Efficient Historical Butterfly Counting in Large Temporal
Bipartite Networks via Graph Structure-aware Index

Qiuyang Mang® Jingbang Chen’ Hangrui Zhou"
CUHK-Shenzhen University of Waterloo Tsinghua University
qiuyangmang@link.cuhk.edu.cn j293chen@uwaterloo.ca zhouhr23@mails.tsinghua.edu.cn
Yu Gao Yingli Zhou Qingyu Shi
Independent CUHK-Shenzhen Independent
ygao2606@gmail.com yinglizhou@link.cuhk.edu.cn gingyuqwq@gmail.com
Richard Peng Yixiang Fang Chenhao Ma"
Carnegie Mellon University CUHK-Shenzhen CUHK-Shenzhen
yangp@cs.cmu.edu fangyixiang@cuhk.edu.cn machenhao@cuhk.edu.cn

ABSTRACT

Bipartite graphs are ubiquitous in many domains, e.g., e-commerce
platforms, social networks, and academia, by modeling interactions
between distinct entity sets. Within these graphs, the butterfly mo-
tif, a complete 2X2 biclique, represents the simplest yet significant
subgraph structure, crucial for analyzing complex network patterns.
Counting the butterflies offers significant benefits across various
applications, including community analysis and recommender sys-
tems. Additionally, the temporal dimension of bipartite graphs,
where edges activate within specific time frames, introduces the
concept of historical butterfly counting, i.e., counting butterflies
within a given time interval. This temporal analysis sheds light on
the dynamics and evolution of network interactions, offering new
insights into their mechanisms. Despite its importance, no exist-
ing algorithm can efficiently solve the historical butterfly counting
task. To address this, we design two novel indices whose memory
footprints are dependent on #butterflies and #wedges, respectively.
Combining these indices, we propose a graph structure-aware in-
dexing approach that significantly reduces memory usage while
preserving exceptional query speed. To further reduce the index
size and boost the query efficiency, we design an index compression
strategy, enabling the fast, high-quality, and unbiased approxima-
tion of historical butterfly counts. We theoretically prove that our
approach is particularly advantageous on power-law graphs, a com-
mon characteristic of real-world bipartite graphs, by surpassing
traditional complexity barriers for general graphs. Extensive ex-
periments reveal that our query algorithms outperform existing
methods by up to five magnitudes, effectively balancing speed with
manageable memory requirements.

PVLDB Reference Format:

Qiuyang Mang, Jingbang Chen, Hangrui Zhou, Yu Gao, Yingli Zhou,
Qingyu Shi, Richard Peng, Yixiang Fang, and Chenhao Ma. Efficient
Historical Butterfly Counting in Large Temporal Bipartite Networks via
Graph Structure-aware Index. PVLDB, 18(6): 1607 - 1620, 2025.

doi:10.14778/3725688.3725693

“The first three authors contributed equally to this research.

Chenhao Ma is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

1607

year
1966 1990s 2007 -

Figure 1: Jim Gray’s activeness in database community (a) and as-
tronomy (b) community.

PVLDB Artifact Availability:
The source codes and a detailed technical report have been made available
at https://github.com/joyemang33/HBC.

1 INTRODUCTION

Due to its ability to model relationships between two distinct sets
of entities, the bipartite graph, or network, holds significant im-
portance across various fields, including disease control on people-
location networks [11, 35], fraud detection on user-page networks
[27, 45] and recommendation on customer-product networks [18,
19, 43, 46, 50]. To analyze the structure and dynamics of the net-
work, counting motifs is one of the most popular methods [12, 13,
20, 31, 46] since motifs are considered the basic construction block
of the network. The butterfly motif (2 X 2 biclique) represents funda-
mental interaction patterns within the graph. Counting it has wide
applications ranging from biological ecosystems [37, 44, 45], where
it helps in identifying mutual relationships between species, to so-
cial networks [46, 57], where it uncovers patterns of collaborations
and affiliations.

Temporal bipartite graphs, in which edges typically carry times-
tamps, are often considered [5, 8, 12, 35] since real-world inter-
actions (modeled as edges) usually occur at specific timestamps.
Recently, Cai et al. [5] first considered counting butterflies on tem-
poral bipartite graphs, which extends the analytical depth of tradi-
tional bipartite graph analyses by incorporating the dimension of
time, making it a powerful tool for uncovering dynamic patterns in
complex systems.

licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 6 ISSN 2150-8097.
doi:10.14778/3725688.3725693

https://doi.org/10.14778/3725688.3725693
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/joyemang33/HBC
https://doi.org/10.14778/3725688.3725693
https://www.acm.org/publications/policies/artifact-review-and-badging-current

AR A A A A

Christoph Rhemann

E—; 2010

Single image haze removal
using dark channel prior

Carsten Rother Jian Sun

E—; 2010

Fast matting using large kernel
matting laplacian matrices

Figure 2: Finding the time-window of the closest collaboration.

Xiaoou Tang Kaiming He

E—; 2011

A global sampling method
Jfor alpha matting

However, merely counting butterflies across the entire timeline,
as suggested by [5], may not accurately reflect the dynamic na-
ture of relationships, failing to capture evolving trends. To address
this, it is essential to consider the temporal dimension of interac-
tions. By focusing on the occurrence of motifs within specified time
frames, we introduce the concept of historical butterfly counting.
This approach, which involves analyzing butterflies within discrete
time windows on a temporal bipartite graph, offers enhanced in-
sights into the timing and progression of interactions. It provides
an in-depth understanding of network dynamics, uncovering the
mechanisms behind network evolution and revealing opportunities
for precise interventions across various domains.

Applications We now discuss some interesting applications of
historical butterfly counting.

o Bipartite Clustering Coefficient (BCC) Computation. The
bipartite clustering coefficient [2, 26, 32] is a traditional cohesive-
ness measure for bipartite graphs whose computing bottleneck is
counting butterflies. Specifically, considering the scientific collab-
oration network (modeled as a temporal graph) in the given time
window, a higher BCC suggests a stronger trend of cohesive collab-
oration within the research community. This coefficient positively
correlates with the number of author pairs publishing multiple pub-
lications within a given time-window and inversely correlates with
the number of author pairs collaborating only once. For example,
in academia, a scientist may change their frequent collaborators
or research interests over time. For instance, examining two se-
ries of two-year BCCs within the research domains of Jim Gray
in Figure 1, specifically the database and astronomy communities,
reveals a gradual shift in his research interests from databases to
astronomy around the 1990s. We also provide two case studies on
the global research collaboration trend and close collaboration time
windows in section 6.4 with BCC computation.

o Identifying Close Communication Time-windows. Di-
rectly counting butterflies can identify time windows during close
communication within a specific community. For instance, we are
interested in close collaboration. Among Kaiming He’s 2-hop ego
networks w.r.t. all possible time-windows, we find that the two-year
time-window with the highest butterfly count is 2010 - 2011, with
the corresponding research records detailed in Figure 2. During
this period, Kaiming He, Jian Sun, Xiaoou Tang, Carsten Rother,
and Christoph Rhemann established a series of cohesive research
collaborations, resulting in the publication of three papers. In other
words, Figure 2 depicts Kaiming’s 2-hop ego network during 2010 -
2011, the two-year time interval with the highest butterfly count.
Notably, 2010 and 2011, the last two years of Kaiming’s Ph.D. under
supervisor Xiaoou, marked his most cohesive collaborations.

1608

Challenges and Contributions Counting butterflies in such a
historical setting is challenging. One main reason is that the algo-
rithm should be able to answer historical queries multiple times
to analyze the changing trend. When the graph is large, it is inef-
ficient to run existing butterfly counting algorithms from scratch
for each query. Thus, we need to design algorithms that answer
each query more efficiently after preprocessing. No algorithm can
effectively solve this problem in existing works. This paper fills this
hole by proposing a new index algorithm with consistently high
performance in large-scale graphs. The proposed algorithm GSI
(graph structure-aware index) can take advantage of graph struc-
tures and balance between query time and memory usage, enabling
it to outperform previous butterfly counting algorithms on both
real-world data, and synthetic data with certain distributions. GSI
can also be parallelized, providing faster query efficiency. It can also
be compressed, providing smaller memory usage. To summarize,
we have made the following contributions.

e We introduce the historical butterfly counting problem and pro-
vide its hardness. This enables in-depth trend and dynamics anal-
ysis over temporal graphs, and helps understand how temporal
variations influence network structures over time.

The graph structure-aware index (GSI) is designed to support
efficient counting query with a controllable balance between
query time and memory usage. Theoretically, we prove that the
GSI approach transcends conventional computational complexity
barriers associated with general graphs when applied to power-
law graphs, a common characteristic of many real-world graphs.
When exact counting is not required, we propose an index com-
pression strategy to provide fast, high-quality, and unbiased
approximations of the counts based on the compressed index.
Extensive experiments demonstrate that our query algorithm
achieves up to five orders of magnitude speedup over the state-
of-the-art solutions with manageable memory footprints.

2 RELATED WORK

In this section, we review the related works, including the butterfly
counting on static bipartite graphs, motif counting on temporal
graphs, and other historical queries on temporal graphs.

¢ Butterfly Counting on Static Bipartite Graphs. Butterfly
is the most fundamental sub-structure in bipartite graphs. Signifi-
cant research efforts have been dedicated to the study of counting
and enumerating butterflies on static bipartite graphs [37, 44, 45].
Wang et al. [44] first proposed the butterfly counting problem and
designed an algorithm by enumerating wedges from a randomly
selected layer. Sanei-Mehri et al. [37] further developed a strat-
egy for choosing the layer to obtain better performance. Recently,
Wang et al. [45] utilized the vertex priority and cache optimiza-
tion to achieve state-of-the-art efficiency. Additionally, the parallel
algorithms [37, 41], I/O efficient algorithm [48], sampling-based
algorithms [23, 37, 40], GPU-based algorithm [40, 51], and batch
update algorithm [47] have also been developed for the butterfly
counting problem. In addition, the butterfly counting problems in
steam, uncertain, and temporal bipartite graphs have also been
studied [5, 38, 40, 56].

e Motif Counting on Temporal Graphs. The problem of
temporal motif counting has been extensively studied recently

(a) a temporal bipartte graph. (b) a projected graph Gy, 7. (c)a projected graph Gps .
G with duplicated edzes. whose butterfly countis 1. whose butterfly count is 3.

Figure 3: A temporal bipartite graph and its projected graphs in two
time-windows, associated with their butterfly counts.

[3, 17, 21, 24, 29]. Kovanen et al. [21] introduced the concept of
A-adjacency, which pertains to two temporal edges sharing a ver-
tex and having a timestamp difference of at most A, and consider
the temporal ordering aspect. The A-temporal motif counting with
[34, 36] and without temporal ordering [33] are also been stud-
ied. Furthermore, there are numerous approximation algorithms
available for solving counting problems [28, 39]. When it comes
to enumeration problems, isomorphism-based algorithms are the
most commonly used [25, 30].

Dther Historical Queries on Temporal Graphs. The his-
torical queries on the temporal graphs aim to compute the specific
structure in the snapshot of an arbitrary time window. The his-
torical reachability [49], k-core [54], structural diversity [7], and
connected components [52] of temporal graphs have been defined,
and index-based solutions have also been proposed. Note that our
work is significantly different with [5], as our work is focused on
more generalized scenarios of temporal graph mining, ie., analyz-
ing the relationship between vertices in a time interval and without
any temporal ordering limitations.

3 PRELIMINARIES

Throughout the paper, we use the big-O notation to express the
upper bounds of the absolute values of functions. For example,
0(1) includes functions between —£ and £ for some constant ¢
and sufficiently large n. We say f{n) = g(n) + O(h(n)) if f(n) =
gi(n) — c|hin)| for some constant ¢ and sufficiently large n. We
use O(f(n)) to denote all functions bounded by O(f(n) log® n) for
some constant ¢. We use [n] to denote the set {1,...,n}. For an
undirected graph, we denote every vertex u's degree as degy,.

3.1 Problem Definitions

Two common motifs are being widely studied on bipartite graphs:
wedges and butterflies. We give their formal definition as follows:

DerFmxTION 3.1 (WEDGE [45]). Given a bipartite graph G = (V =
(U,L), E), a wedge {x ~+ y~+ z} is a 2-hop path consisting of edyges
(=, y) and (y, z).

DeFmniTION 3.2 (BUTTERFLY [45]). Given a bipartite graph G =
(V = (U,L),E), and the four vertices x,y,z,w € V wherex,z e U
andy,we L, b: {x,y,z,w) is a butterfly iff the subgraph induced by
x4, 2, w is a (2, 2)-bicligue of G; that is, x and z are all connected to
y and w, respectively.

Throughout the paper, we study the temporal bipartite graphs. A
temporal bipartite graph is an undirected graph G = (V = (U, L), E),
where each edge ¢ € Eisatriple (u, o, t) with two verticesu = U, 0 £
L and a timestamp . Our major focus is the historical type query on
temporal bipartite graphs; that is, we query on an extracted graph
from G with respect to a certain time window. We denote it as the
projected graph and its formal definition is as follows:

1609

DeFmnrTION 3.3 (PROJECTED GRAPH [13]). Given a temporal bi-
partite graph G = (V,E) and a time-window [t,,t:](t; < t.), the
projected graph Gy, ,,| of G is an undirected bipartite graph without
timestamps, where its verfex set Vr . | isV and the edge set E[;_;,]
is{(u,0) | Iu,o,) e E A te[t,t])

Now, we are ready to state the major problem formally:

Proerem 1 (HISTORICAL BUTTERFLY COUNTING). Given a fempo-
ral bipartite graph G and a time-window [1,,1.], find the number of

butterflies in the projected graph Gy, ,.]-

In Figure 3, we are given a temporal bipartite graph G in (a),
in which the number represents the timestamp of each edge. We
consider two time-windows [1, 3] and [2, 6]. The corresponding pro-
jected graphs G|, 5] and Gz 5] are shown in (b) and (c), respectively.
The historical butterfly counting query associated with these two-
time windows is, in fact, counting on these two projected graphs.
Therefore, the answer is 1 ({1,3,4,5)) for [1,3] and 3 ({1, 2 4,5},
(1,3,4,5), (2,3,4,5)) for [2,6].

3.2 Some Key Techniques in Motif Counting

In the previous works on motif counting [45, 48], the value of
ﬁ Z(we)er min{deg,, deg,) is widely used for complexity analy-
sis for the given input graph G = (V, E). By [9], this can be simpli-
fied as O(8), where & is defined as the arboricity of the given graph.
We will adapt the & notion in our paper for brevity.

Our proposed algorithms widely use two important techniques:
the Vertex Priority method and the Chazelle’s strudture.

Vertex Priority. The vertex priority method reduces the number
of wedges we need to consider. To begin with, we define the vertex
priority as follows:

DeFmniTION 3.4 (VERTEX PRIORITY [45]). For any pair vertices
x, Y in a temporal bipartite graph G, we define x is priov toy (prix) <
pr(y))if and only if: degy > degy, or deg, - deg, andid(x) < id(y),
where deg, denotes the degree of u when only considering unique
edges in G, and id{u) denotes the unique ID of u.

By [45], we only need to consider the wedges {x ~+ i~ z) that
satisfy pr(x) < pr(y) s pr(z) < pr(z) in order to count the butter-
flies without repetition or missing. Each butterfly {x, y, z, w} is con-
structed from two such wedges {x ~+ y~-+ z) and {x ~+ w-= z}.

2D-range Counting. Our algorithm will transform counting but-
terflies into counting points on a 2-dimensional plane, known as the
2D-range counting problem. Specifically, let P be a set of n points
in 2-d space R%. The 2D-range counting problem is: Given an or-
thogonal rectangle of the form [xy,2z] % [y, yz]. find the size of
|@ n P|. For an instance of the 2D-range counting problem, we use
a classic data structure known as Chazelle’s structure [6] to handle
all 2D-range counting queries after preprocessing:

TueonreM 3.1 (CHAZELLE'S STRUCTURE [6]). A Chazelle’s sructure
C.5 is a data structure that can answer each 2D-range counting in
O(log n) time and O~ ':Jg") memory usage, where cw is the word size.
The preprocessing time is O(n log n).

In practice, 2** significantly exceeds the number of points in-
volved in our method’s 2D-range counting task. Therefore, we

assume that log n is O(w) for Chazelle's structures used and sim-
plify the memory usage into O(n) for brevity. In later sections, we
use O5 to denote such a data structure.

3.3 Baselines

Our baseline solutions are built upon the states-of-the-arts methods
for exact butterfly counting (i.e., BFC-VP++ [45]) and approximate
butterfly counting (i.e., Weighted Pair Sampling (WPs) [55]) on the
static graphs. We need to extract the static graph from the temporal
bipartite graph for a given time-windows first, and then run the
following solutions:

BFC-VP++: The BFC-VP++ algorithm sorts vertices by their pro-
posed vertex priority (Definition 3.4) and efficiently identifies
almost all minimally redundant wedges that can form a butterfly,
offering a practical, efficient, and cache-friendly solution. In addi-
tion, BFC-VP++ can be highly parallelized. We will also compare
our methods with its parallel version in the following.

WPS: The basic idea behind WS is to estimate the total butterfly
count with the number of butterflies containing two randomly
sampled vertices from the same side of the two vertex sets. The
method has been proven as unbiased and theoretically efficient
in power-law graph models.

4 INDEX-BASED ALGORITHMS

In this section, we consider solving Problem 1 exactly by index-
based solutions. To begin with, in Section 4.1, we give a hardness
result showing that O(m?/A2) space is needed to answer queries
exactly in O(1) time, where m denotes the number of edges in
the given temporal bipartite graph G. Correspondingly, we pro-
vide an algorithm that meets such bound in Section 4.2, named as
Enumeration-based Index (E5I). EBI achieves O(1) query time but it
needs expensive memory usage for large graph data. In Section 4.3,
we introduce a different algorithm named Combination-based Index
(CBI) that can be constructed under practical memory constraints.

To bridge the gap between theory and practice, we propose a
new algorithm in Section 4.4 that effectively combines EBI and CRI,
demonstrating strong performance on real-world graph data. This
algorithm, named Graph Structure-aware Index (G51), intelligently
allocates graph data to the two indices which allows it to take
advantage of the underlying graph structure. In addition, without
compromising the performance, 651 can also handle duplicate edges
with proper modification, which is discussed in Section 4.6.

4.1 Problem Hardness

Our result is motivated by the hardness result in [10] where they
reduce the SeT DisjomwTiess problem (Definition 4.1) into Prob-
lem 1. While [10] considers timestamps on vertices, we prove for
the setting where timestamps are on edges separately.

DeFINITION 4.1 (SET DisjorNTNEss). Given a collection of s = 2
sefs 5y, 5z, ..., 5:, @ query (a,b) € [5]? asks for whether 5; N 5y is
emiy.

The strong set disjointness conjecture [14, 15] is as follows:

Turonem 4.1. For the set disjointness problem, any dafa structure
with query time A must use (n® {A%) space where n is the sum of the
sizes of §p,. .., Ss.

1610

5:[12) gz =[O oy

51 [23)

Figure 4: An example for reducing the set disjointness problem into
exact historical butterfly counting in temporal bipartite graphs.

Specifically, we prove the following result for Problem 1:

Tueorem 4.2. Consider Problem 1. Let m denote the number of
edges in G. Fovany A € [1,m] and § = 0. Suppose that we have a data
structure for Problem 1 using O(m®=% A2} space and exactly answers
each query in O(A) time. Then, for any set disjointness problem with
T%_ |S:| = N, we have a data structure that uses O(N*~% [A%) time
and that +answers each query in O(A) fime.

Proor. Suppose that we have a data structure for Problem 1
using O(m*~% fA%) space and exactly answers each query in O{4)
time. We can utilize the data structure for a set disjointness instance
as follows:

Let there be s sets 51,.. ., S:. Without loss of generality, we let
1,...,t denote all distinct elements in 5y, ..., 5, i.e, L_JLl 5=t
We construct a graph G = (V = (U, L), E) such that [’ = [s] and
L=[t+1]. Anedge (i, j) exists if j € 5; or j = t + 1. We assign
timestamp i to the edge (i, j).

We build the data structure for the graph G defined above. For
two integers a < b € [s], we can query the data structure for the
number of butterflies in the time window [a, b]. Since the timestamp
on edge (i, j) is equal to i, such butterflies are exactly those with
the form {u, 0, w,x} such that u, w € [a, b]. The number of such
butterflies is

[

Q(a,blgz Z (

=a j=i+l

|Si I'-IS_fl +1
2

Notice that O(a, b) is the two-dimensional prefic sum of 1_'5"'-'?*"'”].
In other words, we can calculate (<"} by Q(a, b)-Q(a+1,b)-
Qla,b—1)+Q{a+1,b—1), where we define Q{x, y) = 0 forx = y.
We can answer whether |5; N 5| = 0 by checking whether this

value is equal to zero.
u]

For example, in the Figure 4, we reduce the set disjointness prob-
lem for three sets {1,2}, {2,3} and {3, 4} to a historical butterfly
counting problem on the graph we constructed. For determining
whether §, N 5; is empty, we count the number of butterflies of
the form (1,0, 2 x}, Q(1,2), which is equal to 1_|S’r"§’|+] J. For de-
termining whether 5 N 53 is empty, we calculate [|$ln§,|+1] =
0(1L,3)-Q(23)-Q0(1,2) +Q(2,2)=2-1-1+0=10.

This hardness result shows that to achieve efficient query run-
time (e.g., O(A)), large memory space is necessary (e.g., O(m=/AZ)).
Even though we can design theoretically optimal algorithms that
reach the lower bound, they might not be practical when the input
graph is large. One possible way to overcome such a challenge from
a practical perspective is to develop algorithms that take advantage
of real-world graphs’ properties.

Figure 5: An illustrative example for active timestamps of wedges
and the butterfly constructed from them.

4.2 Enumeration-based Index

Since the structure of a temporal graph changes over time, each
subgraph has its own life cycle, i.e., the only interval of time in
which it exists. We denote such an interval as the active timestamp
of this subgraph. We give a formal definition as follows:

DEFINITION 4.2 (AcTIVE TIMESTAMF). For any subgraph F of a
bipartite temporal graph G, we define the active timestamp T(F)
as a pair of ordered timestamp [, r](l < r), such that P exist in the
projected graph Gy, ;] if and only ift: <l andr < ..

In Figure 5, there are two wedges w; and w;. For w;, since it
contains two edges (1,3, 1) and (1, 4, 3), it only exists in a projected
graph Gy, ;] satisfying ¢« < 1 and t. = 3. The active timestamp
T (w;) is [1,3]. Similarly, for w;, its active timestamp is [2,4].

The proposed Enumeration-based Index (EBI) algorithm is shown
in Algorithm 1 and Algorithm 2. For brevity, we assume that no
duplicate edge exists. We discuss how to handle duplicate edges
without compromising the performance in Section 4.6.

Construction The goal is to enumerate every butterfly and
compute its active timestamp. After initializing a 2D-range counting
data structure T by all butterflies’ timestamps, we can answer every
historical butterfly counting query through a single query on Tg.
We initialize it to be empty in the beginning (Line 1).

To find all the butterflies in G, we enumerate all the wedges.
We consider two wedges w;, w; of G with shared endpoints but
different middle vertices, denoted as w; : {x ~+ y; ~+ z} and w; :
{.‘l‘. Tk Lot z}.LEt‘T{w;} = [li, r,-] E.'I'I.d.'r{w_;} = “_i'r F'_f]. The tem-
poral butterfly constructed from them is denoted as bij = wi © wy,
where T{b}j}l = []]'I.‘i.'l'lﬂi, l_f ::I, max{r,—, r_;)].

In Figure 5, we demonstrate how to construct a butterfly b;; with
two wedges w; and w;. Since by; contains edges (1,3,1), (1,4,3),
(2,3,4), and (2, 4, 2), its active timestamp can be computed by [=
min{f| 3e = (u,0,1) € edges(lby;)} = 1, and r = max{t| 3e =
{u,0,1) € by;} = 4. By the definition of the o operation, it can also
be computed from 7 (w;) and 7 (w;). This also indicates that a
butterfly b;; = w; o w; exists in a given time-window, if and only if
the active timestamp of w; and w; are both included in the window.
Such observation helps us develop an alternative index approach
in the later section.

We follow the method in [45] to enumerate every wedge w; :
{x ~+ Yy~ 2} [I;,r;] in G without repetition or missing (Line 3).
The complexity is bounded by the total number of wedges in G.
Let W[(x, z)] be a set of wedges whose endpoints are x, z. W is the
family of sets W[(x, z)]. W is initialized to be empty (Line 2). For
the current wedge w;, we first check if its endpoints (x, z) exists in
W (Line 4) (by a hash table, for example). If not, we initialize the
corresponding set W[(x, z)] to be empty (Line 4).

Since any two different wedges with the same pair of endpoints
{x, z) construct a unique butterfly, we enumerate every w; in
Wix,z)] (Line 5) and construct a butterfly b;; = w; o w; with

1611

T (ki) = (1.t¢) (Line 6). Correspondingly, we insert a single
2D point (f, &) into Tg. After enumeration, we need to update
W[{x,z)] by inserting w; in it (Line 8). After finding all the butter-
flies, we run the preprocessing for Ty and return it (Line 10).

In Figure 6, we provide an example of our construction pro-
cess. There are three wedges wy @ {1~ 4~ 2}, wz 1 {1~ 5~ 23,
wy 2 (1o dor 3wy 2 (1o 5o 3), w2 (20 4o 3), Wy
{2 ~r 5~ 3) where T(w1) = [46], T(wz) = [2,5], T(ws) =
[4,4], T(swa) = [24], T(ws) = [4,6], T(ws) = [4,5]. We group
them by (x, z). There will be three groups (sets) of wedges: W[(1,2)] =
{wi,wzl, WI(L,3)] = {ws,wa}, W[(2,3)] = {ws, ws}. For each
group, we construct a butterfly b;; from each pair of different
wedges wy, w; from the group. We have by = wy 0wz, bz = w3 0wy,
by = w5 © wg. We compute their active timestamp through simple
caleulation: 7(ky) = [2,4], T(bz) = [2,6], T(ks) = [4,6]. In the
end, we insert (2, 4), (2, 6), (4, &) into Tp. Note that in this showcase,
for demonstrating the group dividing, we do not follow the vertex
priority in Definition 3.4. Otherwise, we only consider three wedges
and they are all in the group W[(4,5)].

* Answering Query Since each butterfly with active timestamp
[I.r] is represented by a point (I,r) in Tg, a historical butterfly
counting of time-window [#,, ;] can be interpreted as a 2D-range
query counting the number of points in the rectangle [t;, o] x
[—ee, t.]. We query Tk for it and return the answer directly (Line 1).

In Figure &, after the preprocessing of T, we can answer any
2D-range counting query concerning those three points, which rep-
resent the three butterflies. When we want to query the number of
butterflies in time-window [1, 5], we are asking how many butter-
flies” active timestamps are in the range of [1,5]. We interpret this
as querying the number of points in the rectangle [1, 0] x [—oe, 5].
There is only one point (2,4) in the rectangle. Therefore, there
is only one butterfly in the projected graph of the queried time-
window. The calculation is done by a single query on Tg. It is a
typical 2D-range counting query.

* Time and Space Complexity The time and space complexity
of EBI is summarized as follows:

TueoreMm 4.3. Denofe B as the number of butterflies of the input
graph G and & as the arboricity, EBI s construction (Algorithm 1) runs
in O(m&+Blog m) and takes O(B) space. After the construction, each
query (Algorithm 2) takes O(log m) to answer.

Proor. The construction process requires enumerating all wedges.
By [45], this takes O(m&). For each wedge w; : {x ~+ gy~ z},
it is inserted in W[(x, z)]. By enumerating every existing w; in
Wix,z)], every butterfly b;; = w; o w; is enumerated exactly
once. Since the o operation takes 0(1) and the insertion to T takes
O(log m) by Theorem 3.1, the total preprocess time for all butterflies
takes O(B log m). Therefore, the total runtime for Algorithm 1 is
O(m&+Blog m) as desired. Every wedge will be stored in W[(x,)]
where x, z are its endpoints. All the wedges take O(m4) space in
total. Tg contains O(B) points in total. By Theorem 3.1, it takes
O/(E) space. The total memory usage sum up to O(B + mé&). Each
query on EBI is a range query on Tg. By Theorem 3.1, this takes
O(log m) time and no additional space. o

The EBI algorithm reaches the bound in Section 4.1: Since § is
bounded by O(+/m) and B is bounded by O(m®), the memory usage
is bounded by O(m?). Therefore, EBI answers each query in O(1)

atterfly count of Gy g is
[query([1,5] « [=e=, 5]}

Figure 6: An example for transforming historical butterfly counting
into 2D-range counting.

Algorithm 1: FRI-CoNSTRUCTION
Input: a bipartite temporal graph: G = (V, E);
Output: a C.5 (Theorem 3.1) for indexing (EB-index) Ti:
Initialize T with an empty C.5;
W+ an empty hashmap mapping pairs of vertices to sets;
for each wedge wy : {x == y~s 2} [, 1] € Gdo
if (x,z) @ Wkeys() then W[ix,z)] — @ ;
for wy; € W[(x, z}] do
by — wro wy;
Tg.insertity, tr);
Wlixz)] — Wlixz}] U we

o Preprocess Tg (Theorem 3.1);
w return Tg;

T

A (b te) = T by

Algorithm 2: FRI-QUERYING
Input: a ime-window: [t,, t.]; a EB-index: Tg;
Output: temporal butterfly counting: numg, ¢,

1 return num |y, p,) +— Te.query([ts, oo] % [—on fe]);

time and take O(m?) space. This indicates that EBI’s asymptotic
memory usage cannot be further improved without affecting the
O(1) query time. On the other hand, though reaching theoreti-
cal optimality, EBI's performance on large-scale data is not ideal
because enumerating and storing all butterflies is challenging for
these graphs. For example, in the Wiktionary dataset!, the butterfly
count exceeds 10'® where the graph contains about 4 x 107 edges®.

4.3 Combination-based Index

If the graph is large, it is not realistic to pre-compute and store all
butterflies to handle historical queries, as this requires too much
space. On the other hand, we are only interested in the number of
butterflies, so it is not necessary to construct them explicitly.

Recall that a butterfly exists in a given time window if and only
if the active timestamp of the two wedges are both included in the
window. Consider a group of wedges S = {{x ~+ y~+ z}} where x, z
are fived. Any two wedges from 5 form a butterfly. Therefore, the
total number of butterflies that comes from 5 is | |§|]. This idea leads
us to a different index algorithm, named Combination-based Index
(CBI). The implementation details are provided in Algorithm 3 and
Algorithm 4. Similarly, we assume no duplicate edge for brevity.
Resolving them is deferred to Section 4.6.

Construction In EBI, we use one 2D-counting data struc-
ture to store butterflies. Instead, in CBI, we map every type of
wedge to a separate data structure. We initialize a hashmap T in
the beginning (Line 1). We still need to enumerate every wedge
wi 1 gx =+ Y ~+ 2} [, ri] in G (Line 2). A wedge with endpoints

Unttp:/ konect.cof
?Here, #butterilies is larger than the square of #edges duse to duplicate edges, which
will be handled in Section 4.6.

1612

x, z is maintained by the ZD-counting data structure T-[(=, 2)]. If
T-[(x, z)] does not exist{Line 3), we initialize an empty C.5 (Theo-
rem 3.1) for T-[(x, z)] (Line 4). Unlike in EBI, where we compute
every butterfly that is constructed from the new wedges w; and a
previous wedge w; € Wix, z)], we directly insert a point [[;, r;]
(w;'s active timestamp) into the corresponding T-[(x, z)] (Line 5).
After the enumeration, we preprocess all data structures T-[(x,)]
and return Ty~ (Line 7).

* Answering Query To answer a historical butterfly counting
of time-window [, t.], for every type of wedges, we first need to
compute the number of wedges that exist in the time-window, then
compute the number of butterflies by a simple binomial coefficient.
We set a counter num[;, ;] to be 0 initially (Line 1). We enumerate
every existing data structure in T (Line 2). Similar to what we do
in EBI, we query on the corresponding 2D-counting data structure
Tl (=, z)] with a query [1;,00] ® [—oo, 1] to get the number of
wedges that are active in the time-window (Line 3). Denoting the
query answer as count, we add (““3") to nump,, , |, which is the
number of butterflies that are constructed from these wedges. After
enumerating all the data structures, we return num;_;,| as the
total number of butterflies (Line 7).

* Time and Space Complexity The time and space complexity
of CBI is summarized as follows:

TueoreMm 4.4. Denofe w as the number of wedge groups and & as
the arboricity. €61 's construction {Algorithm 3) runs in O(mé&log n)
and takes O(mé&) space. After the construction, CBI answers each
query (Algorithm 4) in O(w log n) time.

Proor. The construction process (Algorithm 3) also requires
enumerating all wedges, which takes O({m4) by [45]. For each group
of wedges with the same endpoints, a C.5 needs to be initialized
with all wedges from this group. Since the number of wedges is
bounded by O{mé) and each group contains at most O{n) wedges,
the total time for preprocessing all the data structures is O(mé log n)
by Theorem 3.1. Similar to Theorem 4.3, it takes O(m&) memory in
total. When answering a query (Algorithm 4), all groups of wedges
need to be enumerated, and their corresponding C.5 will be queried
exactly once. The total query time will be O(w log n) = wx O(log n)
by Theorem 3.1. Memory usage is dominated by 2D-range counting
data structures for each group of wedges. m}

As a result, CBI manages to resolve the memory issue of EBI
when there are too many butterflies. Although w is bounded by the
number of wedges (i.e., md), in practice, it is significantly smaller
(i.e, w = md). For example, in the Wiktionary dataset, there is
about mé = 1.3 % 10° wedges but only w = 5% 107 wedge groups
with different (x, z).

By further observing the distribution of wedges on real-world
data, we see a concentration phenomenon that our algorithm has
not addressed: Most wedges are grouped in a few groups, while the
rest contain only a very small number of wedges. Therefore, build-
ing a separate data structure for every wedge group might be too ex-
pensive and unnecessary, especially for groups that only contribute
a small amount of butterflies. For example, in theWiktionary (WT)
dataset, more than 81.3% wedge groups contain less than 10 wedges.

Algorithm 3: CBI-CONSTRUCTION

Input: a bipartite temporal graph: G = (V, E);
Output: a hashmap mapping pairs of vertices to multiple CSs: Tc;
Tc < an empty hashmap mapping pairs of vertices to CSs;
for each wedge w; : (x ~ y~> z) [l;,r;] € G do
if (x,z) ¢ Tc.keys() then
| Initialize Te [(x, z)] with an empty CS;

P

Tel(x,z)].insert(l;, ri);

«

o

Preprocess each data structure in Tc (Theorem 3.1);
7 return Tg;

Algorithm 4: CBI-QUERYING

Input: a time-window: [, t. |; a CB-index: T¢;
Output: temporal butterfly counting: num|,, s, 1;

1 numizgs,] < 0;

2 for (x,z) € Tc.keys() do

3 L count — Tc[(x,z)].query([ts, 0] X [—eo, fe]);
4

count
UM (15,10] < MUM 151,] + (2)
5 return numip; ;,1;

|
A AT ! ey
el (1) (2) TG4 (3)

the remaining 97 wedges and 50 butterflies

Figure 7: An illustrative example for demonstrating GSI.

4.4 Graph Structure-aware Index

Recall that the number of butterflies dominates the memory usage
of EBI, and the number of wedge groups greatly affects the query
time of CBI. They fail to take into account the actual structure
of the input graph. If we assume that most wedge groups only
contain a very small amount of wedges, we might be able to take
advantage of both EBI and CBI by distributing each wedge group
into one of EBI and CBI by its size. As the main result of our paper,
we propose a new index algorithm named Graph Structure-aware
Index (GSI) with such an idea. Besides its promising performance
on real-world data, it can also be parallelized to reach an even
better performance. The implementation details are provided in
Algorithm 5 and Algorithm 6.

e Construction The important assumption we make here is
that a small number of groups contain most of the wedges. Our key
idea is to store them in the same way as CBI, building a 2D-range
counting data structure for each index, maintained by a hashmap
Tc. For the rest of the wedges, we precompute all butterflies con-
structed from them and store them in one data structure Tg like
EBI. In the beginning, in addition to Tg (Line 1) and T¢ (Line 2),
we also initialize a hashmap W to group wedges directly (Line 3).
We enumerate all w; : (x ~ y ~> z) [l;,r;] in G (Line 4) and store
them into the corresponding set mapped by W[(x,z)] (Line 6) .
If the key does not exist in W, we need to initialize the set to be
empty (Line 5). After grouping wedges, we sort the sets in W with

1613

decreasing order of sizes. We also need to compute the total number
of butterflies and store it in num and numB (Line 8 to Line 10).

We introduce a parameter a to control the cutoff between the
two methods. More specifically, we build a data structure for some
sets in W such that the total number of butterflies constructed from
them does not exceed « fraction of all the butterflies in G. The
butterflies constructed from the other sets in W are maintained by
one data structure per set.

We enumerate the sets in W by decreasing the order of sizes
(Line 11). num represents the number of butterflies we processed.
If we have not processed the majority of butterflies, i.e., when num
is no less than & - numB (Line 12), we build a CS for every wedge
in W[(x,z)], inserting points representing their active timestamps
(Line 13 to Line 15). num is subtracted by (‘W[(;’Z)”), indicating
that these of butterflies are recorded by T [(x, z)] (Line 21).

When num is smaller than « - numB, we have already handled
the majority of butterflies. Now, we need to process butterflies built
from the rest of the wedges groups. Though each of these groups
only contains a relatively small amount of wedges, the number of
groups might be large. Here we apply the idea of EBI. We enumerate
every possible wedge pair in the current enumerated W|(x, z)]
(Line 17 to Line 18), compute the butterfly b;;[t;, tr] < w;i o w;
(Line 19) and insert a point (#;, t,) into the global data structure Tg
(Line 20). In the end, after preprocessing every CS in T and T,
we return them and finish the construction (Line 23).

An example of construction is shown in Figure 7. In the input
graph, there are 100 wedges with endpoints (1, 2) and 50 wedges
with endpoints (3,4), while there are only 97 wedges in other
groups. We treat these two groups with the CBI method and build
Te[(1,2)] (a), Tc[(3,4)] (b) correspondingly. We compute all 50
butterflies for the remaining wedges and store them in Tg (c).

e Answering Query For a historical butterfly counting of time-
window [fs, te], we need to accumulate answers from both T¢ and
Tg. As in EBI, we directly query the 2D range [fs, 00] X [—0c0, t.] on
Tk (Line 1). Then, as in CBI, we enumerate all groups of wedges from
Tc (Line 2). We query Te[(x, z)] with the same 2D range (Line 3)
and add up the number of butterflies constructed from each group
of wedges (Line 4). We return the answer as the sum of these two
parts (Line 5). In the Figure 7 showcase, we query from all three
CSs: Te[(1,2)], Te[(3,4)], Tg and sum up the answer.

¢ Time and Space Complexity The time and space complexity
of GSI is summarized as follows:

THEOREM 4.5. Denote f§ as the number of CS building for wedge
groups of the input graph G and § as the arboricity. GSI’s construction
(Algorithm 5) runs in O(mdlogn + aBlogm) and takes O(md +
aB) space. After the construction, each query (Algorithm 6) takes
O(Blogn +logm) to answer.

Proor. The construction process (Algorithm 5) requires enu-
merating all wedges, which takes O(md) by [45]. The rest of the
algorithm can be divided into two parts: a CBI instance of f wedges
group containing (1 — @) B butterflies and an EBI instance contain-
ing aB butterflies. By Theorem 4.3 and Theorem 4.4, the total time
complexity is O(mdlog n + aBlog m) and the corresponding query
complexity (Algorithm 6) is O(flog n + log m). The memory usage
is O(md + aB). O

Algorithm 5: GSI-CoNSTRUCTION

Input: a bipartite temporal graph: G = (V, E); a parameter for
space using: a;
Output: a CS for indexing (EB-index): T; a hashmap of CS for
indexing: Tc;
Initialize Tg with an empty CS;
Tc < an empty hashmap mapping pairs of vertices to CSs;
W « an empty hashmap mapping pairs of vertices to sets;
for each wedge w; : (x ~ y~ z) [l;,ri] € Gdo
if (x,z) ¢ W.keys() then W[(x,2z)] « 0 ;
L W(x,2)] « W[(x,2)]U wi;

Sort sets in W with decreasing order of sizes;
8 num « 0;

N R W N e

©

for (x,z) € W.keys() do num < num+ (lw[<;"z)]|) ;

numB «— num;
for (x,z) € W.keys() do
if num > a - numB then
Initialize T [(x, z) | with an empty CS;
for w; : [l;,ri] € W[(x,z)] do
L Tel(x,z)].insert(l;, ri);

10
1
12
13

oy

14

16 else

17 for w; : [l;,ri] € W[(x,z)] do
for w; : [lj,rj] € W[(x,2)] A (j > i) do
bij «— wj o wj;
Tg.insert (i, t,);

19
20

/1 (4, tr) = T(bij)

21

| num < num - (‘W[(;’Zm);

Preprocess Tg and each data structure in Tc (Theorem 3.1);
return Tg, T¢;

Algorithm 6: GSI-QuEryING
Input: a time-window: [, t¢ |; GSI-indexes: Tg, Tc;
Output: temporal butterfly counting: num|;, s, 1;
1 numyyg) — Tg.query([ts, o] X [—oo, te]);
for (x,z) € Tc.keys() do
L count — Tc[(x,z)].query([ts, 0] X [—eo, fe]);

count)
return nump; ,1;

2

3
4

num | go] < num i ge) + (<

5

Note that f is determined by « and bounded by the number
of wedge groups w. In real-world datasets with practical memory
constraints, f is significantly smaller than w (i.e, § < w). For
example, in the WT dataset and under a 500 GB memory constraint,
the f of GSI is 6986 when setting the optimal « that maximize the
memory utilization, while the w is 3, 925, 064.

As a result, GSI manages to address the concentration phenome-
non of the wedges distribution on real-world graphs, taking advan-
tage of both EBI (for scattered wedges) and CBI (for concentrated
wedges). It also has flexibility regarding the different limitations of
memory. In addition, under the well-known power-law model [1],
GSI has a non-trivial complexity, which is analyzed in Section 5.

4.4.1 Automatically Determining a. The parameter « reflects a
trade-off between query time and memory usage. Therefore, select-
ing a proper a based on the input graph and the memory limit is
important. We introduce an easy method to automatically select
an efficient o before executing GSI. In the beginning, we set & = 0,
which means that all wedge groups will be maintained separately

1614

with a CS data structure. We sort wedge groups by size from small
to large and enumerate them one by one. For each enumerated
wedge group i with w; wedges, we increase o by (v;")/B, where B
is the number of butterflies, precomputed in Line 8 to Line 9. We
can estimate the memory usage by simple calculation as Chazelle’s
structure’s memory usage can be precomputed based on the number
of inserted points in O(1). We stop and determine « if the estimated
memory exceeds the limit with the next wedge group. This process
takes O(md) time and avoids actually building indexes.

4.4.2 Parallelized Querying. After the construction process, when
answering a query (Algorithm 6), we are, in fact, summing up the
answer from several independent CS data structures, which mo-
tivates us to utilize parallelization to speed up. Assume we have
multiple threads, and these threads can handle different CSs si-
multaneously. Since no conflict occurs when these threads read
the indexes simultaneously, we consider Algorithm 6 is highly par-
allelizable when the number of CSs greater than the number of
threads. To demonstrate, we implement and evaluate a parallel
version of GSI in Section 6.1.4.

4.5 Index Compression

EBI has already reached the memory lower-bound in Theorem 4.2.
Meanwhile, GSI provides a lower and adjustable memory usage in
practice, with a better theoretical guarantee in the power-law graph.
Both our algorithms are designed for exact solutions. However, in
some applications of butterfly counting, such as graph kernel anal-
ysis [40] and network measurement [37, 44], using approximation
counts is sufficient. In this section, we show that if we allow a
small error ratio (e.g., < 107°%) of the butterfly counting, we can
reach a much lower memory usage on real-world graphs. Two index
compression methods for approximate historical butterfly counting
with strong theoretical guarantees are introduced.

Single-sided Compression (SGSI). Intuitively, most butterflies in
Algorithm 6 come from T¢ (Line 2 to Line 3) while the actual mem-
ory usage of T is much larger in general. This inspires us only
to maintain a small portion (e.g., ﬁ) of all Tg’s butterflies. We
denote A; as the single-sided compression ratio, which indicates
we only preserve A; - aB butterflies, where aB is the total number
of butterflies in Tg. Each butterfly is preserved with probability A4
independently. In other words, we modify the GSI algorithm so
that when GSI inserts a 2D point into Tg, the insertion is actually
performed with probability 1;. We denote the compressed Tg by
Tg. To answer queries, we return ﬁg.query([ts, 00] X [—o0, te]) /A1
(Line 1 in Algorithm 6). This results in a compressed memory usage
of O(mdlogn + A1 - aBlogm).

Double-sided Compression (DGSI). SGSI only compresses on Tg,
which does not affect the query efficiency. If we further compress
Tc, we can reach a faster query time and even lower memory us-
age. Specifically, in DGSI, besides compressing Tg as in SGSI, we
only maintain Az portion of wedges for each group in T¢’s CSs.
Each wedge is preserved with probability A independently. We
denote the compressed T by TE To answer queries, each CSin %
contributes (“°4")/ A% (Line 4 in Algorithm 6) to the total answer

where count is the number of wedges in CS in the projected graph.

This results in an O(flog(A2n) + log(A1m)) query time, which is
more efficient than our exact algorithm, GSI.

In our technical report Part A, we prove that both compression
methods are unbiased and bound their errors by the following
theorems.

THEOREM 4.6 (COMPRESSING Tg). For any historical butterfly
counting query [ts, te] on a bipartite graph G, let B denote the cor-
rect number of butterflies in G, ;,| that is maintained by T, i.e.,
B = Tg.query([ts, 0] X [—o0,t.]). Let B” denote the number of but-
terflies computed by the compressed Tg in SGSI with compression
ratio Ay, i.e, B’ = Tg.query([ts, o] X [—o0,t.])/A1. B’ is unbiased,
i.e., the expectation of B’ is equal to B. The absolute error |B — B’| is
O(B°® 10g0'5(n)/11_0'5) with high probability, where n is the number
of vertices.

THEOREM 4.7 (COMPRESSING T¢). For any historical butterfly
counting query [ts, te] on a bipartite graph G, let S denote the correct
number of butterflies in G|y, ;.| that is maintained by Tc, i.e., the
total increment of num;_, | in Line 4 of Algorithm 6. Let S" denote
the number of butterflies computed by the compressed Tc in DGSI
with compression ratio A. S’ is unbiased, i.e., the expectation of S’
is equal to S. The absolute error |S — 8’| is O(S*7> 1n(n)0'75/12_1'75)
with high probability, where n is the number of vertices.

Theorem 4.6 directly bounds the error of SGSI. To bound the
error of DGSI, we may add the error bounds for compressing the
Tr part (Theorem 4.6) and compressing the Tc part (Theorem 4.7).

4.6 Handling Duplicate Edges

The key challenge when the graph has duplicate edges is that the
life cycle of a wedge or a butterfly is no longer an active timestamp
as defined in Definition 4.2. As we will see in our technical report
Part B, the life cycle can be decomposed into several redefined
active timestamps (Definition 4.3) for graphs with duplicate edges.
We will prove that the decomposition does not increase the time
complexity or memory usage of GSI (Lemma 4.8 and Theorem 4.9).

DEFINITION 4.3 (ACTIVE INTERVALS FOR GRAPHS WITH DUPLI-
cATE EDGEs). Given a bipartite temporal graph G with duplicate
edges, a subgraph P, we define the active intervals 7 (P) as a tuple of
timestamps of the form [I,r1,r2](I < r1 < ra) such that P is active
in the query time-window [t te] if and only if for exactly one of the
timestamps [I,r1,r2], ts < landry <te <rp.

For applying GSI to a graph with duplicate edges, we first modify
CS such that it can answer 2D-range queries on timestamps of the
form [1, r1, r2], i.e., counting the number of [/, r1, rz] such that t; < I
and r; < te < ry given the query time-window [, t¢]. This can be
done by applying the inclusive-exclusive principle on 2D ranges.
Then we generate the active intervals (tuple of timestamps [/, r1, r2])
for each wedge. We feed each [I, 1, 2] to GSI (with the modified
CS). A detailed explanation can be found in our technical report
Part B. Lastly, we prove that if the size (number of [I, 1, r2] in the
tuple) of the active intervals of each wedge is bounded (Lemma 4.8),
both EBI and CBI’s time complexity will not be compromised.

LEMMA 4.8. For any two vertices u,v € V(G), we denote cnty
as the number of edges (u,v,t) € E(G). There exists an algorithm
(Algorithm 7 in the technical report Part B) that returns its active
intervals (Definition 4.3) of size O(min(cnty, y, cnty 7)) for any wedge
(x ~ y~z).

1615

Proof of 4.8 can be found in our technical report Part B. With
this lemma, we are ready to prove that the time complexity for
our algorithms will not be compromised by duplicate edges, whose
proof can also be found in our technical report Part B.

THEOREM 4.9 (TIME COMPLEXITY WITH DUPLICATE EDGES). (i)
There exists a modification for EBI that can run in O(logm) time
and O(m?) memory usage for bipartite temporal graphs with dupli-
cate edges; (ii) There exists a modification for CBI that can run in
O(wlogm) time and O(mdS) memory usage for bipartite temporal
graphs with duplicate edges.

5 ANALYSIS ON POWER-LAW GRAPHS

e Power-law Bipartite Graphs Previous research [16, 42]
shows that many real-world bipartite graphs follow the power-law
distribution with y generally between 2 to 3, similar to the scale-free
graphs model for unipartite graphs. By leveraging the properties
of the power-law degree distribution, there are many studies on
analyzing algorithms based on such settings [4, 22, 53, 55]. In this
section, we prove that GSI runs in O(A) time and O(m?~%/12) mem-
ory for some § > 0 with high probability on power-law bipartite
graphs [1] with y € (2,3), in contrast to the hardness result in
Section 4.1 for the general case. We use the following model for G.

DEFINITION 5.1. Let ny be the number of vertices in U. Let ny be
the number of vertices in L. Let y;, A; (i = 1,2) be the exponents and
max degrees of two power-law distributions. A power-law bipartite
graph is obtained by the following process: (1) For each vertex x in U,
sample dx € [1, A1] such thatP [dx = k] oc k™1 (2) For each vertex
y in L, sample dy € [1,Az] such that P [dy = k] oc k72, (3) Let
m=E [Yyeudx] =E [ZyeL dy] be the expected number of edges
in G. (4) For each pair of vertices x € U, y € L, sample the existence
of the edge (x,y) such that P [(x, y)exists] dj;jy.

For Definition 5.1 to be well-defined, we need to choose parame-
ters such thatE [}, cydx] =E [ZyeL dy], i.e., the expected sums

of degrees for vertices in U and L are equal. We note that the sam-
pled dx and dy values are intermediate variables of the sampling
process. They are not necessarily the same as the degrees deg,. and
deg,, of vertex x and y. We can interpret dy as the expected degree
of x. Based on Definition 5.1, there are two following two types
of power-law bipartite graphs to model the real-world networks
comprehensively.

DEFINITION 5.2 (DOUBLE-SIDED POWER-LAW BIPARTITE GRAPH).
A double-sided power-law bipartite graph is a power-law bipartite
graph (Definition 5.1) satisfying y1 € (2,3), and y2 € (2,3).

DEFINITION 5.3 (SINGLE-SIDED POWER-LAW BIPARTITE GRAPH).
A single-sided power-law bipartite graph is a power-law bipartite
graph (Definition 5.1) satisfying y1 € (2,3), y2 =0, and A1 > Aj.

Twitter exemplifies a single-sided power-law bipartite graph,
where the distribution of followers per user varies significantly,
often displaying a vast disparity. In contrast, the number of accounts
each user follows tends to be more uniform and comparatively
narrow in range. In contrast, movie-actor networks exhibit a double-
sided power-law distribution. Most actors appear in just a few films,
and the majority of films feature only a small number of actors.
However, a select group of highly connected actors mirrors the

highly-followed users on social media platforms, while films with
large casts resemble “super-connected” nodes.

e Time and Space Complexity We calculate the expected time
and space of GSI for each type of power-law bipartite graph.

THEOREM 5.1 (GSI ON DOUBLE-SIDED POWER-LAW BIPARTITE
GRAPHS). Let G be a single-sided power-law bipartite graph. We can
set a in Algorithm 5, such that the expected space usage of GSI is
O(A~%Y), and that the query time is O(1). We can also set a such
that the expected space usage is O (nA3_Y), and that the expected

query time is O(n? min(Aq, Ag)2~%).

We note that for both settings of Theorem 5.1, the time and
space complexities surpass the lower bound in Theorem 4.2. This
shows that the historical butterfly counting problem on power-law
graphs are not as hard as the general case, and that GSI success-
fully exploits the features of the power-law graphs to reduce the
computation cost. The first setting has O(1) time complexity and
0(n?) space complexity since A < nand y > 2. The second setting
has 5(1) = O(n? min(Aq, Az)?~%) time complexity and o(n?/A?)

5

3 Sy
space complexity when k > n%-1 A4r-1,

THEOREM 5.2 (GSI ON SINGLE-SIDED POWER-LAW BIPARTITE
GRAPHS). Let G be a single-sided power-law bipartite graph.

We can set o in Algorithm 5, such that the expected space usage of
6-r1

A
GSI is O (Az + (15
2

)) and that the expected query time is O (1) .

Similar to the double-sided case, Theorem 5.2 solves the historical
butterfly counting problem with a better trade-off than Theorem 4.2.

PROOF SKETCH FOR THEOREM 5.1 AND THEOREM 5.2. By
Theorem 4.5, we know that the query time for GSI is nearly linear in
the number of keys (x, z) in Tc. The space usage for GSIis bounded
by the number of butterflies not maintained by Tc[(x, z)], plus the
total number of wedges in each W|[(x, z)] for (x,z) € Tc.keys().
To bound the query time and space usage, let k be a parameter
between 1 and A = max(Aj, Az). Let Py be the set of unordered
pairs (x, z) such that x, z are on the same side of the bipartite graph
G, and that dy, d; > k. Let # X5 be the number of butterflies B
such that 3{x, z} € P>y, {x,z} C B. Here we abuse notation and
use B to mean the vertices of a butterfly B. In Line 11 of Algorithm 5,
we construct Te [(x, z)]s for pairs (x, z) with the largest W[(x, z)]s
until the total number of butterflies in these largest W[(x, z)]s
exceeds (1 — a)numB. The rest of the butterflies will be maintained
by Tg. Intuitively, for proving the efficiency of GSI, we would like
to show that a small number of {x, z} (those in Ps) covers a large
fraction (# M /numB) of the total number of butterflies. Formally,
we can prove that for some k, GSI has query complexity 5(|P2 &l
and expected space complexity. To show this, let’s consider an
algorithm similar to Algorithm 5. The modified algorithm changes
the condition on Line 12 from “num > « - numB” to “{x,z} € P5}.”.
Then T¢ contains |Ps | elements (one for each (x,z) € Psg), and
Tg contains # X1 —# X butterflies. The time complexity of the

modified algorithm is O(|Ps j|) and that the expected space usage
of itis O (# M1 —# M + X (xzep., [Tel(x 2)]1).

In the original GSI (Algorithm 5), for a fixed choice of k, we can
choose a properly such that the condition on Line 12 evaluates to

true for the first |Ps | iterations, i.e., after the first |Ps | iterations
of the loop, num is no more than « - numB. The query time of GSI is

bounded by 5(|P2k|). The space usage of GSI is bounded above by

1616

Table 1: The summary of datasets, including the size of vertices (i.e.,
|U| and |L|) and edges (i.e., |E|), butterfly counts (i.e., B), and the y
value of power-law exponent assuming the graph’s degree follows
a power-law distribution (i.e, 7). For synthetic datasets, we provide
the y value for each side (i.e., y; and y3).

‘ Real-world dataset ‘ |U] |L| |E| B % ‘
Wikiquote (WQ) 961 640,482 776,458 5e9 4.281
Wikinews (WN) 2,200 35,979 907,499 3ell 2.654

StackOverflow (SO) 545,196 96,680 1,301,942 le7 2.797
CiteULike (CU) 153,277 731,769 2,411,819 6e8 2.325
Bibsonomy (BS) 204,673 767,447 2,555,080 8e8 2.209

Twitter (TW) 175,214 530,418 4,664,605 1el2 2.460

Amazon (AM) 2,146,057 1,230,915 5,838,041 3e7 2.957

Edit-ru (ER) 7,816 1,266,349 8,349,235 1el3 5.301

Edit-vi (EV) 72,931 3,512,721 25,286,492 3el4 2.017

Wiktionary (WT) 66,140 5,826,113 44,788,448 1lel6 1.826

‘ Synthetic dataset ‘ U] |L| |E| v Y2 ‘

DoublePower-law (DPW) | 25,599,878 25,599,878 100,000,000 21 2.1
SinglePower-law (SPW) ‘ 21,020,985 199,802 100,000,000 2.1 0

that of the modified algorithm, because the sets in W are sorted with
decreasing order of sizes. Each set W[(x, z)] costs |[W[(x, z)]| space
if it is maintained in T and (lw[(; 2)] ‘) space if it is maintained
in Tg. GSI costs less space because it maintains larger sets in T¢,
compared to the modified algorithm. In our technical report Part C,
we prove time and space complexities for the modified algorithm.
These will automatically translate to the same bounds for GSI. O

6 EXPERIMENTS

e Datasets We use 10 large-scale real-world datasets to evaluate
our algorithm. All real-world dataset sources and more detailed
statistics are available at KONECT?. In addition, we randomly gen-
erate 2 power-law bipartite graphs with billion edges according to
the models in Section 5, where their timestamps are also uniformly
sampled from [1, |E|]. The dataset statistics are presented in Table 2.

e Algorithms Our algorithms are implemented in C++ with
STL used. The implementation of BFC-VP++ is obtained from their
authors. As WPS is an approximation method, the reported running
time for WPS represents the time required first to reach a relative
error of 10%.

e Hyperparameter Settings The only hyperparameter for our
methods is a. In our study of space-query trade-offs (Section 6.2),
we determine the appropriate « using the algorithm described in
Section 4.4.1 to constrain memory usage. We employ the same
algorithm for all other experiments to optimize a for maximal
memory utilization.

All experiments are conducted on a Ubuntu 22.04 LTS worksta-
tion, equipped with an Intel(R) Xeon(R) Gold 6338R 2.0GHz CPU
and 512GB of memory.

6.1 Efficiency

6.1.1 Query Processing. Shown in Figure 8, the efficiency of GSI,
as well as the two baseline algorithms BFC-VP++, WPS, is compared
on various datasets, with 5000 random queries.

On real-world datasets, GSI demonstrates a significant speedup
ranging from 100X to 10000X comparing to BFC-VP++, 100X to
1000x comparing to WPS. In most datasets, GSI needs less than 1
seconds to answer all 5000 queries online, even when the dataset

3from http://konect.cc/, where the J of ER only considers the tail degrees (i.e., y;)
because the global value missed in the website.

[JBFC-VP++ [WPS [EGSI

> 10° - - - - -
104 -
= 103}
b 102
g 10!
= 10}
1071 .
|

—2
10 WQ WN SO CU BS TW AM ER EV WT DPWSPW
Dataset
Figure 8: Time cost of 5,000 random queries for historical butterfly

counting on datasets, where all algorithms use sequential versions.

Table 2: The index construction time for GSI in Figure 8.

Dataset | WQ WN SO CU BS ™
time (s) 74 6 9 129 207 217
Dataset | AM ER EV WT DPW SPW
time (s) 39 3,654 3,842 3964 2566 341
10 10*
5 G\E\éo\GSéE—._.leCVPQ* N © GSI £} BFC-VP++
10 10
Z 107 Z
v o b 10
E E o
107t o—o0—6—6—0 O 10° o\e\e\e_e/o
-1
1 2 4 8 16 32 10 1 2 4 8 16 32
number of threads number of threads
(a) TW (b) ER
10° 10°
. © 6ST £ BFC-VP++ i © GST £ BFC-VP++
10 10
swl® BB-gg gl
2 10 2 103
E ! 8 102
o o\e\e\e\e_o 10!
1 2 4 8 16 32 1 2 4 8 16 32
number of threads number of threads
(c) EV d) wT

Figure 9: Evaluating the parallelization: time cost for 5,000 random
queries against the number of threads.

has around 4 X 10° vertices (AM). In general, the query time is pro-
portional to the number of edges. For the largest dataset WT, which
has around 6 x 10° vertices and 4.5 x 10% edges, all queries can
be answered within 10% seconds, which means less than 0.1 sec-
onds for each query in average. This shows the consistency and
efficiency of our algorithms under very large real-world datasets.
On the synthetic dataset, we generated, our algorithm shows an
extremely large speedup greater than 100000%. Especially on SPW,
while both BFC-VP++ and WPS cannot process all queries within 10°
seconds, our algorithms produce answers within 10! seconds.

6.1.2 Index Construction. The reported time for index construction
is reported in Table 2. For most datasets, even considering the
time of index construction, GSI’s performance outperforms the two
baselines, indicating that the index construction performance of
GSI is both reasonable and practical.

6.1.3 Empirical Study on Power-law Graphs. In this section, we fur-
ther analyze the performance of GSI and baselines on the power-law
graphs. In addition to two synthetic graphs in Table 2, we generate
power-law graphs with various y; and y, between (2, 3) and uni-
formly sampled timestamps. Specifically, to ensure that baselines
can finish in practical time (i.e., less than < 10° seconds), we reduce
the number of edges in these graphs to 107 instead of 108. in DPW

1617

[IBFC-VP++ [WPS [GSI

>10°
10*
103
102
10!
10°
107!
1072
1073

time (s)

n=21 _ p=25

2=2.5

n=2.9 p=2.1
y2=2.9 y2=0
Dataset
Figure 10: Time cost of 5,000 random queries for historical butterfly
counting on different power-law bipartite graphs, where all algo-

rithms use sequential versions.

ni=2.5
¥2=0

n=2.9

ye=2.1 Y2=0

and SPW. Shown in Figure 10, both BFC-VP++ and WPS require at least
10% seconds in all synthetic data we generate while our algorithm
can process all 5,000 queries within 10™! seconds. This gap is even
more significant compared to results on real-world data. Combined
with the theoretical analysis in section 5, GSI has outstanding per-
formance both theoretically and practically on Power-law graphs.
This further reveals the advantage that GSI admits and makes full
use of additional properties on graphs.

6.1.4 Parallelization. In addition, we compare GSI’s parallelized
querying with BFC-VP++’s parallelized version. In Figure 9, we test
the running time for 5,000 queries with various numbers of threads
from 1, 2, 4, 8, 16, and 32. In two large-scale datasets EV and WT,
our algorithm obtains higher parallelism compared to the baseline,
which has spent efforts in optimizing for higher parallelism. On
the other hand, in two other two large-scale datasets TW and ER,
despite its fast runtime, our algorithm’s performance does not al-
ways improve as the number of threads increases, which is not
surprising and is under our expectations. This is because every
historical query is essentially querying on multiple CSs and sum-
ming up the answer. In the parallel version, we allocate threads
to these data structures to increase efficiency. However, given a
fixed memory limitation, GSI may create less CSs if the number
of motifs is relatively small. In such a circumstance, if the number
of threads approaches or exceeds the number of data structures
we built in construction, the runtime may increase. In general, our
parallelized GST still obtains a faster runtime and, most likely, better
parallelism on very large-scale datasets.

6.2 Space-Time Trade-Offs

Since GSI is a flexible algorithm that strikes to balance the trade-off
between space and time, we further study its performance under
different memory limitations. Shown in Figure 11, the query time
can be efficiently reduced if provided more memory space: When
the applicable memory is enlarged to 10x, the query time is de-
creased to %X to 1_(1)0X' Furthermore, it is shown that even when
the memory space is very limited, GSI can still obtain a good query
efficiency. For example, on WT, only given 40 Gigabytes memory,
both the index-construction time and query time are less than 600
seconds, which still holds a significant advantage compared to our
baseline in fig. 8. In all, this study further reveals GSI’s flexibility on
the trade-off between space and time. In practice, it can fit different
circumstances while providing high-efficiency performance.

10* - 10° -
10° ¢ index - query 0 - index 4~ query
Z 10 Mx——*—*—x—x—*—" 2 10 W
Q 1 o
g 10 £ 102
S 10 =
o 10!
10 100
3 6 9 12151821242730 4 8 1216 20 24 28 32 36 40
memory usage (GB) memory usage (10 GB)
(a) TW (b) ER
10° 10°
¢ index 4 query % index - query
10*
3 @ 10*
o 10° o .
g g 10°
B 107 =
2
10! 10
4 8 1216 20 24 28 32 36 40 4 8 1216 20 24 28 32 36 40
memory usage (10 GB) memory usage (10 GB)
(c) EV (d) WT
Figure 11: Space-query trade-offs stud
P query Yy
[rndex size € Error [index size € Error
10° 1% 10°
% 10° 10719 § % 10°
g 10 5 2
3 0 2 2
z10° £ > 10°
5 £ 5
g 102 107%% = g 102 |_|

A=100% A=8% A4i=18% A=1%
2,=100%

A=0.1%
A=100% 2,=100% 1,=50% 1=5%
Compression Ratios

(a) EV

T=100% L=8% A=L8% A=1n A=0.1%
A2=100% A2=100% A=100% 1,=50% 1;=5%
Compression Ratios

(b) WT

Figure 12: Evaluating memory usage and relative error in various
compression ratio settings. Note that both our compression algo-
rithms are not affect the query effciency.

6.3 Study on Compressed Indexes

In addition, shown in Figure 12, we evaluate the index compression
on two large-scale datasets EV and WT. With the single-sided com-
pression algorithm SGSI, we are able to guarantee a relative error
< 1073 while compressing memory usage to % (i.e., 500G — 1G).
With the double-sided compression algorithm DGSI, we achieve
< 107! relative error while compressing memory for around 1000
times (500G — 500MB). This experiment validates the effectiveness
of our GSI algorithm with index compression based on sampling.
Moreover, it empirically provides a trade-off between memory and
accuracy, i.e., if we need a higher accuracy guarantee, we use SGSI.
To compress the memory further, we may use DGSI instead.

6.4 Case Study

To begin with, we acquired the author-publication datasets 4, which
contains 10,419,221 author-publication records before 2016. Based
on that, we build an author-publication bipartite temporal graph
containing 14,223,972 vertices and 10,419,216 edges. Consider the

X915 .te]

4
projected graph Gy;_;, 1, its corresponding BCC should be <ol
sste

where <[4, ;] is the butterfly count in the projected graph G|, ;]
and X[y ¢,] is the number of 3-paths in G|, ;.-

In this study, we investigate the trend of the BCC over vari-
ous two-year time windows. To achieve that, we need to efficiently

4https://github.com/THUDM/citation-prediction

1618

-e-BCC ~o- No. authors == No. collaborators
s 10 7.0
L .
Z 95 1
3 g0
__: 9 >
<
S g5 3.0 M
8 1.0

1985199019952000200520102015 "~ 1985199019952000200520102015
years years

(a) BCC (b) authors - collaborators

Figure 13: Case study (1): the trend of closeness in global research
collaboration

query several historical butterfly counts by GSI. The result is shown
in Figure 13 (a), where we set the length of the time windows as
two years (e.g., 1995 - 1996). Surprisingly, the value of BCCs doesn’t
consistently rise alongside the research community’s overall trend
toward collaboration. This implies that the research community
might not always achieve greater cohesiveness through collabo-
ration. In contrast, in Figure 13 (a), BCCs exhibit an initial gen-
eral increase (1985 - 2000) followed by a decrease (2000 - 2015).
We delve deeper into the underlying reasons for these trends and
analyze the changing pattern of (1) the average number of pub-
lications per author within each time-window and (2) the average
number of unique collaborators per author within each time-window,
shown in Figure 13 (b). As the average number of publications
generally rises from 1985 to 2015, it suggests a higher probability
of collaboration, consequently increasing the butterfly counts in
the author-publication bipartite temporal graph. Nevertheless, a
greater likelihood of collaboration does not necessarily equate to
more cohesive collaboration. As depicted in Figure 13 (b), there is
a notable increase in the average number of unique collaborators
after 2000, indicating a rise in 3-paths counts within the graph,
which may be an important factor causing BCCs decreases again
from 2000 to 2010. Entering 2010, BCCs come across another rising
trend. There are many possible reasons, one of which could be the
significant increase in total publications.

7 CONCLUSIONS

This paper introduces the historical butterfly counting problem on
temporal bipartite graphs. We propose a graph structure-aware
indexing approach to facilitate efficient query processing with a
tunable balance between query time and memory cost. Besides, we
theoretically prove that our approach is especially advantageous
on power-law graphs, by breaking the conventional complexity
barrier associated with general graphs. To further mitigate the index
overhead, we devised a high-quality approximation algorithm that
leverages a compressed index structure, thereby enhancing overall
efficiency. Extensive empirical tests show that our algorithm is up
to five orders of magnitude faster than existing algorithms with
controllable memory costs.

ACKNOWLEDGMENTS

Chenhao Ma was partially supported by NSFC under Grant 62302421,
Basic and Applied Basic Research Fund in Guangdong Province un-
der Grant 2023A1515011280, 2025A1515010439, and the Guangdong

Provincial Key Laboratory of Big Data Computing, The Chinese

University of Hong Kong, Shenzhen. We thank Xinwen Zhang for

her valuable advice on this project.

REFERENCES

1]

(2]

(3]

(4]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

William Aiello, Fan Chung, and Linyuan Lu. 2000. A random graph model for
massive graphs. In Proceedings of the thirty-second annual ACM symposium on
Theory of computing. 171-180.

Sinan G Aksoy, Tamara G Kolda, and Ali Pinar. 2017. Measuring and modeling
bipartite graphs with community structure. Journal of Complex Networks 5, 4
(2017), 581-603.

Hanjo D Boekhout, Walter A Kosters, and Frank W Takes. 2019. Efficiently count-
ing complex multilayer temporal motifs in large-scale networks. Computational
Social Networks 6, 1 (2019), 8.

Pawet Brach, Marek Cygan, Jakub Lacki, and Piotr Sankowski. 2016. Algorithmic
complexity of power law networks. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 1306-1325.

Xinwei Cai, Xiangyu Ke, Kai Wang, Lu Chen, Tianming Zhang, Qing Liu, and
Yunjun Gao. 2024. Efficient Temporal Butterfly Counting and Enumeration
on Temporal Bipartite Graphs. Proc. VLDB Endow. 17, 4 (mar 2024), 657-670.
https://doi.org/10.14778/3636218.3636223

Bernard Chazelle. 1988. A functional approach to data structures and its use in
multidimensional searching. SIAM J. Comput. 17, 3 (1988), 427-462.

Kaiyu Chen, Dong Wen, Wenjie Zhang, Ying Zhang, Xiaoyang Wang, and Xuemin
Lin. [n. d.]. Querying Structural Diversity in Streaming Graphs. ([n.d.]).
Xiaoshuang Chen, Kai Wang, Xuemin Lin, Wenjie Zhang, Lu Qin, and Ying
Zhang. 2021. Efficiently answering reachability and path queries on temporal
bipartite graphs. Proceedings of the VLDB Endowment (2021).

Norishige Chiba and Takao Nishizeki. 1985. Arboricity and subgraph listing
algorithms. SIAM Journal on computing 14, 1 (1985), 210-223.

Shiyuan Deng, Shangqi Lu, and Yufei Tao. 2023. Space-Query Tradeoffs in Range
Subgraph Counting and Listing. In 26th International Conference on Database
Theory (ICDT 2023). Schloss-Dagstuhl-Leibniz Zentrum fir Informatik.
Stephen Eubank, Hasan Guclu, VS Anil Kumar, Madhav V Marathe, Aravind
Srinivasan, Zoltan Toroczkai, and Nan Wang. 2004. Modelling disease outbreaks
in realistic urban social networks. Nature 429, 6988 (2004), 180—184.

Stephen Eubank, Hasan Guclu, VS Anil Kumar, Madhav V Marathe, Aravind
Srinivasan, Zoltan Toroczkai, and Nan Wang. 2004. Modelling disease outbreaks
in realistic urban social networks. Nature 429, 6988 (2004), 180—184.

Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,
and Xuemin Lin. 2020. A survey of community search over big graphs. The
VLDB Journal 29 (2020), 353-392.

Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. 2017. Condi-
tional Lower Bounds for Space/Time Tradeoffs. In Algorithms and Data Structures,
Faith Ellen, Antonina Kolokolova, and Jérg-Riidiger Sack (Eds.). Springer Inter-
national Publishing, Cham, 421-436.

Isaac Goldstein, Moshe Lewenstein, and Ely Porat. 2019. On the Hardness of Set
Disjointness and Set Intersection with Bounded Universe. In 30th International
Symposium on Algorithms and Computation (ISAAC 2019) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 149), Pinyan Lu and Guochuan Zhang
(Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany,
7:1-7:22. https://doi.org/10.4230/LIPIcs.ISAAC.2019.7

Jean-Loup Guillaume and Matthieu Latapy. 2006. Bipartite graphs as models of
complex networks. Physica A: Statistical Mechanics and its Applications 371, 2
(2006), 795-813.

Saket Gurukar, Sayan Ranu, and Balaraman Ravindran. 2015. Commit: A scalable
approach to mining communication motifs from dynamic networks. In Proceed-
ings of the 2015 ACM SIGMOD international conference on management of data.
475-489.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgen: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639-648.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173-182.

Madhav Jha, Comandur Seshadhri, and Ali Pinar. 2013. A space efficient stream-
ing algorithm for triangle counting using the birthday paradox. In Proceedings of
the 19th ACM SIGKDD international conference on Knowledge discovery and data
mining. 589-597.

Lauri Kovanen, Marton Karsai, Kimmo Kaski, Janos Kertész, and Jari Saramaki.
2011. Temporal motifs in time-dependent networks. Journal of Statistical Me-
chanics: Theory and Experiment 2011, 11 (2011), P11005.

Matthieu Latapy. 2008. Main-memory triangle computations for very large
(sparse (power-law)) graphs. Theoretical computer science 407, 1-3 (2008), 458—
473.

Rundong Li, Pinghui Wang, Peng Jia, Xiangliang Zhang, Junzhou Zhao, Jing Tao,
Ye Yuan, and Xiaohong Guan. 2021. Approximately counting butterflies in large
bipartite graph streams. IEEE Transactions on Knowledge and Data Engineering
34, 12 (2021), 5621-5635.

Yuchen Li, Zhengzhi Lou, Yu Shi, and Jiawei Han. 2018. Temporal motifs in
heterogeneous information networks. In MLG Workshop@ KDD.

Youhuan Li, Lei Zou, M Tamer Ozsu, and Dongyan Zhao. 2019. Time constrained
continuous subgraph search over streaming graphs. In 2019 IEEE 35th Interna-

tional Conference on Data Engineering (ICDE). IEEE, 1082-1093.
Pedro G Lind, Marta C Gonzalez, and Hans J Herrmann. 2005. Cycles and

clustering in bipartite networks. Physical review E 72, 5 (2005), 056127.

1619

[27]

[29

[30

[31

[32

(33]

[34

[35

[37

[38

[40

[41

[42

[43]

(44

[45]

[46]

[47]

[49]

[50]

[51

(52]

Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou.
2019. Efficient («, ff)-core computation: An index-based approach. In The World
Wide Web Conference. 1130-1141.

Paul Liu, Austin R Benson, and Moses Charikar. 2019. Sampling methods for
counting temporal motifs. In Proceedings of the twelfth ACM international confer-
ence on web search and data mining. 294-302.

Penghang Liu, Valerio Guarrasi, and Ahmet Erdem Sariyiice. 2021. Temporal
network motifs: Models, limitations, evaluation. IEEE Transactions on Knowledge
and Data Engineering 35, 1 (2021), 945-957.

Giorgio Locicero, Giovanni Micale, Alfredo Pulvirenti, and Alfredo Ferro. 2021.
TemporalRI: a subgraph isomorphism algorithm for temporal networks. In Com-
plex Networks & Their Applications IX: Volume 2, Proceedings of the Ninth In-
ternational Conference on Complex Networks and Their Applications COMPLEX
NETWORKS 2020. Springer, 675-687.

Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,
and Uri Alon. 2002. Network motifs: simple building blocks of complex networks.
Science 298, 5594 (2002), 824-827.

Tore Opsahl. 2013. Triadic closure in two-mode networks: Redefining the global
and local clustering coefficients. Social networks 35, 2 (2013), 159-167.

Ashwin Paranjape, Austin R Benson, and Jure Leskovec. 2017. Motifs in temporal
networks. In Proceedings of the tenth ACM international conference on web search
and data mining. 601-610.

Noujan Pashanasangi and C Seshadhri. 2021. Faster and generalized temporal
triangle counting, via degeneracy ordering. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 1319-1328.
Georgios A Pavlopoulos, Panagiota I Kontou, Athanasia Pavlopoulou, Costas
Bouyioukos, Evripides Markou, and Pantelis G Bagos. 2018. Bipartite graphs in
systems biology and medicine: a survey of methods and applications. GigaScience
7,4 (2018), giy014.

Ursula Redmond and Padraig Cunningham. 2013. Temporal subgraph isomor-
phism. In Proceedings of the 2013 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining. 1451-1452.

Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyuce, and Srikanta Tirthapura. 2018.
Butterfly counting in bipartite networks. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2150-2159.
Seyed-Vahid Sanei-Mehri, Yu Zhang, Ahmet Erdem Sariytice, and Srikanta Tirtha-
pura. 2019. Fleet: Butterfly estimation from a bipartite graph stream. In Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge
Management. 1201-1210.

Ilie Sarpe and Fabio Vandin. 2021. OdeN: simultaneous approximation of mul-
tiple motif counts in large temporal networks. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management. 1568-1577.
Aida Sheshbolouki and M Tamer Ozsu. 2022. sGrapp: Butterfly approximation in
streaming graphs. ACM Transactions on Knowledge Discovery from Data (TKDD)
16, 4 (2022), 1-43.

Jessica Shi and Julian Shun. 2022. Parallel algorithms for butterfly computations.
In Massive Graph Analytics. Chapman and Hall/CRC, 287-330.

Demival Vasques Filho and Dion R] O’Neale. 2018. Degree distributions of
bipartite networks and their projections. Physical Review E 98, 2 (2018), 022307.
Jun Wang, Arjen P De Vries, and Marcel JT Reinders. 2006. Unifying user-
based and item-based collaborative filtering approaches by similarity fusion. In
Proceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval. 501-508.

Jia Wang, Ada Wai-Chee Fu, and James Cheng. 2014. Rectangle counting in large
bipartite graphs. In 2014 IEEE International Congress on Big Data. IEEE, 17-24.
Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2019. Vertex
Priority Based Butterfly Counting for Large-scale Bipartite Networks. PVLDB
(2019).

Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2020. Effi-
cient bitruss decomposition for large-scale bipartite graphs. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 661-672.

Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2023. Accelerated
butterfly counting with vertex priority on bipartite graphs. The VLDB Journal
32, 2 (2023), 257-281.

Zhibin Wang, Longbin Lai, Yixue Liu, Bing Shui, Chen Tian, and Sheng Zhong.
2023. I/O-Efficient Butterfly Counting at Scale. Proceedings of the ACM on
Management of Data 1, 1 (2023), 1-27.

Dong Wen, Bohua Yang, Ying Zhang, Lu Qin, Dawei Cheng, and Wenjie Zhang.
2022. Span-reachability querying in large temporal graphs. The VLDB Journal
(2022), 1-19.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural
networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1-37.
Yifei Xia, Feng Zhang, Qingyu Xu, Mingde Zhang, Zhiming Yao, Lv Lu, Xiaoyong
Du, Dong Deng, Bingsheng He, and Siqi Ma. 2024. GPU-based butterfly counting.
The VLDB Journal (2024), 1-25.

Haoxuan Xie, Yixiang Fang, Yuyang Xia, Wensheng Luo, and Chenhao Ma. 2023.
On querying connected components in large temporal graphs. Proceedings of the
ACM on Management of Data 1, 2 (2023), 1-27.

Yixing Yang, Yixiang Fang, Maria E Orlowska, Wenjie Zhang, and Xuemin Lin.
2021. Efficient bi-triangle counting for large bipartite networks. Proceedings of
the VLDB Endowment 14, 6 (2021), 984-996.

https://doi.org/10.14778/3636218.3636223
https://doi.org/10.4230/LIPIcs.ISAAC.2019.7

[54] Michael Yu, Dong Wen, Lu Qin, Ying Zhang, Wenjie Zhang, and Xuemin Lin. [56] Alexander Zhou, Yue Wang, and Lei Chen. 2021. Butterfly counting on uncertain
2021. On querying historical k-cores. Proceedings of the VLDB Endowment (2021). bipartite graphs. Proceedings of the VLDB Endowment 15, 2 (2021), 211-223.
[55] Fangyuan Zhang, Dechuang Chen, Sibo Wang, Yin Yang, and Junhao Gan. 2023. [57] Zhaonian Zou. 2016. Bitruss decomposition of bipartite graphs. In International

Scalable Approximate Butterfly and Bi-triangle Counting for Large Bipartite conference on database systems for advanced applications. Springer, 218-233.
Networks. Proceedings of the ACM on Management of Data 1, 4 (2023), 1-26.

1620

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 Preliminaries
	3.1 Problem Definitions
	3.2 Some Key Techniques in Motif Counting
	3.3 Baselines

	4 INDEX-BASED ALGORITHMS
	4.1 Problem Hardness
	4.2 Enumeration-based Index
	4.3 Combination-based Index
	4.4 Graph Structure-aware Index
	4.5 Index Compression
	4.6 Handling Duplicate Edges

	5 ANALYSIS ON POWER-LAW GRAPHS
	6 EXPERIMENTS
	6.1 Efficiency
	6.2 Space-Time Trade-Offs
	6.3 Study on Compressed Indexes
	6.4 Case Study

	7 CONCLUSIONS
	Acknowledgments
	References

