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ABSTRACT
Query Performance Prediction (QPP) is the task of predicting the

query runtime performance prior to its execution. While QPP has

been studied in relational database systems, it has received little

attention for RDF stores, i.e., triplestores that are queried via the

SPARQL query language. Existing methods predict the query per-

formance based on the syntactic similarity between a given query

and past queries in the query logs. This means that they are not

able to generalize to unseen queries with unseen structures or char-

acteristics. We propose a novel GCNN architecture, PlanRGCN, to

generalize to unseen queries, fully exploit statistics on the stored

KG, and offer more scalable pre-training than the state of the art

methods. Furthermore, our architecture is the first to support non-

trivial SPARQL operators. In our experiments, we demonstrate both

the superior robustness of our prediction method and its practical

effect on two downstream tasks: (1) load balancing, achieving a

throughput improvement of up to 207% on real-world query logs

and (2) execution control, processing up to 70% more queries.
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1 INTRODUCTION
Query Performance Prediction (QPP) is the task of predicting the

query runtime prior to its execution [3, 6, 16, 19, 20, 31, 32, 59, 61, 63].

This task can be performed by either internal or external learned

database components [37]. Internal components are integrated

within a database, such as query optimizers [6, 31, 32, 61, 63]. Ex-

ternal components interact with a database without needing inte-

gration with its internal APIs, such as load balancers [16, 47], and

system resource managers [20, 59]. While the former has access to

much more information on the system status and execution, the

latter is agnostic to the internals and thus enjoys greater portability.

In this work, we focus on the second family of components.

QPP is a well-studied problem for relation databases [2, 13, 22,

23, 28, 31–33, 36, 50, 54–56, 62]. Nevertheless, QPP received much

less attention in the context of RDF stores [3, 19, 59]. RDF stores
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are Database Management Systems (DBMS) that store Knowledge

Graphs (KGs) as subject-predicate-object triples [44]. A KG example

is depicted in Figure 1, where ⟨:iri1,wdt:child, :iri8⟩ is a triple, mod-

eling the relation wdt:child from entity :iri1 to entity :iri8. SPARQL

is the standard language for querying RDF data [17]. SPARQL

queries (see for example Figure 2.a) include Triple Patterns (TPs)

that are similar to RDF triples but can contain variables [17]. Finite

sets of conjunctive TPs, i.e., TPs that may share variables, are called

Basic Graph Patterns (BGP) [17]. SPARQL also supports operators

like FILTER, OPTIONAL, and property paths [17]. Property paths

are fundamental operators to describe paths of unbounded length

and extract long-range connections between entities [1, 29].

SPARQL query complexity has increased significantly [9] and

real-world query workloads reveal queries containing up to 209

triple patterns [9]. Efficient resource management for executing

such complex queries in RDF stores remains a significant open chal-

lenge [5, 30, 45]. To achieve better resource management, QPP can

be used, for example, to decide how to prioritize query executions

in query workloads [16, 47]. For instance, the system could predict

varying resource needs for queries and schedule their execution to

optimize resource usage, e.g., CPU utilization.

So far, only a few works have explored the QPP problem for RDF

stores [3, 18, 19, 59]. Moreover, all existing methods suffer from

important design limitations. All existing methods are based on the

intuition that new queries will be very similar to queries seen in the

past and thus also have similar performance. Hence, they focus on

computing similarities between queries, via graph edit distance [43].

Hence, new queries are compared on arrival to the representatives

of past queries, and the result of this comparison is used as input

for the forecasting model. These approaches suffer from three main

limitations: (1) it requires either human labor in the selection of

representative queries [59] or computing edit distances among all

pairs of queries in the query log, which can easily reach the order

of 10
8
similarity computations; (2) when completely new unseen

queries reach the system, these techniques are not able to perform

any reasonable prediction because of the feature representation.

Moreover, existing approaches limit themselves to textual repre-

sentations of the SPARQL query instead of using a more precise

Figure 1: Example of a KG modeled as RDF graph.
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representation, e.g., the logical plan. Finally, existing works limit

themselves to a subset of SPARQL [17] operators, thus ignoring

operators with a large impact on the query execution, e.g., FILTER,
regular expressions, and above all property paths.

We overcome these limitations by proposing PlanRGCN, which
uses a novel representation model for SPARQL queries: the query

graph derived by its logical plan (see for example Figure 2). Since

PlanRGCN models the logical plan, our method is agnostic to sys-

tem internals, so that the model has to implicitly also learn the

choices of the query optimizer. Our experiments on two real-world

query logs show that our methods result in a shorter feature con-

struction time, up to 29 times faster. The experiments also show

that our method is robust on different query logs compared to ex-

isting methods, and it is robust when extending the query graph

model to property paths. Our experiments also show the practical-

ity of predictions in a load balancer for an RDF store, resulting in

an increased query throughput of 207% and 182%. Lastly, we also

investigate our method’s inductiveness ability, i.e., the ability to

generalize to entities or relations in queries that are not observed

in model training, reporting an accuracy of 87.79%.

In summary, our contributions are as follows:

• We propose a novel query plan representation technique for

SPARQL QPP within PlanRGCN.

• We show for the first time how to explicitly model SPARQL op-

erators within a RGCN, including some unsupported by existing

methods (e.g., property paths).

• We show for the first time an architecture for SPARQL that can

generalize beyond training queries.

• PlanRGCN effectively handles large workloads due to its feature

construction approach being independent of the query log size.

• We show that PlanRGCN introduces consistent and substantial

benefits to load balancing and execution control tasks.

This paper is structured as follows: we first provide an overview

of preliminaries including the necessary background and the prob-

lem definition (Section 2), followed by a review of related work

(Section 3). Subsequently, we give an overview of the framework

(Section 4) and describe the details of our proposed method (Sec-

tion 5) and its application in execution control and load balancing

tasks. Lastly, we provide an analysis of the experimental results

(Section 6), followed by a conclusion (Section 7).

2 SPARQL PERFORMANCE PREDICTION
We introduce the RDF data model and a SPARQL query language

formalization. Then, we define the SPARQL performance prediction.

2.1 SPARQL and RDF
RDF is a graph-based data model, in which triples ⟨𝑠, 𝑝, 𝑜⟩ represent
facts or statements as directed labeled edges between entities 𝑠 and

𝑜 with relation 𝑝 [57]. A knowledge graph is defined as follows.

Definition 2.1 (Knowledge Graph). Given a set of blank nodes B,

the set of IRIs I and the set of literals L, an RDF triple is defined

as ⟨𝑠, 𝑝, 𝑜⟩ ∈ (𝐼 ∪𝐵) × 𝐼 × (𝐼 ∪𝐵 ∪𝐿), where 𝑠 ∈ 𝐼 ∪𝐵, 𝑝 ∈ 𝐼 and

𝑜 ∈ 𝐼 ∪ 𝐵 ∪ 𝐿. A set of RDF triples is a Knowledge Graph in RDF.

IRIs are identifiers for entities (𝑠 and 𝑜) and relations (𝑝), blank

nodes are anonymous nodes, and literals denote values. SPARQL is

the standard query language, and RDF stores are DBMS for RDF

data. In Figure 1, nodes with a rhombus shape represent entities,

while nodes without a shape denote literals. The labels on the edges

are relations. A SPARQL query example is depicted in Figure 2.a. A

SPARQL query showcases a set of Triple Patterns (TPs) ⟨𝑠, 𝑝, 𝑜⟩ [44],
which can contain variables, combined in one or more Basic Graph

Patterns (BGPs). The RDF store computes solutions for variables

by matching TPs in the BGP with triples in the KG.

Definition 2.2 (Basic Graph Pattern (BGP)). Given an infinitely

countable set of variables X, a Basic Graph Pattern 𝑃 is defined as

a conjunction of a finite set of triple patterns 𝑃 = { 𝑡1, ... , 𝑡𝑛 }.
Additionally, property paths are arbitrary length routes in the

KG and are defined using a special form of triple patterns [17].

Definition 2.3 (Property Paths [17]). A Property Path (PP) is de-

fined as ⟨𝑠, p, 𝑜⟩, where 𝑠, 𝑜 ∈ (I ∪ X) and p is a Property Path

Expressions (PPE). p is recursively defined as 1) 𝑝 ∈ I; 2) given
p1 and p2, the PPE is either a sequence (p1/p2), a disjunctive path
(p1|p2), a negation path (^p1), a sequence of zero or more of the

same path (p1∗), a sequence of one or more of the same path (p1+),
a path of zero or one occurrence (p1?), or a fixed sequence between
𝑛 and𝑚 occurrences (p1{𝑛,𝑚}).

FILTER clauses can specify further constraints on the values of

variables in a BGP or TP, e.g., Line 9 in Figure 2.a. Furthermore,

BGPs can be included through other operators likeOPTIONAL, e.g.,
Lines 6-8 in Figure 2.a, which practically represent outer joins [17].

Figure 2: Query Graph Construction.
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Table 1: Comparison table of related work in SPARQL QPP. Feature Type: if the method uses features based on Query Log (QL)
or KG. Inductiveness: the adaptability of the method on previously unseen queries. No Human Involvement: if the method does
not require manual effort. Δ KG: if the method can handle updates on KG. PP Support: if the method supports property paths.

Method Feature Type Inductiveness No Human Involvement Δ KG PP Support
SVM-based QPP [19] QL × ✓ × ×
2-Step SVM QPP [18] QL × ✓ × ×
NN-based QPP [3] QL × ✓ × ×
Hybrid SVM-based QPP [59] QL × × × ×
PlanRGCN KG ✓ ✓ ✓ ✓

2.2 Query Evaluation
During query evaluation, query parsing maps the SPARQL query

to a logical query plan (see Figure 2.b).

Definition 2.4 (Query Plan). A query plan is a directed graph

𝑝 = (N , E) with the node setN and the edge set E. A node 𝑛 ∈ N
represents a logical computation and is annotated with:

• Operator type, e.g., TP, PP, or join

• Operator-specific information, e.g., predicate for TPs

Edges represent dependencies between operators/nodes. A directed

edge 𝑒 = (𝑛1, 𝑛2) ∈ E denotes that computing operator 𝑛2 requires

the solutions computed by 𝑛1. For simplicity, we refer to logical

operators by their SPARQL operator names, e.g., TP instead of scan.

The logical query plan can be subject to optimization involving

operator reordering to minimize evaluation time. In this paper, we

remain agnostic to the query optimization step. Hence, we focus

on queries right after their logical query plan has been produced.

Property Path Operator. During the query plan generation, PPs

with multiple predicates are automatically decomposed into multi-

ple operators each with a single predicate [17]. In particular, PPs

with inversion can be transformed by replacing the subject and ob-

ject positions: ^⟨𝑠 p 𝑜⟩ → ⟨𝑜 p 𝑠⟩. PPs with sequence can be rewrit-

ten into TPs with intermediate joined variables: ⟨𝑠 𝑝1 / 𝑝2 𝑜⟩ →
⟨𝑠 𝑝1 𝑒1⟩ . ⟨𝑒1 𝑝2 𝑜⟩. PPs with disjunction can be rewritten to TPs

with unions: ⟨𝑠 𝑝1 | 𝑝2 𝑜⟩ → ⟨𝑠 𝑝1 𝑜⟩. UNION { ⟨𝑠 𝑝2 𝑜⟩}. For
instance, PP 1 in Figure 2.a is mapped to TP 2 and PP 2 in Figure 2.b.

We consider plans where these rewritings have already taken place.

2.3 Problem Definition
Very often, a precise QPP is unnecessary for most external learned

DBMS components [16, 47]. That is, it is often sufficient to predict

if a query runtime will be fast (e.g., <1 sec), reasonably fast (e.g.,

<10 secs), or slow (e.g., >10 secs). Methods in query scheduling used

coarse-grained runtime intervals of fast and slow queries [47]. In

query optimization, the runtime intervals are useful to identify slow-

running queries where spending more time on query optimization

can be decided upon [42]. Runtime intervals can also be useful for

various workload management tasks, e.g., for resource provisioning.

Therefore, our QPP objective is to predict the runtime interval

for a query within a set of𝑚 mutually exclusive time ranges. For

example, given the intervals [0, 1), [1, 10), [10,∞) and a query

with a runtime of 5.6 secs, then the associated interval is [1, 10).
Formally, we define the problem as a classification task as follows:

Problem 1 (SPARQL Query Performance Classification).

Given KG G, query plan generator Q𝑔𝑒𝑛 , past query workload Q =

{(𝑞 𝑗 , 𝑡 𝑗 ) | 𝑗∈[1, 𝑛]} where 𝑡 𝑗 is the runtime for 𝑞 𝑗 , query runtime
intervals C = {𝑐𝑖 | 0 < 𝑖 ≤ 𝑚 ∧ 𝑐𝑖 = [𝑡𝑖_𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑖_𝑒𝑛𝑑 )}, the problem
is to identify a model M that given a new query 𝑞𝑦 can predict the
query into the correct time interval 𝑐𝑦 ∈ C such that 𝑡𝑦 ∈ 𝑐𝑦 .

3 RELATEDWORK
In the following, we review the state of the art in query performance

prediction for SPARQL queries and discuss its limitations. We also

relate the problem of QPP in RDF stores to existing methods for

SQL queries. While these methods are not directly applicable to

SPARQL, we identify important intuitions that inspired our solution.

Query performance prediction has also been studied in Information

Retrieval (IR), but the focus there is on predicting result quality

rather than response time or resource consumption [7, 15, 41].

SPARQL Query Performance Prediction. The first method to

address the QPP problem is SVM-based QPP [19], which considers

an encoding of a query’s number of operators in the query plan and

graph pattern features. The graph pattern features represent query

similarity to past queries, based entirely on the BGPs. In a training

phase, the queries, modeled as labeled graphs, are used to identify

k representative queries through k-Mediod clustering adopting

Graph Edit Distance (GED) [43]. The graph pattern features of a

query are then an encoding of normalized GEDs to the k queries.

This approach was later extended to a 2-step SVM with an SVM

time classifier followed by class-specific SVMs [18]. This method

suffers from considerable complexity in the feature extraction phase

since it requires the computation of the GED across queries for k-

Mediod with complexity 𝑂 (𝑁 2), where 𝑁 is the size of the query

log. This makes the training phase’s time complexity quadratic with
the number of past queries, which reaches 108 computations for our
query logs and easily billions in existing real-world query logs [9, 30].

Another extension of the mentioned method is hybrid SVM-

based QPP [59], which enriches the query model by representing

the query plan as a tree and adopting the position in the tree of

each operator as another feature. This approach avoids clustering

queries and expects a manual selection of representative queries.

This approach cannot scale to new query logs and systems, and it is

not obvious how to select representative queries from large query

logs. More recently, an NN-based method [3] extended SVM-based

QPP by using a neural network and extending algebra features.

Table 1 summarizes the limitations of the state of the art, where
(1) the methods use features that scale with the query log or require
human involvement, (2) they cannot generalize to queries with unseen
entities and relations, i.e., they lack inductiveness, and (3) they do
not support property paths which are crucial operators for effectively
navigating KGs and therefore important for RDF stores [5, 21].

Other methods address the related problem of cardinality esti-

mation. To this end, they use deep learning architectures with KG

encodings or embeddings [11, 49]. These methods are also limited

in the queries that they support. In particular, they do not support

property paths, which are very expensive. Furthermore, they use

KG embedding, making them inapplicable to dynamic KGs.
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Figure 3: Overview of PlanRGCN with Q for queries, Rt for query runtime, R for query results, and 𝐴𝑖 for available resource.

The QPP problem has also been considered for other graph

databases, such as property graphs [10, 34, 46]. The methods in-

clude QPP for approximate graph analytical queries [34, 46] and

graph queries for dynamic system [10]. These methods cannot be

applied to RDF stores, because they use algorithm-specific features

that cannot easily be extended to RDF stores [34, 46] or use features

collected at runtime that are undesirable for downstream tasks [10].

SQL Query Performance Prediction. QPP approaches are di-

vided into access-based methods [2, 13, 23, 54–56] and query plan

representation learning approaches [6, 31–33, 36, 62]. Access-based

methods include I/O-metric-based methods using linear regres-

sion [13], and cost-model-based methods with statistical models [2,

23] or calibration queries for estimating cost parameters [54–56].

Access-based methods are less effective than query plan rep-

resentation learning methods that capture the structural features

of query plans for QPP [33]. The plan-structured deep learning

model [33] represents the operators in the query execution plan as

nodes in a heterogeneous graph to predict query runtime. GPredic-

tor [62] is a GCN-based architecture for predicting query latencies

in a concurrent setting. It models a query workload as a graph

of operators, where edges represent commonality among the op-

erators (e.g., parent-child relation in the query plan, shared data

access). The database workload characterizer [36] is a transformer

model incorporating a plan structure encoder and operator-specific

computational encoders to characterize workloads. It is fine-tuned

towards specific tasks, including QPP. Query plan representation

learning is also used by learned optimizers as a key component in

their architecture using convolutional networks [6, 31, 32].

Therefore, query-plan representation learning is currently a pre-

dominant trend across existing SQL QPP methods. Nevertheless,
these methods do not directly apply to RDF stores because they suf-

fer from one or more of the following issues: (1) RDF data inher-

ently differs highly from relational data because of the high hetero-

geneity and schema-less nature [44]. This means that the schema-

based featurization of SQL QPP is unsuitable for RDF stores. (2)

Many methods represent the physical query plan, rendering them

implementation-dependent. This is suboptimal since RDF stores

typically use very disparate graph storage techniques [44]. (3) They

typically use query optimizer costs as an important input feature, a

feature that has proven to be unreliable for RDF stores [11, 35].

4 FRAMEWORK OVERVIEW
To address the QPP problem, we introduce PlanRGCN: an approach

that uses a novel SPARQL logical query plan representation and

Relational Graph Convolution Networks (RGCN) to predict query

performance. The PlanRGCN framework consists of (1) an offline

phase where features are extracted from the KG and the PlanRGCN

model is trained and (2) an online phase, where the model performs

inference and prediction. The framework is depicted in Figure 3,

along with its application in the downstream tasks. For the offline

phase the steps are the following:

• The Runtime Collector measures and logs the runtimes of a past
query workload, i.e., queries that previously arrived and computed

by the RDF store. The other component that we extend the RDF

store with is the Meta-KG Extractor. It collects useful KG statistics
for QPP and keeps them updated when the stored KG is updated.
We describe the statistics in Table 2.

• The Query Plan Generator generates logical query plans for

queries in the past workload. We process the logical query plan

(instead of the physical one) to ensure our solution is portable

across different systems. Our solution could be further extended

to become an internal component if desired. Thus, we use a stan-

dard query plan generator that is RDF store-agnostic and free of

engine-specific optimizations.

• The Query Featurizer transforms the query plan into a featur-

ized query graph, which is our internal representation of the

query plan. Despite query plans can be considered as graphs,

we notice that this representation is sparse and less suitable

for learning. This observation motivates our query graph repre-

sentation (described in Section 5.1). It entails: (1) query graph

construction, and (2) node featurization with representations of

performance-related features collected by the Meta-KG Extractor
for each query graph node (Section 5.2).

• In the Model Building component, the runtimes collected by

Runtime Collector and the featurized query graphs are used to

train a PlanRGCN model.

After the offline phase, the trained model from the Model Building
step is used in the online phase for inference. In the online phase,

an incoming query is passed to the Query Plan Generator, which
outputs the corresponding logical query plan. Next, the plan is

converted to a featurized query graph and forwarded through the
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trained model for prediction via a forward pass. The prediction

can then be used in downstream tasks. Notably, the Query Plan
Generator and Query Featurizer are shared components in the two

phases. After the RDF store evaluates an incoming query in the

online phase, it is added to the past workload. This means that the

offline phase can be repeated periodically upon workload changes.

5 PLANRGCN
In this section, we present the key components of PlanRGCN. We

first describe how we address the challenge of representing logical

query plans with an RGCN model. Then, we clarify how property

paths are supported in our approach. Following this, we discuss the

featurization of the query graph with the collected KG statistics.

Next, we elaborate on the training strategy. At last, we describe its

application in downstream applications.

5.1 Query Graph Construction
We propose to model each logical query plan as a graph and employ

a Graph Neural Network (GNN) architecture for representation

learning in a dense vector space [60]. Similar to prior SQL QPP

methods, we initially considered using query plans that naturally

form trees in a GNN. However, we found this suboptimal because:

(1) node features are essential for GNNs, but extracting features for
every operator in the query plan is challenging. For instance, ⊲⊳1
in Figure 2.b requires features describing how the results of TP 2

and PP 2 operators will be joined. Such features are not easy to

collect because the operators depend on the combination of child

operators, leading to scalability issues. (2) Using an unoptimized
query plan means we cannot assume fixed operator ordering. For
instance, TP 2 can also be joined with TP 1 before PP 2 (Figure 2.b).

Therefore, we must model the potential connections among the

operators. The first challenge for the graph representation is to

identify which operators in the plan can be annotated with suitable

information and design a holistic set of features applicable to nodes

representing different operators. The second challenge is to model

the operators’ connectivity from the query plan.

Thus, we introduce a novel query graph model, where the nodes

are operators with performance-dependent features. The directed

edges of the query graph represent the operator connectivity that

may model other operators in the query plan. We notice that Triple

Patterns (TPs), Property Paths (PPs), and FILTER are operators

with easily extracted performance-describing features from the KG

(described in Section 5.2), making them ideal as query graph nodes.

Furthermore, these query graph nodes enable different types of

operator connectivity, optionally with other query plan operators,

requiring labeled edges to distinguish between the connections. For

instance, in Figure 2.b, TP 2 and PP 2 can join on TP 2’s object and

PP 2’s subject. We formally define the query graph as follows.

Definition 5.1 (Query Graph). Given a query plan 𝑝 , a set of

operator types for nodes (O𝑛), and a set of operator connectivity

types (O𝑒 ), the query graph is a directed, labeled multigraph𝐺𝑞𝑔 =

(Vqg, Eqg,R, X), whereVqg are nodes representing operators in 𝑝

with types in O𝑛 . The connection between query graph nodes 𝑛1
and 𝑛2 possibly through another operator is modeled as an edge

(𝑛1, 𝑛2, 𝑜𝑒 ), where 𝑜𝑒 is the operator connectivity type in 𝑂𝑒 and

edge modeling is operator order agnostic wrt. the query plans.

Algorithm 1: Query Graph Construction

Input: query plan 𝑝 = (N𝑝 , E𝑝 ), set of query graph node

types (O𝑛𝑜𝑑𝑒 ), set of query graph edge types (O𝑒𝑑𝑔𝑒 )

Output: Query Graph 𝐺𝑞𝑔 = (Vqg, Eqg,R)
1 Vqg := ∅; Eqg := ∅; Stack S := {root𝑝 }; Visited := ∅;
2 while not S.empty() do
3 𝑢 := S.pop() ;

4 if not u ∈ Visited then
5 Visited.add(u);

6 if utype ∈ O𝑛𝑜𝑑𝑒 then Vqg.add(u) ⊲ Node Addition ;

7 //Add operators to traverse in a depth-first manner;

8 S.push(𝑣
right_anc

) ;

9 if 𝑣left_anc is not empty then S.push(𝑣
left_anc

) ;

10 for 𝑖 = 0; 𝑖 <= |Vqg |; 𝑖 + + do // Edge Addition
11 for 𝑧 = 𝑖 + 1; 𝑧 <= |Vqg |; 𝑧 + + do
12 foreach o ∈ N𝑝 is ancestor ofV𝑖

qg andV𝑧
qg do

13 if type of o ∈ O𝑒 then
14 𝑜𝑒 = 𝑓𝑐𝑜𝑛 (V𝑖

qg
,V𝑧

qg
, o);

15 Eqg.add(V𝑖
qg
,V𝑧

qg
, 𝑜𝑒 );

16 if type ofV𝑧
qg ∈ O𝑒 then // Filter edge check

17 𝑜𝑒 = 𝑓𝑐𝑜𝑛 (V𝑖
qg
,V𝑧

qg
);

18 Eqg.add(V𝑖
qg
,V𝑧

qg
, 𝑜𝑒 );

19 if V𝑖
qg is not part of any 𝑒 ∈ Eqg then // Catesian

product/single operator check
20 Eqg.add(V𝑖

qg
,V𝑖

qg
, cat_prod)

21 return Vqg, Eqg

Finally, given X∈R |Vqg |×𝑑𝑛
representing the node feature space,

the vector 𝑥𝑖∈X encodes the attributes of 𝑛𝑖∈Vqg.

With TP, PP and FILTER as 𝑂𝑛 , we consider the following con-

nectivity types (𝑂𝑒 ): (1) if two operators 𝑛1 and 𝑛2 can participate

in a join, they must share a pivot, i.e., a variable part of both 𝑛1
and 𝑛2 [44]. The connectivity between 𝑛1 and 𝑛2 is represented

as X-Y, where X and Y denote the variable positions of the pivot.

The relative order of variable positions in the sequence S-P-O de-

termines the edge direction between 𝑛1 and 𝑛2. Specifically, if the

pivot position in𝑛1 comes before𝑛2’s pivot position in the sequence

S-P-O, the edge is directed from 𝑛1 to 𝑛2. For example in Figure 4 .3,

we observe that TP 2’s object is joined on PP 2’s subject. Hence,

we add the edge (PP 2,TP 2, S-O) If the same pivot position is in-

volved in both operators, bi-directional edges are added between

𝑛1 and 𝑛2, labeled X-X. An example of this is depicted in Figure 4 .2,

where TP 2 and TP 1 are joined on subjects, and we add the edges:

(TP 2,TP 1, S-S), (TP 1,TP 2, S-S).
(2) if a ⊲⊳ is an ancestor of two operators𝑛1 and𝑛2, the connectiv-

ity isOPTIONAL. (3) if 𝑛1 is a TP and shares a variable with FILTER
operator, we add a FILTER edge from 𝑛1. Our graph construction
ensures that alternative equivalent logical query plans map to the
same query graph, which is crucial since we consider unoptimized
query plans and thus do not rely on a fixed operator order.

Algorithm 1 details the query graph construction in node ad-

dition and edge addition steps. Figure 4 depicts the partial con-

struction of a query graph using a query plan, with grey arrows
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Table 2: Extracted features for query graph node featurization. Examples of extracted features are shown for KG in Figure 1.

Feature TP pos Description

Frequency as predicate 𝑝 the number of matching triples with the predicate in RDF triples, e.g., 3 for wdt:subclass

Frequency of entity 𝑝 the number of distinct entities in KG with the predicate, e.g., 4 for wdt:subclass

Frequency of subject 𝑝 the number of distinct subject entities in KG with the predicate, e.g., 2 for wdt:subclass

Frequency of object 𝑝 the number of distinct object entities in KG with the predicate, e.g., 3 for wdt:subclass

Frequency of literals 𝑝 the number of literals in KG with the predicate, e.g., 3 for RDFS:label

Overall entity frequency 𝑠 ∨ 𝑜 the number of matching triples with the entity in the KG, e.g., 3 for :iri3

Frequency as subject 𝑠 the number of matching triples with the entity as subject in the KG, e.g., 2 for :iri3

Frequency as object entity 𝑜 the number of matching triples with the entity as object in the KG, e.g., 1 for :iri3

Frequency as literal 𝑜 the number of matching triples with the literal as object in the KG, e.g., 1 for "President"

indicating traversals to identify common ancestor query plan opera-

tors. Lines 2-9 describe the node addition step through a depth-first

traversal of the query plan, depicted in Figure 4.1; the query plan is

traversed, and every operator instance of operator types TP, PP, or

FILTER is added to the query graph node set, marked with purple

circles. As this step requires a traversal of the query plan, the time

complexity is𝑂 (𝑛), where 𝑛 is the number of query plan operators.

Lines 10-20 outline the edge addition step, where we iterate each

pair of query graph nodes, added in the previous step. We use the

function 𝑓𝑐𝑜𝑛 to look up previously mentioned edge connectivity

types. Edges are added based on the following cases: (1) if a pair of

nodes share the same ancestor in the query plan, we add a labeled di-

rected edge between them (Lines 13-15). For instance, in Figure 4.2,

TP 2 and TP 4 share the common ancestor ⊲⊳1, resulting in the edges

(𝑇𝑃2, 𝑇𝑃4, S-S), (𝑇𝑃4, 𝑇𝑃2, S-S), (𝑇𝑃2, 𝑇𝑃4, OPTIONAL). (2) if
𝑛2 is a FILTER and involves a variable in 𝑛1, we add an edge from

𝑛1 to 𝑛2 to model the connection (Lines 16-18). Note that in this
case FILTER is in both O𝑛 and O𝑒 , i.e., it is represented by both nodes
and edges. (3) if a node is not part of any edges, e.g., in queries

with a single TP or with cartesian products, we add a self-loop

on the node, to ensure proper representation in the GNN (Lines

18-19). The worst-case time complexity of edge addition is 𝑂 (𝑛3),
as it involves iterating each pair of query graph nodes and an extra

traversal to identify common ancestors. Thus, the time complexity

of Algorithm 1 is 𝑂 (𝑛3).
By modeling a subset of the query plan operators as nodes and the

operator connections among various operators in the query plan, we,
thus, create a dense graph representation suitable for GNNs.

5.2 Node Features
Our node featurization process collects and uses performance-

dependent features. Our features include statistics from the knowl-

edge graphs that can be recomputed without the need to retrain

the method anytime the data changes.

Knowledge GraphMetadata. TheMeta-KG Extractor (Figure 3)
collects statistics that are data dependent and independent from the

query log size. The statistics are used as node features in the query

graph. We consider statistics that are easy to collect and maintain

during RDF data loading in the system and provide operator selec-

tivity information. Similar to statistics commonly used in query

optimization [35, 40, 52], we include statistics on the subjects 𝑠 ,

predicates 𝑝 , and objects 𝑜 in the KG. Our collected features are

described in Table 2, where we categorize them based on their po-

sition in the triple pattern (TP pos column), i.e., if they can appear

in the 𝑠 , 𝑜 , 𝑝 or both 𝑠 and 𝑜 positions. The KG features describe

frequency-related information of each relation, entity, and literals.

Feature extraction complexity analysis. To analyze the time com-

plexity of the KG metadata extraction, we consider the relations,

entities, and literals, separately. Computing metadata on frequen-

cies involves collecting different frequency statistics in𝑂 (𝑁𝑡𝑟𝑖𝑝𝑙𝑒𝑠 ),
where 𝑁𝑡𝑟𝑖𝑝𝑙𝑒𝑠 is the size of the KG. For example, to compute the

frequency as predicate, we count the triples matching each 𝑝 ∈ 𝑅

that requires a pass over the KG. The time complexity for overall

entity frequency and literal frequency similarly requires a pass over

the KG. The frequency statistics that require distinct counts, e.g.,

frequency of subject, also require a pass over the KG where an

index is needed to count only distinct information. The index can

be a hash table with constant insertion and lookup time complexity,

resulting in a time complexity 𝑂 (𝑁𝑡𝑟𝑖𝑝𝑙𝑒𝑠 ).
In the current implementation, the KG metadata statistics are

extracted through SPARQL queries over the fully loaded KG. Nev-
ertheless, this information can easily and more efficiently be collected
and updated upon insertion and deletion of triples.

Feature Encoding. We employ a quantile binning-based encod-

ing, similar to histograms used in traditional query optimization

since encoding typically yields superior performances. This binning

helps group similar characteristics, enabling the model to gener-

alize better by capturing patterns within bins. Given a bin size 𝑘

Figure 4: Intermediate steps of query graph construction in Figure 2
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and a feature map for a particular feature, e.g., a mapping of each

unique relation in the KG to the number of RDF triples matching

the relation (frequency as predicate in Table 2), we first use the

values of the feature map to define 𝑘-quantile bins, i.e., 𝑘 intervals

that contain an equal number of values from the feature map. The

feature corresponds to a 𝑘-dimensional 1-hot encoded vector.

Vector Representation. Node features are encoded in a numeri-

cal vector 𝑥𝑖∈X computed for each node in the query graph model.

Node vectors must have the same dimensionality. As different oper-

ators are annotated with different features, we encode the specific

features for each query node type in specific positions in the vector,

and the remaining positions are encoded as zero. As mentioned ear-

lier, we distinguish between TP, PP, and FILTER as operator node

types 𝑂𝑛 in Definition 5.1, and we encode the features as follows:

𝑥𝑖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑓
𝑛𝑡𝑝
𝑡𝑝 ⊕ [0]𝑛𝑝 ⊕ [0]𝑛𝑓 , if 𝑛𝑖 is a TP

𝑓
𝑛𝑡𝑝
𝑡𝑝 ⊕ 𝑓

𝑛𝑝
𝑝𝑝 ⊕ [0]𝑛𝑓 , if 𝑛𝑖 is a PP

[0]𝑛𝑡𝑝 ⊕ [0]𝑛𝑝 ⊕ 𝑓
𝑛𝑓

𝑓
, if 𝑛𝑖 is a FILTER

, (1)

where 𝑓𝑡𝑝∈R𝑛𝑡𝑝
, 𝑓𝑝𝑝∈R𝑛𝑝

and 𝑓𝑓 ∈R𝑛𝑓
are the feature vectors for

TP, PP, and FILTER, respectively. ⊕ is vector concatenation. We use

𝑓 𝑘 to denote a vector 𝑓 of size 𝑙 (i.e., 𝑓 𝑙∈R𝑙
), while [0]𝑙 is a zero

vector of size 𝑙 . In the following, we describe how we compute the

feature vectors for each node type.

Triple pattern (𝑓𝑡𝑝 ). For nodes representing TPs, the node en-

coding is 𝑓𝑡𝑝 = 𝑓𝑣𝑎𝑟 ⊕ 𝑓𝑝 ⊕ 𝑓𝑠 ⊕ 𝑓𝑜 . We first encode information

about the presence of variables and the constants present in sub-

ject, predicate, and object position (𝑓𝑣𝑎𝑟 ). For instance, the variable

encoding for TP 1 in Figure 2 is [0, 1, 0]. The rationale behind this

encoding is that the presence of variables affects performance. For

instance, a TP with all concrete positions typically has a shorter

runtime than one with only variables. Additionally, it allows en-

coding selectivity-based information, such as a TP with a concrete

object being more selective than one with a concrete predicate [53].

We then proceed to encode the extracted KG metadata (Table 2)

for the triple pattern. If the feature is not present it is encoded as 0,

e.g., there is no frequency of predicate if the predicate is variable.

The encoded features of 𝑝 in Table 2 represents the predicate (𝑓𝑝 ).

For subjects, we consider an entity representation as the encoded

features relevant to entities (𝑓𝑠 ). For objects, 𝑓𝑜 includes a similar

entity representation as for subjects, plus a literal encoding. The

literal encoding is an encoding of frequency as literal in Table 2 and

a one-hot encoding of literal data types and language tags.

Table 3: Categorization Filter Functions

Categories Filter Functions/Operators

Logical ||, &&
Arithmetic +, *, /, -
Comparison =, !=, <, >, >=, <=
General DATATYPE, STR, IRI, LANG, BOUND, IN, NOT IN, isBlank, isIRI,

isLiteral
String STRLEN, SUBSTR, UCASE, LCASE, STRSTARTS, STRENDS,

CONTAINS, STRBEFORE, STRAFTER, ENCODE_FOR_URI, CONCAT,
LANGMATCHES, REGEX, REPLACE

Time NOW, YEAR, MONTH, DAY, HOUR, MINUTES, SECONDS, TIMEZONE, TZ

Property path (𝑓𝑝𝑝 ). As previously mentioned, PlanRGCN is the

first QPP approach to consider PP operators for SPARQL queries.

We model PPs as an extended version of TPs as they share a similar

structure. Complex PPs involving multiple predicates can be decom-

posed into operators with similar structures as TPs, as mentioned

in Section 2. Thus, we encode the same information encoded for

TPs but supplement additional features to distinguish PP nodes

from TP nodes. We further encode the property paths, i.e., we dis-

tinguish the one-or-more operator + from the zero-or-more ∗, and
eventually the min and max path lengths specified in the expression

for fixed-length property paths. Currently, since no other existing

method supports the UNION operator, we have not implemented

the support for the UNION in our architecture, and thus for now

we do not experiment with queries with disjunctive PPs. Our imple-

mentation can trivially be extended to UNION like the OPTIONAL
support by adding another edge type in the query graph.

Filter (𝑓𝑓 ). We perform a one-hot encoding of the various logical

and arithmetic operators and function types appearing in the filter

expression. The categorization of the operators and functions is

specified in Table 3. The reasoning for this is that different functions

have varying performance complexities, e.g., string operation is

likely more costly than arithmetic ones.

Inductiveness Support. Our approach supports predictions on

queries with unobserved characteristics (IRIs and operator interac-

tions) during training. This is possible because (1) our framework

uses KG statistics to featurize query plans, enabling generalization

to new queries with unseen entities or relations (Table 2). (2) We

employ a GCN model capable of learning operator interactions in

query plans, allowing it to generalize to operator combinations that

are not seen during training.

5.3 RGCN Model & Model Training
PlanRGCN uses a layered model that consists of 𝐿 RGCN layers [48],

followed by a readout layer and a fully connected layer. The pre-

vious layer’s output is provided as input to the next layer. An

RGCN [48] layer is an architecture designed for handling multi-

relational graphs, i.e., graphs with different types of edges. It can

be considered as a message-passing framework where a new rep-

resentation of the nodes is computed in each layer. The forward

propagation rule of a node 𝑣𝑖 is defined in Equation 2 [48].

ℎ𝑙+1𝑖 = 𝜎
⎛⎜⎝
∑︂
𝑟 ∈R

∑︂
𝑗∈N𝑟

𝑖

1

𝑐𝑖,𝑟
𝑊

(𝑙 )
𝑟 ℎ

(𝑙 )
𝑗

+𝑊 (𝑙 )
𝑂

ℎ
(𝑙 )
𝑖

⎞⎟⎠ (2)

whereℎ𝑙
𝑖
∈R𝑑𝑙 denotes the hidden state of node 𝑣𝑖 in the l-th layer,

𝜎 is an element-wise activation function,N𝑟
𝑖
denotes the neighbors

of 𝑣𝑖 with relation 𝑟 , 𝑐𝑖,𝑟 is a relation-specific normalization constant,

while𝑊
(𝑙 )
𝑟 and𝑊

(𝑙 )
𝑂

are weight matrices at layer 𝑙 .

The input to the PlanRGCN architecture is a query graph, where

the input node representations ℎ𝑙+1
𝑖

is the node feature matrix X.

Following the RGCN layers, we apply a READOUT node aggrega-

tion to get a graph-level representation, where we use the average

of the node features. The READOUT values are then forwarded

through a fully connected layer with a softmax activation function.
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Training the model involves adjusting the weights and bias by

minimizing a loss function w.r.t. the ground truth values, i.e., the

time interval to which a query belongs in our case, using gradi-

ent descent. We employ the categorical cross-entropy as the loss

function. The PlanRGCN model is trained based on a training set

of query plans and corresponding query runtimes. However, the

distribution of query runtimes of real-world query logs is typically

highly skewed [9]. We observe, in particular, that a huge portion of

queries run in less than one second. To this end, we balance the loss

function, so that the errors on time intervals with fewer samples

are magnified in contrast to frequent time intervals. We calculate

the weights by𝑤𝑐 = 𝑁
𝑁𝑐∗𝐷𝑐

, where𝑤𝑐 is the weight for class 𝑐 , 𝑁

is the total number of queries in the training log, whereas 𝑁𝑐 is the

number of queries with latency in interval 𝑐 . 𝐷𝑐 is the number of

intervals. The loss is then multiplied by the weight𝑤𝑐 .

5.4 Downstream Task
We show PlanRGCN’s practical usefulness in execution control

and load balancing, depicted as two Downstream Tasks in Figure 3.

Our optimization objective for the downstream tasks is to maxi-

mize throughput, i.e., the rate at which the RDF store successfully

evaluates queries. We define execution control as follows:

Task 1 (Execution control). Given a query workload Q as a
sequence of pairs {(𝑞 𝑗 , 𝑡 𝑗 )} with 𝑡 𝑗 being query 𝑞 𝑗 ’s arrival time, an
RDF store with 𝑛𝑡 workers for concurrent query evaluation, the exe-
cution control task requires an algorithm L𝑒𝑐 that throttles resources
spent on long-running queries. The controlled resources are the max
execution time 𝑟𝑒𝑥 and the concurrent query evaluation slots 𝑛𝑒𝑐 .

Similar to existing execution control methods [58], we aim to

maximize the query throughput by throttling the resources for

resource-heavy queries, e.g., queries in the slow interval, thus prior-

itizing resources for faster queries. To achieve this, we keep two

queues: a queue𝑄𝑈𝑙 for short-running queries, and another𝑄𝑈ℎ to

hold long-running queries to be evaluated under limited resources.

We predict the runtime interval for each query and use this pre-

diction to assess its placement into the queues. Further, we control

the resources used by the queries placed in 𝑄𝑈ℎ by (1) restricting

the concurrent query evaluation slots for these queries to 𝑛𝑒𝑐 . (2)

Limiting the execution duration for queries in 𝑄𝑈ℎ , where we in-

terrupt the executions after a timeout 𝑟𝑒𝑥 . The goal is to free up

resources spent on resource-heavy queries.

Task 2 (Load balancing). Given a query workload Q as the set
of pairs {(𝑞 𝑗 , 𝑡 𝑗 )}, where 𝑡 𝑗 is the arrival time of SPARQL query 𝑞 𝑗 ,
an RDF store with 𝑛𝑡 workers for query evaluation, 𝑛𝑡 clients, and a
time budget 𝑡 , the load balancing problem requires an algorithm L𝑙𝑏
that decides the scheduling of queries across the RDF store workers
using the 𝑛𝑡 clients such that the workload throughput is maximized.

The idea behind our load balancing is to prioritize query execu-

tions, where the aim is to schedule queries such that fast-running

queries do not end up waiting too long for slow queries to run, by

dedicating resources for each query type, i.e., runtime interval in

our setting, similar to existing work [47]. Hence, we initialize a list

of𝑚 queues, where each queue represents a time interval in the set

of predefined time intervals, C. Whenever a new query 𝑞𝑖 arrives,

the load balancer will first use PlanRGCN with a trained model to

classify the query into the time interval 𝑐𝑖∈C. Given 𝑐𝑖 , the query

is enqueued in the respective queue. Each of the 𝑛𝑡 clients of the

system is associated with a queue and by extension a time interval.

In our setting, we deploy more clients than queues, such that

queues are shared amongst multiple clients. When a query is in a

queue and an associated client is available, i.e., it is not currently

awaiting the results of a query, the query is dequeued and pro-

cessed by the associated client by sending the query to the RDF

store. In addition, queues corresponding to fast-running queries

should be associated with a larger number of clients so that multiple

fast-running queries (and thus also queries with lower resource

requirements) can run in parallel. For instance, if we instantiate 4

clients in total and assign 3 clients for fast-running queries and 1

for slow-running queries, the RDF store will process 3 fast-running

queries for each slow one, provided the queues are non-empty.

The downstream tasks serve to demonstrate the effectiveness of our
runtime interval predictions. Our method demonstrates the promise

of runtime interval predictions. Yet, several critical issues require at-

tention, including underutilization, e.g., if only fast-running queries

arrive, the resources meant for other intervals are wasted. Yet, our

prediction model will now pave the way to experiment with more

advanced workload management methods in the future.

6 EXPERIMENTS
We demonstrate PlanRGCN’s robustness in QPP across two datasets,

including its ability to predict for queries with property paths, and

for queries with completely unseen characteristics. Furthermore,

we demonstrate the real-world applicability of our QPP method

by studying its effect on downstream tasks. We also evaluate al-

ternative runtime intervals. Finally, we report on its efficiency by

evaluating the preprocessing and training time and disk space.

6.1 Experimental Setup
Experiments are conducted on aDell R6415with 256GBRAMand an

AMD 7281 CPUwith 16 cores. We use Virtuoso [14] as our reference

RDF store. We use Jena ARQ [52] as our query plan generator. The

query runtime intervals that we consider in the experiments are

𝐶 = {(0; 1], [1; 10], (10;∞]}. We use RayTune [24] with a 24-hour

limit to identify hyperparameters. Our optimal PlanRGCN setting

is a bin size of 50 (feature encoding), a learning rate of 1𝑒−5, and 2

RGCN layers. The layer sizes are 4096 and 1024 for DBpedia and

4096 and 2048 for Wikidata. The input vector size is 485.

Data. We use DBpedia and Wikidata KGs that can contain bil-

lions of triples and thousands of distinct predicates. The DBpedia

KG is constructed from the source files from October 2016 [12].

We use the same English Wikidata snapshot from 2021 used in

WDBench [5]. The statistics of the KGs are shown in Table 4.

Query Log. The query log for DBpedia and Wikidata is split into

training, validation, and test sets (see Table 5). Queries are extracted

Table 4: KG statistics
DBpedia English Wikidata

# of triples in KG 6,101,406,781 1,253,528,123

# of distinct predicates in KG 167,762 8,604

# of distinct subjects in KG 744,417,316 92,498,623

# of distinct objects in KG 639,693,357 305,419,412
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Table 5: Query log distribution
Training Validation Test

(0; 1] (1; 10] (10;∞] (0; 1] (1; 10] (10;∞] (0; 1] (1; 10] (10;∞]
DBpedia

With 1 TP 5078 143 581 1673 41 184 1702 107 376

With 2 TP 786 125 627 264 56 214 248 48 233

With > 2 TP 1345 1227 936 465 390 327 407 459 314

With FILTER 2071 1393 1835 727 452 628 677 508 624

With OPTIONAL 430 1048 1146 143 347 393 151 402 389

With PP 3754 54 56 1242 20 26 1250 168 276

Total 7210 1495 2144 2402 487 725 2358 614 923
Wikidata

With 1 TP 6383 236 236 2147 82 68 2084 83 79

With 2 TP 5777 160 288 1794 66 90 1860 48 110

With > 2 TP 5033 195 447 1766 58 179 1760 68 160

With FILTER 4945 221 101 1631 75 39 1670 68 29

With OPTIONAL 3459 138 305 1173 43 119 1114 43 104

With PP 6576 444 326 2194 158 94 2156 170 124

Total 17193 591 971 5704 206 337 5702 199 349

Table 6: Confusion Matrices for query logs.
DBpedia

P NN SVM # Total

(0; 1] (1; 10] (10;∞] (0; 1] (1; 10] (10;∞] (0; 1] (1; 10] (10;∞]
(0; 1] 90.2 2.1 7.7 96.6 2.5 1.0 99.7 0.3 0.0 2358

(1; 10] 4.9 80.2 14.9 4.7 35.3 59.9 50.9 49.1 0.0 614

(10;∞] 2.7 27.3 70.0 10.2 16.5 73.3 59.2 40.8 0.0 923

Wikidata
P NN SVM # Total

(0; 1] (1; 10] (10;∞] (0; 1] (1; 10] (10;∞] (0; 1] (1; 10] (10;∞]
(0; 1] 81.2 11.5 7.4 98.8 0.8 0.5 95.4 3.4 1.2 5702

(1; 10] 10.1 64.3 25.6 82.4 11.1 6.5 62.3 30.7 7.0 199

(10;∞] 9.7 18.6 71.6 42.7 16.6 40.7 42.1 8.3 49.6 349

from LSQ [51], which contains real-world queries submitted against

those KGs. We select valid queries involving the operators: TPs,

PPs, OPTIONAL, and FILTER. Overall, the real-world query logs

feature a limited number of valid queries adopting the property

path operator. For Wikidata, we expand the query log with queries

from WDBench [5] and queries from a different query log [30] that

contained queries that were recorded as timed-out when queried

over the public Wikidata service. We obtained 18K queries for

DBpedia and 31K for Wikidata.

We ran all queries three times in random order. The average

query runtime is used for model training. The total runtime collec-

tion time was ∼14 days for DBpedia and ∼9d for Wikidata. We pro-

duce a 60%-20%-20% train/validation/test split by stratified sampling

based on 3 classes: (0; 1], (1; 10], and (10;∞] on query runtime.

To ensure sufficient representation of complex query types, we

generated queries involving PP and unseen properties, as these

showed lower cardinality. We design templates for generating

PP queries based on property path patterns in conjunction with

operators commonly found in query logs [8]. Entities and relations

from the training set instantiate the templates. For unseen queries,

we create templates with complex structures, such as star and path

patterns noted in query logs [9]. The templates are instantiated by

extracting entities and relations from the KG that are separate from

the training and validation set. To emphasize complexity, we design

queries with >2 TPs, incorporating operators like OPTIONAL and

FILTER. We also report that < 0.5% of queries have runtimes within

10% of the thresholds in the test sets.

QPP Baseline methods. We compare our approach against state of

the artmethods, namely SVM-basedQPP [19] andNN-basedQPP [3].

We used the existing implementation provided byNN-basedQPP [3].

Yet, we improved the distance matrix computation in their feature

construction step with parallelization. We ensured that our imple-

mentation produces the same numbers as the original.

We do not compare against Hybrid SVM-based QPP [59] since

we were unable to access their code base nor receive the code

from the authors. Furthermore, we note that the method requires

hand-selected queries for its feature generation, thus limiting its

application to only regular and stable query logs.

6.2 Query Performance Prediction
Since we model our problem as a multiclass classification task, we

present our results in confusion matrices. An entry in row 𝑖 and

column 𝑗 represents the normalized ratio of queries where the

actual runtime interval was 𝑐𝑖 , but the model predicted interval 𝑐 𝑗 .

The ideal method would show 100 on the diagonal and 0 outside.

Query Performance Prediction. We investigate the perfor-

mance of our method against the mentioned baseline methods

and report the confusion matrices in Table 6 for both datasets.

For the DBpedia dataset, our method demonstrates greater ro-

bustness in predictions across various time intervals compared to

the best baseline, the NN-based QPP. Specifically, the NN-based

QPP achieves 6.4% higher accuracy for queries in the (0; 1] time

interval and a modest 3.3% improvement in the (10;∞] interval.
In contrast, our method, PlanRGCN, outperforms by 44.9% in the

(1; 10] interval. Given the negligible difference of 3.3% in (10;∞],
the key distinction between our method and the NN-based QPP is

clear: while the NN-based QPP is superior in the (0; 1] interval, Plan-
RGCN’s performance boost over the NN-based QPP in the (1; 10]
interval is three times that of the NN-based QPP’s improvement

over PlanRGCN in the (0; 1] interval.
Additionally, it is crucial to consider the overall model perfor-

mance levels. For instance, a performance difference between 90.2%

and 96.6% is less significant than one between 80.2% and 35.3%. The

former range indicates reasonably high performance, whereas the

latter suggests poor general performance, further highlighting the

robustness of PlanRGCN. The experiment also hints that the NN-

based QPP is proficient in predicting course-grained intervals in the

(0; 1], as the 96.6% are predicting correctly while its mispredictions

in (1; 10] and (10;∞] typically fall into the slower intervals. Hence,

in predictive quality for DBpedia, there is a trade-off depending on

how specific the intervals need to be for the downstream task.

SVM-based QPP is biased towards predicting the (1; 10] and
(10;∞] intervals, as reflected by the high values in the (1; 10] SVM
column in Table 6.DBpedia and thus is not effective. We report

a macro F1 of 0.78, precision (PR) of 0.76, and (R) of 0.80 for our

method, showcasing the robustness across intervals compared to

NN (F1: 0.68, PR: 0.69, R: 0.68) and SVM (F1: 0.45, PR: 0.41, R: 0.50).

For Wikidata, we report an F1 of 0.53, PR of 0.50, and R of 0.72

for our method, showing performance comparable across time in-

tervals to NN (F1: 0.55, PR: 0.64, R: 0.50) and SVM (F1: 0.59, PR: 0.62,

R: 0.59). The experimental results in Table 6 demonstrate the supe-

riority of PlanRGCN over the baselines, particularly in the (1; 10]
and (10;∞] time intervals. Specifically, PlanRGCN predicts more

than twice the number of queries in the (1; 10] interval compared to

the SVM-based QPP, which is the best-performing baseline, with a

performance difference of 33.7%. Moreover, in the (10;∞] interval,
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Table 7: ConfusionMatrices on PP queries and unseen queries
P NN SVM # Total

(0; 1] (1; 10] (10;∞] (0; 1] (1; 10] (10;∞] (0; 1] (1; 10] (10;∞]

D
B
pe

di
a

(P
P)

(0; 1] 95.8 0.9 3.3 100.0 0.0 0.0 82.6 17.4 0.0 552

(1; 10] 22.9 4.8 72.3 100.0 0.0 0.0 0.0 100.0 0.0 83

(10;∞] 10.1 0.0 89.9 100.0 0.0 0.0 0.7 99.3 0.0 138

W
ik
id
at
a

(P
P)

(0; 1] 54.9 39.9 5.3 99.4 0.4 0.2 91.1 8.9 0.0 966

(1; 10] 8.5 77.5 14.1 87.3 9.9 2.8 53.5 43.7 2.8 71

(10;∞] 8.2 75.4 16.4 73.8 13.1 13.1 73.8 24.6 1.6 61

D
B
pe

di
a

(u
ns

ee
n) (0; 1] 93.9 4.1 2.0 81.8 18.2 0.0 0.0 100.0 0.0 148

(1; 10] 40.0 40.0 20.0 10.0 40.0 50.0 0.0 100.0 0.0 20

(10;∞] 0.0 0.0 100.0 21.7 76.5 1.7 0.0 99.1 0.9 115

PlanRGCN correctly predicts 71.6% of the queries, outperforming

the SVM-based QPP by 22.1%. In general, the baseline methods

struggle to predict runtime intervals. We hypothesize that this is

because the baseline methods learn significantly from the query

distribution instead of the query features, leading to a bias towards

the most frequent time interval, (0; 1]. This bias is particularly evi-

dent in column (0; 1] of Wikidata in Table 6, where the baselines

mainly predict (0; 1], resulting in suboptimal performance in other

time intervals. Consequently, our method demonstrates a signifi-

cant advantage over the baselines by effectively delivering more

accurate predictions across different time intervals.

Moreover, the baselinemethods exhibit inconsistent performance

across different query logs. The NN-based QPP is the superior base-

line on DBpedia, while the SVM-based QPP shows superior results

on Wikidata. In conclusion, PlanRGCN proves to be robust in predict-
ing runtime intervals across two real-world query logs.

Property PathQuery Performance Prediction. Table 7 presents
the predictive performance on queries in the test set containing

PP queries for both datasets. To study the PP operator, we exclude

unseen queries — those with relations and entities not observed

during training. We first analyze the PP queries in DBpedia (Ta-

ble 7.DBpedia PP), where our method achieves >90% accuracy in

predicting (0; 1] and (10;∞], but it does struggle with the (1; 10]
queries, predominantly predicting them as (10;∞]. On the other

hand, the NN-based QPP, which performed competitively on the

overall query log, predicts all PP queries to be in the (0; 1] interval,
as shown by the (0; 1] column in Table 7.DBpedia PP, rendering it in-

effective. The SVM-based QPP provides a competitive performance

on property path queries. Nevertheless, it still proved ineffective

for (10;∞] with no correct predictions. While our method predicts

13.2% more queries accurately in (0; 1], the SVM-based QPP pre-

dicts almost twice as many queries in (1; 10], pointing to a bias. The
(10;∞] runtime interval is challenging for both baseline methods.

However, our method correctly predicts 89.9% of the queries in

(10;∞], underlining the potential of our method.

On the PP queries in Wikidata (Table 7.Wikidata PP), PlanRGCN

shows lower accuracy in (0; 1]. In comparison, the baselines cor-

rectly predict most queries in (0; 1] but are highly biased to predict

queries in (0; 1], as seen in Table 6. Thus, the baselines’ perfor-

mance in this interval does not accurately reflect their predictive

capabilities. We also observe that the most frequent relations in the

39.6% of queries in (0; 1] predicted as (1; 10] by PlanRGCN overlap

with relations used in queries in (1; 10]. This results in our methods’

mispredictions due to its reliance on predicate statistics (Table 4).

On the other intervals, PlanRGCN has a clear advantage with an

improvement of 31.8% for (1; 10] and a smaller improvement of

6.5% for (10;∞] compared to the best baseline.

The QPP methods indeed have a harder time predicting the runtime
interval for queries with property paths, confirming how challenging
it is to predict the effect of the presence of this operator. Yet, with this
still being the case, PlanRGCN still performs reasonably compared to
the baseline QPPs on the property paths queries. Moreover, our method
consistently demonstrates effectiveness across both datasets, as none
of the leading baselines on the full query logs (Table 6) excelled in
property path queries. For instance, while NN-based QPP is a better

baseline on the full DBpedia query log, the SVM outperformed it

for PP queries in DBpedia. Similarly for Wikidata, although the

SVM-based QPP is the more accurate baseline on the full query log,

the NN-based QPP is the more effective baseline on PP queries.

This demonstrates PlanRGCN’s capability to extend to queries
including property paths to predict runtimes compared to the baselines.

Predictions for Unseen Queries. Our architecture is designed
to also predict the performances of unseen queries, i.e., queries

with relations and entities that have not been seen during training.

Since our method is far superior than the baselines on Wikidata,

we report only on unseen queries for DBpedia. We also exclude un-

seen queries with property paths for fair comparison on specifically

the inductiveness aspect alone. (Table 7.DBpedia Unseen) reports

the results of unseen queries. Our method demonstrates robust

performance in predicting runtime intervals, achieving > 93.9%

accuracy for (0; 1] and (10;∞] queries and matching baseline accu-

racy on (1; 10]. This consistency across all intervals underscores

its robustness for unseen queries. In contrast, the NN-based QPP,

while accurate for (0; 1], still falls 12.1% short of our method, and

struggles to distinguish between (1; 10] and (10;∞], frequently mis-

predicting them. Notably, it critically mispredicts ∼20% of (10;∞]
as (0; 1]. The SVM-based QPP fails entirely on unseen queries, de-

faulting to predicting (1; 10]. Upon closer inspection, we observe

that some of the incorrectly predicted queries in (1; 10] contain
unbounded TPs, i.e., a TP solely consisting of only variables. Since

our method relies on relation and entity statistics, this behavior on

unbound TPs is expected. The results clearly show that our method
can robustly predict runtime intervals for unseen queries.

6.3 Downstream Tasks
Workload Setup. To simulate the query arrival, we use an ex-

ponential distribution that, given an arrival rate, 𝜇, samples arrival

times for each query to generate synthetic and controllable arrival

times for all test queries. We use 𝜇 of 44 queries/sec, the reported as

the arrival rate of the Wikidata endpoint [30]. We use 10 workers

and clients and a time budget for the downstream tasks of 2 hours.

Execution control. We consider queries with performance in

(10;∞] as the resource-heavy queries, 95%-quantile of the query

log as 𝑟𝑒𝑥 , and 3 clients for resource-heavy queries (𝑛𝑒𝑐 ). The 95%-

quantile is 51 secs for DBpedia and 1.3 secs for Wikidata. In Table 8,

we report the throughput and the “Falsely throttled queries”, which

are queries that were erroneously throttled and interrupted due to

misprediction. The results demonstrate that PlanRGCN processes

69.5% more queries compared to the best baseline on Wikidata

(SVM-based QPP). On DBpedia, PlanRGCN processes 4.1% queries
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more compared to the best baseline (NN-based), while PlanRGCN

produces fewer mispredictions compared to the same.

Load Balancing. We assign 5 clients for (0; 1], 3 for (1; 10], and
2 clients for (10;∞] intervals. We aim at (1) maximizing throughput

and (2) minimizing the query latency, which is the total response

time from when the query arrives at the load balancer until its

execution completes. This includes waiting time for a worker to be-

come available, and, when applicable, query plan extraction, query

graph construction, and inference time. We report that the average

PlanRGCN inference time is 0.01 secs.

Additionally, for this experiment, the effect of Head of Line

Blocking (HLB) should also be minimized, i.e., a disproportional

increase in query latency of fast-running queries compared to their

execution time [47] due to waiting in line.

We evaluate our method against a FIFO-based query scheduler

to compare it against a standard load balancer. This baseline keeps

a single queue of incoming queries and schedules the queries to

workers depending on availability. We also consider load balancing

with predictions from the NN-based QPP and SVM-based QPP

baselines. To further compare against the best achievable predictor,

we compare against a load balancer that employs an oracle, which

provides the ground truth time interval for a query.

The FIFO load balancer is significantly outperformed by our

PlanRGCN-based load balancer. Using PlanRGCN’s predictions, the

query throughputs shown in Table 9 increase by 183% and 207%

compared to when the FIFO load balancer is used on Wikidata

and DBpedia, respectively. Additionally, Figure 5 shows that query

latencies for queries in the (0; 1] interval are significantly reduced

with PlanRGCN, thereby minimizing HLB. This demonstrates that
runtime interval predictions offer significant advantages for the load
balancing task compared to a standard FIFO load balancer.

For the QPP-based load balancers, i.e., our PlanRGCN, the NN-

based QPP, and the SVM-based QPP, we observe a similar trend to

the predictive performance of the baseline methods. Specifically,

the NN-based QPP is the superior baseline on DBpedia, while the

SVM-based QPP performs better on Wikidata, highlighting the

robustness issues in the baseline methods.

On the DBpedia dataset, our PlanRGCN-based load balancer en-

ables the RDF store to process 20% more queries than the NN-based

load balancer. The query latency also shows promising results, with

lower latencies for queries in (0; 1] compared to other methods.

Although the SVM-based load balancer has lower latencies in (0; 1],
this advantage comes at the cost of significantly reduced through-

put. On the Wikidata dataset, the RDF store processes 6% fewer

queries with our PlanRGCN-based load balancer compared to the

SVM-based one, which translates to roughly 4 fewer queries per

minute. Despite this reduction in query throughput, we observe

a significantly lower effect of HLB for the PlanRGCN-based load

balancer (Figure 5). Overall, compared to the baselines, PlanRGCN
exhibits superior robustness in the effect of the runtime interval pre-
diction in the downstream task, providing evidence of its effectiveness.

The Oracle load balancer reveals that there are still optimiza-

tion opportunities to explore. Interestingly, the SVM-based load

balancer achieves a higher query throughput than the Oracle load

balancer, which can be attributed to the issues mentioned in Sec-

tion 5.4 and motivates the need for an algorithm that also handles

Table 8: Results of execution control, where query/sec is the
throughput, and FTQ is the false throttled queries

query/sec FTQ query/sec FTQ

PlanRGCN

W
ik
id
at
a 223.41 7

D
B
pe

di
a 18.27 43

NN 100.08 7 17.53 45

SVM 131.78 6 14.92 39

Table 9: Query throughput (query/min.)

DBpedia Wikidata

FIFO 6 17

PlanRGCN 18 47

Oracle 24 49

SVM-based QPP 7 50
NN-based QPP 14 22

Figure 5: Query Latency by Time Interval
scenarios where query executions diverge from the predictions.

Further analysis shows instances where the intervals change in

concurrent settings, e.g., 318 queries in (0; 1] have a runtime in

(1; 10], highlighting the challenges mentioned in Section 5.4.

We have demonstrated PlanRGCN’s potential in two downstream
tasks. However, effectively utilizing these predictions in practical ap-
plications remains a key consideration that we leave as future works.

6.4 Alternative Time Intervals
We further investigate our model’s performance on other time in-

tervals. We first investigate the accuracy of our model when the

time intervals become increasingly fine-grained. As the majority of

our queries are fast, we add a threshold of 4 msec to separate very

fast from fast queries. It would also be instrumental to determine

if a query will time out, e.g., to reject the query. Hence, we also

consider queries that time out as a category on its own. Table 10

shows the results of the fine-grained interval. Our model can ef-

fectively predict the queries timing out, whereas the baselines do

not. Our method also performs reasonably on the 4 msec threshold

intervals, (0; 0.004] and (0.004; 1], where it struggles on Wikidata

(0.004; 1] with a performance of 45.2%. This shows that PlanRGCN

can potentially be extended to more fine-grained intervals.

We further evaluated runtime intervals using 50%- and 95%-

percentile runtime of the query log as alternative thresholds in

Table 11. On Wikidata, PlanRGCN consistently achieved >75% ac-

curacy across the runtime intervals, outperforming both baselines.

On DBpedia, PlanRGCNmaintains >51% accuracy overall, excelling
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Table 10: Fine grained runtime intervals
P NN SVM # Total

I1 I2 I3 I4 I5 I1 I2 I3 I4 I5 I1 I2 I3 I4 I5

W
ik
id
at
a I1: (0; 0.004] 70.2 20.8 0.22 5.10 3.69 32.4 66.9 0.57 0.13 0.0 96.1 2.1 1.2 0.6 0.0 3139

I2: (0.004; 1] 25.0 43.8 3.4 18.8 8.9 4.3 93.7 0.9 1.0 0.0 83.0 9.0 6.1 2.0 0.0 2563

I3: (1; 10] 2.0 10.1 15.1 55.3 17.6 0.0 80.9 15.1 4.0 0.0 35.2 27.1 30.7 7.0 0.0 199

I4: (10; 900] 2.4 6.1 0.6 82.3 8.5 0.3 43.0 17.1 39.6 0.0 29.0 13.1 8.8 49.1 0.0 321

I5: Timeout 0.0 9.5 0.0 28.6 61.9 0.0 42.9 9.5 42.9 4.8 38.1 4.8 0.0 57.1 0.0 28

D
B
pe

di
a

I1: (0; 0.004] 76.2 20.4 0.0 1.3 2.2 2.2 97.7 0.0 0.2 0.0 40.0 38.2 21.8 0.0 0.0 555

I2: (0.004; 1] 1.7 92.2 0.6 4.3 1.2 0.1 95.4 3.2 1.2 0.0 1.0 5.0 93.6 0.3 0.0 1803

I3: (1; 10] 0.0 15.1 68.6 8.9 7.4 0.0 4.7 35.3 59.9 0.0 0.0 0.2 50.7 49.1 0.0 614

I4: (10; 900] 0.0 13.1 27.2 44.4 15.4 0.0 9.9 15.4 74.7 0.0 0.0 0.3 57.8 41.9 0.0 886

I5: Timeout 0.0 8.1 0.0 5.4 86.5 0.0 16.2 37.8 40.5 5.4 0.0 0.0 81.1 18.9 0.0 37

on slower Q3 queries with 78.2% accuracy. However, the Q2 in-

terval is more difficult for our method. Still, these results highlight
PlanRGCN’s robustness and adaptability across datasets and runtime
intervals, particularly on challenging long-running queries.

6.5 Preprocessing and Training Time
We investigate the preprocessing time for our approach and then

the model training time.We extract the meta-KG statistics described

in Table 2 by sequentially querying the RDF store, resulting in the

use of a single CPU. Our method’s total feature extraction duration

is ∼28 min for Wikidata and 1 h 23 min for DBpedia.

For the baselines’ feature extraction time, the CPU time for

Query Operator Statistics, i.e., encoding of a query’s number of

operators, is ∼0.2 min. In comparison, the graph pattern features

took significantly longer, at 4772 min for DBpedia and 13608 min

for Wikidata. As previously mentioned, we revised this component

to heavily exploit parallel execution, where we used 20 CPUs to

compute the query distance matrix used in the previously men-

tioned feature construction. The wall clock times, i.e., the actual

duration of the feature construction, for the baseline methods are

4 h 37 min and 13 h 56 min for DBpedia and Wikidata, resulting in

3.3 and 29.4 times more wall clock time compared to PlanRGCN.

To further compare against our method under more equal settings,

we report the total CPU time: 79 h 31 min and 226 h 48 min for DB-

pedia and Wikidata, respectively. In CPU time, this means that our

method’s feature construction time is 58 times and 478 times less

computationally intensive than the baselines’ feature construction

time for DBpedia and Wikidata. For DBpedia, model training time

takes 1 h 4 min 23 secs, 23 min 43 secs, and 6 min 1 secs for Plan-

RGCN, NN-based QPP, and SVM-based QPP, respectively. Similarly

for Wikidata, the training time is 1 h 32 min 24 secs, 26 min 34 secs,

and 42 min 42 secs. Despite the shorter baseline training time, our
method is still at least 1.9 times faster for DBpedia and 7 times faster
for Wikidata in combined preprocessing and training time (wall clock
time), even using fewer CPUs. Furthermore, it should be stressed, as
mentioned in Section 5.2, that the collection of meta-KG statistics
should be implemented in the RDF store and update the information
upon KG updates. Therefore, in a continuously evolving system, our
approach can adapt to changing workloads, whereas the baseline
works need a separate step for constructing the graph pattern features.

Next, we compare the duration for computing the features and

making predictionswith the appropriatemodel, i.e., themean online

inference time. We can report that the mean online inference time is

0.013 secs and 0.011 secs for PlanRGCN on DBpedia and Wikidata,

respectively. For NN-based and SVM-based QPP, it is 0.027 secs and

0.022 secs. Overall, PlanRGCN’s inference times are much shorter
than the baselines by 50%-52% on the datasets.

Table 11: 50%- and 95%-percentile runtime intervals on Wiki-
data (Wiki) and DBpedia (DBped)

P NN SVM # Total

I1 I2 I3 I1 I2 I3 I1 I2 I3

W
ik
i I1: (0; 0.004] 75.6 20.4 4.0 30.5 69.0 0.4 96.7 1.8 1.5 3147

I2: (0.004; 1.3] 2.2 91.9 5.9 4.8 93.1 2.1 79.7 6.7 13.6 2637

I3: (1.3;∞] 0.0 4.8 95.2 0.0 56.0 44.0 30.4 10.1 59.5 514

D
B
pe

d I1: (0; 0.04] 85.2 12.6 2.2 89.3 10.6 0.1 0.6 99.4 0.0 1788

I2: (0.04; 50.8] 13.3 51.4 35.3 12.9 85.7 1.4 0.3 99.7 0.0 1688

I3: (50.8;∞] 1.9 19.9 78.2 1.4 79.0 19.6 0.0 100.0 0.0 419

6.6 Feature Construction Space
We investigate the disk space used by the collected features of our

method compared to the baselines. On the space complexity, our

method’s features use 𝑂 (𝑁𝑡𝑟𝑖𝑝𝑙𝑒𝑠 ), whereas the existing methods

use 𝑂 (𝑁 2

𝑞𝑙
). In terms of disk space, the existing methods use 229G

and 64G for the distance calculation for Wikidata and DBpedia,

respectively. On the other hand, our method uses 0.54G and 5.1G to

store the features in Table 2 for Wikidata and DBpedia, respectively.

This means that our method uses 424 and 12 times less disk space
compared to the baseline methods for the datasets.

7 CONCLUSION
This paper presents a novel approach for predicting the perfor-

mance of SPARQL queries based on graph representation learning.

Our method significantly diverges from existing techniques by not

only considering similarities to past queries but also collecting fea-

tures natively extracted from the RDF stores’ statistics computation.

We evaluate our method and show robust performance on two real

query logs over real-world large-scale KGs. We further show that

our method can support other important previously unsupported

SPARQL operators, namely property paths. Our model can be fur-

ther extended by adding new node and edge types to accommodate

additional operators. Importantly, we also show that our model is ca-

pable of predicting the performances of queries showcasing entities

and relations unseen during training. Furthermore, we demonstrate

that the runtime interval predictions produced by PlanRGCN are

useful in practice for load balancing and execution control tasks. In

the future, we aim to implement support for KG updates [38, 39],

more operators, and more advanced load balancing and execution

control algorithms, incorporating our runtime interval prediction

model. Our results will be an important component for systems

enabling KG analytics and exploration [4, 25–27].
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