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ABSTRACT
In data exploration, executing queries over a large database can be

time-consuming. Previous work has proposed approximate query

processing as a way to speed up aggregate queries in this context,

but do not address non-aggregate queries. Our paper introduces

a novel holistic approach to handle both types of queries by find-

ing an optimized subset of data, referred to as an approximation

set. The goal is to maximize query result quality while using a

smaller set of data, thereby significantly reducing the query exe-

cution time. We formalize this problem as Holistic Approximate

Query Processing and establish its NP-completeness. To tackle this,

we propose an approximate solution using Reinforcement Learning,

termed HARLM. While HARLM does not provide theoretical guaran-

tees due to its reliance on Reinforcement Learning, it effectively

overcomes challenges related to the large action space and the need

for generalization beyond a known query workload. Experimental

results on both non-aggregate and aggregate benchmarks show

that HARLM significantly outperforms the baselines both in terms of

accuracy (30% improvement) and efficiency (10-35X).
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1 INTRODUCTION
During the data exploration phase of data science, users frequently

query iteratively to better understand the data [5]. However, when

the database is large and queries are complex, obtaining precise

answers for exploratory queries can be time-consuming, leading

users to favor faster, yet approximate, query results. While much

work has been done in Approximate Query Processing (AQP) [28],

existing approaches focus on aggregate queries and overlook com-

plex non-aggregate select-project-join (SPJ) queries. However, such

queries may constitute a significant portion of data exploration

tasks, leading to unacceptable delays during the exploration phase.

Example 1.1. In a study of IMDB exploratory data analysis (EDA)

sessions [26], approximately 50% of the queries were complex SPJ

(Select-Project-Join) queries. One such query explores the relation-

ship between production companies’ countries of origin and the
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cast size of movies, requiring joins across five tables with multiple

filters. These types of queries are crucial for analysts to understand

relationships within the data and are often iteratively refined. This

scenario extends beyond just the entertainment industry. For in-

stance, in the healthcare sector, analysts query patient records to

identify correlations between treatments and recovery times, join-

ing multiple tables with sensitive and extensive data [27]. Similarly,

in the financial industry, analysts run complex queries to detect

fraud or assess risks, joining transaction records, customer profiles,

and external data sources [28].

Despite efforts to limit result sizes, processing these non-

aggregate queries can be time-consuming. In the IMDB study, non-

aggregate queries had an average execution time of 25 minutes,

with 30% surpassing the one-hour mark. Such lengthy queries are

not uncommon, as they often lie outside the optimized query work-

load that the database was designed to handle. Therefore, as with

AQP techniques for aggregate queries, prioritizing fast, approxi-

mate responses for non-aggregate queries is crucial to enable fast

exploratory analysis [3] □
Note that other efforts, such as OLAP, have also focused on ac-

celerating query execution to support faster decision-making [10],

and various database architectures have been introduced to fa-

cilitate faster data extraction upon demand [40]. However, these

approaches are unsuitable for our purposes since they have large

storage requirements, require specific expertise to use, and require

lengthy setup (see Section 2). We therefore propose a holistic ap-

proach to AQP which accelerates the processing of complex, aggre-

gate and non-aggregate queries while maintaining high accuracy.

Given a database and expected query workload, our approach finds

a subset of the data in each of the database tables, called an approx-

imation set, over which queries are executed to provide fast, but

approximate, answers. To do this, we must address two problems:

(1) defining what a reasonable approximation is, and (2) efficiently

computing the approximation set.

Approximate answers to non-aggregate queries. While ap-

proximate answers are well understood for aggregate queries, ex-

tending this idea to non-aggregate queries requires careful consid-

eration. Our premise is that an approximation for a non-aggregate

query should include some, but not necessarily all, tuples in the

query result. The rationale for this is that when the query output

becomes excessively large, users cannot look closely at the entire

result beyond a certain frame size, and may not therefore discern if

it is approximated. Unlike AQP for aggregate queries, where the

quality metric for approximation remains constant across queries,

the critical factor in non-aggregate queries is the size of the result

that a user can effectively analyze. In scenarios where the user

can analyze the entire result, the approximation must be highly

accurate, covering the entire result set. However, for queries with
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exceptionally large results, the approximation can provide the user

with a query answer limited to the frame size (see Section 2).

Efficiently computing approximation sets. To efficiently cal-

culate a good approximation set for a query workload, a number of

challenges must be addressed: (C1) The vast combinatorial solution

space, created by combinations of tuples from different tables. (C2)

Understanding the search space, due to the cost of executing the

workload. (C3) The varying size of query results, which introduces

different importance levels for tuples (e.g. tuples from queries with

smaller result sizes are more significant than ones from larger result

sizes). (C4) Generalizing for future, potentially dissimilar queries

from the known workload. (C5) Detecting when there is a drift in

user interest. Although computing the approximation set is time

consuming, it can be conducted offline. Analogous to the trade-off

identified in AQP, users are willing to accept the compromise be-

tween extensive offline pre-processing time and the quick, albeit

approximate, results provided online.

Our solution. Our approach creates an approximation set which

is then used to provide approximate answers to future queries. To

evaluate the quality of an approximation set we establish a quality

metric which takes into account the size of the full query result with

respect to the frame size for all queries in the workload, weighted

by the importance of each query. Since optimizing with respect to

this metric is NP-hard, we turn to Reinforcement Learning (RL) to

approximate a solution.

Our system, HARLM, starts by revising the query workload to

turn aggregate queries into non-aggregate queries by removing

aggregate operators. It then pre-processes the database (which may

encompass multiple tables) and revised query workload to create

a reduced though robust subset of the data (addressing C2, C4).

This subset is then translated into the RL action space, where, at

each training step, the model predicts the next tuples to include in

the approximation set based on the current state. This predictive

action aims to maximize the reward, representing the quality of

results for queries encountered so far. HARLM employs an RL model

utilizing critic-actor networks with Proximal Policy Optimization

(PPO), specifically tailored for tabular data. The model encompasses

a well-crafted environment and transformed action definitions (ad-

dressing C1, C4). A specialized reward function aligns with the goal

of selecting rows for accurate approximations (C3).

This yields a robust, adaptive solution that significantly improves

the efficiency and accuracy of non-aggregate query approximations.

Additionally, metadata for the entire database is retained and com-

bined with the generated approximation set to support aggregation

query responses. While HARLM demonstrates significant improve-

ments in accuracy and efficiency, it does not provide mathematical

guarantees due to the inherent limitations of Reinforcement Learn-

ing methods. However, this aligns with the approach taken by other

recent AQP systems (e.g. [42]) that also prioritize empirical effec-

tiveness over formal guarantees. HARLM also detects drift in user

interests, enabling model fine-tuning for better approximate results

(C5). Our experiments (see Section 6) show that in some cases the

computations may take up to an hour. Although this is acceptable

in an offline scenario [28], we also give a lightweight version which

accomplishes this task much faster (up to 30 minutes) with only

a slight degradation in quality. Our user studies substantiate the

utility of our system, which ultimately saves users more time than

that spent in the computation of approximation sets.

Benefits of our approach. Our solution offers several benefits:

(1) An approximation for both aggregate and non-aggregate queries.

(2) A versatile mediator adaptable to any database. (3) Flexible

training within time constraints, managing the tradeoff between

running time and quality. (4) Efficient query interpretation through

vector-based techniques, enabling a rapid reduction of the initial

space and swift training processes. (5) A predictive model and

query interpretation to assess the likelihood of missing answers

and enhance result accuracy. (6) The ability to detect interest drift,

enabling fine-tuning to evolving exploration needs. These benefits

position HARLM as a comprehensive tool for efficient EDA.

Contributions and outline. In addition to providing a com-

prehensive tool for data exploration, this work is among the first

applications of advanced RL concepts. Contributions include:

(1) Problem Definition and Metric Introduction (Section 3): We

define the problem of approximating non-aggregate queries given

a budget for the approximation set, and introduce a novel metric

for evaluating its quality.

(2) Holistic query approximation via RL modeling (Sections

4): We present a holistic solution based on RL for approximating

both aggregate and non-aggregates queries, by creating “good"

approximation sets. Additionally, we address challenges such as

determining when to use the approximation set for answering

queries, when to fine-tune the model in response to a drift in user

interests, and how to handle an unknown query workload.

(3) Experiments Demonstrating Efficiency and Quality (Sec-

tion 6): We conduct comprehensive experiments showcasing the ef-

ficiency and quality of HARLM for both aggregate and non-aggregate
queries. The results highlight its adaptability to diverse time con-

straints and superior performance in managing the trade-off be-

tween running time and result quality.

2 RELATEDWORK
Approximate Query Processing (AQP) and Generative Models. AQP

typically follows two approaches [28]: (1) retaining a small sample

of tuples with metadata, and (2) generating synthetic tuples using

generative models. The first includes sampling methods [1, 7, 15],

which accelerate query execution by reducing data volume at the

cost of precision. While less effective for non-aggregate queries

(see Section 6), we draw on [45] to build an initial approximation

set based on the query workload for model training. The second

approach uses generative models like GANs and VAEs [12, 51] to

create synthetic tuples that capture complex distributions. How-

ever, such tuples can deviate from real data, leading to empty or

misleading query results (see Section 6).

OLAP. Multidimensional OLAP (MOLAP) systems focus on ag-

gregates using data cubes built from past queries [10, 40]. However,

they face limitations: (1) high storage costs—up to 10× the original

data [27], (2) reliance on OLAP-specific DBA expertise [19], and (3)

complex setup procedures that may span days [20]. These factors

restrict their usability for typical data scientists.
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Data Summarization, Sampling, and Reduction. Representative

selection via clustering [29], visualization-aware sampling [44], and

query result diversification [55] aim to preserve diversity and rele-

vance. However, as shown in Section 6, these methods are slow and

not optimized for query approximation. Sketches and reduction

techniques [7, 54] may discard critical details for non-aggregate

queries. Other approaches, including skyline [43], caching [2], and

view selection [33], do not jointly address aggregate and non-

aggregate query needs.

3 PROBLEM DEFINITION AND COMPLEXITY
We now introduce the problem of Holistic Approximate Query Pro-

cessing (HAQP). We begin by defining the problem in a simplified

scenario with a known query workload, and give a metric to assess

the quality of a set of subsets of tuples with respect to the given

workload. In the next section we extend these concepts to scenarios

where the query workload is unknown.

HAQP Problem Definition. Consider a set of relational instances

T = {𝑇1, ...,𝑇𝑛}, an initial query workload 𝑄𝐼 consisting of both

aggregate and non-aggregate queries over T , and an importance

function 𝑤 : 𝑄𝐼 → [0, 1], where
∑︁
𝑞∈𝑄𝐼

𝑤 (𝑞) = 1. By default, the

weight is determined by the frequency of query occurrences. Each

aggregateine query in 𝑄𝐼 is first transformed into a query without

aggregate operations by removing GROUP BY/HAVING clauses as

well as the aggregate operations (e.g. SUM, MIN, MAX) from the

SELECT clause. Let 𝑄 denote the transformed query workload. We

assume limits on the size of the available memory (𝑘) as well as

on the maximum result size that users can cognitively process (the

frame size 𝐹 ). In practice, 𝐹 may vary from 10 rows (the default

data view size in pandas) to 500 rows (the default result size in

PostgreSQL), and is configurable.

Metric. Our metric function, 𝑠𝑐𝑜𝑟𝑒 (𝑆), measures the quality of a

set of subsets (the approximation set) of the relational instances in

T , S = {𝑆1, ..., 𝑆𝑛} where 𝑆𝑖 ⊆ 𝑇𝑖 , with respect to (T , 𝑄,𝑤, 𝑘, 𝐹 ):

𝑠𝑐𝑜𝑟𝑒 (S) =
∑︂
𝑞∈𝑄

𝑤 (𝑞) ·𝑚𝑖𝑛 (1, |𝑞 (S) |
𝑚𝑖𝑛 (𝐹, |𝑞 (T) | ) ) (1)

Intuitively, if a query returns more tuples than the frame size

𝐹 , there is no need to include in 𝑆 more than 𝐹 tuples from the

query result since the user may not be able to cognitively process

them. Conversely, if a query returns only a few tuples, then each

tuple carries significant importance in the result. The metric takes

into account the weight assigned to each query and calculates the

average score over all queries in 𝑄 . Moreover, as this metric is

optimized across all queries, the data it retains is sufficiently varied

to capture information needed for calculating aggregate queries.

HAQP Goal. Given an instance T , a set of transformed queries𝑄 ,

weight function𝑤 , and positive integers 𝑘 and 𝐹 , the goal is to find

a set S where

∑︁
𝑆𝑖 ∈S |𝑆𝑖 | < 𝑘 such that 𝑠𝑐𝑜𝑟𝑒 (S) is maximized.

Problem Hardness. HAQP is already hard when queries are over

a single table, 𝑛 = 1. In this case, a naive approach is to consider all

subsets 𝑆 ⊆ 𝑇 of size 𝑘 , and find the one that maximizes 𝑠𝑐𝑜𝑟𝑒 (𝑆),
which is computationally intractable. Worse yet, this naive solution

cannot be significantly improved since the HAQP problem is NP-

hard. This can be shown by reduction from the max-𝑘-vertex cover

problem [34]. We create an HAQP instance from the input to the

max-𝑘-vertex cover problem as follows: For each vertex 𝑣 ∈ 𝑉 , we
create a tuple 𝑡𝑣 ∈ 𝑇 , and for each edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸, we create
a query 𝑞𝑒 (𝑇 ) = {𝑡𝑢 , 𝑡𝑣} that includes the tuples corresponding to
the edge’s endpoints 𝑞𝑒 (𝑇 ) = {𝑡𝑢 , 𝑡𝑣}. The query weights are set

to the weights of the corresponding edges in the graph. The limit

on the number of informative tuples, 𝐹 is set to 1, and the memory

size is set to 𝑘 (the input to the max-𝑘-vertex problem). Observe

that a solution to the HAQP problem is a solution to the max-𝑘-

vertex problem, as the score function 𝑠𝑐𝑜𝑟𝑒 (𝑆) defined in Equation

1 is equivalent to the objective function of the max-𝑘-vertex cover

problem. In case of multiple tables (𝑛 > 1) the problem is even

worse combinatorially.

Parameter Settings and unknown queries. As can be seen from

the problem formulation, the choice of parameter settings signif-

icantly impacts the overall performance of a solution: The frame

size (𝐹 ) directly affects the score function. The available memory

(𝑘) determines how large the subsets can be and therefore affects

the accuracy and coverage of query results. Increasing 𝑘 enables a

larger number of tuples to be kept, leading to a higher likelihood of

obtaining exact query outputs and improved coverage for a wide

range of queries. The impact of a variety of different parameters

settings are explored in Section 6. Moreover, HAQP was defined for

a simplified scenario with a known query workload; however in

practice, users may issue new queries which differ from the original

workload, or the query workload may be unknown. We address

these issues throughout the next section.

Due to the hardness of finding an exact solution to HAQP, as

well as the cost of executing queries over large relations to evaluate

𝑠𝑐𝑜𝑟𝑒 (S), we show in the next section how to use Reinforcement

Learning (RL) to find a good approximate solution.

4 APPROXIMATION USING RL
In this section we outline our approach, which uses Reinforcement

Learning (RL) to solve Holistic Approximate Query Processing

(HAQP). After a brief overview of our framework, HARLM, we discuss
preprocessing steps for input tables and query workloads, and

show how the challenges (C1-C5) presented in the introduction are

handled (Section 4.1). A high-level descriptions of the RL training

and inference steps are then provided (Sections 4.2 and 4.3). Finally,

we discuss additional enhancements, including a “light” version of

the system for improved running times and how to handle scenarios

without a known query workload (Section 4.4). A deep dive into

our use of RL is presented in Section 5.

Overview of HARLM . In our RL approach, an approximation

set consisting of tuples from the input tables is learned through

trial-and-error interactions. The RL agent starts with some initial

state (approximation set), and at each step predicts the next action

(tuple selection) based on the current state. This predictive action

aims to maximize the reward, representing the quality of results

for queries encountered thus far (Equation 1). The use of RL en-

sures the fitness of selected tuples to the queries, while exploration

introduces diversity in tuple selection. The workflow of HARLM is
presented in Figure 1. The training phase shown in (a) begins by

pre-preprocessing the database 𝐷 and the query workload 𝑄 to
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Figure 1: HARLM architecture.

address some of the challenges mentioned in the introduction, and

provide input to the RL model. The RL model is then trained. In the

inference phase shown in (b), the framework generates an approxi-

mation set using the trained model. When a query is issued by the

user, the system decides whether to use the approximation set or

to query the full database, based on an estimate of how close the

query is to those used to train the model.

4.1 Data and Query Pre-processing
The pre-processing phase depicted in Figure 1(a) prepares the data

and queries for input to the RL phase and addresses several chal-

lenges: the combinatorial size of the solution space (𝐶1), and the

high cost of executing the query workload (𝐶2). We describe how

queries and data are pre-processed and how these challenges are

addressed in the context of the RL framework. We then discuss how

to generalize for future queries (𝐶4).

Query Pre-processing. Queries are first generalized to handle

potential variations in future workloads before their vector repre-

sentations are created. After transforming aggregation queries in

𝑄𝐼 into their non-aggregate versions (as discussed in Section 3),

query relaxation techniques [14] are applied to 𝑄 to modify or re-

lax query conditions, particularly when strict conditions lead to

sparse results. This relaxation step ensures that the result sets are

enlarged, making the queries more general and adaptable to future,

unseen queries. To maintain accuracy, we follow the guidelines and

best practices outlined in the query relaxation work, ensuring that

tuples added during generalization do not degrade the performance

of the system. By doing so, we include only relevant tuples beyond

those returned by the current workload, enhancing the system’s

robustness for a broader range of queries.

Vector representations of the generalized queries are then created

using a modified version of sentence-BERT [48], specifically tai-

lored for SQL queries. The modification fine-tunes the transformer-

based model to understand the syntax and semantics of SQL, allow-

ing it to capture the relationships and structures inherent in queries.

By treating SQL queries as text sequences, we embed them into

a high-dimensional vector space, positioning semantically similar

queries closer together. This process incorporates features such as

query operators, conditions, and schema information, enhancing

the model’s ability to differentiate between various types of queries.

After embedding, we apply a clustering algorithm to group sim-

ilar queries, identifying what we refer to as query representatives.

These representatives are then used in the score function, facil-

itating efficient retrieval and processing of relevant data in the

subsequent phases of our approach.

Data Pre-processing. The goal of this phase is to reduce the vast

initial action space (i.e., the entire database) and begins after the

relaxed query representatives have been selected. The first task is

to use the query representatives to query the database, obtaining

an initial subset of data by filtering out tuples that do not appear

in any query result. Since the query workload has been reduced

to just the relaxed query representatives, this is feasible After this,

we apply variational subsampling, an AQP technique adapted from

[45]. This method subsamples data relevant to the query representa-

tives, further reducing the dataset. For aggregation queries, we also

retain metadata from the entire database, in particular histograms

of various columns, a practice commonly used in AQP (e.g. [42]).

The use of this metadata will be further detailed in Section 4.3.

The transformation into vector representations is achieved using

a modified version of sentence-BERT
1
. This adaptation ensures

that both the structure of the table (column names) and the values

are captured in the embedding space, making the vectors suitable

for downstream tasks in the RL framework.

Addressing challenges 𝐶1, 𝐶2 and 𝐶4. In the RL framework, chal-

lenge 𝐶1 becomes one of the size of the action space. This space

constrains the RL algorithm to valid tuple selections aligned with

table structures, data distribution, and the provided query workload.

Notably, selecting tuples separately from each table may lead to

unjoinable tuples [23, 45]. Since a smaller set of tuples is created dur-

ing the data pre-processing phase based on the generalized query

workload, which may contain joins, this problem is avoided. The

second challenge, 𝐶2, is the cost of executing queries in the query

1
This version is adapted for tabular data by incorporating column names as tokens

alongside the row values, allowing the model to capture both the schema and the data

content, which enhances the understanding of the relationships between features.
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workload, in particular to evaluate the quality of an approximation

set. This is addressed during the query pre-processing phase by

choosing a smaller set of query representatives, and during the

data pre-processing phase by selecting a smaller dataset over which

to execute the queries. To overcome the challenge of a future, un-

known workload (𝐶4), we use a fine-tuning strategy (detailed next).

Moreover, the use of query relaxation introduces more distinct tu-

ples into the action space and avoids overfitting to the given query

workload. The RL exploration phase also makes it return a more

diverse solution, further addressing this challenge.

4.2 Training
Our RL formulation models the problem as a sequential decision-

making process. The RL components used during the training phase

of HARLM are shown in Figure 1(a) and detailed in Algorithm 1.

Action Space. The database is transformed into an action space

which serves as input for the RL model during training. Training

involves formulating a policy for selecting actions from this space

based on a given state. Since it is infeasible to consider all subsets

of tuples across all tables, we create a significantly reduced action

space as described in Section 4.1.

State and Environment. The state, a crucial element capturing rel-

evant information for the decision-making policy in Reinforcement

Learning (RL) models, is represented as the set of actions previously

selected by the model. Recall that an action encompasses multi-

ple tuples sourced from different tables. Thus, the state effectively

encapsulates the approximation set chosen thus far. The environ-

ment, serving as the external system or context with which the RL

agent interacts, defines how states are represented and how the

action space is made available to the agent for policy definition.

Specifically, we formalize the HARLM environment in GSL form, as

detailed in Section 5, which builds the chosen subset by allowing

the model to add tuples gradually and observing the currently built

set at each selection. We also discuss in Section 5 an alternative

approach which, due to its limitations, was not incorporated into

the algorithm. Nonetheless, the results of the alternative approach

are presented in Section 6.

Reward. The reward, furnished by the environment, plays a piv-

otal role in updating the policy network. Our reward function is the

score shown in Equation 1, which is defined by the current batch

of queries. To expedite the training process and foster stability in

the learned policy, we implement a common technique of batch

training and loss computation. Each epoch in the model training

uses a distinct batch of queries, directly influencing the reward

function. In essence, a high reward signifies that the chosen action

(representative of several tuples) encompasses the majority or even

all the results from the current batch of queries.

Agent. The agent considers the current state and then selects an

action based on the learned policy, 𝜋𝜃 . In HARLM, our agent uses the
actor-critic method [36]. This method incorporates several actor

networks and critic networks operating asynchronously. The actor

networks are used to choose actions based on 𝜋𝜃 , while the critic

networks update the policy based on the received reward. The

ablation study (Section 6.4) justifies the component of each agent.

Algorithm 1 HARLM Training

Require: Database 𝐷 , query workload𝑄

Ensure: A trained RL model

1: 𝑣𝑒𝑐_𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑_𝑄 = 𝐸𝑚𝑏_𝑠𝑞𝑙 (𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 (𝑄 ) )
2: �̂� = 𝑟𝑒𝑝_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑣𝑒𝑐_𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑_𝑄 )
3: �̂� = �̂� (𝐷 )
4: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡 = 𝐸𝑚𝑏_𝑡𝑎𝑏 (𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑎𝑙_𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 (�̂� ) )
5: for each 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 during training do
6: 𝑏𝑎𝑡𝑐ℎ_𝑄 = 𝑏𝑎𝑡𝑐ℎ (�̂� )
7: action 𝑎𝑘 is sampled based on 𝑝 (𝑎𝑘 |𝑠𝑘 , 𝜃 ) , 𝑎𝑘 ∈ 𝐴
8: 𝑠𝑘+1 = 𝑠𝑘 union 𝑎𝑘
9: Reward 𝑟 is then computed based on 𝑠𝑡𝑎𝑡𝑒 and 𝑎𝑘 matching to 𝑏𝑎𝑡𝑐ℎ_𝑄

10: Use the reward to calculate loss and update the network

11: if early stopping (loss) then
12: break

13: end if
14: end for
15: return𝑀

Overall training process. The training pipeline (Figure 1(a)) takes

the database 𝐷 and query workload 𝑄 as input and performs a

pre-processing step where training queries are generalized and

evaluated to construct the action space 𝐴. Training proceeds with

iterative selection of an approximation set using the RL model. In

each epoch, batches of pre-processed queries are used to evaluate

actions and update the model.

At step 𝑘 , the state 𝑠𝑘 encodes the effect of 𝑘 previously selected

actions from 𝐴. The actor network computes action probabilities

𝜋𝜃 (𝑎 |𝑠) = 𝑝 (𝑎 |𝑠, 𝜃 ), guiding selection toward actions with higher

expected long-term reward. This leads to approximation sets more

likely to satisfy the training workload. Multiple actor-critic net-

works operate asynchronously to explore diverse policies and ac-

celerate training.

Since actions correspond to tuples, we apply action masking [18]

to ensure each tuple enters the approximation set at most once.

The environment supplies a mask with valid actions at each step.

The critic estimates the long-term reward and computes the loss

relative to the actual reward, enabling both networks to update for

better policy learning (see Section 5).

Addressing Challenges 𝐶3,𝐶4. In the RL context, challenges 𝐶3

(diversity and balance in results) and 𝐶4 (generalization for future

queries) necessitate a well-crafted reward system and an effective

exploration strategy. 𝐶3 is addressed by formulating a reward sys-

tem that carefully balances diversity and relevance. The reward

associated with selecting an action for a query with a modest re-

sult size holds significant value, emphasizing a balance between

diversity and ensuring relevance. This reward mechanism is cru-

cial during the exploitation phase, guiding the selection of actions

for the creation of the approximation set. To tackle challenge 𝐶4

(ensuring selected tuples generalize effectively for future unseen

queries), we employ a policy-based RL framework. This framework

systematically chooses actions, incorporating an exploration strat-

egy. The exploration strategy aims to explore diverse combinations

of actions that are potentially relevant not only to the queries in

the current workload but also to future queries. This approach en-

hances the model’s ability to generalize effectively, accommodating

a broader spectrum of queries beyond the ones encountered during

training.
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Algorithm 2 Answerability of qeries estimation and Inter-

est drift detection

Require: Approximation Set S, Queries Representatives Emb. �̂� , Score 𝑠𝑐𝑜𝑟𝑒 (S)
calculated for each 𝑞 ∈ �̂� , new query 𝑛𝑞, global 𝑓 𝑖𝑛𝑒𝑇𝑢𝑛𝑖𝑛𝑔𝐹𝑙𝑎𝑔

Ensure: Action to be performed

1: for every �̂� ∈ �̂� do
2: 𝐸𝐷 ← 𝐸𝑢𝑐𝑙𝑒𝑑𝑖𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑛𝑞, �̂�)
3: end for
4: 1𝑛𝑛 = �̂� [𝑎𝑟𝑔𝑚𝑖𝑛 (𝐸𝐷 ) ]
5: 1𝑛𝑛_𝑑𝑖𝑠𝑡 =𝑚𝑖𝑛 (𝐸𝐷 )
6: 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟_𝑢𝑛𝑐𝑒𝑟𝑡𝑒𝑛𝑡𝑦 = 1 − [ (1 − 1𝑛𝑛_𝑑𝑖𝑠𝑡 ) ∗ 𝑠𝑐𝑜𝑟𝑒1𝑛𝑛 (S) ]
7: if 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟_𝑢𝑛𝑐𝑒𝑟𝑡𝑒𝑛𝑡𝑦 ≤ 0.5 then
8: 𝑓 𝑖𝑛𝑒𝑇𝑢𝑛𝑖𝑛𝑔𝐹𝑙𝑎𝑔 = 0

9: return query the S
10: end if
11: if 0.5 ≥ 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟_𝑢𝑛𝑐𝑒𝑟𝑡𝑒𝑛𝑡𝑦 then
12: if 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟_𝑢𝑛𝑐𝑒𝑟𝑡𝑒𝑛𝑡𝑦 ≥ 0.8 then
13: 𝑓 𝑖𝑛𝑒𝑇𝑢𝑛𝑖𝑛𝑔𝐹𝑙𝑎𝑔← 𝑓 𝑖𝑛𝑒𝑇𝑢𝑛𝑖𝑛𝑔𝐹𝑙𝑎𝑔 + 1
14: if 𝑓 𝑖𝑛𝑒𝑇𝑢𝑛𝑖𝑛𝑔𝐹𝑙𝑎𝑔 = 3 then
15: 𝑓 𝑖𝑛𝑒𝑇𝑢𝑛𝑖𝑛𝑔𝐹𝑙𝑎𝑔 = 0

16: return Issue fine-tuning for the model

17: end if
18: else
19: 𝑓 𝑖𝑛𝑒𝑇𝑢𝑛𝑖𝑛𝑔𝐹𝑙𝑎𝑔 = 0

20: return Query the DB

21: end if
22: end if

4.3 Inference and User’s Interaction
The inference phase occurs after training the RL model (Figure

1(b)). Using the query workload and database, the model outputs

the approximation set. Tuple selection for the approximation set is

sequential, where groups of tuples are chosen based on the learned

policy obtained during model training.

User Interaction and Interest Drift Detection. After generating the

initial approximation set, users can issue both aggregate and non-

aggregate queries. Algorithm 2 outlines the process for estimating

query answerability and detecting interest drift, leveraging the pre-

constructed approximation set, query representatives, and their

vector representations from the pre-processing phase. Using the

scoring function from Section 3, we calculate a score for each query

representative within the approximation set.

A global flag tracks potential interest drift, initialized at zero.

For each new query, its Euclidean distance to the vector repre-

sentations of query representatives is computed, identifying the

nearest representative and its distance. The system then derives

an estimator uncertainty metric, reflecting confidence in using the

approximation set for the query. Queries resembling high-scoring

representatives can be confidently answered from the approxima-

tion set, whereas queries with larger distances may deviate from

the training workload, requiring direct database queries to avoid

incomplete or biased results. The system responds based on the

estimator uncertainty: Low uncertainty (≤ 0.5): Query the approxi-

mation set for reliable results; Moderate uncertainty (> 0.5 and <

0.8): Query the database directly for completeness and accuracy;

High uncertainty (≥ 0.8): Query the database directly. Additionally,

increment the global fine-tuning flag. If three consecutive high-

uncertainty queries are observed, the system triggers a fine-tuning

process to adapt to emerging workloads.

The fine-tuning process begins with the already trained model,

which is re-trained using additional new queries over several

episodes. During this phase, the model’s policy is adjusted to in-

corporate the interest drift, resulting in a refined approximation

set. Both thresholds—0.5 for querying the database directly and 0.8

for initiating fine-tuning—are experimentally validated and shown

to effectively balance accuracy and computational costs (see Sec-

tion 6). This mechanism addresses challenge 𝐶5 by detecting and

adapting to shifts in user interests. HARLM achieves high accuracy in

predicting query answerability (see Section 6.2, Figure 7), reducing

risks of incomplete results and user biases.

Handling Aggregation Queries. To handle aggregation queries,

we extend the approach outlined in Algorithm 2 by first transform-

ing the aggregation query into its non-aggregate equivalent. If the

algorithm decides to query the database or initiate the fine-tuning

process, the flow remains consistent with the non-aggregate query

handling. However, when the algorithm opts to query the approxi-

mation set, we introduce a modification tailored for the aggregation

use case.

Intuitively, querying the approximation set mirrors the Open

World Query Processing (OWQP) paradigm [41], where only a

subset of the data is accessible for querying. In this scenario, data

statistics and histograms from the entire dataset can be utilized to

estimate query results for the full dataset. We leverage metadata

collected during the data pre-processing phase—such as histograms

of column combinations—alongside the approximation set to en-

hance estimation accuracy. Specifically, we assign weights to tuples

in the approximation set to adjust results in line with the distri-

bution patterns captured by the metadata. For instance, in sample

reweighting, each tuple 𝑡 in the approximation set is assigned a

weight 𝑤 (𝑡), representing the number of tuples it approximates

in the full dataset. Queries are transformed to account for these

weights, such as rewriting COUNT(*) as SUM(weight).
Since the sample is not uniformly drawn from the data, we em-

ploy Iterative Proportional Fitting (IPF), a bias-correction technique,

to refine the weights [41, 42]. IPF, inspired by its use in population

synthesis within demography [9, 21], calibrates sample weights to

align with aggregate population statistics. The procedure iteratively

adjusts tuple weights to satisfy the given aggregates. If an aggregate

is not satisfied in the sample, the weights of corresponding tuples

are rescaled. This iterative process continues until all aggregates

are satisfied, converging to an optimal scaling if one exists. In cases

where no valid scaling exists, the algorithm provides an approxi-

mate reweighting. By integrating this approach, we ensure robust

query approximation for aggregation queries, leveraging both the

approximation set and pre-processed metadata.

4.4 Further Improvements
HARLM-light and Adaptive Configuration. We explored several

optimizations to HARLM, resulting in a more efficient version called

HARLM-light. These enhancements include an early-stopping thresh-

old, an increased learning rate, and a reduction in the number of

queries considered during the pre-processing phase of training.

Although this leads to a slight decrease in quality (approximately

10%), the running time is significantly reduced (to just 30 minutes),

as shown in Section 6. Despite this decrease in quality, HARLM-light
consistently outperforms other competitors. Additionally, by con-

sidering user time constraints and the portion of the training query
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Baseline

IMDB MAS

Score setup(m) Score setup(m)

HARLM 0.64±0.06 60 ± 7 0.75 ±0.025 30 ± 2
HARLM-light 0.53±0.09 32 ± 2 0.61 ±0.04 15 ± 0.3
VAE 0.003±0.002 1920 ± 3.5 0.05 ± 0.001 720 ± 3
CACH 0.08±0.06 330 ± 12.5 0.22 ±0.09 34 ± 1.2
RAN 0.29±0.03 0.72 ± 0.08 0.2 ±0.030 0.68 ± 0.02
QUIK 0.34±0.04 160 ± 2 0.25 ±0.03 60 ± 3.1
VERD 0.47±0.02 200 ± 5 0.3 ±0.05 90 ± 2.3
SKY 0.35±0.001 1500 ± 1 0.33 ± 0.001 480 ± 3
BRT 0.3±0.007 2880 ± 0. 0.4 ±0.001 2880 ± 0.01
QRD 0.32±0.06 1800 ± 1 0.38 ±0.03 35 ± 2
TOP 0.27±0.0 338 ± 21 0.46 ±0.0 36 ± 2.3
GRE 0.11 ± 0.0 2880 ± 0. 0.51 ±0.02 2880 ± 0.01

Table 1: Quality and Running time

workload to be used, our system intelligently selects the optimal

configuration for each specific use case. This process involves dy-

namically adjusting various parameters, allowing for flexibility

between the most lightweight version and the highest-performing

configuration in terms of quality. This adaptive approach optimizes

the balance between running time and approximation set quality,

ensuring that our system meets user requirements efficiently.

Diversity. While our metric function does not explicitly include

diversity, our chosen RL solution incorporates an exploration pol-

icy. This feature leads to a diverse solution, enriching the variety

of query results provided to the user. In Section 6, we present ex-

periments comparing the diversity of our solution against other

methods, showcasing its superiority over competitors.

Handling Unknown Query Workloads. In Section 3, we frame

the problem as optimizing a metric function relative to a given

workload. To tackle cases where the query workload is unknown,

we draw inspiration from prior works that generate synthetic query

workloads [24, 32]. HARLM generates query workloads based on

statistical information gathered from the tables, such as the mean

and standard deviation of numerical columns, a sampled set of

categorical columns (with repetition to reflect the popularity of

certain values), and predefined query templates. While this method

produces a satisfactory initial workload (Section 6), the system also

iteratively generates additional queries during interactions with

the users that reflect their focus, and refines its model accordingly.

5 REINFORCEMENT LEARNING MODEL
IMPLEMENTATION

Our agent’s policy is governed by a reinforcement learning model.

We begin by introducing the actor-critic network, and show how

proximal policy optimization contributes to the creation of a faster

and more suitable approximation set (Section 5.1). We then present

the selected environment and discuss alternatives along with their

limitations (Section 5.2). Notably, this research is the first applica-

tion of advanced RL concepts, specifically proximal policy optimiza-

tion, for tabular data purposes. In this domain, the action space

is exceptionally large, and the state representation is extremely

intricate, posing significant challenges for adapting RL methods.

5.1 Actor-Critic with Proximal Policy
Optimization

In HARLM, the agent’s policy uses the state representation as in-

put to infer the optimal action. To address high reward variance

and improve performance, we adopt an actor-critic method with

entropy regularization, which fine-tunes the objective function to

promote tuple diversity. Policy-based reinforcement learning meth-

ods, such as REINFORCE [22], optimize the parameterized policy

𝜋𝜃 to maximize the expected long-term reward:

𝐽 (𝜃 ) = 𝐸𝜋𝜃 [𝑅 (𝜏 ) ] =
∑︂
𝜏

𝑝 (𝜏 |𝜃 )
𝑇∑︂
𝑡=1

𝑟𝑡

where 𝜏 = (𝑠1, 𝑎1, . . . , 𝑠𝑇 , 𝑎𝑇 ) represents a trajectory, and

𝑅(𝜏) is the cumulative reward for a selected approximation set

𝑎𝑝𝑝𝑟𝑜𝑥_𝑠𝑒𝑡 = [𝑎1, . . . , 𝑎𝑇 ]. The goal is to increase the probabil-

ity of trajectories 𝜏 with high rewards 𝑅(𝜏). To update the policy
parameters 𝜃 , REINFORCE uses gradient ascent:

∇ 𝐽 (𝜃 ) = 𝐸𝜋𝜃

(︄
𝑇∑︂
𝑡=0

∇𝜃 log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )
𝑇∑︂
𝑡=1

𝑟𝑡

)︄
Motivation for actor-critic networks. REINFORCE suffers

from high variability in the cumulative reward values (

∑︁𝑇
𝑡=1 𝑟𝑡 ),

resulting in instability and slow convergence during training [50].

Thus, we use actor-critic networks, that learns the policy distri-

bution for action selection, while the critic network estimates the

baseline, acting as the expected long-term reward under a certain

state [36]. Next, we outline their forward pass and update mecha-

nism.

The actor-critic network. The actor-critic network consists

of an actor, which selects actions using a policy 𝜋 (𝑎𝑡 |𝑠𝑡 ;𝜃 ), and
a critic, which estimates action values via 𝑉 𝜋 (𝑠𝑡 ;𝜃𝑣). The value

function is approximated with 𝑛-step returns and updated every

𝑡𝑚𝑎𝑥 actions or at terminal states. Parallel actor-learners stabilize

training by exploring independently. The actor outputs a policy

distribution 𝜋𝜃 (𝑠𝑡 ) using a softmax layer, while the critic predicts

𝑉 (𝑠𝑡 ;𝜃𝑣) through a linear layer. Our system trains 32 actor and critic

networks asynchronously (as first presented in [39]), enhancing

exploration by allowing actors to explore different parts of the envi-

ronment independently. Different exploration policies in each actor-

critic maximize diversity, stabilizing learning and reducing training

time proportionally to the number of parallel actor-learners.

Training the actor critic networks. Recall that in REINFORCE,
the high variance of cumulative rewards leads to unstable and inef-

ficient training. To address this, we use the value function 𝑉 as a

baseline, and subtract it from the rewards to reduce the variance

produced by the critic network. This has been shown to not in-

troduce bias [50]. Specifically, we replace the cumulative reward∑︁𝑇
𝑡=1 𝑟𝑡 by the advantage function 𝐴(𝑠𝑡 , 𝑎𝑡 ) = 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ) −𝑉𝜋 (𝑠𝑡 ), where

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ) is the expected return starting from state 𝑠𝑡 , taking action

𝑎𝑡 , then following policy 𝜋 . Hence, the gradient becomes:

∇ 𝐽 (𝜃 ) ≈
𝑇∑︂
𝑡=0

[∇𝜃 log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) · 𝐴(𝑠𝑡 , 𝑎𝑡 ) ]

where 𝐴(𝑠𝑡 , 𝑎𝑡 ) can be estimated by 𝑟𝑡 +𝑉𝜋 (𝑠𝑡+1 ) − 𝑉𝜋 (𝑠𝑡 ), known
as the temporal-difference (TD) error. From another perspective,
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since the baseline (i.e., the 𝑉 value) represents the expected long-

term reward of a state, the TD error reflects the advantages and

disadvantages of different actions from that state.

We now discuss how to update the critic network. To estimate

the𝑉 value accurately, the difference between 𝑟𝑡 +𝑉𝜋 (𝑠𝑡+1 ) and 𝑉𝜋 (𝑠𝑡 )
should beminimized. Hence, the TD error can also be used to update

the critic, and the loss function becomes:

𝐿𝜙 =
(︁
𝑟𝑡 +𝑉𝜋 (𝑠𝑡+1 ) − 𝑉𝜋 (𝑠𝑡 )

)︁
2

Concretely, during each episode the policy and value function

estimates are updated using the following rule:

∇𝜃 ′ log𝜋 (𝑎𝑡 |𝑠𝑡 ;𝜃 ′ ) · 𝐴(𝑠𝑡 , 𝑎𝑡 ;𝜃, 𝜃𝑣 )

where 𝜃 and 𝜃𝑣 represent the parameters for the policy and value

function, respectively. 𝐴(𝑠𝑡 , 𝑎𝑡 ;𝜃, 𝜃𝑣) is an approximation of the

advantage function, which quantifies the advantage of taking action

𝑎𝑡 in state 𝑠𝑡 .

Proximal update of the policy. We can further improve the

quality of the selected tuples by updating the weights of the net-

work more moderately. This is done by adjusting the loss function

to include a proximal policy update, which creates a trust region

by clipping the surrogate objective. This results in more moderate

updates of the policy, as unconstrained maximization of the sur-

rogate objective can lead to excessively large policy updates. The

key mechanism is gradient clipping, which constrains updates to

be within an 𝜖 range, preventing instability.

𝐿CLIP (𝜃 ) = �̂�𝑡

[︂
min

(︂
𝑟𝑡 (𝜃 )�̂�𝑡 , clip(𝑟𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖 )�̂�𝑡

)︂]︂
where 𝑟𝑡 (𝜃 ) is the probability ratio, 𝑟𝑡 (𝜃 ) = 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )

𝜋𝜃
old

(𝑎𝑡 |𝑠𝑡 ) . Maximizing

the surrogate objective �̂�𝑡 [𝑟𝑡 (𝜃 )�̂�𝑡 ] without clipping can lead to

unstable, overly large policy updates.

Further improvements. To encourage exploration, we incor-

porate the entropy of the policy 𝜋 into the objective function by

adding 𝜆∇𝜃H(𝜋𝜃 (·|𝑠𝑡 )) to each step component. In this way, the

agent is motivated to explore different actions and learn a more

diverse and effective policy. In addition, to avoid selecting the same

tuple multiple times, we implement action masking [18] for each

algorithm. Action masking enforces a constraint that forbids the

agents from selecting certain actions, specifically in our case those

that would result in the repetition of a tuple.

To promote diversity among the selected tuples, we employ a

regularization function that quantifies the degree of diversity in the

chosen approximation set using a number in [0, 1] which is added

to the objective function. This approach is based on state of the art

regularization techniques in [52].

Overall training algorithm. REINFORCE first initializes the

parameters. In each iteration, the system selects a batch of tuples

from different tables using the learned policy. Then it computes an

estimate of the advantage function for each selected tuple to com-

pute the loss and update the policy parameters. Finally, it outputs a

trained actor-critic network, with an optimized policy of selecting

tuples for approximating non-aggregated queries.

5.2 Transformation to RL Environment
Unlike computer games, where images and simple discrete infor-

mation (such as remaining lives or earned points) serve as the main

Environment Agent

IMDB MAS

Score Total (m) Score Total (m)

GSL HARLM 0.64±0.06 60 ± 7 0.754± 0.025 30 ± 2
GSL HARLM- ppo 0.536 ± 0.003 47 ± 5.3 0.623 ± 0.071 23 ± 3
GSL HARLM- ppo - ac 0.496 ± 0.002 72 ± 4.3 0.618 ± 0.021 44 ± 2.2
DRP HARLM 0.365 ± 0.33 180 ± 12.3 0.455 ± 0.028 97 ± 3.5
DRP HARLM- ppo 0.364 ± 0.004 165 ± 9.3 0.429 ± 0.001 83 ± 2.5
DRP HARLM- ppo - ac 0.401 ± 0.016 203 ± 7.3 0.423 ± 0.011 82 ± 2
DRP + GSL HARLM 0.569 ± 0.02 73 ± 5.1 0.619 ± 0.001 49 ± 3.6
DRP + GSL HARLM- ppo 0.51 ± 0.01 71 ± 3.3 0.59 ± 0.024 43 ± 2.9
DRP + GSL HARLM- ppo - ac 0.391±0.012 82 ± 5.3 0.51 ± 0.002 44 ± 3.5

Table 2: RL ablation study showing for each Environment and
Agent the quality score and the setup total time (minutes)

source of state, and actions are simple (such as going one unit in

a given direction), the tabular domain is much more complex. As

a result, RL has not been frequently used. Our work therefore fo-

cuses on constructing an optimal environment specifically designed

for our use case and suitable for an RL model. In this section, we

elaborate on the chosen environment (introduced in Section 4.2)

and discuss alternative environments examined in ablation studies

during our experiments (Section 6).

Gradual-Set-Learning (GSL) environment. Our system employs a

tailored gradual-set-learning (GSL) environment, which begins with

an empty set. In each action, the system adds a predefined number of

tuples from different tables, drawn from the action space generated

during the pre-processing phase. The number of tuples added per

action is parameterized to ensure efficiency and is typically set to

a small, fixed value based on empirical performance, preventing

an explosion in the action space. When tuples are selected from

multiple tables, the system leverages join patterns from the query

workload to guide the selection of tuples likely to be joined, further

maintaining the relevance and manageability of the action space.

After performing an action 𝑎𝑡 and reaching a state 𝑆𝑡+1, the system
evaluates the score of the new state using the metric described in

Section 3, 𝑆𝑐𝑜𝑟𝑒 (𝑆𝑡+1), which serves as the reward for the RL agent.

An episode concludes either when a terminal state is reached or

when the agent reaches 𝑘 tuples (the 𝑘’th action).

Drop-One (DRP) Environment. The drop-one (DRP) environment

provides an alternative setup. Each episode ends upon reaching a

terminal state or a fixed horizon. Starting with a set of 𝑘 tuples, the

RL agent iteratively chooses to (1) remove a tuple, (2) add a new

one, or (3) leave the set unchanged. After each action 𝑎𝑡 , the up-

dated state 𝑆𝑡+1 (size 𝑘) is evaluated using the metric from Section 3,

and the reward is 𝑠𝑐𝑜𝑟𝑒 (𝑆𝑡+1) − 𝑠𝑐𝑜𝑟𝑒 (𝑆𝑡 ). Episodes typically last

100𝐾–500𝐾 steps. DRP suffers from initialization instability and

often gets stuck in suboptimal sets. Despite trying multiple initial-

ization strategies, these issues persisted. Hybrid setups combining

GSL and DRP (Section 6) also underperformed, showing greater

deviation and less stability than GSL alone.

6 EXPERIMENTS
We now present results of a comprehensive evaluation of HARLM.
We start by discussing the experimental setting (Section 6.1) before

giving details of the experimental results (Section 6.2). Results of a

user study and ablation studies are given in Sections 6.3 and 6.4.

As our experiments show, the approximation sets chosen by

HARLM are consistently better than alternative approaches for both

non-aggregate (see Table 1) and aggregate (see Figure 8) queries.
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Baseline

Memory Size (k) Frame size (F)

1000 5000 10000 15000 30000 25 50 75 100

Time (m) Score Time (m) Score Time (m) Score Time (m) Score Time (m) Score Score Score Score Score

HARLM 60 ± 7 0.69±0.0425 82 ± 3 0.747 ±0.014 107 ± 6 0.795 ± 0.025 127 ± 5.4 0.864 ± 0.032 162 ± 4.6 0.978 ± 0.011 0.73 ± 0.325 0.69±0.043 0.631 ± 0.013 0.591 ± 0.024
VAE 1920 ± 3.5 0.024 ± 0.0 1929 ± 2.1 0.024 ± 0.0 1941 ± 2.3 0.024 ± 0.001 1950 ± 1.8 0.036 ± 0.001 1959 ± 2. 0.071 ± 0.001 0.024 ± 0.0 0.024 ± 0.0 0.012 ± 0.001 0.012 ± 0.001
CACH 330 ± 12.5 0.152 ± 0.073 330 ± 12.5 0.20 ± 0.03 330 ± 12.5 0.239 ± 0.045 330 ± 12.5 0.254 ± 0.08 330 ± 12.5 0.44 ± 0.039 0.189 ± 0.01 0.172 ± 0.073 0.139 ± 0.062 0.1 ± 0.02
RAN 0.72 ± 0.08 0.246 ± 0.032 0.72 ± 0.08 0.435 ± 0.034 0.72 ± 0.08 0.469 ± 0.031 0.72 ± 0.08 0.501 ± 0.032 0.72 ± 0.08 0.64 ± 0.031 0.301 ± 0.036 0.246 ± 0.032 0.15 ± 0.041 0.11 ± 0.024
QUIK 160 ± 2 0.296 ± 0.036 174 ± 4 0.39 ± 0.021 189 ± 3.5 0.47 ± 0.022 206 ± 3 0.525 ± 0.051 224 ± 4.2 0.645 ± 0.072 0.315 ± 0.041 0.296 ± 0.036 0.175 ± 0.042 0.145 ± 0.031
VERD 200 ± 5 0.387 ± 0.034 208 ± 3 0.46 ± 0.082 223 ± 3 0.54 ± 0.021 234 ± 2 0.57 ± 0.017 254.5 ± 2.5 0.73 ± 0.034 0.34 ± 0.034 0.387 ± 0.034 0.26 ± 0.026 0.22 ± 0.051
SKY 1500 ± 1 0.340 ± 0.001 1872 ± 1 0.481 ± 0.001 2206 ± 1.1 0.551 ± 0.001 2604 ± 1 0.594 ± 0.0 N/A N/A 0.446 ± 0.001 0.340 ± 0.001 0.247 ± 0.001 0.202 ± 0.001
BRT 2880 0.347 ± 0.004 2880 0.45 ± 0.003 2880 0.542 ± 0.07 2880 0.566 ± 0.003 N/A 0.67 ± 0.01 0.42 ± 0.003 0.347 ± 0.004 0.25 ± 0.014 0.22 ± 0.009
QRD 1800 ± 1 0.350 ± 0.045 1930 ± 2 0.316 ± 0.065 2160 ± 2.5 0.432 ± 0.02 2401 ± 4.1 0.512 ± 0.05 2863 ± 3 0.72 ± 0.042 0.368 ± 0.044 0.350 ± 0.045 0.303 ± 0.041 0.28 ± 0.061
TOP 338 ± 21 0.364 ± 0.001 338 ± 21 0.406 ± 0.001 338 ± 21 0.482 ± 0.001 338 ± 21 0.526 ± 0.001 338 ± 21 0.606 ± 0.0 0.401 ± 0.018 0.364 ± 0.001 0.257 ± 0.002 0.231 ± 0.001
GRE 2880 0.29 ± 0.01 2880 0.30 ± 0.02 2880 0.33 ± 0.015 2880 0.38 ± 0.021 N/A N/A 0.29 ± 0.015 0.29 ± 0.01 0.17 ± 0.019 0.14 ± 0.03

Table 3: Quality for Different Memory and Frame Sizes

With a memory size of 15, 000 tuples (approximately 0.1% of the

data), our approach achieves 85% quality, while alternative ap-

proaches struggle to reach 60% (Table 3). Even under an extreme

memory constraint of only 1000 tuples, HARLMmaintains an average

quality of 70%, surpassing baselines which struggle to achieve 40%.

Our solution is also relatively efficient, generating a high-quality

approximation set in just one hour compared to 30 − 40 hours re-
quired by some of the baselines (Table 1). This preprocessing time

is acceptable for offline generation of the approximation set before

data exploration sessions begin, akin to previous AQPworks’ offline

processing. Our user study also validates the reasonableness of the

wait time, considering the significant time savings during data ex-

ploration. The lighter version, HARLM-light (Section 4.4), creates the

approximation set in just 30 minutes with a minor drop in quality.

6.1 Experimental Setting
Datasets. We evaluated the performance on the datasets:

(1) IMDB-JOB [26] contains both data (entertainment domain, 34𝑀

tuples) and a query workload. (2)MAS [35] contains data (academic

domain, 600𝐾 tuples). The query workload comes from [4]. (3)
FLIGHTS [11] - contains flight delays information. The queries are

generated according to [25]. (4) TPC-H [53] contains 5GB of data.

The queries are generated by methods inspired by [17, 32, 45].

Baselines. To assess the effectiveness of HARLM, we conduct com-

parisons with various baselines designed to address related tasks

and potentially offer candidate solutions for the HAQP problem (as

detailed in Section 2). The baselines considered are categorized as

naive, database-oriented, and generative models, with each cate-

gory containing several different representatives. The execution

of each baseline was restricted to 36 cores with 10GB each, across

500-1K processors, and with a 48 hours limit.

Naive baselines. (1) Random sampling (RAN) randomly selects

rows from the large dataset. (2) Brute Force (BRT) exhaustively

checks different combinations of 𝑘 tuples to find the optimal solu-

tion. (3) Greedy sampling (GRE) selects, in each iteration, the row

that achieves the largest marginal gain with respect to the metric,

eliminates this row, and repeats. (4) Top queried tuples (TOP) selects

the rows that appear most frequently in the results of the query

workload (up to 𝑘 tuples).

Baselines fromdatabase domains. (5)Caching (CACH) simulates

a database cache [2] with limited memory by preserving tuples from

the last executed query and evicting the least recently used (LRU)

tuples to accommodate new ones.
2
(6) Query result diversification

(QRD), based on [30], is an iterative approach that selects cluster

medoids and reassigns data points to their nearest medoids. (7)

Skyline (SKY) is a summarization method based on [43], extended to

handle categorical data. (8) Verdict (VERD) is an AQP method [45]

that relies on sampling, query rewriting, and answer adjustment

from samples. (9) QuickR (QUIK) is another AQP method [23] that

uses sampling and table statistics to maintain a catalog of plans and

samples, selecting the appropriate samples at the right time.

Generative model baseline. (10) Generative Model (VAE) is a

Variational Autoencoder method [51], a state-of-the-art generative

model for AQP that generates fictitious tuples and executes queries

over them.

Hyperparmeters. The actor network we use consists of an input
layer followed by 2 fully-connected layers and a softmax layer

for getting the logits for choosing the actions. The critic follows

a similar architecture except the output is a single number. We

use a learning rate of 5 · 10−5, KL coefficient of 0.2 and entropy

coefficient of 0.001. Finally, we set 𝑘 = 1000 which is small enough

to make the problem interesting but still large enough to make the

chosen approximation set perform well for queries in the workload.

Additionally, we set 𝐹 = 50 which is close to real world values

but still small enough to be informative for a human. Finally, by

default the system executes all the queries given during training.

Validation of all these values is given in Section 6.2 and 6.4.

Environment. HARLM is implemented in Python 3.9.13 and is an

open source library [8]. It can therefore be used, e.g. in common

Exploratory Data Analysis environments such as Jupyter notebooks,

to load subsets of any database. We used Ray [38] for Reinforcement

Learning, OpenAI’s Gym [6] for the environment interface and

Pytorch [46] for the models. The experiments were run on an Intel

Xeon CPU- based server with 24 cores and 96 GB of RAM as well

as 2 NVIDIA GeForce RTX 3090 GPUs.

Problem Justification. We conducted an experiment to illus-

trate the time required for querying the database directly, empha-

sizing the need for solutions handling both non-aggregate and

aggregate queries. Using versions of the IMDB dataset of varying

sizes, we averaged query execution times and accumulated results.

As shown in Figure 6, even with a 1GB dataset, cumulative query

time exceeds 5 hours after just seven queries. Limiting query re-

sults to 50-100 rows does not significantly reduce execution time, as

2
In realistic scenarios, the order of query execution may not be neatly separated by

user interests, as different users with diverse interests could query the same database

simultaneously. In our experiments, we assume this realistic use case.
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join and filtering processes remain computationally expensive. Fig-

ure 6 highlights these execution times, underscoring that lengthy

exploratory queries lie beyond typical database optimizations, as

discussed in Section 1.

6.2 Overall Evaluation
We compare our system to baselines on quality and running time

across various datasets. The workload 𝑄 is split into training

(𝑄𝑡𝑟𝑎𝑖𝑛) and test (𝑄𝑡𝑒𝑠𝑡 ) sets. Baselines use 𝑄𝑡𝑟𝑎𝑖𝑛 as needed, and

evaluation is conducted over 𝑄𝑡𝑒𝑠𝑡 using the quality metric from

Section 3 (Equation 1) for SPJ queries, and relative error for ag-

gregate queries [17, 45, 51]. Results are averaged across multiple

train-test partitions, with variance reported. All experiments fol-

low the system’s default parameters unless noted otherwise, with

deviations examined via ablation studies.

Non-Aggregate Queries Quality Assessment. Figure 1

presents a quality comparison across two datasets (IMDB and

MAS), reporting the average quality score and setup time in

minutes. All baselines were capped at 48 hours. GRE and BRT

failed to finish in time despite parallelization, and we report their

best observed scores. As shown, our method outperforms others

even under a memory constraint of 𝑘=1000, which corresponds to

less than 0.0001% of IMDB and 0.001% of MAS.

Performance variance is attributed to dataset and workload com-

plexity. Naive baselines like BRT and TOP underperform on larger

workloads. VAE produces low scores due to its inability to generate

tuples satisfying query filters or generalize across the workload,

highlighting the difficulty of learning approximation sets for se-

lection queries. Performance improves with increased memory,

along with better running times (discussed later). Section 6.4 shows

quality trends under different parameters. We also report results

for HARLM-light, a lightweight version of HARLM trained on 25% of

the data with a learning rate of 0.1, which achieves slightly lower

scores.

Query execution time after approximation set creation is con-

sistent across baselines, as all sets are the same size. On average,

answering 10 queries takes 0.16±0.1minutes for IMDB and 0.1±0.12
for MAS. The exception is VAE, which requires online generation

and evaluation, taking 5 ± 0.03 and 2.5 ± 0.22 minutes, respectively.

We therefore focus evaluation on approximation set quality and

setup time.

Aggregate Queries Quality Assessment. We compared our

solution to recent leading approaches: gAQP [51], DeepDB [17]

and DBEst++ [31]. gAQP uses Variational Autoencoders to generate

tuples and execute AQP queries on the generated data. DeepDB, on

the other hand employs Sum-Product Networks to estimate the query

answers. Finally, DBEst++ uses a mixture of models to estimate

individual columns and relationships between pairs of columns.

We used the FLIGHTS dataset and a workload of 1000 aggregate

queries generated by [11]. These queries were divided into train-

test sets for evaluation. For gAQP, we recreated the experiments

on the FLIGHTS and the TPC-H [53] datasets mentioned in [51],

using a memory size of 1%. To evaluate the results, we employed a

common metric for AQP tasks known as relative error (used in both

[51] and [17]). This metric compares the predicted answer (𝑎𝑝𝑟𝑒𝑑 )

Baseline % c_ins #no_c_ins #ins easiness rushing successful hardness irritation

HARLM 75±3 0 10±2 4.0±0.3 2.7±0.8 4.5±0.2 1.9±0.4 1.1±0.8
default 40 ± 5 2 5 ± 1 1.8 ± 0.2 4.2 ± 0.8 1.5 ± 0.1 3.5 ± 0.4 4.0 ± 0.2

Table 4: User-Study results

to the true answer (𝑎𝑡𝑟𝑢𝑡ℎ) of the query, and is defined as follows:

relative error =
|𝑎𝑝𝑟𝑒𝑑−𝑎𝑡𝑟𝑢𝑡ℎ |
|𝑎𝑡𝑟𝑢𝑡ℎ | . For group-by queries, the relative

error is computed for each group individually and then averaged.

In cases where there are missing groups in the output, the relative

error is set to 1 to indicate a complete mismatch between the pre-

dicted and true answers. This metric allows us to quantitatively

assess the accuracy of our system’s predictions in comparison to

the ground truth values.

In Figure 8, we present the relative errors for different query

categories, including queries with sum, average, and count opera-

tors, both with (G+SUM, G+AVG, G+CNT) and without (SUM, AVG,

CNT) group by clauses. Notably, none of the existing approaches

outperforms our system across all operators. In half of the operators,

our system attains the lowest error rate, surpassing state-of-the-art

approaches, while in the remaining cases, we exhibit comparable

performance to at least one baseline.

Efficiency. We compare the system’s running time with other

methods, focusing on set-up (𝑠𝑒𝑡𝑢𝑝) time, the time (in minutes)

the method requires to create the approximation set (Table 1).

HARLM consistently shows good performance, with a lower setup

time than many of the baselines. Although naive baselines like Ran-

dom (RAN) have a lower setup time, their quality, as indicated in

the 𝑆𝑐𝑜𝑟𝑒 column, is notably poorer. Note that HARLM-light, shows a
remarkable improvement in the setup time of the system, requiring

only 32 minutes as opposed to 60 minutes for the IMDB dataset.

Estimator Quality. A pivotal aspect of our system during the

inference phase is the estimator, which, when presented a user

query, gauges whether the constructed approximation set (Section

4.3) can effectively answer the query. To evaluate this estimator, we

conduct a series of experiments, shown in Figure 7. These exper-

iments involved acquiring a set of test and training queries, gen-

erating the approximation set using our system, and subsequently

querying the estimator about the answerability of each test query.

This information is then juxtaposed with the scores assigned to

the queries over the approximation set using Equation 1. Adopting

a threshold of 0.5 and above as "answerable," we calculated recall

and precision to quantitatively compare the estimator’s responses.

As shown in the figure, our approach achieves a remarkable 0.95

recall and 0.90 precision. Further iterations of this process progres-

sively limited the size of the training set (queries). As anticipated,

this impacted the estimator’s performance on the test set queries.

Nevertheless, even with reduced training queries (50% utilization),

the precision and recall remained high (0.75 and 0.85).

Building upon our estimator, we implemented the full version of

our algorithm. In this variant, the actual database is queried when-

ever the estimator predicts a query to be unanswerable, allowing

users the flexibility to decide on a per-query basis whether they are

willing to endure the requisite time for a complete answer. The first

test, which queries the database for predictions falling below 60%

(according to Equation 1), attains an average score of 85% in contrast
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to the average of 70% shown in Table 1. As expected, this results

in a rise in "QueryAvg" time to approximately 24 minutes due to

querying the database. In a second test the database is queried for

predictions below 80% and the average score is 76%, with about a

5-minute increase in query response time.

Unknown Query Workload. To address scenarios where the

query workload is not initially available, we evaluated the sys-

tem’s performance using the FLIGHTS dataset, and some explo-

ration queries written by data analysts (Figure 11). The system

begins by generating several queries, while also allowing the user

to contribute a subset of queries to refine the generated set. After

integrating the user-provided queries and constructing an approxi-

mation set, we evaluated the quality of the approximated answers.

As the user continues to submit additional queries, the system fur-

ther fine-tunes its model, leading to improved performance. In this

experiment, the user added five queries at each step, which helped

the system generate queries that better aligned with the user’s

interests, continuously fine-tuning the model with more relevant

queries. The results show a significant improvement in answer

quality, starting at 70% for 10 queries and reaching up to 90% for 50

queries, outperforming alternative methods. We compared our ap-

proach against RAN and QRD, both of which can function without

a predefined workload. While RAN does not consider the data or

workload, QRD leverages inherent data patterns. However, QRD

consistently underperformed compared to our method, with its

scores never exceeding 70%.

Effect of Fine-Tuning. As detailed in Section 4.3, our system

implements fine-tuning when it detects interest drift in user queries,

which is managed using an estimator. To simulate this drift, we

divide our workload into three distinct sub-tasks via a clustering

algorithm applied to the embedded version of the queries, ensuring

that the introduction of new queries triggers interest drift. We then

select a test sample from each cluster for querying the system. Ini-

tially, the system is trained on the first cluster and tested with its

corresponding workload. Gradually, we introduce parts of the test

set containing unseen queries that differ from the original training

workload. As expected, the estimator identifies these queries as

unanswerable, which initiates the fine-tuning process using the

training set of the second cluster. This process repeats as we incor-

porate the remaining training sets. The results (Figure 12), show a

rapid improvement in the quality of the approximation set after fine-

tuning, performance increasing from 60% to 70%. This experiment

highlights the robustness of our system in handling new, unseen

queries, a crucial aspect for exploration scenarios. It demonstrates

HARLM’s ability to adapt to evolving query workloads, ensuring

reliable generalization to unexpected query types.

Diversity. We evaluated the diversity of query answers gener-

ated by our system compared to baselines. Although we considered

incorporating a diversity factor into the scoring function, it was

omitted due to performance trade-offs. Using pairwise Jaccard dis-

tance as a standard metric, we conducted experiments on the IMDB

dataset, inspired by prior diversitymetrics (e.g., [49, 56]). For queries

with LIMIT 100, database results had 58% average diversity, while

our solution achieved 52%, at least 14% higher than most baselines

except RAN. Notably, while RANmatches our diversity, it performs

poorly in approximation quality.

6.3 User Study
To subjectively verify our system’s effectiveness, we followed the

approach of prior AQP studies ([13, 37, 47]) and conducted two user

studies to assess whether the system accelerates the exploration

process, aids in gaining better insights, and garners user acceptance.

Motivation and Quality Metric Verification. The first study
aimed to validate the motivation behind our problem, suggesting

that users typically focus on the initial rows in the result set for

non-aggregate queries. It also aimed to assess the quality of the

approximation created by our system, which is indistinguishable

from querying the entire database. Twenty users familiar with the

dataset ([35]) were presented with a set of SQL queries. For each

query, they were asked to identify which answer was generated

by our model and which was the database’s answer. Users found

the two answers indistinguishable, confirming that not all rows are

necessary in the response. We constrained users from writing their

own queries to ensure comparability between participants.
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Exploration Task Effectiveness. In the second study, 12 par-

ticipants engaged in a more immersive exploration with our sys-

tem and were tasked with time-limited exercises using the dataset

in [26] (available at [8]). There, participants were instructed to

formulate their own queries and document insights gained, akin

to the methodology outlined in [3]. They were divided into two

groups: one queried the full database, and the other queried a sub-

set generated by our system (users did not know what group they

were in). Their insights were subsequently validated using a ground

truth source available at [8]. As shown in Table 4 (left columns),

users of HARLM generated a significantly higher number of queries,

facilitated by the reduced query time, enabling faster data compre-

hension and progression to subsequent queries. Furthermore, users

of HARLM attained a greater number of correct insights compared

to those querying the database, with none of the former group re-

porting zero correct insights. Upon completion, participants rated

the difficulty and success of their experience using the NASA Load

Index [16]. The findings demonstrate that HARLM’s users experi-
enced reduced time pressure and frustration, and perceived greater

success (Table 4, right columns).

6.4 Ablation Studies and Parameter
Optimization

Effect of Memory Size Constraint (k) on Quality. We evalu-

ated the impact of memory size (𝑘) on performance and setup time,

testing values of 𝑘 in the range [103, 5 · 103, 10 · 103, 15 · 103, 30 · 103].
As expected, performance improved across all approaches as the

approximation set size increased. For some baselines, setup time

also grew with larger 𝑘 . Table 3 shows that our method consis-

tently outperforms baselines, achieving an average score of 80% at

𝑘 = 15 · 103 and an impressive 97% at 𝑘 = 30 · 103. This is double the
score of GRE and 20% higher than SKY or QRD. That supports our

default value as a balance between performance and runtime. The

baselines failed to complete within the time limits marked N/A.

Effect of Frame Size Constraint (F) on Quality. We also ex-

perimented with varying the frame size (𝐹 ) within the range [25,

50, 75, 100]. As the frame size increases while keeping memory

size constant, the problem becomes more challenging, requiring

more tuples per query, which leads to a general decline in quality

(with no significant change in the setup time). Nevertheless, HARLM
consistently outperforms other baselines, as illustrated in Table 3.

Its performance remains relatively stable compared to, for instance,

SKY, which drops from 40% to 20%. Notably, an optimal value for 𝐹

is typically below a few dozen tuples.

Effect of Training Set Size on Quality and Time. As men-

tioned in Section 4.1, our system takes a set of training queries

and uses an embedding model to determine the most significant

queries to execute. This improves the overall training time, since

running queries is time-consuming. However, it comes at the cost

of quality since exposing the system to fewer queries may impact

its ability to accurately answer similar queries from the test set

when training concludes. In Figure 9a, we observe the change in

quality as the size of the training set �̂�
train

decreases (as is seen

in the percentages in the x-axis), with our method maintaining

reasonable quality compared to other baselines (as seen in Figure

2). Additionally, in Figure 9b, we see the training time for the same

set of experiments, with training time decreasing to approximately

30 minutes.

RL Hyper-parameter Tuning. We examined the effect of tun-

ing the key hyper-parameters of our RL algorithm, and present

the quality results here. Figure 10 illustrates the impact of ad-

justing the learning rate (lr) across the range [5 · 10−5, 5 ·
10
−4, 5 · 10−3, 5 · 10−2], the entropy coefficient in the range

[0, 0.001, 0.0015, 0.01, 0.015, 0.02], and the KL coefficient across

[0.2, 0.3, 0.5, 0.7, 0.9]. We found that the entropy coefficient signifi-

cantly influences the algorithm’s success, and we set it to 0.001. The

KL coefficient, though important, has a somewhat smaller effect,

and we set it to 0.3. As is common in learning algorithms, higher

learning rates can lead to faster convergence, but often at the cost

of model stability.

Ablation Studies. Table 2 summarizes ablation studies con-

ducted on our RL architecture, aiming to validate the contribution

of each component to the overall system performance. Different

environments, detailed in Section 5 and referred to in the Environ-

ment column, were examined, specifically crafted to transform our

problem into a tabular RL environment. For each environment, we

assessed the impact of removing individual components from our

agent, such as the actor-critic and loss clipping (-ac and -ppo in the

Agent column). The results indicate that the GSL environment is

most suited for our use case. Moreover, the use of actor-critic and

clip loss is crucial for high performance.

7 CONCLUSIONS AND FUTURE DIRECTIONS
We introduced the problem of approximating answers to non-

aggregate queries and proposed a solution for approximating both

aggregate and non-aggregates queries. Our system, HARLM, gen-
erates an approximation set, a subset of the dataset, over which

queries can be executed to deliver fast, high-quality results. Since an

exact solution is impractical, we leverage RL to provide a robust ap-

proximate solution. HARLM overcomes various challenges, including

the size of the action-space and the necessity to generalize beyond

the known workload. Experiments demonstrate HARLM’s efficacy

compared to other baselines for aggregates and non-aggregates

queries. Our future work will focus on devising approximation sets

with problem-specific constraints, including fairness aspects.
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