a post-processing step.

The set of cut (𝑘-NN) edges is precisely the recall loss when the

points themselves are queries [15], thus minimizing cut edges is a

natural strategy in our setting.

We introduce a new parameter 𝑜 ≥ 1 to restrict the amount of

replication. For a fair comparison with disjoint shards in memory-

constrained settings, we keep the maximum shard size 𝐿max (𝑠)
fixed and instead increase the number of shards to 𝑠′ = 𝑜 · 𝑠 . We

first compute a disjoint partition into 𝑠′ shards of size (1+𝜀 ) |𝑃 |𝑠′ and

then apply an overlap algorithm with
(1+𝜀 ) |𝑃 |

𝑠 as the final size.

In each step, our overlap algorithm takes a node 𝑢 and places it

in the shard 𝑆𝑖 that contains the plurality of its neighbors and not

𝑢. This increases the average recall by
cut(𝑢,𝑆𝑖 )
𝑘 |𝑃 | , where cut(𝑢, 𝑆𝑖 ) =

|{(𝑢, 𝑣) ∈ 𝐸 | 𝑣 ∈ 𝑆𝑖 }| for all 𝑆𝑖 with𝑢 ∉ 𝑆𝑖 . We repeat this procedure

until there is no more placement into a below size-constraint shard

which removes at least one edge from the cut. We greedily select

the node whose placement eliminates the most cut edges for the

next step.

To parallelize this seemingly sequential procedure, we observe

that nodes whose placement removes the same number of cut edges

can be placed at the same time, i.e., grouped into bulk-synchronous

rounds.Moreover, the number of possible cut values is small; at most

𝑘 . Thus, only few rounds are necessary since each node removes at

least one cut edge and no new cut edges are added.

3 ROUTING

The goal of routing is to identify a small number of shards which

contain a large fraction of the 𝑘 nearest neighbors of a given query

𝑞 ∈ X. We adapt center-based routing for our purpose. When using
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Figure 2: Illustration of an example where routing using a

single center per shard fails. The nearest neighbors of 𝑞 are in

the cluster of 𝑐2, but 𝑑 (𝑞, 𝑐1) < 𝑑 (𝑞, 𝑐2). If the hierarchical sub-
clusters are represented with their own centers, the routing

works correctly.

IVF for |𝑃 | = 10
9
points, a typical configuration uses 𝑠 ≈ 10

6
shards,

with |𝑆𝑖 | ≈ 10
3
points each [4]. Using a single center per shard

works well in this setup. In contrast, in our setup we have few

shards 𝑠 ∈ [10, 100] of large size |𝑆𝑖 | > 10
7
and use a graph index

per shard to retrieve neighbors.

Large shards cannot be as easily represented with a single cen-

ter. Figure 2 illustrates the problem where routing fails because

sub-cluster structures are not represented well by the center. More-

over, the shards from graph partitioning are not connected convex

regions as in 𝑘-means clustering, which further aggravates this

issue. For example, routing with a single center resulted in only

28% 10-recall in the top-ranked shard on the MS Turing dataset, as

opposed to 81% with our best routing index.

Instead of a single center, we represent each shard 𝑆𝑖 ⊂ 𝑃 by

multiple points 𝑅𝑖 with the goal of accurately capturing sub-cluster

structure. At query time, given a query point 𝑞 ∈ X we retrieve

from 𝑅 = ∪𝑖∈[𝑠 ]𝑅𝑖 a set 𝑄 of (approximately) closest points from 𝑞.

Then, we route the query to the shards which the points of𝑄 belong

to. More precisely, we compute a probe order of the shards, ranking

each shard 𝑖 based on the distance between 𝑞 and the closest point

in 𝑄 ∩ 𝑅𝑖 . The size of 𝑅 is limited to a parameter 𝑚 so that the

routing index fits in memory.

Our routing algorithms differ in the way the coarse representa-

tives 𝑅𝑖 are constructed at training time and by the ANNS retrieval

data structure used to determine 𝑄 . The first algorithm uses hierar-

chical 𝑘-means to coarsen 𝑃 to 𝑅 and uses the resulting 𝑘-means

tree for retrieval. This method is called kRt for 𝑘-means RoutTing.

In the experiments we also build an HNSW index on all points

of 𝑅 for even faster retrieval. The second algorithm called hRt

(HashRouTing) uses uniform random sampling to coarsen and a

variant of LSH Forest [5] to find 𝑄 . In Section 3.3 we provide theo-

retical bounds for the quality of hRt, and later demonstrate that

both methods perform well in practice, with kRt having a sizeable

advantage empirically.

3.1 K-Means Tree Routing Index: kRt

Algorithm 2 shows the training stage for kRt. We create one root

node 𝑣𝑖 per shard 𝑆𝑖 and hierarchically construct a separate 𝑘-

means tree for each shard. The set 𝑅𝑖 consists of centroids across

all recursion levels of hierachical 𝑘-means. Per level we use 𝑙 =

64 centroids for the sub-tree roots. Furthermore, we are given a

maximum index size 𝑚, which we split proportionately among

Algorithm 2: kRt: Training

Input: number of shards 𝑠 , shards 𝑆𝑖 , number of centroids 𝑙 ,

index size𝑚, cluster size 𝜆

for 𝑖 = 1 to 𝑠 do in parallel

create root node 𝑣𝑖

Build(𝑆𝑖 , 𝑙, |𝑆𝑖 | (𝑚−𝑠 )|𝑃 | , 𝜆, 𝑣𝑖 )
func Build(𝑃 , 𝑙 ,𝑚, 𝜆, 𝑣):

if 𝑚 ≤ 1 return

centroids(𝑣) ← K-Means(𝑃, 𝑙)
for 𝑐 ∈ centroids(𝑣) do in parallel

𝑃𝑐 ← 𝑘-means cluster of 𝑐

create new tree-node 𝑣𝑐

add tree-edge from parent 𝑣 to 𝑣𝑐

if |𝑃𝑐 | > 𝜆
Build(𝑃𝑐 , 𝑙, (𝑚−𝑙 ) |𝑃𝑐 ||𝑃 | , 𝜆, 𝑣𝑐 )

Algorithm 3: kRt: Routing

Input: Search budget 𝑏, query point 𝑞

PQ← {(𝑣𝑖 , 0, 𝑖) | 𝑖 ∈ [𝑠]} // min-heap with (tree node, key,
shard ID) prioritized by key

min-dist[𝑖] ← ∞ ∀𝑖 ∈ [𝑠]
while PQ not empty and 𝑏−− > 0 do

(𝑣, 𝑑𝑣, 𝑠𝑣) ← PQ.pop()

for 𝑐 ∈ centroids(𝑣) do
min-dist[𝑠𝑣] ← min(min-dist[𝑠𝑣], 𝑑 (𝑞, 𝑐))
if 𝑐 has a sub-tree

add (𝑣𝑐 , 𝑑 (𝑞, 𝑐), 𝑠𝑣) to PQ

return sort [𝑠] by min-dist

sub-trees according to their cluster size. We subtract 𝑙 from the

budget on each level, to account for the centroids. The recursive

coarsening stops once the budget𝑚 is exceeded or the number of

points is below a cluster size threshold 𝜆 (we use 350). In contrast

to usual 𝑘-means search trees, we do not store or search the points

in leaf-nodes, as our goal is to coarsen the dataset.

Algorithm 3 shows the routing algorithm which is similar to

beam-search [41]. At a non-leaf node we score the centroids against

the query 𝑞 and insert the non-leaf children with the associated cen-

troid distance into a priority queue for further exploration. Initially

the priority queue contains the tree roots. The search terminates

when either the priority queue is empty or a search budget 𝑏 (a

parameter) is exceeded.

3.2 Frequency-Based Routing

In addition to routing by minimum distance, we propose a second

signal that is good at routing: the frequency of how often a shard

appears in𝑄 . Let𝑤 be a second beam-width parameter and let𝑄 ′ ⊂
𝑄 be the𝑤 closest points to the query from 𝑄 . Then the priority of

shard 𝑆𝑖 is |{𝑣 ∈ 𝑄 ′ | 𝑣 is in subtree rooted at 𝑣𝑖 }|, and shards are

sorted by decreasing priority. For kRt with HNSW acceleration, we

use𝑄 ′ = 𝑄 , i.e., use the same beam-width𝑤 = ef_search as HNSW.
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Algorithm 4: hRt: Training

Input: Shards 𝑆𝑖 , index size𝑚 ≤ 𝑛, repetition parameter 𝑟 ,

sketch size 𝑡

for 𝑖 = 1 to 𝑠 do in parallel

Sample ⌊𝑚 · |𝑆𝑖 ||𝑃 | ⌋ points 𝑅𝑖 from 𝑆𝑖 uniformly without

replacement

𝑅 = ∪𝑠
𝑖=1
𝑅𝑖

for 𝑗 = 1 to 𝑟 do in parallel

Draw independent random hash functions ℎ 𝑗,1, . . . , ℎ 𝑗,𝑡

from a LSH family for X
For each 𝑥 ∈ 𝑅 define a sorting key

ℎ 𝑗 (𝑥) = (ℎ 𝑗,1 (𝑥), . . . , ℎ 𝑗,𝑡 (𝑥))
Sort 𝑅 lexicographically with keys ℎ 𝑗 to obtain 𝐼 𝑗

Algorithm 5: hRt: Routing

Input: Query point 𝑞, window size𝑊 ≥ 1, partition

𝚷
′
: 𝑅→[𝑠]

min-dist[𝑖] ← ∞ ∀𝑖 ∈ [𝑠]
for 𝑗 = 1 to 𝑟 do

Binary search in 𝐼 𝑗 for position 𝜏 of the point

lexicographically closest to ℎ 𝑗 (𝑞)
for 𝑐 ∈ 𝐼 𝑗 [𝜏 −𝑊 : 𝜏 +𝑊 ] do

min-dist[𝚷′ (𝑐)] ← min(min-dist[𝚷′ (𝑐), 𝑑 (𝑞, 𝑐))
return sort [𝑠] by min-dist

However, for plain kRt, the set 𝑄 contains too many irrelevant

points, as it is yet not filtered by distance during the search.

Empirically, we found that frequency-based routing is good at

finding the first-ranked shard to probe, but performs worse than

distance-based routing at ranking later probed shards. Therefore,

we also consider a hybrid approach, where the first shard to probe

is determined using frequency-based routing and the remaining

shards are ranked by distance.

3.3 Sorting-LSH Routing Index: hRt

We now describe a routing scheme based on Locality Sensitive Hash-
ing (LSH). At a high level, an LSH family H is a family of hash

functions of the form ℎ : X → {0, 1}, such that similar points are

more likely to collide; namely, the probability Prℎ∼H [ℎ(𝑥) = ℎ(𝑦)]
should be large when 𝑥,𝑦 ∈ X are similar, and small when 𝑥,𝑦 are

farther apart. We formalize this in the proof of Theorem 1, and

describe the routing index assuming we have an LSH family.

Algorithm 4 describes the construction of a SortingLSH index.

We first subsample 𝑚 points 𝑅 from 𝑃 uniformly at random. A

single SortingLSH index is created as follows: we hash each point

𝑥 ∈ 𝑅 multiple times via independent hash functions from H ,

and concatenate the hashes into a string (ℎ1 (𝑥), ℎ2 (𝑥), . . . , ℎ𝑡 (𝑥)).
Importantly, we use the same hash functions ℎ1, . . . , ℎ𝑡 for each

point in 𝑅. We sort the points in 𝑅 lexicographically based on these
strings of hashes. The index is the points stored in sorted order

along with their hashes. Intuitively, similar points are more likely

to collide often, thus share a longer prefix in their compound hash

string, and thus are more likely to be closer together in the sorted

order. We repeat the process 𝑟 times to improve retrieval quality

(up to 24 in our experiments).

Next, Algorithm 5 describes the routing procedure for Sort-

ingLSH indices. Given a query point 𝑞, for each of the 𝑟 indices,

we hash 𝑞 with the LSH functions used for that repetition, com-

pute the compound hash string ℎ(𝑞) = (ℎ1 (𝑞), . . . , ℎ𝑡 (𝑞)) for 𝑞, and
then find the position 𝜏 ∈ [𝑚] that is lexicographically closest to

ℎ(𝑞). We retrieve the window [𝜏 −𝑊,𝜏 +𝑊 ] in the sorted order to

consider these points’ distances to the query in the ranking.

One key advantage of employing LSH is that we can prove for-

mal guarantees for the retrieved points. Since our approach is more

involved than searching through a single set of hash buckets, we

provide a new analysis which demonstrates that it provably recov-

ers a set of relevant points𝑄 that results in routing to a shard which

contains an approximate nearest neighbor. We remark that, while

the routing only guarantees we are routed to a shard containing

an approximate nearest neighbor, under mild assumptions on the

partition, most of the approximate nearest neighbors of a given

point will be in the same shard as the closest point. Under such a

natural assumption, our SortingLSH index also recovers the true

nearest neighbors.

Theorem 1. Fix any approximation factor 𝑐 > 1, and let 𝑃 ⊂
(R𝑑 , ∥ · ∥𝜌 ) be a subset of the 𝑑-dimensional space equipped with the
ℓ𝜌 norm, for any 𝜌 ∈ [1, 2]. Let 𝑛 = |𝑃 | and𝑚 denote the routing
index size. Set stretch factor 𝛼 = 𝑂 (𝑐), repetitions 𝑟 = 𝑂 (𝑛1/𝑐 ) and
window size𝑊 = 𝑂 (1). Denote by 𝜋𝑘 (𝑞) the distance from 𝑞 to the
𝑘-th nearest neighbor of 𝑞 in 𝑃 . Then the following holds for any
query 𝑞 ∈ R𝑑 :

• If𝑚 = 𝑛, then with probability 1 − 1/poly(𝑛) 𝑞 gets routed
to a shard 𝚷(𝑝) containing at least one point 𝑝 ∈ 𝑃 that
satisfies ∥𝑝 − 𝑞∥𝜌 ≤ 𝛼𝜋1 (𝑞).

• If𝑚 < 𝑛, then for any 𝛿 ∈ (0, 1), with probability 1 − 𝛿 the
query 𝑞 gets routed to a shard 𝚷(𝑝) containing at least one
point 𝑝 ∈ 𝑃 that satisfies ∥𝑝 − 𝑞∥𝜌 ≤ 𝛼 · 𝜋⌈log𝛿−1 𝑛

𝑚
⌉ (𝑞).

Proof. The proof consists of the following steps: 1) embedding

into Hamming space, 2) constructing a hash family and SortingLSH

index for Hamming space, 3) analyze the prefix collision probabili-

ties and lastly 4) apply these to routing decisions.

To simplify the construction of the hash family H , we first

embed the pointset 𝑃 into a subset of the 𝑑′-dimensional Ham-

ming cube {0, 1}𝑑 ′ with a constant distortion in distances. Let

Φ =
max𝑥,𝑦∈𝑃 ∥𝑥−𝑦 ∥𝜌
min𝑥,𝑦∈𝑃 ∥𝑥−𝑦 ∥𝜌 denote the aspect ratio of 𝑃 . By Lemma

A.2 and A.3 of [10], for any 𝜌 ∈ [1, 2] there exists an embedding

𝑓𝜌 : 𝑃 → {0, 1}𝑑 ′ , with 𝑑′ = 𝑂 (𝑑Φ log𝑛), such that there exists a

constant 𝐶 so that with probability 1 − 1/poly(𝑛) for all 𝑥,𝑦 ∈ 𝑃 ,
we have ∥ 𝑓𝜌 (𝑥) − 𝑓𝜌 (𝑦)∥0 ≤ ∥𝑥 − 𝑦∥𝜌 ≤ 𝐶 · ∥ 𝑓𝜌 (𝑥) − 𝑓𝜌 (𝑦)∥0,
where ∥𝑎 − 𝑏∥0 = |{𝑖 ∈ [𝑑′] |𝑎𝑖 ≠ 𝑏𝑖 }| is the Hamming distance

between any two 𝑎, 𝑏 ∈ {0, 1}𝑑 ′ . The constant 𝐶 will go into the

approximation factor of the retrieval, but note that 𝐶 can be set to

(1 + 𝜀) by increasing the dimension by a 𝑂 (1/𝜀2) factor. Thus, in
what follows, we may assume that 𝑃 ⊂ {0, 1}𝑑 ′ as well as the query
𝑞 are a subset of the 𝑑′-dimensional hypercube equipped with the

Hamming distance.
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We now construct the hash family H which we will use for

the SortingLSH Index. A draw ℎ ∼ H is generated as follows:

(1) First, sample 𝑖1, . . . , 𝑖ℓ ∼ [𝑑′] uniformly at random, where ℓ =

𝑂 (𝑑′ log𝑛), (2) for any𝑥 ∈ {0, 1}𝑑 ′ defineℎ(𝑥) = (𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖ℓ ) ∈
{0, 1}ℓ . As notation, for any ℓ′ ≤ ℓ and hash function ℎ defined in

the above way, we write ℎℓ ′ (𝑥) = (𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖ℓ ′ ) ∈ {0, 1}ℓ
′
to

denote the ℓ′-prefix of ℎ.
We are now ready to prove the main claims of the Theorem. First,

suppose we are in the case that 𝑚 = 𝑛, and thus the pointset is

not subsampled before the construction of the SortingLSH index.

Let 𝑝∗ = argmin𝑝∈𝑅 ∥𝑝 − 𝑞∥0 be the nearest neighbor to 𝑞, with
ties broken arbitrarily. We first claim that 𝑝∗ and 𝑞 share a 𝑡-length

prefix in at least one of the 𝑖 ∈ [𝑟 ] repetitions of SortingLSH. Set
𝑡∗ = 4𝑑 ′ ln𝑛

𝑐 ∥𝑝∗−𝑞 ∥0 . Then the probability that 𝑝∗, 𝑞 share a prefix of

length at least 𝑡∗ – namely, the event ℎ𝑡∗ (𝑝∗) = ℎ𝑡∗ (𝑞), is at least

(︃
1 − ∥𝑝

∗ − 𝑞∥0
𝑑′

)︃𝑡∗
=

(︃
1 − ∥𝑝

∗ − 𝑞∥0
𝑑′

)︃ (4/𝑐 )𝑑′ log𝑛
∥𝑝∗−𝑞∥

0 ≥
(︃
1

2

)︃ (8/𝑐 ) log𝑛
= 𝑛𝑂 (1/𝑐 )

where we used the inequality (1 − 𝑥/2)1/𝑥 ≥ 1/2 for any 0 <

𝑥 < 1. Next, for any 𝑥 such that ∥𝑥 −𝑞∥0 ≥ 10/𝑐 ∥𝑝∗ −𝑞∥0, we have:

(︃
1 − ∥𝑥 − 𝑞∥0

𝑑′

)︃𝑡∗
=

(︃
1 − ∥𝑥 − 𝑞∥0

𝑑′

)︃ (1/𝑐 )𝑑′ log𝑛
∥𝑝∗−𝑞∥

0 ≤ 1/𝑛4

where we used the inequality that (1 − 𝑥)𝑛/𝑥 ≤ (1/2)𝑛 for any

𝑥 ∈ (0, 1] and 𝑛 ≥ 1. Union bounding over all 𝑟 < 𝑛 trials, it follows

that with probability at least 1−1/𝑛3, we never haveℎ𝑡∗ (𝑥) = ℎ𝑡∗ (𝑞)
for any 𝑥 such that ∥𝑥 −𝑞∥0 ≥ 10/𝑐 ∥𝑝∗ −𝑞∥0, and moreover we do

have ℎ𝑡∗ (𝑝∗) = ℎ𝑡∗ (𝑞) for at least one repetition of the sampling.

Let ℎ1, ℎ2, . . . , ℎ𝑟 be the 𝑟 independent hash functions drawn for

the SortingLSH routing index. By the above, there exists a repetition

𝑖 ∈ [𝑟 ] such that ℎ𝑖
𝑡∗ (𝑝

∗) = ℎ𝑖
𝑡∗ (𝑞).

First, suppose that 𝑝∗ was added to the window. Then since

𝑝∗ is the closest point to 𝑞, by construction of the algorithm the

point 𝑞 will be deterministically routed to 𝚷[𝑝′] for a point 𝑝′ such
that ∥𝑞 − 𝑝′∥𝜌 = ∥𝑞 − 𝑝∗∥𝜌 , which completes the proof in this

case. Otherwise, on repetition 𝑖 , if 𝑝∗ was not added to the window,
then since ℎ𝑖

𝑡∗ (𝑝
∗) = ℎ𝑖

𝑡∗ (𝑞), there must be another point 𝑝′ with
ℎ𝑖
𝑡∗ (𝑝

′) = ℎ𝑖
𝑡∗ (𝑞) on that repetition. By the above, such a point must

satisfy ∥𝑞 − 𝑝′∥𝜌 ≤ 𝑂 (𝑐)∥𝑞 − 𝑝∗∥𝜌 as needed.

Finally, the case of𝑚 < 𝑛 follows by noting that the𝑂 (log(1/𝛿) ·
𝑛/𝑚)-th nearest neighbor to 𝑞 will survive after sub-sampling𝑚

points from 𝑛 with probability at least 1 − 𝛿/2, in which case the

above analysis applies.

□

4 EMPIRICAL EVALUATION

We evaluate the performance of partitioning-based approximate

nearest neighbor search algorithms using different partitioning and

routing algorithms in terms of the recall of retrieving top-10 near-

est neighbors versus number of shards probed 𝜂 and throughput

(queries-per-second). In order to assess the quality of partitions

alone, we additionally look at recall with a hypothetical routing

oracle that knows the entire dataset and picks an optimal sequence

of shards to probe, i.e., one that maximizes recall.

4.1 Experimental Setup

Datasets. We test on the kNN datasets from https://big-ann-

benchmarks.com/neurips21.html, which have one billion points

each; namely DEEP (dim = 96, ℓ2), Text-to-Image (dim = 200, inner

product, abbreviated as TTI) and Turing (dim = 100, ℓ2) which

have real-valued coordinates, as well as SIFT1B (dim = 128, ℓ2,

also known as BIGANN) and SpaceV (dim = 100, ℓ2) which have

byte-valued coordinates. These are some of the most challenging
billion-scale ANNS datasets that are currently being evaluated by the
community. For example Text-to-Image exhibits out-of-distribution

query characteristics, as demonstrated in [30].

We allow 𝜀 = 5% imbalance of shard sizes. In addition to disjoint

partitions, we also consider overlapping partitions with 20% repli-

cation (𝑜 = 1.2). We use 𝑠 = 40 shards in the non-overlapping case

and 𝑠 = 48 shards in the overlapping case (so that the maximum

shard size is the same in both cases).

As the neural routing methods do not scale to billions of points,

we also benchmark on two smaller datasets, namely SIFT1M (dim =

128, ℓ2) and GLOVE (dim = 100, angular distance), which have

roughly a million points, partitioned into 𝑠 = 16 shards with 𝜀 = 5%.

Machine Setup. The query experiments are run on a 64-core (1

socket) EPYC 7702P clocked at 2GHz with 1TB RAM and 256 MB L3

cache. The partitioning experiments are run on a 128-core (2 sockets,

16 NUMA nodes) EPYC 7713 clocked at 1.5GHz with 2TB RAM and

256 MB L3 cache. The small-scale experiments comparing GP with

the neural methods are run on a 128-core EPYC 7742 clocked at

2.25GHz with 1TB RAM and 256 MB L3 cache.

4.2 Methods

We compare graph partitioning (GP) with three prior scalable par-

titioning methods: 𝑘-means (KM) clustering, balanced 𝑘-means

(BKM) clustering [11], and Pyramid [13]. To distinguish disjoint

and overlapping partitioning we prefix the corresponding method

name with O (OGP, OKM, OBKM). OKM and OBKM create overlap

by assigning points to second-closest clusters (etc.) as proposed

by [8]. We implemented our algorithms and baselines in a com-

mon framework in C++ for a fair comparison. Our source code is

available at https://github.com/larsgottesbueren/gp-ann. We note

that the original source code for Pyramid [13] is not available, and

the original source code for BKM [11] is not parallel, which is

prohibitive for us. Thus we implemented a parallel version of BKM.

To compute graph partitions, we use KaMinPar [23] which is

the currently fastest algorithm. For an overview of the field of

graph partitioning, we refer to a recent survey [7] and for a brief

description of KaMinPar, we refer to Section 5. The 𝑘 for the 𝑘-NN

graph used in graph partitioning is set to 10.

Neural Routing. Later on, we also compare with two methods

that use neural routing: BLISS [25] and USP [17].We exclude Neural-

LSH [15] since it is strictly outperformed by USP in all aspects, but

remark that its training took over two days on GLOVE. USP and

BLISS jointly learn the partition and routing index using neural
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Table 1: Imbalance and 10-recall for Pyramid at 𝜂 = 1.

dataset algorithm max shard size routing oracle recall 𝜂 = 1

DEEP Pyramid imbalanced 34.4M 80.3%

DEEP Pyramid reassign 26.25M 77.2%

DEEP Pyramid bin-packing 26.2M 68.8%

Turing Pyramid imbalanced 31.2M 75.9%

Turing Pyramid reassign 26.25M 75.2%

Turing Pyramid bin-packing 26.21M 70.6%

Text-to-Image Pyramid imbalanced 47.2M 80.5%

Text-to-Image Pyramid reassign 26.25M 76.9%

Text-to-Image Pyramid bin-packing 26.01M 70.6%

SpaceV Pyramid imbalanced 30.8M 87.4%

SpaceV Pyramid reassign 26.25M 87.2%

SpaceV Pyramid bin-packing 26.25M 82.1%

SIFT1B Pyramid imbalanced 41.4M 70.8%

SIFT1B Pyramid reassign 26.25M 68.1%

SIFT1B Pyramid bin-packing 26.23M 59.6%

networks. Given a query, the neural net infers a probability distri-

bution of the shards, which is interpreted as a probe order. BLISS

uses a cross-entropy loss formulation to maximize the number of

points which have at least one near-neighbor in their shard, and

uses the power of 𝑘 choices (top ranked shards) to achieve a bal-

anced assignment. USP uses a linear combination of edge cut and

normalized squared shard size as the loss function. Both methods

rely on building a 𝑘-NN graph for their loss function. We use the

publicly available Python implementations in PyTorch (USP) and

TensorFlow (BLISS).

𝑘-means Balancing. While 𝑘-means clusters are fairly balanced,

they often do not adhere to the strict shard size limit. For KM, we

tested two rebalancing approaches: 1) migrate points from over-

loaded clusters to their second closest center (etc.) and 2) splitting

overloaded clusters recursively with 𝑘-means using smaller 𝑘 . Rem-

igrating is better for QPS which is why we opted for this approach.

Pyramid. In the following we describe the partitioning and rout-

ing used in Pyramid [12, 13]. First the dataset 𝑃 is randomly sub-

sampled to a smaller pointset 𝑃 ′. 𝑃 ′ is then further aggregated via

flat 𝑘-means to �̂� , with |�̂� | = 10000. On �̂� a (HNSW) graph is built,

which is partitioned into balanced shards using graph partitioning.

This HNSW graph is used as the routing index – all shards with

points visited in a query are probed. Hence, the search-beamwidth

affects the number of probes. The partition of �̂� is extended to 𝑃 by

assigning each point to the shard of its nearest neighbor in �̂� .

Because of the last assignment step, the shards are highly im-

balanced. In Table 1 we report that Pyramid exhibits between

23.2%− 88.8% imbalance. If we enforce a 5% imbalance for Pyramid

by reassigning points to the closest cluster below the size constraint,

recall drops by 0.2% − 3.6%. We use this balanced version in the

experiments. Another idea is to overpartition into more shards and

perform bin-packing into balanced shards. We overpartition by 10x.

As shown this method performs worse than reassignment.

Note that we achieved better partitions and query throughput by

partitioning a 𝑘-NN graph on �̂� rather than partitioning the HNSW

graph. For routing we still use the HNSW graph built on �̂� .

Table 2: Parameter overview and default values for |𝑃 | = 10
9
.

Parameter Value Description

𝛼 5000 threshold for all-pairs

𝛽 0.005 # pivots = min(𝛾, 𝛽𝑛)
𝛾 1500 | 950 max pivots. recursion | top level

𝑟 3 graph-building repetitions

𝑓 3 assign to 𝑓 pivots on top-level

𝑚 20K - 10M routing index size

𝑙 64 kRt centroids

𝜆 350 kRt recursion cutoff

𝑊 50-4000 hRt window size

𝑟 1 - 24 hRt repetitions

𝑏 5000-50000 max comparisons for hRt and kRt

4.3 Configuration

In Table 2 we recap the different parameters of the graph-building

and routing algorithms and provide sensible default or grid search

values that were tuned for index building speed and good query

recall at |𝑃 | = 10
9
points. The values for graph-building and rout-

ing index construction also work well for other pointset sizes. The

routing query parameters (comparison budget, window size or

beamwidth) should be tuned for each dataset. The routing index

size𝑚 should be tuned offline with consideration for memory con-

sumption and routing recall.

Partitioning Configuration. For 𝑘-NN graph building with dense

ball clusters we use 𝑟 = 3, 𝑓 = 3, 𝛼 = 5000, 𝛽 = 0.005. Larger values

of 𝛼, 𝑟, 𝑓 lead to higher quality graphs at the expense of higher

running time, with linear dependence on 𝑟 and 𝑓 and quadratic

dependence on 𝛼 . As we showed earlier, we can obtain high query

recall even with a low-recall graph. Therefore, these values are

chosen to save on index building time. The number of pivots 𝑙 = |𝐿 |
is set to 𝑙 = min(1500, 𝛽 |𝑃 |) on the lower recursion levels; and

reduced to 𝑙 = min(950, 𝛽 |𝑃 |) on the top level to save running time.

This value should balance between splitting the dataset into small

clusters (large value) and retaining the sampled pivots in cache. We

use the default preset of KaMinPar. For SIFT1M and GLOVE we

use 𝑟 = 5 and 𝑓 = 5 as well as the strong preset of KaMinPar since

the budget for index construction time is not as constrained as for

billion-scale.

Routing Configuration for Billion-Scale. Unless mentioned other-

wise, all methods use kRt for routing, since it is also the general-

ization of 𝑘-means’ native routing method for large shards, which

is the regime we are interested in. For the throughput evaluation

we accelerate the routing query with HNSW. For 𝑘-means based

partitioning methods, we also use the native routing method with

one center per shard.

We use a cluster size threshold of 𝜆 = 350, number of centroids

𝑙 = 64 and tree search budget 𝑏 = 50𝐾 . In preliminary experiments,

we tested different parameter settings and found the results were

not sensitive to 𝜆 and 𝑙 which is why these results are not reported

here, whereas 𝑏 does influence routing quality. Note that we do not

explore different budgets 𝑏 here, as kRt with tree-search is only
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used in Section 4.7. To explore different routing quality configura-

tions, we therefore vary the size𝑚 of the set of coarse represen-

tatives 𝑅, testing𝑚 ∈ {20𝐾, 100𝐾, 200𝐾, 500𝐾, 1𝑀, 2𝑀, 5𝑀, 10𝑀}.
Larger values of𝑚 lead to more accurate routing, at the expense of

a linear increase in memory and sublinear increase in routing time.

We observe that larger𝑚 also lead to higher QPS for all values we

tested, though with diminishing returns.

The HNSW configuration for routing uses a degree of 32 and

beamwidth ef_construction = 200 for insertion. To explore different

routing quality trade-offs we vary the beamwidth during search

ef_search ∈ {20, 40, 80, 120, 200, 250, 300, 400, 500}.
The memory consumption for the routing index is𝑚 · (𝑑𝑖𝑚 +

deg+1) · 4 bytes. For example, using 𝑚 = 500𝐾,𝑑𝑖𝑚 = 100 and

degree 32 leads to 266MB, or𝑚 = 5𝑀 leads to 2.66GB.

Based on preliminary testing, we use distance-based routing for

the datasets Turing, DEEP, and SpaceV, and we use the distance-

frequency-hybrid for Text-to-Image and SIFT1B. Changing this

parameter does not require rebuilding any data structures, hence it

can be easily tuned at query time.

For routing with hRt we test the number of repetitions 𝑟 ∈
{1, 4, 8, 16, 24} andwindow size𝑊 ∈ {50, 100, 200, 400, 1000, 2000, 4000}.
We use the same values for𝑚 as with kRt. More repetitions and

larger windows lead to more accurate routing through more accu-

rate retrieval at the cost of higher running time. The window size

can be tuned directly at query time. Similarly, the number of repeti-

tions can be increased incrementally when needed, without having

to rebuild earlier SortingLSH indices. The results in Figure 3 use the

best performing configuration with search budget 𝑏 = 𝑟 ·2𝑊 ≤ 50𝐾 .

We use SimHash as the locality sensitive hash function with 64 pro-

jections, i.e., the compound hash of each vector contains 64 hash

bits. This enables efficient encoding into 64 bit integers and allows

us to use standard sorting algorithms to construct the SortingLSH

index, instead of more costly string sorting algorithms. Since we

use SortingLSH [5], we need not tune the number of bits to an

appropriate hash bucket size.

In-Shard Search Configuration for Billion-Scale. For in-shard search,
we also use degree 32 and ef_construction = 200. For different

in-shard search recall trade-offs we again vary the beam-width

parameter ef_search ∈ {50, 80, 100, 150, 200, 250, 300, 400, 500}.

Configuration for Million-Scale. On SIFT and GloVe we use a

smaller router and HNSW graph with kRt. We set the router size

𝑚 = 50𝐾 , the search budget 𝑏 = 5𝐾 , number of centroids 𝑙 = 32 and

cluster size threshold 𝜆 = 200. The HNSW graphs use degree 16 and

ef_construction = 200. For routing we use ef_search = 60, whereas

for in-shard search we use ef_search = 120. These parameters are

reduced compared to billion-scale, to cut down on running time for

routing. For GloVe we use distance-based routing. For SIFT1M we

use the distance-frequency-hybrid routing.

4.4 Routing: kRt vs hRt

In Figure 3 we compare hRt versus kRt by recall versus number

of shards probed 𝜂, using GP as the partitioning method and ex-

haustive search in the shards. The plot also shows the performance

of the aforementioned routing oracle, to provide context. While

hRt performs decently, empirically kRt consistently finds better
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Figure 3: Recall vs shards probed 𝜂 comparing routing with

hRt vs kRt using GP as the partition and exhaustive search

in the shards.

routes. This is caused by the uniform random sampling which is

necessary for the theoretical analysis of hRt. In the remainder of

the evaluation we therefore focus on kRt exclusively. We note that

the relevance of hRt lies in its theoretical guarantees.

4.5 Large-Scale Throughput Evaluation

Next, we perform an evaluation of recall vs throughput (queries

per second) of approximate nearest neighbor queries. Due to re-

source constraints we simulate distributed execution on a single

machine, processing hosts one after another. While this setup does

not take into account networking latency, we note that its impact

should be negligible: communication latency in modern networks

is less than 1 microsecond [39] whereas HNSW search latency is

around 1 millisecond or higher. Moreover, our algorithms (and all

sharding-based algorithms in general) perform the least amount of

communication possible – only the query vector as well as neighbor

IDs and distances are transmitted.

We assume a distributed architecture where each machine hosts

one shard and the routing index. For routing, queries are distributed

evenly. The machine that receives a query forwards it to the hosts

that are supposed to be probed.

We use HNSW to search in the shards and to accelerate routing

on the kRt points. In total we use 60 hosts. This is larger than the

number of shards, as we replicate popular shards to counteract

query load imbalance. We process queries on 32 cores per host in

parallel. Throughput is calculated based on the maximum runtime

of any host. The work for query routing is distributed evenly across

hosts, whereas in-shard searches are only accounted for the queries

that probe the shard on the host. Replicas of the same shard evenly

distribute work amongst themselves.

To obtain different throughput-recall trade-offs, we try different

configurations of kRt (index size𝑚) and HNSW (ef_search), as well

as number of shards probed 𝜂 or the probe filter methods proposed

by [13] and [8], which determine a different 𝜂 for each query. For

Pyramid, we also included its native routing method. Additionally,

for 𝑘-means based partitioning methods (KM, OKM, BKM, OBKM),

we included their native routing method with one center per shard.

We only plot the Pareto-optimal configurations, which is standard

practice [16]. We note that in order to obtain the most competitive

configurations, it is necessary to tune all of the above parameters.
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Figure 4: Throughput vs recall evaluation on big-ann-benchmarks for 𝑘 = 10 nearest neighbors, comparing both overlapping

and disjoint partitions. Using kRt with HNSW acceleration for routing and HNSW search in the shards. For Pyramid and

𝑘-means based partitionings we additionally use their native routing methods.

Table 3: Throughput in 10
3
queries per second at 0.9 recall

for 𝑘 = 10 nearest neighbors. Best results highlighted in bold.

𝑘 = 10

QPS [·103] GP OGP BKM OBKM Pyramid

DEEP 1157.7 1299.3 1030.2 1056.8 810.9

Turing 353.3 450.4 177.5 99.2 261.5

TTI 81.6 76.4 70.6 59.6 59.4

SpaceV 872.3 893.7 608.2 292.9 689.1

SIFT1B 793.8 895.8 376.4 459.9 608.7

The Pareto optimal configurations combine high-quality routing

with low-quality shard search and vice versa across the Pareto front.

Figure 4 shows the recall vs throughput plot for 𝑘 = 10 nearest

neighbors. In the full version of the paper [21], we also report results

for 𝑘 = 1 and 𝑘 = 100 nearest neighbors. The overall trends are

the same as for 𝑘 = 10. The algorithm ranking remains the same.

Throughput is higher for 𝑘 = 1 and lower for 𝑘 = 100. Additionally,

Table 3 shows the throughput for a fixed recall value of 0.9 for𝑘 = 10.

GP outperforms all baselines, and does so by a large margin on

Turing and TTI. Adding overlap with OGP improves results further

across the whole Pareto front on DEEP, Turing, SpaceV and SIFT1B.

Table 4: Partitioning times in minutes. GB = graph-building.

For graph partitioning we report the time for KaMinPar as

GP and the time for GB + GP in brackets

GB GP (GB+GP) OGP BKM OBKM Pyramid

DEEP 63 24 (87) +10 24 +16 32

Turing 69 17 (86) +11 36 +18 35

TTI 107 17 (124) +10 65 +34 60

SpaceV 75 15 (90) +8 56 +16 34

SIFT1B 89 20 (109) +8 823 +19 41

On Text-to-Image, OGP loses to GP on recall below 0.93, but OGP

can achieve higher maximum recall. Note that the maximum recall

is constrained by the approximate in-shard HNSW search. Overall

GP or OGP improves QPS over the next best competitor at 90%

recall for 𝑘 = 10 by 1.23x, 1.72x, 1.16x, 1.3x, and 1.03x respectively

on DEEP, Turing, TTI, SpaceV and SIFT1B, as well as 1.27x in the

geometric mean. Moreover OGP improves over GP by up to 1.27x

and by 1.09x in the geometric mean.
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for 𝑘 = 10 nearest neighbors.
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Figure 6: Evaluating overlapping vs disjoint partitions with

kRt routing and exhaustive shard search for 𝑘 = 10 nearest

neighbors.

4.6 Training Time

In Table 4 we report partitioning times. The improved query per-

formance of GP does come at the cost of a moderately increased

partitioning time compared to the baselines. This is due to the

graph-building step (GB). While previous works [15, 17, 25] identi-

fied graph partitioning as the bottleneck, we observed that it can be
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Figure 7: Ablation study analyzing the sources of routing

losses for 𝑘 = 10 nearest neighbors. Different curves corre-

spond to different variants of a routing algorithm used. We

note that all but Approx NN are hypothetical and/or infeasi-

ble in practice. Also note that we used distance-based routing

on TTI to enable comparisonwith Exact NN, whereas in other

experiments we use the frequency-distance hybrid on TTI.

made very fast by using the KaMinPar [23] partitioner. The overall

partitioning times are quite moderate for datasets of this scale, and
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our implementations of the baselines are competitive. The Pyramid

paper reports a partitioning time of 87 minutes on a 500M sample of

DEEP, demonstrating that our reimplementation is faster. Reference

[9] reports 4-5 days training time for their hierarchical balanced

𝑘-means tree SPANN on SpaceV and SIFT. The long training time

of BKM on SIFT1B is caused by the need to iteratively escalate to a

large penalty factor to achieve a balanced solution.

While our graph-building implementation is already optimized,

it can be further accelerated using GPUs [32] or more hardware-

friendly implementation of bulk distance computations [24].

Coarsening with kRt takes roughly 1000s on Turing, 800s on

DEEP, and 2000s on TTI. HNSW training in a shard of roughly 25M

points takes 600s-1500s for Turing and DEEP, and 800s-1900s for

TTI. Note that these numbers apply to all baseline partitioners, as

they use the same routing algorithms and in-shard search. Training

hRt takes under 20 seconds.

4.7 Analyzing Partitioning and Routing Quality

To further assess the quality of the partitions and routing, we study

recall independent of HNSW searches in the shards. Specifically,

we look at the number of probed shards versus the recall with

exhaustive search in the shards, in order to assess the quality of

the routing algorithm. All recall values reported in Figures 5 to

Figure 7 and Section 4.7 assume exhaustive search. Furthermore,

to assess the quality of the partition alone, we look at recall with a

hypothetical routing oracle that knows the entire dataset and picks

an optimal sequence of shards to probe.

Disjoint Partitions. Figure 5 shows the results for disjoint par-
titions with the oracle marked as dashed lines. GP outperforms

Pyramid, KM and BKM on all three datasets. In particular on Tur-

ing the margin of improvement is very significant: +25% recall over

BKM and +13% over Pyramid at 𝜂 = 1 probes with kRt and +11%,
respectively +20% with the oracle.

Overlapping Partitions. Next, we investigate the effects of using
20% overlap in Figure 6. Since we use more shards instead of in-

creasing their size (𝑠′ = 48 instead of 𝑠 = 40) , it is not guaranteed

that overlap will lead to strictly better results. Fortunately, we see

consistent and substantial improvement of all overlapping methods

over their disjoint counterparts. For example, on Text-to-Image,

OGP achieves 77.8% 10-recall in the first shard (85.5% routing oracle)

compared to GP with just 74.4% (81.2% oracle). The improvements

are most pronounced when the disjoint partitioning method is still

Table 5: Routing time inmicroseconds per query for different

batch sizes 𝑏 on SIFT and GLOVE. Queries in a batch are

processed in parallel.

SIFT GLOVE

𝑏 = 1 𝑏 = 32 𝑏 = ∞ 𝑏 = 1 𝑏 = 32 𝑏 = ∞
kRt 95 13 2.4 92 11 2.1

kRt + HNSW 110 37 7.8 106 33 7.6

BLISS 660 150 110 730 110 110

USP 320 20 1.2 512 23 1.2

performing poorly, as there is more headroom. For example on

DEEP, the 64% recall for KM gets boosted to 74.4% with OKM. Over-

all these results demonstrate that overlapping shards significantly

boost recall. We note that while this was known for KM [8, 45], we

are the first to show this for GP.

Losses. While our routing algorithms perform well, there is still

a significant gap to the optimal routing oracle. We leverage fast

inexact components in two places. We coarsen the pointset, and

we use an approximate search index to speed up the routing ANN

query. In the following, we thus investigate how much the inexact

components contribute to the losses by replacing them with an

exact version. We present the results in Figure 7.

We test distance-based routing based on the entire pointset to

determine the effect of coarsening and study how distance-based

routing loses compared to the oracle (No Coarsening). Additionally,

we test computing distances to all points in 𝑅 (Exact NN), to detect

how much approximate search loses in routing by missing relevant

points as employed in the base version of the algorithm (Approx

NN). Note that for all five datasets including Text-to-Image, we use

pure distance-based routing, not the frequency-distance-hybrid.

At 𝜂 = 1 probed shard, routing by ranking distances already

loses significantly – see Oracle against No Coarsening. It is able to

catch up at 𝜂 = 3, suggesting that the distinction among the top

3 should be improved, but overall ranking distances is the correct

approach. At 𝜂 > 1 coarsening incurs the highest losses – see No

Coarsening vs Exact NN. Fortunately, Approx NN incurs only a

small loss against Exact NN; at 𝜂 ≥ 3 on Turing and 𝜂 ≥ 5 on TTI.

4.8 Small-Scale Evaluation for Learned Routing

In this section, we compare with two additional baselines BLISS [25]

and USP [17], which are examples of neural routing methods. Train-

ing BLISS and USP is too slow to run on the big-ann datasets, so we

test on SIFT1M and GLOVE, which have roughly a million points,

partitioned into 𝑠 = 16 shards. Queries are run sequentially, except

for the batch-parallel results in Table 5 which use 64 cores. Index

training uses 128 cores. The results for GP and (B)KM use kRt

routing without HNSW acceleration.

Figure 8 shows the recall versus number of probed shards. First,

we observe that GP and USP perform similarly and are the frontrun-

ners on both datasetes, whereas BLISS is completely outperformed.

This comparison uses exhaustive search in the shards, which takes

1.98ms per shard probe on SIFT. Alternatively, using HNSW takes

0.23ms per shard probe with near-equivalent recall (77% vs 76.7%

in the first shard). BLISS exhibits 13-15ms for exhaustive shard
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search, which is presumably an implementation issue of interfacing

from Python to C++. For USP we cannot get a clean measurement,

because the shard-search is mixed with the recall calculation. In

Table 5 we report the routing times. USP and BLISS benefit from

routing in batches, as PyTorch leverages parallelism and batched

linear algebra operations. Our approach similarly benefits from

parallelism, but could be further improved with batched distance

computations. In contrast to the results on large-scale data, we

observe that routing with HNSW is slower than with kRt.

In terms of retrieval performance, USP is a good data structure.

However, it is extremely slow to train, taking 6 hours on 128 cores

for GLOVE. The main bottleneck is training the routing model on

the base points over several epochs. On the other hand BLISS is fast

to train at 70s (neural network) + 566s (𝑘-NN graph construction),

but has poor retrieval performance. We excluded Neural LSH [15]

from the retrieval comparison as it is already outperformed by USP,

but remark that its neural net training took over two days. Our

method has the best retrieval speed at relevant batch sizes and
is also the fastest to train at just 4.76s, of which 2.95s are graph-

building, 0.88s partitioning, and 0.93s kRt.

5 RELATEDWORK

Approximate 𝑘-Nearest Neighbor Graph Construction. There are
several works on approximate 𝑘-NN graph construction, which are

relevant. NN-Descent by Dong et al [14] is an iterative improve-

ment algorithm, which refines an initial 𝑘-NN graph. This can be a

random initial graph or computed with some other method. The

intuition underlying their iterative improvement approach is to

introduce neighbors of neighbors to one another, as the neighbors

of a node’s current neighbors are likely good neighbor candidates

themselves. One round of NN-Descent is typically implemented

by computing the transpose of the current graph and merging the

resulting lists. EFANNA [19] feeds the pointset as queries to 𝑘-d

trees to build an initial 𝑘-NN graph to be refined with NN-Descent.

Tang et al [46] utilize random projection trees instead of 𝑘-d trees

to build the initial graph.

Another approach is based on locality sensitive hashing and

using all-pairs comparisons to emit edges in the resulting hash

buckets [47]. Our graph construction method is an instatiation

of this approach with a data-dependent LSH function (the cluster

assignment). It is also related to HCNNG [37], a graph-structured

ANNS index, which uses two random pivots for splitting the data

and computes a degree-constrained MST as the recursive base case

to build a navigable search graph.

Graph-Structured Indices for Approximate Nearest Neighbor Search.
Due to the curse of dimensionality, and the resulting sub-par per-

formance of data structures like 𝑘-d trees on high-dimensional data,

recent advances in ANNS have focused on graph-structured indices.

DiskANN [44] and HNSW (Hierarchical Navigable Small-World

Graph) [35] have become widely established due to their excellent

recall-time trade-off. The general idea is to build a navigable proxim-

ity graph on the dataset points, such that a beam search converges

to nearest neighbors of a query. In each step, the explored vertex

closest to the query is expanded by scanning its neighbors in the

search graph and computing their distance to the query. Explored

vertices are stored in a size-constrained priority queue (the beam)

to restrict the search direction towards near neighbors.

Distributed Nearest Neighbor Search. Despite the need for dis-

tributed ANNS in scaling beyond a billion points, there is limited

published work on the subject [8, 13, 36]. We believe this is partially

due to the difficulty of query load imbalance, as also briefly noted

in SPANN [8]. Their approach is to load-balance queries during

the partitioning step by incorporating query access frequencies.

However, if the online query distribution differs or the training set

is not sufficiently representative, this can still incur load imbalance.

We argue that in a large-scale setup, where replica machines are

needed for fault-tolerance and increased throughput, it is worth-

while to selectively replicate heavily loaded machines, which can

also be made robust to distribution shift by tracking query access

frequencies during the online stage.

FLANN [36] is a distributed search solution, which uses random

sharding, routes a query to all machines, and uses a 𝑘-means tree

as the in-memory index for each shard. Note that the QPS increase

from adding replicas is much more limited for random sharding,

because a query is always routed to all shards, as opposed to locality-

optimized partitions (such as GP or BKM) where only a small subset

of the shards is probed.

Graph Partitioning. The KaMinPar [23] graph partitioner follows

the multilevel approach [27], where we first repeatedly contract ver-

tex clusters to obtain successively smaller graphs, which constitute

the levels. On the smallest graph, we compute an initial partition

using a portfolio of randomized greedy heuristics [22]. In the un-

coarsening stage we then revert the contractions level by level,

project the partition to the next graph and iteratively improve it

using refinement algorithms. KaMinPar uses size-constrained label

propagation [40] for coarsening and refinement, a simple iterative

and highly parallel greedy vertex moving procedure.

6 CONCLUSION

Wepresented fast, modular and high-quality routingmethodswhich

unleash balanced graph partitioning for large-scale nearest neigh-

bor search and establish it as the partitioning method of choice. Our

routing methods build upong center-based routing, and achieve

compatibility with graph partitioning by training representatives

independently for each shard. Additionally, employing multiple

and diverse representative vectors to encapsulate the hierarchical

substructure within shards substantially improves routing decisions

and thus recall. Moreover, our overlapping partitioning method,

based on further eliminating 𝑘-NN graph cut edges, substantially

improves the recall-throughput trade-off compared to the disjoint

partition. Our benchmarks on billion-scale, high-dimensional data

show that our methods achieve up to 1.72x higher throughput at

90% recall than the best baseline, and 1.27x in the geometric mean.

As a future work it would be interesting to explore accuracy

and efficiency improvements for routing, for example exploring

quantization to compress the routing index. Another direction is to

study the benefits of our approach for partitioning ANNS problems

across different types of computing units, e.g. GPUs. Additionally,

we are interested in advanced partitioning cost functions that fur-

ther optimize locality in approximate nearest neighbor search.
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