
VStream: A Distributed Streaming Vector Search System
Shenghao Gong
Zhejiang University

gongshenghao@zju.edu.cn

Haobo Sun
Zhejiang University
haobosun@zju.edu.cn

Ziquan Fang
Zhejiang University
zqfang@zju.edu.cn

Liu Liu
Zhejiang University
liu2@zju.edu.cn

Lu Chen
Zhejiang University
luchen@zju.edu.cn

Yunjun Gao
Zhejiang University
gaoyj@zju.edu.cn

ABSTRACT
Vector search is widely employed in recommendation systems,
search engines, etc. With the explosive growth of online data and
streaming processing engines, streaming vector search has attracted
increasing research attention. However, prevailing vector search
systems like Vearch, Vespa, and Milvus typically operate as external
batch services for streaming processing requirements, resulting in
sub-optimal performance for streaming processing scenarios.

In this paper, we propose VStream, a distributed streaming vec-
tor search system. Implementing such a system is non-trivial, rais-
ing three technical challenges in streaming adaptability, system
scalability, and real-time response. Specifically, VStream offers a dy-
namic partitioner that adapts to data distribution changes in vector
streams. Additionally, VStream features an effective hierarchical
storage architecture facilitated by streaming state management,
enabling a hybrid of four-level storage media with diverse access
speeds and targets. Furthermore, VStream utilizes dynamic hot-cold
patterns, such as access frequency, in the streaming vector data,
incorporating a specialized hot-cold separation mechanism to en-
hance query efficiency. Extensive experiments prove that VStream
outperforms existing vector search systems, e.g., achieving 251–
373× improvements in query efficiency, 2.2–2.5× savings in CPU
usage, and 1.5–2.0× reductions in memory overhead.

PVLDB Reference Format:
Shenghao Gong, Haobo Sun, Ziquan Fang, Liu Liu, Lu Chen, Yunjun Gao.
VStream: A Distributed Streaming Vector Search System. PVLDB, 18(6):
1593 - 1606, 2025.
doi:10.14778/3725688.3725692

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/ZJU-DAILY/VStream

1 INTRODUCTION
The proliferation of digital technologies and web services has gener-
ated vast volumes of unstructured data, encompassing text, images,
and audio formats. It is challenging to process unstructured data

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 6 ISSN 2150-8097.
doi:10.14778/3725688.3725692

APP/WEB

...

Messaging System
Kafka/...

Flink/...
SPE

...

Milvus/...

Users

Vector System

Streaming Processing Architecture
State

Vectors

Streaming Operators
SVSE

Detached Vector Service

Streaming EngineDetached！

VS.

Figure 1: Research Motivation. Orange Block: Existing de-
tached streaming vector search service. Green Block: Our
streaming vector search engine (SVSE).

due to its high dimensionality. Recently, learning-based embed-
ding models have emerged as mainstream solutions. They trans-
form unstructured data into high-dimensional vectors, showing
widespread applications in recommendation systems [59, 61] (e.g.,
Wide&Deep [33] and YouTube DNN [36]), search engines [25, 73]
(e.g., DSSM [53] and ColBERT [58]), and group analysis [43, 71].
The current success of large-scale models such as GPT-4 [28] and
LLaMA [81] further solidify their position at the forefront. Among
these, vector search plays a pivotal role by seeking the top-𝑘 near-
est vectors [21] to a query vector, which has drawn increasing
attention [22, 41, 55, 57, 68]. To tackle the storage and compu-
tation overhead of vector search, a multitude of vector-oriented
systems [10, 12, 15–17, 64, 83] have been developed.

Recently, the explosive growth of online data in social media,
e-commerce, and other fields, alongside the development of stream-
ing processing engines (SPEs) such as Kafka [60], Flink [29, 30], and
Spark Streaming [91], has led to a gradual shift in vector process-
ing mode from batch manner to streaming manner. Actually,
streaming vector searches serve a wide range of applications, in-
cluding instant search [50], online product recommendation [48],
running log analysis [51], and online processing of emails [37] and
news [82], require higher processing throughput and lower latency.

However, to perform streaming vector searches, existing well-
known vector-oriented systems, such asMilvus [49, 83], Vearch [64],
Vespa [16], Weaviate [17], Vald [15], Qdrant [12], and Pinecone [10],
primarily operate as external services, separate from the streaming
processing architecture. As shown in Fig. 1, data generated by
users in the APP/WEB clients is collected into messaging systems
such as Kafka [60], generating data streams. Based on that, SPEs
like Flink [30] subscribe to the data streams from the upstream
messaging systems. Then, as highlighted by the orange shaded
area, the SPE invokes vector search services from external systems

1593

https://doi.org/10.14778/3725688.3725692
https://github.com/ZJU-DAILY/VStream
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3725688.3725692
https://www.acm.org/publications/policies/artifact-review-and-badging-current

like Milvus [83] to retrieve target content. The detachment of SPEs
and the vector systems has led to two limitations.

① Inefficient update. To support the connection with SPE,
vector systems [15–17, 49, 83] provide interfaces for streaming read
and write but lack optimized indexing and updating. This leads to
significantly increased query latency in the streaming processing
architecture which involves frequent small-batch or single-record
data writes. For example, a Milvus instance housing 100 million
vectors can maintain query latency under 100ms when no writes
occur. However, with concurrent writes at 8000 QPS (queries per
second), query latency quickly rises to 1.5 seconds.

② Cross-node data transmission. Although some vector sys-
tems have partially fulfilled the dynamic update requirements of
vectors through offline and online index separation [15–17, 64] or
LSM tree [49, 83], they typically employ a store-compute separa-
tion architecture. As a result, insertion and query requests, as well
as query results, must be transmitted across nodes, leading to a
significant increase in processing latency.

In contrast to existing studies that design another detached vec-
tor service for streaming vector searches, we choose to directly
build an engine integrating streaming processing and vector search,
termed as the streaming vector search engine (SVSE). In SVSE, the
above two limitations can be solved. As depicted by the green block
in Fig. 1, by utilizing state management capabilities of SPEs for
vector storage, SVSE inherently supports streaming read and write
operations of vectors. Moreover, streaming operators can efficiently
access the vector data locally, eliminating the necessity for frequent
cross-node data transfers during queries. However, designing an
SVSE faces three specific challenges in streaming scenarios.

Challenge I: How to achieve dynamic partitioning to adapt
to real-time vector data streams? Existing vector systems [10, 12,
15–17, 64, 83] mainly utilize an ID-based Partitioner [69] to evenly
partition vector data across computation nodes for index construc-
tion and aggregate query results from all partitions during queries.
Although this approach is simple to implement, it leads to queries
being performed across the entire dataset, resulting in decreased
efficiency. Furthermore, in streaming vector searches, the distribu-
tion of data and query streams changes continuously over time. For
instance, search patterns on social media vary throughout the day
and can shift multiple times within hours or even minutes [72]. Log
analysis and virus detection, which involve fast-changing data, may
experience distribution changes within minutes or seconds [94].
As a result, these rapid data shifts can significantly cause the load
imbalance of existing vector systems [10, 12, 15–17, 64, 83] due
to their static partitioning strategies. And the imbalance becomes
more severe as the rate of change in data distribution increases. To
address this, we develop a new dynamic partitioner based on Local-
Sensitive Hashing (LSH) [63] and the space filling curves. It assigns
neighboring vectors to the same partition and non-neighboring
vectors to different partitions. During queries, only a few parti-
tions near the query vector are queried, thereby avoiding queries
across all partitions. More importantly, to adapt to real-time data
distribution changes, we further devise a method to dynamically
adjust partition boundaries based on the workload in each partition,
achieving real-time load balancing.

Challenge II: How to support multi-type hybrid storage to
improve the system’s scalability? Existing vector systems [10,

12, 15–17, 64, 83] typically support a singular type of storage, such
as main memory or disk, which led to a gap between storage scal-
ability and read/write efficiency. On the one hand, solely relying
on memory often proves insufficient to store the extensive vector
data. On the other hand, utilizing disk storage mandates loading
data from disk to memory in batches for querying, leading to an
obvious increase in latency, particularly for streaming queries. To
tackle this challenge, we design a hierarchical storage mechanism
considering the varying read-write speeds and storage capacities of
different storage media. This hierarchical bottom-up approach en-
compasses remote disk, local disk, local memory, and state memory,
with recent data placed in the upper levels and older data in the
lower levels. This arrangement ensures that the recently accessed
data crucial for streaming vector search primarily resides in the
state memory and local memory of the upper levels, enhancing
search speed. Moreover, to alleviate the pressure on local and re-
mote disks, we design a new compression mechanism based on
Gorilla algorithm [75] for vectors that leverages their proximity
within the same partition.

Challenge III: How to realize fast response in high-speed
vector data streams to improve efficiency? Streaming vector
search imposes stringent requirements on query latency, especially
in instant search and online recommendation applications, where
a millisecond-level response time is anticipated [62]. Despite the
utilization of indexing techniques, conducting large-scale vector
searches in existing vector systems [10, 12, 15–17, 64, 83] involves
segmenting the substantial volume of data into blocks for sequential
querying, hindering their ability to meet the low-latency require-
ments. On the other hand, in the streaming vector search scenarios,
continuous queries demonstrate clustering characteristics in the
vector space, resulting in frequent retrieval of hot data. For example,
search engines exhibit search trends during different periods, lead-
ing to repeated searches of highly correlated vectors. Motivated by
this, we propose dynamic hot-cold data separation based on query
frequency and vector insertion time. This mechanism segregates
the data segments of vectors and indexes into hot and cold seg-
ments, facilitating the swift promotion of hot data to the forefront
of the search queue dynamically. This dynamic adjustment enables
reducing the query latency during the search process.

To address the above challenges, we develop an effective and
efficient streaming vector search engine named VStream. Overall,
we make the following main contributions.

• VStream stands as the first streaming processing engine for
streaming vector search tasks (Sec. 2).

• VStream proposes a dynamic partitioner to dynamically partition
vector streams to achieve real-time load balancing (Sec. 3).

• VStream designs a hierarchical storage mechanism, comprising
state memory, local memory, local disk, and remote disk (Sec. 4).

• VStream provides two storage optimizers: vector compression
and hot-cold separation. The former utilizes vector proximity for
compression, while the latter adjusts vector search order based
on hot-cold patterns (Sec. 5).

• An experimental study shows VStream’s superiority in efficiency,
scalability, and effectiveness. Moreover, VStream demonstrates
substantial advantages in system designs, including CPU usage,
memory usage, and disk throughput (Sec. 6).

1594

Allocate

Streaming Vectors Vector Encoder

Vector
PartitionerDPT

Partitioning
templates

...𝑃1 𝑃2 𝑃3 𝑃𝑛

State
Memory

Local
Memory

Local
Disk

Remote
Disk

...

Indexed Vectors

Vector Compression

Hot

Cold
Hot-cold Seperation

① Dynamic Partitioner ② Hierarchical Storage ③ Storage Optimizer

On-heap Objects

Cache Vector States

...

Indexing

WALWAL

WALs

...

Data Segements

Flush

DFS/Object Storage/Distributed Database/...

Upload Download

...
Vector List Streaming Operator

Data Segment

Linear address
space

Vector Compressor Compressor Cache

Cache

Early
Stopping

Search

Figure 2: The Architecture of VStream

2 SYSTEM OVERVIEW
As depicted in Fig. 2, VStream comprises three main components:
dynamic partitioner, hierarchical storage, and storage optimizer.
Streaming vectors are partitioned by the dynamic partitioner and
stored in hierarchical storage. The storage optimizer enhances the
storage structure to further improve vector read and write speed.

① Dynamic Partitioner. It partitions incoming vector data
from the upstream messaging system based on vector proximity
and adjusts to dynamic data distribution shifts. As shown in Fig. 2,
initially, vectors are encoded in the Vector Encoder based on
LSH [63] and space filling curves, e.g., 𝑧-order curve [35] andHilbert
curve [52], then flowed into the Vector Partitioner. It partitions
vectors according to their distribution on the space filling curves.
And Dynamic Partitioning Templates (DPT) maintain and con-
tinuously update the partitions based on the workload in each par-
tition, providing the real-time partitioning templates (see Sec. 4.2)
to the vector partitioner. Utilizing LSH and the space filling curves,
neighboring vectors are grouped within the same partition, while
non-neighboring vectors are separated into different partitions.
The query vector only enters limited nearby partitions, skipping
distant partitions to improve search efficiency. The dynamic adjust-
ment strategies in the DPT enable adaptation to changes in data
distribution, thereby achieving real-time load balancing.

② Hierarchical Storage. It stores all vector data and serves
as the state backend of streaming operators for vector search. As
shown in Fig. 2, it encompasses four storage levels: State Memory,
Local Memory, Local Disk, and Remote Disk, thereby ensuring
the scalability of the system. Specifically, i) state memory is allo-
cated by the streaming operator instance and thus can be read into
on-heap memory for fast computation; ii) local memory is located
in off-heap memory on the same physical node. The vector list in
state memory is inserted into vector indexes, and then stored as
vector states. And there is also a cache in local memory to accelerate
the I/O of local disk. When I/O occurs on the disk, it is necessary
to access the cache; iii) when the number of states in local mem-
ory reaches its limit, they are flushed to local disk after being first
written to the write-ahead logs (WALs), and stored in the format of
data segment (see Sec. 5.2), the fundamental structure of the vector
storage in a linear address space provided by VStream; iv) when
the number of data segments in the local disk reaches its limit, they
will be uploaded to remote disks such as DFS, object storage, or
distributed databases, and can be downloaded when needed.

③ Storage Optimizer. It optimizes the storage structure of
the aforementioned hierarchical storage. As illustrated in Fig. 2,
VStream incorporates two types of optimizers: Vector Compres-
sion andHot-cold Separation. The vector compression optimizer
extends the Gorilla algorithm to compress vectors, which are later
decompressed during vector searches. On the other hand, the hot-
cold separation optimizer assigns hot-cold scores to data segments
in the hierarchical storage based on features such as the access
frequency of vector data.

3 DYNAMIC PARTITIONER
Behind Idea. Existing vector search systems [10, 12, 15–17, 64,
83] typically use the IDPartitioner [69], which hashes each vector
and assigns them across partitions using a round-robin method.
Therefore, VStream partitions vectors based on LSH [63] and space
filling curves, and places neighboring vectors in the same partition
and distant ones in different partitions. Then each query vector
is assigned to limited nearby partitions for querying, resulting in
improved search efficiency.

3.1 Vector Encoder
VStream initially provides a vector encoder based on LSH and space
filling curves. This encoder transforms high-dimensional vectors
into low-dimensional hash value vectors, and subsequently con-
verts them into one-dimensional encoded values, which maintain
their positional characteristics in the vector space, thereby enabling
assigning neighboring vectors to the same partition.

Vector Hashing. Firstly, the vector encoder encode vectors us-
ing LSH, a technique commonly used to search nearest neighbors.
Its main idea is to map similar vector to the same hash bucket, en-
abling quick searches for similar vectors within these buckets with-
out needing to search the entire dataset comprehensively. Specif-
ically, the vector encoder employs a hash family HF with 𝑑 hash
functions, which encode each vector 𝑣 into a 𝑑-dimensional encod-
ing 𝑣 consisting of 𝑑 hash values, i.e., 𝑣 = HF (𝑣) ∈ R𝑑 . Under this
encoding scheme, vectors that are close to each other will also have
close proximity in this 𝑑-dimensional space.

Space Filing Curve Encoding. Since the aforementioned vec-
tor hashing maps vectors to a 𝑑-dimensional space, partitioning
unbalancedly distributed data within this space remains challeng-
ing. Therefore, we utilize a 𝑑-dimensional space filing curve to

1595

𝐻𝐹1
𝑅1,𝑇1

𝑃2

𝑅𝑧 𝑅1 𝑅2 𝑅3

𝐻𝐹2

𝐻𝐹1

𝐻𝐹2
𝑇1

𝑇

𝑅2,𝑇1 𝑅3,𝑇1 𝑅4,𝑇1

𝑅1,𝑇2 𝑅2,𝑇2 𝑅3,𝑇2 𝑅4,𝑇2

...𝑣2 𝑣1
(a) Partitioning Templates

(b) Vector Partitioning

Figure 3: Vector Partitioner

further encode the hash values into a 1-dimensional encoded val-
ues. VStream supports various space-filling curves, including the
𝑧-order curve [35], Hilbert curve [52], Peano curve [74], and Sier-
piński curve [76]. Here, the 𝑧-order [35] curve is presented as an
example. Specifically, for any vector 𝑣 hashed into 𝑣 by vector
hashing, the encoding function Z provided by 𝑧-value encoding
converts it into an integer 𝑣 , i.e., 𝑣 = Z(𝑣) ∈ Z. The range of 𝑧-
values is denoted as 𝑅𝑧 , i.e., 𝑣 ∈ 𝑅𝑧 . The 𝑧-values preserves the
proximity of nearby vectors in 1-dimensional space and facilitates
balanced partitioning.

3.2 Vector Partitioner
Based on vectors encoded by the vector encoder, VStream provides
a vector partitioner to achieve balanced vector partitioning. The
partitioner initially segments the space filling curve based on the
current distribution of vectors, creating a partitioning template.

Partitioning Templates. Through the aforementioned vec-
tor encoding process, vectors are projected onto a space filling
curve and organized based on their encoded values. Consequently,
leveraging the current count of incoming vectors 𝑁 and the de-
sired number of partitions 𝑝 , the vector partitioner sequentially
splits the 𝑧-order curve into 𝑝 curve segments, with each curve
segment containing ⌊𝑁𝑝 ⌋ vectors. The segmented 𝑧-order curve is
referred to as partitioning templates 𝑇 = {𝑅1, ...𝑅𝑖 , ..., 𝑅𝑝 }, where
𝑅𝑖 ∈ 𝑅𝑧 &

⋃︁𝑝

1 𝑅𝑖 = 𝑅𝑧 . Taking Fig. 3(a) as an example, the left 9
vectors on the 𝑧-order curve are sequentially divided into 3 parts,
forming the partitioning templates shown on the right. The original
range 𝑅𝑧 of z-values is divided into 𝑅1, 𝑅2, and 𝑅3.

Vector Partitioning. Upon the arrival of a new vector 𝑣 , it
undergoes vector encoding 𝑣 , and then it is assigned to the space
filling curve segment 𝑅𝑖 to which 𝑣 belongs, i.e., 𝑣 ∈ 𝑅𝑖 . Thus, each
partition contains balanced vectors, and incoming query vectors
only need to be assigned to the specified partition based on par-
titioning templates, effectively filtering out irrelevant partitions.

expired

inserted

inserted expired

𝑅1 𝑅2 𝑅3 𝑅4 𝑅1 𝑅2 𝑅3 𝑅4

Figure 4: Dynamic Partitioning Templates

While in the skipped partitions, there may still exist a few vectors
that are close to the query vector. Therefore, the vector partitioner
utilize multiple hash families, resulting in multiple partitioning
templates. Each vector can be assigned to multiple curve segments
based on different templates. Then the segmented sets of vectors
from all templates are sequentially unioned to form a partition. By
using multiple hash families, most neighboring vectors are grouped
into the same partition, thereby reducing the missing query results.
Taking Fig. 3(b) as an example, the vector partitioner employs two
hash families, HF1 and HF2 to create two partitioning templates, 𝑇1
and 𝑇2. The incoming vectors 𝑣1 and 𝑣2 enter different positions
of the two templates. After sequentially merging templates 𝑇1 and
𝑇2, partition 𝑃2 contains 4 vectors, which more comprehensively
include neighboring vectors compared to 𝑅2,𝑇1 and 𝑅2,𝑇2 .

3.3 Dynamic Partitioning Templates
Although the vector partitioner enable balanced partitioning of vec-
tors, the shift of streaming vectors distribution can rapidly cause
the imbalance of partitions. To address this issue, VStream provides
dynamic partitioning templates which adjust the boundaries of
partitions based on the number of vectors in each partition. Specifi-
cally, for any subset 𝑅 of the templates 𝑇 , i.e., 𝑅 ∈ 𝑇 , if the current
number of vectors exceeds the average number ⌊𝑁𝑝 ⌋, we decrease
its right boundary until the number of vectors is reduced to ⌊𝑁𝑝 ⌋
or less. Conversely, if the number of vectors is below this average,
we expand its right boundary. Taking Fig. 4 as an example, in the
initially balanced templates, a red vector is inserted into 𝑅1 while a
purple vector in 𝑅2 expires. Consequently, the templates shift from
left to right: 𝑅1’s range shrinks, and 𝑅2’s expands. However, both
𝑅1 and 𝑅2 maintain an average number of vectors.

4 HIERARCHICAL STORAGE
Behind Idea. Existing vector search systems [10, 12, 15–17, 64, 83]
often face a trade-off between system efficiency and scalability.
Performing vector indexing and searching in memory ensures ef-
ficiency but cannot store large-scale data, whereas local/remote
disk storage offers the opposite. Therefore, VStream is fortified by
a hierarchical storage mechanism leveraging memory to store a
small amount of more recent data. Simultaneously, it utilizes local
and remote disks for the storage of older data, implementing an
automatic flushing mechanism from the top tier down.

1596

...

Immutable StateMutable State

...

Cache

𝑆0 𝑆1 𝑆2

𝑆3 𝑆4 𝑆5

𝑆6 𝑆7 𝑆8
...

WALs

Level 0

Level 1

Level 2

Data Segments

...

DFS/Object Storage/Distributed Database

(a) Hierarchical Storage

(b) Data Segment (c) Vector Area

(d) Vector Item

4 bytes 4M+4 bytes 1 byte 1 byte 4D bytes

4 bytes 4M bytes 1 bit 7 bit

State
Memory

Local
Memory

Local
Disk

Remote
Disk

On-heap Objects

WALWAL WALWAL

WALWAL

Vector area

kNN index area

Vector address area

Meta area

Meta address area

Footer

Vector items

Restart offsets

Vector number

Item 0

Item 1

Item 2

Item 3

...

Item N

Vector id Neighbor info User key Version Vector value

Neighbor number Neighbor ids I/D flag Version code

Figure 5: Hierarchical Storage

4.1 Data Organization
As depicted in Fig. 5 (a), the hierarchical storage comprises state
memory, local memory, local disk, and remote disk.

State Memory. VStream establishes its first-level state storage,
referred to as state memory, directly on the on-heap memory of
the SPE. This eliminates the need for data serialization. Given the
limited capacity of on-heap memory, VStream stores only a few
recent vectors as on-heap objects.

Local Memory. VStream’s second-level storage is built upon
the off-heap memory located in the same node of state memory and
is referred to as local memory. When the number of vectors in the
state memory reaches its limit, they are indexed into a fixed-size
vector index. These vector indexes, along with their corresponding
vector data, are referred to as vector states. When a vector state
reaches its size limit, a new state is created for storage. States that
reach their capacity limit immediately become read-only and are
known as immutable states, while those that have not reached
their limit, and still accept new vector insertions, are referred to as
mutable states. When the number of immutable states reaches its
limit, they are flushed to the next layer of local disk. This ensures
that a certain quantity of recent vectors remains in memory for
rapid vector searches. Additionally, a cache is also implemented in
local memory to accelerate local disk I/O.

Local Disk. VStream’s third-level storage, known as local disk,
primarily stores blocked vector data in the linear address disk
space. Immutable states from the local memory are asynchronously
flushed to various data blocks, referred to as data segments. The
data segment is a disk structure specifically designed by VStream
to facilitate quick access to vectors. Therefore, each data segment
stores a specific quantity of vectors along with their corresponding
index data and preserves metadata associated with these vectors.
The structure of data segments is detailed in the subsequent sub-
section. Note that the data segments are organized in levels, which
facilitates concurrent search of data segments at each level (see
Sec. 4.4) and also support early stopping in the hot-cold separation
optimizer (see Sec. 5.2). Additionally, the local disk also includes
WALs to ensure the success of vector writes.

Remote Disk. VStream’s bottommost-level storage comprises
a scalable distributed file system, object storage, or distributed

database. This level typically involves distributed disk nodes with
substantial storage capacity but slower access speeds.

4.2 Data Segment
VStream offers the data segment as the fundamental storage struc-
ture in both the local disk and the remote disk. As shown in Fig. 5
(b), it encompasses the vector area, 𝑘NN index area, vector address
area, meta area, meta address area, and footer. These areas are
arranged in ascending order based on their storage addresses.

Vector area. It is located at the beginning of the segment and is
responsible for housing all vector data within the current segment.
It comprises a fixed number of vector items specified by the user,
detailed in the subsequent subsection.

𝑘NN index area. It is located adjacent to the vector area and
houses the vector index (e.g., HNSW [68], IVF_PQ [46], etc.). The
range of the index data corresponds to all vector data within the
current segment. Taking HNSW as an example, this area stores the
serialized objects of the hierarchical neighbor graph.

Vector address area.After the 𝑘NN index area comes the vector
address area, which serves as the addressing data for the vector
area. This area is used to determine the starting address of each
vector item. It consists of a sorted list of triplets, with each triplet
corresponding to a vector item. Each triplet contains the largest
internal ID in the vector area, the offset of the vector area in the
data segment, and the length. When seeking the vector value cor-
responding to a specific internal ID, a binary search is conducted
in the vector address area to locate the relevant vector item.

Meta area. Themeta area houses the metadata of the vectors and
indexes, encompassing details such as the total number of vectors
in the current segment, index size, index type, index parameters,
etc. The metadata is organized sequentially as key-value pairs to
ensure the absence of duplicate keys.

Meta address area. In this area, the offsets of each key within
the meta area are stored in the form of key-value pairs.

Footer. The footer stores the starting addresses of all areas above.

4.3 Vector Area
We proceed to introduce the vector area, which contains informa-
tion such as the ID, version, and specific numerical values of all

1597

vectors within the current segment. The vectors are arranged in
storage addresses in ascending order based on their IDs. At the end
of the vector area, we record the current number of vectors and
the starting offsets of each vector to facilitate quick random access.
As illustrated in Fig. 5 (c), the vector area comprises vector items,
restart offsets, and vector numbers arranged from top to bottom.

Vector items. As shown in Fig. 5 (d), each vector item is com-
posed of five fields: vector ID, neighbor info (optional), user key,
version, and vector value. The vector ID is a unique identifier as-
signed during disk storage, with a fixed length of 4 bytes, ensuring
its progressive incrementation across the vector area. The neighbor
info is an optional field that allows users to customize the storage
of certain neighbor IDs for the current vector, thereby enhancing
vector searches. The neighbor info field has a user defined length,
4𝑀 + 4, where the first 4 bytes indicate the number 𝑀 of stored
neighbors, followed by 4𝑀 bytes representing the neighbor IDs.
The user key is a 1-byte field specified by the user, used to store
data IDs from the actual application scenario, such as product IDs.
The version field is 1 byte long and the first bit indicates if the
vector is deleted (0 for deleted, 1 for inserted), while the remaining
7 bits represent the vector’s version. Lastly, the vector value, with
a length of 4𝐷 bytes where 𝐷 is the vector dimension, stores the
data for each dimension of the current vector in sequential order.

Restart offsets. Restart offsets are a list of offsets, where each
offset corresponds to a vector item within the vector area. The
length of this list is equal to the total number of current vectors.
Each offset, occupying one byte, indicates the offset of its respective
vector item. When conducting random access of a vector based on
its ID, it is essential to locate the starting address of that vector.

Vector number. It stores the total number of vectors in the
current vector area, with a length of 4 bytes.

4.4 Search Procedure
Fig. 6 illustrates the vector search process on hierarchical storage.

STEP ①: Search in State Memory. VStream resides in on-heap
memory and maintains a priority queue of length 𝑘 to store and
update the search results for the current partition. It also initiates
the threads to sequentially search the vectors in the state memory
and immediately update the result queue.

STEP ②: Search in Local Memory. VStream maintains an
internal queue for query results in the local memory. Then VStream
initiates several threads to search all states in memory and update
the internal queue concurrently.

STEP ③: Search in Local Disk. VStream searches the data
segments in the local disk level by level, such as level 0 and level
1 in Fig. 6. At each level, each segment is searched concurrently
with multiple threads, such as 𝑆0 to 𝑆2 in Fig. 6. For each segment,
its 𝑘NN index area is loaded into memory before searching. When
accessing a vector with a certain ID, it is first accessed in the cache.
If it is not hit, the vector area of the segment is accessed.

STEP ④: Search in Remote Disk. If there is data stored on the
remote disk, it needs to be loaded into the local disk in the format of
data segments. Then, the same search steps as STEP ③ are executed,
and the results are added into the internal queue.

STEP ⑤: Queue Merge. Insert the results of internal queue into
the result queue to complete the merging of the two queues.

...
Sequentially search

STEP ①

...
Immutable StatesMutable States

Concurrently searchSTEP ②

𝑆0 𝑆1 𝑆2

𝑆3 𝑆4 𝑆5

Level 0

Level 1

Data segments

Concurrently search

Concurrently search

Cache

Sequentially search
STEP ③

...
DFS/Object Storage/Distributed Database/...

Load

STEP ④

State Memory

Local Memory

Local Disk

Remote Disk

......

...

Internal
Queue

Result
Queue

STEP ⑤

Merge

Figure 6: Search Procedure in the Hierarchical Storage

4.5 Consistency Mechanism
The consistency of a streaming processing engine (SPE) can be
defined as the alignment between the internal state of the sys-
tem and the external output data before and after recovery from a
failover [19]. VStream adheres to this definition. However, ensuring
consistency is more challenging in streaming systems compared
to batch vector search systems, where the input is deterministic,
and data consistency is guaranteed through the atomicity of com-
putations. To avoid compromising the efficiency of vector search,
VStream employs a periodic backup mechanism.

Specifically, VStream backs up data segments using a periodic
checkpoint mechanism [29] common in streaming processing en-
gines (SPEs). By periodically inserting checkpoint markers into the
source, checkpoints can be triggered across all operator instances.
Each operator instance then packages its state into a consistent
snapshot, based on the Chandy-Lamport algorithm [31], upon re-
ceiving the marker. However, the changes in vector state between
successive checkpoints are typically small, making it unnecessary
to take snapshots of all vector states. Instead of copying existing
segments to persistent storage, VStream allows the new checkpoint
to reference previous data from the historical checkpoint.

5 STORAGE OPTIMIZER
Besides, VStream offers two types of storage optimizers, i.e., vector
compression and hot-cold separation.

5.1 Vector Compression
Behind Idea.When handling large-scale vector and index data, it is
natural to consider compression techniques. In scenarios where vec-
tors exhibit proximity within a partition, the Gorilla algorithm [75]
proves to be particularly effective. Although numerous vector com-
pression methods are currently available, including families of vec-
tor quantization techniques (such as PQ [56], OPQ [46], RQ [92],
LSQ [42]), scalar quantization [70], and more recent approaches like
orthogonal projection [93], these are lossy compression methods.

5.1.1 Vector Compressor. The Gorilla algorithm efficiently com-
presses individual floating point numbers in a sequential man-
ner, transforming initially fixed-length floating point formats into

1598

14.0625
0x41610000

15.5
0x41780000

0x00190000

10010111000011000

14.9375
0x416F0000

0x00170000

1101111

3.25
0x40500000

3.25
0x40500000

0x00000000

0

-4.0
0xC0800000

0x80D00000

10000001010011...00

8.625
0x410A0000

8.0
0x41000000

0x000A0000

100110010001000

-8.0
0xC1000000

0x80000000

1000000111111

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

𝑣0

𝑣1

𝑣0 𝑥𝑜𝑟 𝑣1

𝑣1′

𝑣2

𝑣1 𝑥𝑜𝑟 𝑣2

𝑣2′

XOR

XOR

Figure 7: Vector Compression

shorter variable-length formats. However, it cannot be directly used
for compressing high-dimensional vectors due to the lack of prox-
imity between the floating point numbers within vectors, rendering
the Gorilla algorithm ineffective for compression. Therefore, the
vector compressor in VStream converts vectors into variable-length
formats, where all floating point numbers across every dimension
of a vector are stored sequentially in a continuous storage space.

During the compression, the original data of the first vector
in the vector area is directly preserved for storage. Subsequently,
an XOR operation is performed between each subsequent vector
and the previous one. Fig. 7 shows an example of vector compres-
sion in the Float32 format under the IEEE 754 standard. The ini-
tial vector 𝑣0 = ⟨14.0625, 3.25, ..., 8.625⟩ is stored with its origi-
nal value, and the subsequent vectors 𝑣1 = ⟨15.5, 3.25, ..., 8.0⟩ and
𝑣2 = ⟨14.9375,−4.0,...,−8.0⟩ are compressed after being XORed
with 𝑣0 and 𝑣1 respectively. The XOR result of 15.5 and 14.0625 is
0x00190000, which has 11 leading zeros and 16 trailing zeros, and the
valid bits are 0b11000. The final storage result is 10010111000011000,
compressing 32 bits to 17 bits. And, 8.0, -4.0, and -8.0 are also com-
pressed similarly, with non-zero XOR results and no shared zeros.
The XOR result of 3.25 is 0, so only 1 bit is stored. The XOR result
of 14.9375 has the same number of leading and trailing zeros as
15.5, so the number of zeros does not need to be stored.

5.1.2 Compressor Cache. Once the Gorilla algorithm compresses
the vectors, it cannot support random access. Each time a vector is
accessed, it must be decoded starting from the first vector, resulting
in a significant decrease in the access speed of the original vector.
Although data segments utilize memory caches to expedite access,
they store the compressed values of the vectors, necessitating re-
cursive access and decoding with previous vectors. As a result, we
have opted to cache the decompressed values of the vectors instead.
In this way, for cache-missed vectors, it is possible to recursively
locate the nearest cached vector and start the decoding from it,
bypassing the need to start from the first vector.

5.2 Hot-Cold Separation
Behind Idea. The design motivation behind this optimization is
to run search operations in memory. Despite existing replacement
algorithms [79] based on access frequency, like LRU, OPT, FIFO, and
CLOCK used in buffer management, they encounter several chal-
lenges when applied to vector searches: (i) They primarily manage
data based on access frequency, neglecting the proximity of vectors

during the search process; (ii) They do not influence the search
order of data segments during vector searches; (iii) They cannot
avoid searching all data in extreme cases. To address these chal-
lenges, VStream’s hot-cold separation integrates multiple metrics
associated with vector proximity during search processes.

5.2.1 Hot-Cold Metric. VStream provides hot-cold metrics for im-
mutable states and data segments. That is, a higher hot-cold score
indicates a greater likelihood of access. VStream establishes the
following four hot-cold metrics.

Access Frequency. Assuming the access frequency of a data
segment is AF, each time when this data segment is accessed, its
AF increases by 1. With an initial setting of AF = 0, the calculation
of the hot-cold score 𝐻𝐴 based on access frequency is:

𝐻𝐴 (𝑡) = (1 − 𝑑𝑡) (1 − 𝑒−𝛾AF(𝑡)) + 𝑑𝑡𝐻𝐴 (𝑡 ′) (1)
Here, 𝑡 represents the current system time, 𝑡 ′ represents the pre-
vious update time, and 𝑡, 𝑡 ′ > 𝑡0, where 𝑡0 is the initial time of the
system. When 𝑡 = 𝑡0, 𝐻𝐴 (𝑡) = 0. 𝑑𝑡 = 𝑒−𝜂 (𝑡−𝑡

′) represents the
weight of AF with time decay, where 𝜂 is the decay coefficient, and
𝛾 is the exponential smoothing coefficient used for AF.

Search Hits. Similarly, VStream can update the hot-cold score
based on the number of hits in the data segment from queries.
Assume that the search hits of a data segment are denoted as SH,
each time a query result originates from this segment, SH increases
by 1. With an initial setting of SH = 0, the calculation of the hot-cold
score 𝐻𝑆 closely resembles Equation 1.

𝐻𝑆 (𝑡) = (1 − 𝑑𝑡) (1 − 𝑒−𝛾SH(𝑡)) + 𝑑𝑡𝐻𝑆 (𝑡 ′) (2)
Search Contribution. The contribution from search hits also

serves as a metric for assessing the hot-cold score of a data seg-
ment. We employ the distance between the query results from the
segment and the query vector as a measure of search contribution
and subsequently establish the hot-cold score 𝐻𝐶 based on this
contribution. The calculation of 𝐻𝐶 is as follows.

𝐻𝐶 (𝑡) = (1 − 𝑑𝑡)
1
|𝑅 |

∑︂
𝑣∈𝑅

𝑒−𝜂𝑑 (𝑣,𝑞) + 𝑑𝑡𝐻𝐶 (𝑡 ′) (3)

Here, 𝑅 is the search result set, and 𝑞 denotes the query vector.
Freshness. The freshness of a data segment is another factor in-

fluencing its hot-cold score. We randomly sample vectors within the
segment to measure the segment’s hot-cold score. The calculation
of the hot-cold score 𝐻𝐹 based on freshness is as follows.

𝐻𝐹 (𝑡) =
1
|𝑆 |

∑︂
𝑣∈𝑆

(1 − 𝑡 − 𝑣 .𝑡

𝑡 − 𝑡0
) (4)

Here, 𝑆 is the sampling subset of the data segment, and the times-
tamp of the vector 𝑣 ∈ 𝑆 can be obtained from the version code,
which is mentioned in Sec. 4.3.

Overall, via a linear combination manner [86], we define a hot-
cold metric using four parameters 𝜔𝐴 , 𝜔𝑆 , 𝜔𝐶 , and 𝜔𝐹 .

𝐻 = 𝜔𝐴𝐻𝐴 + 𝜔𝑆𝐻𝑆 + 𝜔𝐶𝐻𝐶 + 𝜔𝐹𝐻𝐹 (5)

5.2.2 Segment Search Steps. VStream sorts the immutable states
and data segments based on their hot-cold scores. In that case,
segments are no longer being arranged by their generation time
but rather by their hot-cold scores. The process of utilizing hot-cold
scores for search is described as follows.

1599

Table 1: Statistics of the Datasets Used

Attributes SIFT1B Deep1B Tweets
vectors 1 × 109 1 × 109 4.75 × 108

vector dimension 128 96 128
Value type Int Float Float
Disk Usage 559.0 GB 1072.3 GB 700.8 GB

a) Search with Hot-cold Metric. First, a priority queue with a
length of 𝑘 is maintained to store the search results. Then, multiple
threads are utilized to search through all immutable states, and the
results found in each immutable state are asynchronously inserted
into the priority queue. Once the search for immutable states is
completed, the data segments at each level are searched in parallel
using multiple threads, and the priority queue is updated accord-
ingly. This approach ensures that segments with higher hot-cold
scores are prioritized in the search process.

b) Early Stopping. As a result of query clustering, the search
results consistently occur in data segments with higher hot-cold
scores and occur less frequently in those with lower scores. Hence,
it is helpful to stop the search early while traversing through each
level of segments to filter out the ones with lower hot-cold scores.
To facilitate this, VStream offers an early stopping strategy called
the "threshold-stop" strategy. If the distance from the last element
in the queue to the query vector is less than a certain threshold,
the search is stopped early. The threshold is updated through a
weighted average with the tail of the queue, where a higher weight 𝜃
at the tail indicates an earlier early stopping. Furthermore, VStream
also allows users to customize their early stopping strategies.

6 EXPERIMENTS
6.1 Experimental Setup
6.1.1 Hardware and Software. The experimental environment is
deployed on a cluster consisting of 10 physical nodes. Each node
is equipped with 2 CPUs (Intel Xeon E5-2620 v3, 2.40 GHz), each
containing 12 cores, 128 GB of memory, and a 1 TB hard drive. These
nodes run CentOS 7.9 and are interconnected via a 2 Gbps/vcore
network switch. Apache Flink 1.18.0 is employed as the computing
environment for the cluster. HDFS 2.7.1 is used for storing the raw
dataset. For vector storage, VStream uses RocksDB 8.9.1 as the base
for the state backend, while the baseline methods utilize Milvus
2.3.x, Chroma DB 0.5.12, and Qdrant 1.12.1 for storage.

6.1.2 Configurations. We give configurations for Flink, RocksDB,
HDFS, Milvus, Chroma DB, Qdrant, and VStream, respectively.

Flink. Following Flink’s recommended configuration guide-
lines [7], we deploy Flink with 10 task managers in standalone
mode. Each task manager runs with a 16 GB on-heap memory.

RocksDB.We rewrite the Java interface of the RocksDB state
backend to support vector search functionality in RocksDB in-
stances. In addition, the RocksDB instances utilize async I/O and
direct I/O for flush operations to speed up disk access.

HDFS. The HDFS is deployed with default configurations, with
a heap size of 1 GB allocated for each Hadoop daemon.

Milvus.We deploy Milvus on a Kubernetes cluster with all 10
physical nodes. The CPU and memory limit of each Milvus node

is configured according to the official Milvus sizing tool [9]. To
emulate the streaming processing environment, we start a Flink
job on a separate Flink cluster that continuously reads vector data
and sends requests to the Milvus proxy.

Chroma DB. Due to Chroma DB’s lack of cluster deployment
support, we start a standalone Chroma DB instance for each Flink
subtask locally. Each Flink subtask receives partitioned vector
streams, and forwards them to its dedicated Chroma DB instance.

Qdrant.We deploy Qdrant on the same Kubernetes cluster as
Milvus with identical CPU and memory constraints. The Flink job
connects to the Qdrant cluster via the official Qdrant Java API.

VStream.We deploy VStream on the cluster based on the Flink’s
standalone mode. Each node of VStream is allocated 32 GB of
memory and 512 GB of disk storage. VStream accepts input vector
streams from Flink and stores the vectors in hierarchical storage.

6.1.3 Datasets. We use two popular open-source vector datasets,
SIFT [4] and Deep [2], as well as a Tweets dataset transformed from
the Twitter dataset [14] using FastText [24]. Table 1 summarizes the
statistics of the datasets used, where SIFT and Deep are benchmark
datasets of vector search, both containing 1 billion vectors extracted
from images, and Twitter dataset includes 475 million Twitter posts
collected in 2009. Note that the disk usage of the dataset refers to
the disk usage by the vectors after the dataset is decompressed and
stored in HDFS as text, with each vector stored in lines.

6.1.4 Workload. We read static vector data from HDFS using Flink
and use Flink’s DataGenerator to construct simulated input streams
at different data rates, i.e., (0.5𝑘, 3.5𝑘, 6.5𝑘, 9.5𝑘)/𝑠 , with a query/in-
sert/deletion ratio of 1 : 3 : 1. The data rates refers to the number
of vectors flowing into these systems per second.

6.1.5 Baselines. We compare VStream with the commonly used
vector systems, Milvus [49, 83], ChromaDB [3], and Qdrant [12] ac-
cording to the DB Engins Ranking [5]. To evaluate the performance
ofMilvus, ChromaDB, andQdrant, we utilized an existing Flink con-
nector [8] or implemented it for the above systems. The commonly
used IDPartitioner [69] was employed as the partitioner. Addition-
ally, in the ablation experiment, we compared other variants of
VStream: VStream without the dynamic partitioner (VStream w/o
DP), VStream without vector compression (VStream w/o VC), and
VStream without hot-cold separation (VStream w/o HCS). Finally,
we also evaluate different partitioners, including VStream with 𝑘-
Means, VStream with Odyssey, VStream with the Hilbert curve,
and VStream w/o LSH.

6.1.6 Evaluation Metrics. We use six metrics. i) Query Latency.
It denotes the time interval between a query’s creation timestamp
and the timestamp of the final result; ii)Memory usage. It denotes
the memory usage of the cluster; iii) Disk throughput. It denotes
the average disk throughput for read and write operations across all
nodes; iv) CPU usage. It denotes the average CPU occupancy rate
of cluster nodes; v) Disk usage. It represents the used disk capacity
of the cluster; vi) Recall. It denotes the recall for each query. In
the streaming vector search process, the size of vectors and indexes
increases as the data flows in. Thus, we report the memory usage
and disk usage at the end of the stream, as well as the other metrics
based on the average of the last 1000 queries.

1600

VStreamMilvusQdrantChroma DB

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

100

102

104

Q
ue

ry
 L

at
en

cy
 (m

s)

(a) SIFT: Latency

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

0

20

40

60

C
PU

 U
sa

ge
 (%

)
(b) SIFT: CPU

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

0

500

1000

M
em

or
y

U
sa

ge
 (G

B
)

(c) SIFT: Memory

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

0

50

100

D
is

k
Th

ro
ug

hp
ut

 (M
B

/s
)

(d) SIFT: Disk

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

100

102

104

Q
ue

ry
 L

at
en

cy
 (m

s)

(e) Deep: Latency

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

0

20

40

60

C
PU

 U
sa

ge
 (%

)

(f) Deep: CPU

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

0

500

1000

M
em

or
y

U
sa

ge
 (G

B
)

(g) Deep: Memory

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

0

50

100

150

D
is

k
Th

ro
ug

hp
ut

 (M
B

/s
)

(h) Deep: Disk

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

100

102

Q
ue

ry
 L

at
en

cy
 (m

s)

(i) Tweets: Latency

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

0

20

40

C
PU

 U
sa

ge
 (%

)

(j) Tweets: CPU

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

0

500
M

em
or

y
U

sa
ge

 (G
B

)

(k) Tweets: Memory

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

0

50

100

D
is

k
Th

ro
ug

hp
ut

 (M
B

/s
)

(l) Tweets: Disk

Figure 8: Efficiency and Scalability Evaluation vs. Data Rate

VStreamMilvusQdrantChroma DB

7 8 9 10
Cluster Nodes

100

102

104

Q
ue

ry
 L

at
en

cy
 (m

s)

(a) SIFT: Latency

7 8 9 10
Cluster Nodes

0

20

40

60

C
PU

 U
sa

ge
 (%

)

(b) SIFT: CPU

7 8 9 10
Cluster Nodes

0

500

1000

M
em

or
y

U
sa

ge
 (G

B
)

(c) SIFT: Memory

7 8 9 10
Cluster Nodes

0

50

100

D
is

k
Th

ro
ug

hp
ut

 (M
B

/s
)

(d) SIFT: Disk

Figure 9: Efficiency and Scalability Evaluation vs. Cluster Nodes

6.2 System Efficiency and Scalability Study
To evaluate the efficiency and scalability of VStream, we conduct
experiments at varying data rates, reporting their respective query
latencies, and resource usage including memory, disk, and CPU. The
experimental results on three datasets are shown in Fig. 8(a)–8(d),
Fig. 8(e)–8(h), and Fig. 8(i)–8(l), respectively.

VStream performs better than Milvus, ChromaDB, and Qdrant,
especially at higher data rates, e.g., 9.5 × 103/𝑠 , achieving 115–
1127×, 33%–68%, and 9%–75% reduction in query latency, memory
usage, and disk throughput, respectively. Although VStream’s CPU

usage is slightly higher than that of Chroma DB (which employs a
single-threaded write approach on each instance), it is 29%—69%
lower than that of Qdrant and Milvus. This is because, on one
hand, VStream utilizes a dynamic partitioner to reduce the search
space. On the other hand, the hierarchical storage and hot-cold
separation optimization enable most searches in local memory of
each node, thereby reducing disk I/O. In contrast, Milvus requires
searching across all data partitions and involves frequent cross-
node data transmission, requiring frequent disk accesses, which
results in higher query latency, CPU usage, and disk throughput.

1601

VStreamMilvus

5 10 20 50
k

0.6

0.8

1.0

R
ec

al
l

(a) SIFT: Recall

5 10 20 50
k

0.6

0.8

1.0

R
ec

al
l

(b) Tweets: Recall

Figure 10: Effectiveness Evaluation vs. 𝑘

Chroma DB, being an embedded database, lacks an efficient data
routing or partitioning mechanism for managing large-scale data
in a distributed cluster and relies on frequent disk I/O operations
when processing high-speed data updates.

We proceed to conduct experiments on Milvus, Chroma DB,
Qdrant and VStream at various cluster nodes. The experimental
results on the SIFT1B dataset are shown in Fig. 9. The results on
the other two datasets are omitted due to similar observations and
limited space. First, the increase in cluster nodes allows for more
CPU cores to be utilized for data insertion and querying, resulting
in reduced query latency and resource usage. Second, VStream con-
sistently outperforms Chroma DB, Qdrant, and Milvus regarding
query latency and memory usage across different cluster nodes.
Additionally, VStream’s superiority on query latency becomes even
more pronounced at higher cluster nodes due to its ability to avoid
accessing data across nodes. While increasing the cluster nodes
implies that Milvus must access data from a larger number of data
nodes. Finally, VStream exhibits higher disk throughput compared
to Milvus. This is because, during small number of cluster nodes,
VStream has idle nodes without data, whereas Milvus utilizes all
available physical nodes.

6.3 System Effectiveness Evaluation
We perform vector recall experiments on Milvus and VStream at
a variety of 𝑘 to evaluate their effectiveness. The recall on the
SIFT1B and Tweets datasets are presented in Fig. 10(a) and Fig. 10(b),
respectively. First, Milvus requires caching and batch inserting data,
which prevents it from searching for data in the uncompleted batch,
resulting in a lower recall compared to VStream. As shown in Fig. 10,
VStream achieves superior recall in streaming vector searches. This
is because when Milvus receives high-speed incoming data streams
from external sources, some real-time data gets stalled in external
systems, resulting in delayed vector searches and reduced recall.

We also conducted evaluation experiments on VStream and Mil-
vus at a data rate of 9.5𝑘/𝑠 , measuring the query latency under
different recall conditions, and plotted the latency-recall curve. As
shown in Fig. 11, both VStream and Milvus require longer query
latencies to ensure higher recall. However, VStream’s query latency
is 50.8×–98.3× shorter than that of Milvus.

VStreamMilvus

400

500

600

0.75 0.80 0.85
Recall

7

8

9

(a) SIFT

Q
ue

ry
 L

at
en

cy
 (m

s)

400

500

0.84 0.86 0.88
Recall

4.0

4.5

5.0

(b) Tweets

Q
ue

ry
 L

at
en

cy
 (m

s)

Figure 11: Latency-recall Curve

6.4 System Ablation Studies
Dynamic partitioner ablation. We compared VStream’s per-
formance with VStream with 𝑘-Means, VStream with Odyssey,
VStream with Hilbert Curve, VStream w/o LSH, and VStream w/o
DP at different cluster nodes. Fig. 12(a)–Fig. 12(d) presents the ab-
lation results. VStream achieves a significant reduction in query
latency (44%—46%) and disk throughput (10%—22%) compared to
VStream with 𝑘-Means and VStream with Odyssey. While mem-
ory usage is slightly higher than that of 𝑘-Means and Odyssey,
the CPU usage is nearly identical to 𝑘-Means and 12%—16% lower
than Odyssey. Experiments using the Hilbert curve show similar
results to VStream, indicating that the choice of space-filling curve
has minimal impact on the performance of the partitioner. Due
to the stronger proximity of vectors on the Hilbert curve, its per-
formance is slightly better. After removing LSH, VStream’s query
latency, CPU usage, memory usage, and disk throughput increased
by 1.40×—1.59×, 41%–64%, 1%—9%, and 63%–79%, respectively.

Storage optimization ablation. To evaluate the effectiveness
of VStream’s two storage optimizers, we conduct experiments
where we removed vector compression and hot-cold separation
individually, i.e., VStreamw/o VC and VStreamw/o HCS. Fig. 13(a)–
Fig. 13(d) presents the ablation results. First, VStream has a 55%/39%
lower disk throughput/usage compared to VStream w/o VC espe-
cially at higher data rates, e.g., 9.5 × 103/𝑠 . And as Fig. 13(d) shows,
VStream’s vector compression optimizer achieves a 61%–65% of
compression ratio at varing data rates. This is achieved through
the Gorilla-based vector compression optimizer’s disk resource sav-
ings. However, enabling the vector compression optimizer slightly
increases the CPU usage of VStream by 2%–12%. This optimizer
mainly helps in scenarios where disk capacity or disk throughput
is limited. VStream also allows users to selectively enable the vec-
tor compression optimizer. Secondly, VStream w/o HCS exhibits
higher query latency, CPU usage, and disk throughput compared
to VStream due to the hot-cold separation optimizer reducing the
search space. Lastly, the faster the data flows, the more noticeable
the effects of the above two optimizers. This is because higher data
rates result in increased pressure on the disk and CPU. Fig. 14 shows
the memory and disk usage for three datasets in VStream, with a
data rate of 9.5𝑘/𝑠 . As the figure shows, VStream’s memory usage
accounts for only 6.93%–9.85% of the total storage. And the major-
ity of the data is stored on disk. We have also evaluate the time of
VStream for a vector to go from state to local memory and then to

1602

VStream w/o LSH VStreamVStream w/o DPVStream with k-Means VStream with Hilbert CurveVStream with Odyssey

7 8 9 10
Cluster Nodes

2

4

6

8

Q
ue

ry
 L

at
en

cy
 (×

10
2 m

s)

(a) SIFT: Latency

7 8 9 10
Cluster Nodes

10

20

30

40

C
PU

 U
sa

ge
 (%

)

(b) SIFT: CPU

7 8 9 10
Cluster Nodes

0

100

200

300

M
em

or
y

U
sa

ge
 (G

B
)

(c) SIFT: Memory

7 8 9 10
Cluster Nodes

0

50

100

150

D
is

k
Th

ro
ug

hp
ut

 (M
B

/s
)

(d) SIFT: Disk

Figure 12: Dynamic Partitioner Ablation vs. Cluster Nodes

Vstream w/o VC VStreamVstream w/o HCS

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

2

3

4

Q
ue

ry
 L

at
en

cy
 (×

10
2 m

s)

(a) SIFT: Latency

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

10

15

20

C
PU

 U
sa

ge
 (%

)

(b) SIFT: CPU

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

0

50

D
is

k
Th

ro
ug

hp
ut

 (M
B

/s
)

(c) SIFT: Disk Throughput

0.5 3.5 6.5 9.5
Data Rate (×103 s−1)

250

300

350

400

D
is

k
U

sa
ge

 (G
B

)

(d) SIFT: Disk Usage

Figure 13: Storage Optimization Ablation vs. Data Rate

Local Memory Other MemoryCacheMemoryDisk

4.65%

3.76%

1.44%

90.15%

9.85%

(a) SIFT
3.40%

4.12%

1.61%

90.86%

9.14%

(b) Deep
2.10%

3.11%

1.72%

93.07%

6.93%

(c) Tweets

Figure 14: Memory/Disk Uasge of VStream

disk under different data rates. The results for the three datasets
are presented in Table 2. As observed, VStream efficiently utilizes
both memory and disk to store vectors shortly after receiving the
data, rather than storing all the data in memory.

6.5 System Knobs Tuning
To explore the influence of system knobs on system performance
and offer some guidance for knob configuration tuning, our experi-
ments emphasize the examination of VStream’s performance under
varying segment sizes 𝑠 and hot-cold separation parameter 𝜃 .

Tuning of 𝑠 . Fig. 15(a)–Fig. 15(d) shows the results of tuning
segment sizes 𝑠 . To present the system’s performance across var-
ious segment sizes, we initially lowered the hot-cold separation
threshold 𝜃 to 0.5 to ensure that all queries necessitated disk access.
So the query latency, CPU usage, and disk throughput are relatively

higher. As the segment size 𝑠 increases, query latency, disk through-
put, and CPU usage initially decrease and then rise again. And as
the segment sizes 𝑠 increases, memory usage increases because
the mutable and immutable states in local memory become larger.
Therefore, it is essential to determine the segment size based on
the available memory resources in the user’s cluster.

Tuning of 𝜃 . As shown in Fig. 15(e)–Fig. 15(h), the query la-
tency of VStream decreases with the increase of hot-cold separation
parameter 𝜃 . The results show that increasing the value of 𝜃 can
significantly improve search efficiency. This is because a larger 𝜃
value means stopping the search earlier, skipping more cold data,
and thus greatly reducing query latency, CPU usage, and memory
usage. In practical scenarios using VStream, the determination of
the amount of cold data to be skipped should align with specific
application requirements and business needs. For instance, in social
media platforms characterized by frequent updates, a larger 𝜃 value
may be preferable. On the other hand, in applications like email or
log analysis with lower data update frequencies, a smaller 𝜃 value
might be more suitable. Moreover, the disk throughput in the figure
is less impacted by 𝜃 , mainly attributed to the influence of disk
cache, which helps maintain relatively stable disk access volumes.

7 RELATEDWORK
(A) Vector Similarity Search is widely studied in communi-

ties [39, 40]. It can be classified into exact algorithms and approx-
imate algorithms. Specifically, exact similarity search mainly re-
lies on tree-based structures [34, 66, 77, 84, 89, 95] to construct

1603

Table 2: Time from State to Local Memory/Local Disk

Data Rates (×103/𝑠) 0.5 3.5 6.5 9.5

Time (ℎ)

SIFT Local Memory 3.71 0.53 0.28 0.19
Local Disk 22.27 3.17 1.71 1.17

Deep Local Memory 3.69 0.53 0.29 0.19
Local Disk 22.37 3.18 1.71 1.17

Tweets Local Memory 2.22 0.32 0.17 0.12
Local Disk 13.35 1.91 1.03 0.70

similarity indexes, prioritizing result accuracy over search per-
formance. Recent researchers have proposed approximate algo-
rithms [38, 44, 45, 54, 65, 67, 68] to balance efficiency and accuracy,
which can be further categorized as 𝛿-𝜖-Approximate algorithms
and ng-Approximate algorithms based on guarantees. The former
refers to probabilistic algorithms [38, 45, 54] with 𝛿 and 𝜖 acting as
control parameters for probability guarantees. The latter refers to
non-guaranteed approximate algorithms that typically utilize the
concept of "neighbors of neighbors are also neighbors" by construct-
ing neighbor graphs such as RNNG [44], NSG [67], and HNSW [68].
While these approximate indexes may not ensure precision, they
offer high efficiency and have proven effective in practical valida-
tions. However, all of these methods have limitations. First, they
lack scalability for large-scale vector searches as they primarily
run in memory. Second, they are restricted to single-machine vec-
tor searches and don’t support the addition of computational and
storage resources. Third, they are ill-suited for streaming vector
search scenarios with dynamic data updates due to their reliance
on static indexes. While there are incremental indexes for single-
machine vector search [18, 20, 23, 26, 27, 32, 47, 78, 80, 87, 88], they
struggle to maintain fast search speeds in a multi-machine cluster
under high data flow rates. In contrast, VStream, built upon the
SPE model [19], addresses these challenges by implementing a new
distributed streaming vector search engine.

(B) Vector Search Engines typically employ similarity search
techniques to retrieve high-dimensional vectors. These engines can
be broadly classified into two categories. The first category includes
libraries such as Facebook Faiss [57], Microsoft SPTAG [13], HN-
SWlib [68], and Annoy [1], which extend vector search algorithms
for one or multiple types of vector indexes. Additionally, they intro-
duce optimizations like multi-threading. However, they are not com-
plete systems and thus lack capabilities such as distributed compu-
tation, fault recovery, and consistency guarantees. The second cate-
gory includes distributed vector search systems, such as Vearch [64],
Vespa [16], Weaviate [17], Vald [15], Qdrant [12], Pinecone [10],
Milvus [49, 83], and Chroma DB [3]. Note that, general-purpose
databases like ElasticSearch [6], Postgres [11], AnalyticDB-V [85],
and PASE [90] are gradually being equippedwith vector search capa-
bilities. However, they do not offer specific optimizations for stream-
ing vector search scenarios. They still need batch data transfers
between nodes and lack capabilities for handling online data and
indexes, resulting in higher response latency. In contrast, VStream
is designed for streaming vector search, offering record-at-a-time
capability, supporting four-layer storage.

50 75 100 125
s (MB)

2

3

4

5

6

Q
ue

ry
 L

at
en

cy
 (×

10
2 m

s)

(a) SIFT: Latency

50 75 100 125
s (MB)

10

15

20

25

C
PU

 U
sa

ge
 (%

)

(b) SIFT: CPU

50 75 100 125
s (MB)

100

150

200

250

300

M
em

or
y

U
sa

ge
 (G

B
)

(c) SIFT: Memory

50 75 100 125
s (MB)

50

60

70

D
is

k
Th

ro
ug

hp
ut

 (M
B

/s
)

(d) SIFT: Disk

0.5 1 1.5 2
θ

1

2

3

Q
ue

ry
 L

at
en

cy
 (×

10
2 m

s)

(e) Deep: Latency

0.5 1 1.5 2
θ

10

15

20

25

C
PU

 U
sa

ge
 (%

)

(f) Deep: CPU

0.5 1 1.5 2
θ

290

300

310

M
em

or
y

U
sa

ge
 (G

B
)

(g) Deep: Memory

0.5 1 1.5 2
θ

55

60

65

D
is

k
Th

ro
ug

hp
ut

 (M
B

/s
)

(h) Deep: Disk

Figure 15: Configuration Knobs Tuning

8 CONCLUSIONS
In this work, we introduce VStream, a streaming vector search
system. VStream provides a dynamic partitioner for adaptive data
partitioning. Data is stored in a hierarchical storage mechanism
with support for multiple types of storage. It utilizes efficient vector
compression and hot-cold separation strategies for optimization. In
the future, we plan to extend our hierarchical storage mechanism
to GPUs, leveraging the powerful vector computing capabilities
to further enhance system efficiency. Additionally, multi-vector
search is also one of the functionalities we plan to support.

ACKNOWLEDGMENTS
This work was supported by the NSFC under Grants No. (62025206,
U23A20296, 62402422, and 62472377), and Zhejiang Province’s
"Lingyan" R&D Project under Grant No. 2024C01259. Yunjun Gao
is the corresponding author of the work.

1604

REFERENCES
[1] 2024. Annoy: Approximate Nearest Neighbors Oh Yeah. https://github.com/

spotify/annoy
[2] 2024. Benchmarks for Billion-Scale Similarity Search. https://research.yandex.

com/datasets/biganns
[3] 2024. ChromaDB. https://www.trychroma.com/
[4] 2024. Datasets for approximate nearest neighbor search. http://corpus-texmex.

irisa.fr/
[5] 2024. DB Engines Ranking. https://db-engines.com/en/ranking/vector+dbms
[6] 2024. ElasticSearch: Open Source, Distributed, RESTful Search Engine. https:

//github.com/elastic/elasticsearch
[7] 2024. Flink Guide. https://nightlies.apache.org/flink/flink-docs-release-1.18/
[8] 2024. Flink Milvus Connector. https://github.com/CuitingChen/flink-connector-

milvus
[9] 2024. Milvus Sizing Tool. https://milvus.io/tools/sizing/
[10] 2024. Pinecone. https://www.pinecone.io/
[11] 2024. PostgreSQL: TheWorld’s Most Advanced Open Source Relational Database.

https://www.postgresql.org/
[12] 2024. Qdrant. https://qdrant.tech/
[13] 2024. SPTAG: A library for fast approximate nearest neighbor search. https:

//github.com/microsoft/SPTAG
[14] 2024. Twitter Dataset. https://snap.stanford.edu/data/twitter7.html
[15] 2024. Vald. https://github.com/vdaas/vald
[16] 2024. Vespa. https://vespa.ai/
[17] 2024. Weaviate. https://github.com/semi-technologies/weaviate
[18] Cecilia Aguerrebere, Mark Hildebrand, Ishwar Singh Bhati, Theodore L. Willke,

and Mariano Tepper. 2024. Locally-Adaptive Quantization for Streaming Vector
Search. CoRR abs/2402.02044 (2024). https://doi.org/10.48550/ARXIV.2402.02044
arXiv:2402.02044

[19] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and SamWhittle. 2015. The Dataflow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-
of-Order Data Processing. Proc. VLDB Endow. 8, 12 (2015), 1792–1803.

[20] Guilherme Andrade, Willian Barreiros, Leonardo Rocha, Renato Ferreira, and
George Teodoro. 2024. Large-scale response-aware online ANN search in dy-
namic datasets. Clust. Comput. 27, 3 (2024), 3499–3519.

[21] Sunil Arya and David M. Mount. 1993. Approximate Nearest Neighbor Queries
in Fixed Dimensions. In ACM/SIGACT-SIAM. 271–280.

[22] Dmitry Baranchuk, Artem Babenko, and Yury Malkov. 2018. Revisiting the
Inverted Indices for Billion-Scale Approximate Nearest Neighbors. In ECCV.
209–224.

[23] Guy E. Blelloch and Magdalen Dobson. 2022. Parallel Nearest Neighbors in Low
Dimensions with Batch Updates. In ALENEX, Cynthia A. Phillips and Bettina
Speckmann (Eds.). 195–208.

[24] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov. 2017.
Enriching Word Vectors with Subword Information. Trans. Assoc. Comput. Lin-
guistics 5 (2017), 135–146.

[25] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-Scale Hypertex-
tual Web Search Engine. Comput. Networks 30, 1-7 (1998), 107–117.

[26] Sebastian Bruch, Franco Maria Nardini, Amir Ingber, and Edo Liberty. 2023. An
Approximate Algorithm for Maximum Inner Product Search over Streaming
Sparse Vectors. CoRR abs/2301.10622 (2023).

[27] Sebastian Bruch, Franco Maria Nardini, Amir Ingber, and Edo Liberty. 2024. An
Approximate Algorithm for Maximum Inner Product Search over Streaming
Sparse Vectors. ACM Trans. Inf. Syst. 42, 2 (2024), 1–43.

[28] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, Harsha
Nori, Hamid Palangi, Marco Túlio Ribeiro, and Yi Zhang. 2023. Sparks of Artificial
General Intelligence: Early experiments with GPT-4. CoRR abs/2303.12712 (2023).

[29] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. 2017. State Management in Apache Flink®: Consistent Stateful Dis-
tributed Stream Processing. Proc. VLDB Endow. 10 (2017), 1718–1729.

[30] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single
engine. The Bulletin of the Technical Committee on Data Engineering 38, 4 (2015).

[31] K. Mani Chandy and Leslie Lamport. 1985. Distributed Snapshots: Determining
Global States of Distributed Systems. ACM Trans. Comput. Syst. 3, 1 (1985),
63–75.

[32] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li,
Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-scale
Approximate Nearest Neighborhood Search. In NeurIPS. 5199–5212.

[33] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. In DLRS@RecSys. 7–10.

[34] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An Efficient Access
Method for Similarity Search in Metric Spaces. In VLDB. 426–435.

[35] Open Geospatial Consortium et al. 2017. Discrete Global Grid Systems Abstract
Specification.

[36] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In ACM Conference on Recommender Systems.
191–198.

[37] Emmanuel Gbenga Dada, Joseph Stephen Bassi, Haruna Chiroma, Shafi’i Muham-
mad Abdulhamid, Adebayo Olusola Adetunmbi, and Opeyemi Emmanuel
Ajibuwa. 2019. Machine learning for email spam filtering: review, approaches
and open research problems. Heliyon 5 (2019).

[38] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. 2004.
Locality-sensitive hashing scheme based on p-stable distributions. In ACM Sym-
posium on Computational Geometry. 253–262.

[39] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.
2018. The Lernaean Hydra of Data Series Similarity Search: An Experimental
Evaluation of the State of the Art. Proc. VLDB Endow. 12, 2 (2018), 112–127.

[40] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.
2019. Return of the Lernaean Hydra: Experimental Evaluation of Data Series
Approximate Similarity Search. Proc. VLDB Endow. 13, 3 (2019), 403–420.

[41] Yury Elkin and Vitaliy Kurlin. 2022. Paired compressed cover trees guarantee
a near linear parametrized complexity for all k-nearest neighbors search in an
arbitrary metric space. CoRR abs/2201.06553 (2022).

[42] Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Ap-
puswamy, and Dharmendra S. Modha. 2020. Learned Step Size quantization. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

[43] Absalom E. Ezugwu, Abiodun M. Ikotun, Olaide Nathaniel Oyelade, Laith Mo-
hammad Abualigah, Jeffrey O. Agushaka, Christopher I. Eke, and Andronicus Ay-
obami Akinyelu. 2022. A comprehensive survey of clustering algorithms: State-of-
the-art machine learning applications, taxonomy, challenges, and future research
prospects. Eng. Appl. Artif. Intell. 110 (2022), 104743.

[44] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search With The Navigating Spreading-out Graph. Proc. VLDB
Endow. 12, 5 (2019), 461–474.

[45] Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. 2012. Locality-sensitive
hashing scheme based on dynamic collision counting. In SIGMOD. 541–552.

[46] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized Product
Quantization. IEEE Trans. Pattern Anal. Mach. Intell. 36, 4 (2014), 744–755.

[47] Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy,
Nikit Begwani, Swapnil Raz, Yiyong Lin, Yin Zhang, NeelamMahapatro, Premku-
mar Srinivasan, Amit Singh, and Harsha Vardhan Simhadri. 2023. Filtered-
DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with
Filters. InWWW. 3406–3416.

[48] Mihajlo Grbovic and Haibin Cheng. 2018. Real-time Personalization using
Embeddings for Search Ranking at Airbnb. In SIGKDD. 311–320.

[49] Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo,
Qianya Cheng, Weizhi Xu, Jiarui Luo, Frank Liu, Zhenshan Cao, Yanliang Qiao,
Ting Wang, Bo Tang, and Charles Xie. 2022. Manu: A Cloud Native Vector
Database Management System. Proc. VLDB Endow. 15, 12 (2022), 3548–3561.

[50] Helia Hashemi, Aasish Pappu, Mi Tian, Praveen Chandar, Mounia Lalmas, and
Benjamin A. Carterette. 2021. Neural Instant Search for Music and Podcast. In
KDD. 2984–2992.

[51] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R. Lyu, and
Dongmei Zhang. 2018. Identifying impactful service system problems via log
analysis. In ESEC/SIGSOFT. 60–70.

[52] David Hilbert and David Hilbert. 1935. Über die stetige Abbildung einer Linie
auf ein Flächenstück. Dritter Band: Analysis· Grundlagen der Mathematik· Physik
Verschiedenes: Nebst Einer Lebensgeschichte (1935), 1–2.

[53] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry P.
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In CIKM. 2333–2338.

[54] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.
Query-Aware Locality-Sensitive Hashing for Approximate Nearest Neighbor
Search. Proc. VLDB Endow. 9, 1 (2015), 1–12.

[55] Piotr Indyk and RajeevMotwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In ACM Symposium on the Theory of
Computing. 604–613.

[56] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1 (2011),
117–128.

[57] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-Scale Similarity
Search with GPUs. IEEE Trans. Big Data 7, 3 (2021), 535–547.

[58] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. In SIGIR. 39–48.

[59] Hyeyoung Ko, Suyeon Lee, Yoonseo Park, and Anna Choi. 2022. A survey of
recommendation systems: recommendation models, techniques, and application
fields. Electronics 11, 1 (2022), 141.

[60] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging
system for log processing. In NetDB, Vol. 11. 1–7.

1605

https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://research.yandex.com/datasets/biganns
https://research.yandex.com/datasets/biganns
https://www.trychroma.com/
http://corpus-texmex.irisa.fr/
http://corpus-texmex.irisa.fr/
https://db-engines.com/en/ranking/vector+dbms
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://nightlies.apache.org/flink/flink-docs-release-1.18/
https://github.com/CuitingChen/flink-connector-milvus
https://github.com/CuitingChen/flink-connector-milvus
https://milvus.io/tools/sizing/
https://www.pinecone.io/
https://www.postgresql.org/
https://qdrant.tech/
https://github.com/microsoft/SPTAG
https://github.com/microsoft/SPTAG
https://snap.stanford.edu/data/twitter7.html
https://github.com/vdaas/vald
https://vespa.ai/
https://github.com/semi-technologies/weaviate
https://doi.org/10.48550/ARXIV.2402.02044

[61] Pushpendra Kumar and Ramjeevan Singh Thakur. 2018. Recommendation system
techniques and related issues: a survey. International Journal of Information
Technology 10 (2018), 495–501.

[62] Sudarshan Lamkhede and Sudeep Das. 2019. Challenges in Search on Stream-
ing Services: Netflix Case Study. In SIGIR, France, July 21-25, 2019, Benjamin
Piwowarski, Max Chevalier, Éric Gaussier, Yoelle Maarek, Jian-Yun Nie, and Falk
Scholer (Eds.). 1371–1374.

[63] Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. 2014. Mining of Massive
Datasets, 2nd Ed.

[64] Jie Li, Haifeng Liu, Chuanghua Gui, Jianyu Chen, Zhenyuan Ni, and Ning Wang.
2019. The Design and Implementation of a Real Time Visual Search System on
JD E-commerce Platform. CoRR abs/1908.07389 (2019).

[65] Linhao Li and Qinghua Hu. 2020. Optimized high order product quantization
for approximate nearest neighbors search. Frontiers Comput. Sci. 14, 2 (2020),
259–272.

[66] Xingxin Li, Youwen Zhu, Rui Xu, Jian Wang, and Yushu Zhang. 2024. Indexing
dynamic encrypted database in cloud for efficient secure k-nearest neighbor
query. Frontiers Comput. Sci. 18, 1 (2024), 181803.

[67] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
2014. Approximate nearest neighbor algorithm based on navigable small world
graphs. Inf. Syst. 45 (2014), 61–68.

[68] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable SmallWorld Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836.

[69] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analysis of
Web-Scale Datasets. Proc. VLDB Endow. 3, 1 (2010), 330–339.

[70] Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. 2024.
Finite Scalar Quantization: VQ-VAE Made Simple. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11,
2024.

[71] Erxue Min, Xifeng Guo, Qiang Liu, Gen Zhang, Jianjing Cui, and Jun Long. 2018.
A Survey of Clustering With Deep Learning: From the Perspective of Network
Architecture. IEEE Access 6 (2018), 39501–39514.

[72] Jay Nanavati and Unnati Patel. 2023. Hybrid Model for Analysis of Social Media
Posts for Identification of Depression and Measuring Its Severity. ICDSNS (2023),
1–5.

[73] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking : Bringing Order to the Web. In The Web Conference.

[74] Giuseppe Peano and G Peano. 1990. Sur une courbe, qui remplit toute une aire
plane.

[75] Tuomas Pelkonen, Scott Franklin, Paul Cavallaro, Qi Huang, Justin Meza, Justin
Teller, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, In-Memory
Time Series Database. Proc. VLDB Endow. 8, 12 (2015), 1816–1827.

[76] Loren K Platzman and John J Bartholdi III. 1989. Spacefilling curves and the
planar travelling salesman problem. Journal of the ACM (JACM) 36, 4 (1989),
719–737.

[77] Jin Shieh and Eamonn J. Keogh. 2008. iSAX: indexing and mining terabyte sized
time series. In SIGKDD. 623–631.

[78] Aditi Singh, Suhas Jayaram Subramanya, Ravishankar Krishnaswamy, and Har-
sha Vardhan Simhadri. 2021. FreshDiskANN: A Fast and Accurate Graph-Based
ANN Index for Streaming Similarity Search. ArXiv abs/2105.09613 (2021).

[79] Alan Jay Smith. 1987. Design of CPU cache memories.
[80] Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish, Todd Mostak,

Piotr Indyk, Samuel Madden, and Pradeep Dubey. 2013. Streaming Similarity

Search over one Billion Tweets using Parallel Locality-Sensitive Hashing. Proc.
VLDB Endow. 6, 14 (2013), 1930–1941.

[81] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. 2023. LLaMA: Open and Efficient Foundation Language Models. CoRR
abs/2302.13971 (2023).

[82] Soroush Vosoughi, Deb K. Roy, and Sinan Aral. 2018. The spread of true and
false news online. Science 359 (2018), 1146–1151.

[83] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan,
Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua
Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A Purpose-Built
Vector Data Management System. Proceedings of the 2021 International Conference
on Management of Data (2021).

[84] Roger Weber, Hans-Jörg Schek, and Stephen Blott. 1998. A Quantitative Analysis
and Performance Study for Similarity-Search Methods in High-Dimensional
Spaces. In VLDB. 194–205.

[85] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine Towards
Query Fusion for Structured and Unstructured Data. Proc. VLDB Endow. 13, 12
(2020), 3152–3165.

[86] Shengli Wu. 2012. Linear combination of component results in information
retrieval. Data Knowl. Eng. 71, 1 (2012), 114–126.

[87] Yuming Xu, Hengyu Liang, Jin Li, Shuotao Xu, Qi Chen, Qianxi Zhang, Cheng Li,
Ziyue Yang, Fan Yang, Yuqing Yang, Peng Cheng, and Mao Yang. 2023. SPFresh:
Incremental In-Place Update for Billion-Scale Vector Search. In SOSP, Jason Flinn,
Margo I. Seltzer, Peter Druschel, Antoine Kaufmann, and Jonathan Mace (Eds.).
545–561.

[88] Zhaozhuo Xu, Weijie Zhao, Shulong Tan, Zhixin Zhou, and Ping Li. 2022. Prox-
imity Graph Maintenance for Fast Online Nearest Neighbor Search. CoRR
abs/2206.10839 (2022).

[89] Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Palpanas.
2017. DPiSAX: Massively Distributed Partitioned iSAX. In 2017 IEEE International
Conference on Data Mining, ICDM 2017, New Orleans, LA, USA, November 18-21,
2017. 1135–1140.

[90] Wen Yang, Tao Li, Gai Fang, and Hong Wei. 2020. PASE: PostgreSQL Ultra-High-
Dimensional Approximate Nearest Neighbor Search Extension. In SIGMOD.
2241–2253.

[91] Matei A. Zaharia, Reynold Xin, Patrick Wendell, Tathagata Das, Michael Arm-
brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,
Michael J. Franklin, Ali Ghodsi, Joseph E. Gonzalez, Scott Shenker, and Ion
Stoica. 2016. Apache Spark. Commun. ACM 59 (2016), 56–65.

[92] Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco
Tagliasacchi. 2022. SoundStream: An End-to-End Neural Audio Codec. IEEE
ACM Trans. Audio Speech Lang. Process. 30 (2022), 495–507.

[93] Xu Zhang, Felix X. Yu, Ruiqi Guo, Sanjiv Kumar, Shengjin Wang, and Shih-Fu
Chang. 2015. Fast Orthogonal Projection Based on Kronecker Product. In 2015
IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015. 2929–2937.

[94] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R.
Lyu. 2019. Tools and benchmarks for automated log parsing. In ICSE, Helen
Sharp and Mike Whalen (Eds.). 121–130.

[95] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2016. ADS: the
adaptive data series index. VLDB J. 25, 6 (2016), 843–866.

1606

	Abstract
	1 Introduction
	2 System Overview
	3 Dynamic Partitioner
	3.1 Vector Encoder
	3.2 Vector Partitioner
	3.3 Dynamic Partitioning Templates

	4 Hierarchical Storage
	4.1 Data Organization
	4.2 Data Segment
	4.3 Vector Area
	4.4 Search Procedure
	4.5 Consistency Mechanism

	5 Storage Optimizer
	5.1 Vector Compression
	5.2 Hot-Cold Separation

	6 Experiments
	6.1 Experimental Setup
	6.2 System Efficiency and Scalability Study
	6.3 System Effectiveness Evaluation
	6.4 System Ablation Studies
	6.5 System Knobs Tuning

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

